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ABSTRACT

Video Anomaly Detection (VAD) has proved to be a challenging task due to the in-
herent variability of anomalous events and the scarcity of data available. Under the
common Weakly-Supervised VAD (WSVAD) paradigm, only a video-level label
is available during training, while the predictions are carried out at the frame-level.
Despite decent progress on simple anomalous events (such as explosions), more
complex real-world anomalies (such as shoplifting) remain challenging. There
are two main reasons for this: (I) current state-of-the-art models do not address
the diversity between anomalies during training and process diverse categories
of anomalies with a shared model, thereby ignoring the category-specific key at-
tributes; and (II) the lack of precise temporal information (i.e., weak-supervision)
limits the ability to learn how to capture complex abnormal attributes that can
blend with normal events, effectively allowing to use only the most abnormal snip-
pets of an anomaly. We hypothesize that these issues can be addressed by sharing
the task between multiple expert models that would increase the possibility of cor-
rectly encoding the singular characteristics of different anomalies. Furthermore,
multiple Gaussian kernels can guide the experts towards a more comprehensive
and complete representation of anomalous events, ensuring that each expert pre-
cisely distinguishes between normal and abnormal events at the frame-level. To
this end, we introduce Gaussian Splatting-guided Mixture of Experts (GS-MoE),
a novel approach that leverages a set of experts trained with a temporal Gaussian
splatting loss on specific classes of anomalous events and integrates their predic-
tions via a mixture of expert models to capture complex relationships between
different anomalous patterns. The introduction of temporal Gaussian splatting
loss allows the model to leverage temporal consistency in weakly-labeled data,
enabling more robust identification of subtle anomalies over time. The novel loss
function, designed to enhance weak supervision, further improves model perfor-
mance by guiding expert networks to focus on segments of data with a higher like-
lihood of containing anomalies. Experimental results on the UCF-Crime and XD-
Violence datasets demonstrate that our framework achieves SOTA performance,
scoring 91.58% AUC on UCF-Crime.

1 INTRODUCTION

Video Anomaly Detection (VAD) in surveillance videos is one of the most challenging tasks in the
field of Computer Vision. With the increasing capabilities of deep-learning models, there have been
various approaches to tackle this task. The main focus of recent research in the field of VAD has
been to model spatio-temporal dependencies in videos, obtaining meaningful representations of the
motion of relevant agents in the scene. In this sense, the Transformer architecture has proved to
be very effective, forming the backbone of multiple works. While the current state-of-the-art mod-
els have achieved reasonable results on publicly available datasets, they still fail to capture subtle
anomalies and to correctly detect the temporal window in which they happen.
We identify one of the main reasons for these issues in the formulation of the WSVAD task (Sultani
et al., 2018b; Wu et al., 2022). Multi Instance Learning (MIL) strikes a balance between fully-
supervised methods, which exhibit good performance but require costly data annotation, and unsu-
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Figure 1: While SOTA methods address the task of WSVAD via the most normal and abnormal
snippets in a video, the approach proposed in this paper focuses on learning a more complete repre-
sentation of anomalous via Gaussian kernels.

pervised methods, which do not require manual annotations but generally result in worse perfor-
mance. The core idea of MIL is to create bags containing positive and negative data samples (i.e.,
normal and abnormal videos), labeled only at the video-level. During training, the model assigns
a score between 0 and 1 to each snippet, with 0 indicating a normal snippet and 1 indicating an
abnormal snippet. The highest-scoring samples in the normal bag are guided towards 0, allowing
the model to learn most normal scenarios correctly. On the other hand, the highest-scoring nega-
tive samples are pushed towards 1. This leads the model to be supervised, and therefore learn, few
and specific instances of anomalous events, ignoring useful information contained in neighbouring
snippets and making the training process over-rely on the most abnormal snippets in a video. Fur-
thermore, it reduces the number of more subtle anomalies on which the model is supervised. Over
time, this approach has proved to be powerful but insufficient to train a model to correctly capture
the secondary and specific attributes of different anomalous classes. In recent works (Yu et al., 2020;
Yan et al., 2023; Georgescu et al., 2021), different auxiliary objectives are identified as priors for the
VAD task in order to optimize the training process.
To address the over-reliance on the most abnormal frames, we propose to model the anomalies in a
video as Gaussian distributions, rendering multiple Gaussian kernels in correspondence with peaks
detected along the temporal dimension of the scores estimated for abnormal videos. This technique,
called Temporal Gaussian Splatting (TSG), creates a more complete representation of an anomalous
event over time, including snippets of the anomaly with lower abnormal scores in the training ob-
jective. A side-by-side comparison of the MIL task and the TGS task is shown in Figure 1. The
Gaussian kernels are extracted from the abnormal scores produced by the model.
An additional challenge is related to the intrinsic differences between abnormal classes. Under the
MIL paradigm, the models are trained to learn the difference between normal and abnormal videos,
while the specific differences between anomalous classes are overlooked. As a result, these methods
mainly focus on coarse-level representations of anomalies that allow to distinguish between normal
and abnormal events, but ignore the fine-grained category-specific cues. Therefore, the more salient
anomalies (i.e., such as an explosion) are likely to be easily detected, while subtle anomalies (i.e.,
shoplifting) are more likely to be confused with normal events. This constitutes a major limitation
of most recent methods based on WSVAD. We address this issue via a Mixture-of-Expert (MoE)
architecture, in which each expert is trained to model a single anomaly class, enhancing the specific
attributes of each anomaly class that are often overlooked. To further leverage the correlations and
differences between anomalies, a gate model mediates between the predictions of each expert and
the more coarse-level anomalous features to learn potential interactions between anomalies.
The contributions of this paper are complementary: learning specific representations of anomalous
classes allows for more accurate Gaussian kernels, and the Gaussian splatting enables the experts to
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learn from more subtle anomalous events that would be overlooked otherwise. To summarize, this
paper presents:

• A novel formulation of the WSVAD task based on Gaussian kernels extracted from the
estimated abnormal scores to generate a more expressive and complete representation of
anomalous events. Splatting the kernels along the temporal dimension allows the model
to learn more precise temporal dependencies between snippets and highlight more subtle
anomalies;

• A Mixture-of-Expert (MoE) architecture that focuses on individual anomaly types via ded-
icated class-expert models, allowing a gate model to leverage similarities and diversities
between them;

• The impact of the proposed contributions is measured via an extensive set of experiments
on the challenging UCF-Crime (Sultani et al., 2018a) and XD-Violence (Wu et al., 2020)
datasets, showing notable improvements in performance w.r.t. previous state-of-the-art
methods.

2 RELATED WORK

2.1 WEAKLY-SUPERVISED VAD

In the WSVAD task, anomalous events encompass various classes, each exhibiting distinct char-
acteristics across the spatial and temporal dimensions. The task of WSVAD was introduced in a
seminal work by (Sultani et al., 2018b). In the following years, there have been multiple different
approaches that addressed the trade-off between the ease of data collection and the performance
exhibited by models trained in this task. The limitation of weak labels was addressed by (Zhong
et al., 2019b) using a graph convolutional network to correct noisy labels and supervise traditional
anomaly classifiers. Further, (Tian et al., 2021b) proposed to learn a function of the magnitude of
features to improve the classification of normal snippets and, therefore, the detection of abnormal
events. The model is based on attention modules and pyramidal convolutions. The idea of improving
the quality of weak labels was also explored by (Li et al., 2022c), which designed a transformer-
based method trained to predict abnormal scores both at the snippet and video levels. The video-level
predictions are then used to improve the performance of the model at the snippet-level. More re-
cently, (Zhang et al., 2023b) designed a multi-head classification model that leveraged uncertainty
and completeness to produce and refine its own pseudo-labels. (Majhi et al., 2024b) proposed a two-
stage transformer-based model that generates anomaly-aware position embeddings and then models
the short and long range relationships of anomalous events. Inspired by point-supervision (Bearman
et al., 2016), (Zhang et al., 2024a) introduced Glance annotations. These annotations enhance the
common weak labels by localizing a single frame in which an anomalous event is happening. While
reporting very good performance, these annotations require an additional manual-labelling proce-
dure.
Under the MIL paradigm, these variations complicate the model’s ability to effectively differentiate
between them. By focusing on the top-k most abnormal snippets of a video, the model is guided
towards specific and evident anomalous events, without properly considering the sequence of ac-
tions that lead to them and follow them. In fact, some anomalies occur within short time windows,
while others unfold over longer periods, moreover in both cases the MIL paradigm selects the same
amount of abnormal snippets.

2.2 MIXTURE OF EXPERTS

The Mixture-of-Experts (MoE) architecture has been introduced by (Eigen et al., 2013) and has since
been improved and employed for diverse tasks, from image classification to action recognition (Jain
et al., 2024). The original MoE design proposed a series of small experts and a separate gate network,
all receiving the same input data. Each expert predicts an output, while the gate network assigns a
score of importance to them. Since then, this architecture has been improved upon by various works.
A common idea across domains is to let a routing network select which portions of the input data,
or input tokens, to pass to each expert (Riquelme et al., 2021; Mustafa et al., 2022; Fedus et al.,
2022; Lepikhin et al., 2020). A recent work by (Puigcerver et al., 2024) proposed to weight the
input tokens in a different way for each expert.
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(a) MIL framework (b) TGS framework

Figure 2: (a) The abnormal scores obtained from the backbone model on a training video at the end
of training. The topk snippets used in the MIL paradigm lead the model to focus on the first and last
of the three anomalous events present in the video, overlooking the second anomaly. However, the
second anomaly, while not scoring as high as the others, is still detected. (b) The Gaussian kernels
extracted from the abnormal scores are splatted across the width of the detected peaks. This allows
the model to learn a more complete representation of the anomalous events in the video.

2.3 GAUSSIAN SPLATTING

Gaussian Splatting has received a lot of attention in recent years, proving to be very effficient in
fields like 3D scene reconstruction (Kerbl et al., 2023; Kopanas et al., 2021). The main idea of
Gaussian Splatting is to represent each 3-dimensional point in a scene as a multivariate normal
distribution, which allows to render the scene as the sum of the contributions of all the 3-dimensional
areas. Gaussian splatting has since been extended to incorporate the temporal dimension in multiple
domains, for example dynamic scene rendering (Li et al., 2024b;a) and medical imaging (Zhang
et al., 2024b).

3 METHODOLOGY

Our novel Gaussian Splatter-guided Mixture-of-Experts (GS-MoE) framework aims to accurately
detect complex anomalies using weakly-labeled training videos. GS-MoE leverages two key tech-
niques: (I) Temporal Gaussian Splatter loss, to ensure superior separability between normal and
anomalous instances under weak-supervision; (II) Mixture-of-Experts (MoE) architecture, that
learns class-specific representations and detects complex anomalies with high confidence.

3.1 TEMPORAL GAUSSIAN SPLATTING (TGS)

Our Temporal Gaussian Splatting (TGS) technique provides a novel formulation of the MIL opti-
mization paradigm by leveraging Gaussian kernels. The core idea of TGS is to reduce the over-
dependency on the most abnormal snippets that is often the result of the classical MIL. An example
of such over-dependency is shown in Figure 2a. The topk abnormal scores are the ones that would
normally be used in the loss function in the MIL paradigm:

topk = argmax
|K|=k

∑
i∈K

score−i ,∀i ∈ [1, T ] (1)

L = Ltopk−norm + Ltopk−abn (2)

where score−i is the score of a snippet of the abnormal video S−. At the end of the training, the
task encoder is able to detect two out of three anomalies contained in the video as in Figure 2a,
assigning a very high abnormal score to most snippets in the first and third anomalies time window.
The model is not as confident on the snippets belonging to the second anomaly, due to the fact that
during training it has never been supervised specifically on them, but it assigns them an anomalous
score higher than the normal snippets of the video. Additionally, the snippets between anomalies
are still considered partially anomalous. We conjecture that it is possible to leverage those situations
to generate pseudo-labels that allow a model to be trained on more information, while remaining in
the data-annotation boundaries of the WSVAD paradigm. To do so, we employ a technique called
Temporal Gaussian Splatting (TSG). Gaussian kernels are extracted in correspondence of peaks
in the temporal axis of the abnormal scores predicted by a model. This allows to identify subtle
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Figure 3: Overview of the GS-MoE architecture. First, in the feature extraction stage, the video en-
coder extracts snippet-level features from the video and the task encoder refines them in the anomaly-
detection latent space. In the second stage, each expert is trained only on refined features belonging
to its assigned class and to the normal class. In the final stage, the gate model collects the scores
assigned by each expert and compares them with the refine features of the task encoder, producing
the final abnormal score.

anomalies that are usually not included in the top-k snippets described in Equation 2. The kernels
obtained from the detected peaks are then rendered over the length of anomalous videos to obtain a
more accurate representation of the anomalies along the temporal dimension.
Considering the abnormal scores estimated for each snippet of a video as a signal over the duration
of the video T , the peaks P1, ..., Pn are detected and their respective widths W1, ...,Wn. The set of
peaks P contains the position of the snippet with the highest abnormal score for each peak in the
video. This may lead to the detection of spurious peaks, meaning peaks in the abnormal scores of a
video that do not belong to an anomalous event. To mitigate this, the model can be trained for a few
iterations with the Ltopk−norm component of the standard MIL training objective.
Gaussian kernels Gi are then initialized with unitary value for the snippets corresponding to each
peak Pi detected in the abnormal scores of the video. To further represent the duration of the
anomaly, the kernel values corresponding to snippets that are within the width Wi of the respective
peak are also set to 1 if their abnormal score is higher than the difference between the peak score
and the standard deviation of the normal distribution centered in the peak:

Gi,t =


1, if t = Pi,

1, if scoret ≥ scorePi
− σi ∧ t ∈ Wi

0, otherwise
,∀t ∈ [1, T ] (3)

where scoret is the abnormal score assigned to snippet t and σi is the standard deviation of the
normal distribution centered in peak “i”. This allows to treat each anomaly separately, which is
beneficial for the WSVAD task due to the fact that different anomalies have different characteristics
along the temporal dimension. Computing the Gaussian kernels in this way represent an improve-
ment upon the top-k formulation, allowing the model to learn from the entirety of an anomalous
event instead of its most abnormal snippets. Each kernel is splatted via:

fi(t) = Gi,t · exp(−
∥t− Pi∥2

2σ2
i

),∀t ∈ [1, T ] (4)

where T is the length of the video and σi is the standard deviation of the scores around the peak
centered in Pi within the width Wi. Finally, the pseudo-labels ŷ are generated by rendering each of
the K extracted kernels over the length of the video:

ŷ = ∥(
k∑

i=1

fi(t))∥ (5)

An example of such pseudo-label (Temporal Gaussian Splatting) is shown in Figure 2b. The gen-
erated pseudo-labels contain a target abnormal score between 0 and 1 for each snippet in the video,
allowing the model to learn the severity of each abnormal snippet. This represents a relevant im-
provement over the standard MIL training objective, where only the top-k snippets are pushed to-
wards 1 in the training objective, as in Equation 2. Instead, the TGS loss function used to train the
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experts and the MoE is formulated as:

LTGS = Ltopk−norm +BCE(y, ŷ) (6)

3.2 MIXTURE OF EXPERTS (MOE)

Our Mixture-of-Experts (MoE) architecture is shown in Figure 3. The widely-adopted I3D model
extracts the task-agnostic motion features from the videos. To further enrich the video features, the
UR-DMU model (Zhou et al., 2023b) is employed as a task-aware feature extractor. The UR-DMU
model is firstly trained on the WSVAD task with the standard MIL loss (Zhou et al., 2023a) and
subsequently fine-tuned using the TSG loss in Equation 6. The task-aware features generated by the
UR-DMU model contain enriched spatial and temporal information pertaining to anomalous events
occurring within the video, compared to the more generic I3D features. However, these refined fea-
tures are specialized only on distinguishing between normal and abnormal events, while overlooking
the specific complexities of each anomaly class. In order to leverage these features effectively and
differentiate between anomalous classes, in the second stage of the framework, multiple expert mod-
els are trained to identify the features relevant to detecting a specific type of anomaly. Consequently,
the score predicted by an expert represents the likelihood that a given video corresponds to the
expert’s designated anomaly class. Each expert expands the boundaries of the coarse latent space
learnt by the task encoder, learning to differentiate between normal videos and abnormal videos
belonging to its assigned class. The experts are able to learn class-specific patterns and more subtle
occurrences of anomalous events by focusing on their individual task. The architecture of an ex-
pert consists of a transformer block with 4 self-attention heads, followed by a two-layer MLP with
GELU activation (Hendrycks & Gimpel, 2016), which outputs the estimated anomaly score for its
respective anomaly type.
In the final stage of the framework, the scores generated by each expert are concatenated and the
resulting tensor is passed to the gate model. As a first step, the gate model refines the expert’s scores
by projecting them into a higher-dimensional space. Then, the gate model learns the correlations
between the fine-grained class specific logits of the experts and the coarse level abnormal logits of
the task encoder. This is done via a bi-directional cross attention module, applied between the coarse
and the fine-grained features.
The gate model learns to leverage similarities and differences between anomalous classes by pro-
cessing the experts scores together with the coarse anomaly-aware features produced by the task
encoder. Therefore, the gate model learns a more expressive representation of the latent space of the
anomaly detection task. Finally, the abnormal scores are predicted via a transformer block followed
by a four-layer MLP, similar to the architecture of the expert models.

4 EXPERIMENTS

Datasets. We conduct our experiments on two widely-used Weakly-Supervised Video Anomaly
Detection (WSVAD) datasets, namely UCF-Crime (Sultani et al., 2018a) and XD-Violence (Wu
et al., 2020). Importantly, for both datasets, the training videos are annotated with only video-level
labels, without access to frame-level annotations.

Evaluation Metrics. We adhere to the evaluation protocols established in prior works (Lv et al.,
2023; Wu et al., 2024; Sultani et al., 2018a; Wu et al., 2020). To ensure comprehensive evaluation,
we utilize multiple indicators, such as frame-level Average Precision (AP), Abnormal AP (APA) for
XD-Violence and Area Under the Curve (AUC), Abnormal AUC (AUCA) for UCF-Crime dataset.
The AP and AUC metrics show the method robustness towards both normal and anomaly videos.
However, APA and AUCA allows to exclude normal videos where all snippets are labeled as normal
and retain only the abnormal videos containing both normal and anomalous snippets. This poses a
more meaningful challenge to the model’s ability to accurately localize anomalies.

Implementation Details. The video features were obtained with the I3D model (Carreira & Zisser-
man, 2017) pre-trained on Kinetics-400 with sliding windows of 16 frames. The I3D implementation
chosen is the ResNet50, which is proven to be one of the best-performing (Chen et al., 2021). The
transformer blocks implemented in the experts and gate model do not have positional embeddings
and class tokens. All models were implemented in PyTorch and trained on a single NVIDIA RTX
A4500 GPU. The models were trained using the AdamW (Loshchilov & Hutter, 2017) optimizer.
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Model Encoder UCF-Crime XD-Violence
AUC AUCA AP APA

SoTA Methods With Multi-modal Features
MA (Zhu & Newsam, 2019) C3D 79.10 62.18 - -
HL-Net (Wu et al., 2020) I3D 82.44 - - -
HSN (Majhi et al., 2024a) I3D 85.45 - - -
TPWNG (Yang et al., 2024) CLIP 87.79 - 83.68 -
PEMIL (Chen et al., 2024) I3D+Text 86.83 - 88.21 -
VadCLIP (Wu et al., 2024) CLIP 88.02 70.23 84.15 -

SoTA Methods With RGB only Features

MIL (Sultani et al., 2018a) C3D 75.41 54.25 75.68 78.61
I3D 77.42 - - -

TCN (Zhang et al., 2019) C3D 78.66 - - -
GCN (Zhong et al., 2019a) TSN 82.12 59.02 78.64 -
MIST (Feng et al., 2021) I3D 82.30 - - -
Dance-SA (Purwanto et al., 2021) TRN 85.00 - - -
RTFM (Tian et al., 2021a) I3D 84.30 62.96 77.81 78.57
CLAV (Cho et al., 2023) I3D 86.10 - - -
UR-DMU (Zhou et al., 2023a) I3D 86.97 70.81 81.66 83.94
SSRL (Li et al., 2022a) I3D 87.43 - - -
MSL (Li et al., 2022b) V-Swin 85.30 - 78.28 -
WSAL (Lv et al., 2021) I3D 85.38 67.38 - -
ECU (Zhang et al., 2023a) V-Swin 86.22 - - -
MGFN (Chen et al., 2023) V-Swin 86.67 - - -
UMIL (Lv et al., 2023) CLIP 86.75 68.68 - -
TSA (Joo et al., 2023) CLIP 87.58 - 82.17 -

GS-MoE (Ours) I3D + Class Labels 91.58 (+3.56%) 83.86(+13.63%) 82.89 85.74

Table 1: State-of-the-art comparisons on UCF-Crime and XD-Violence datasets. The best results
are written in bold.

The batch size was set at 128, containing 64 normal and 64 abnormal videos. Under these condi-
tions, the entire training procedure requires about three hours, while testing on the UCF-Crime test
set requires 55 seconds. For training stability, during the first epoch the models are trained with the
Ltopk−norm component of 6. For the same purposes, we employ the same smoothness and sparsity
loss components as presented in (Sultani et al., 2018b).

4.1 STATE-OF-THE-ART COMPARISON

In our experiments, the proposed GS-MoE model outperforms prior state-of-the-art (SOTA) ap-
proaches across multiple metrics, as summarized in Table 1. On the challenging UCF-Crime
dataset, GS-MoE achieves an AUC of 91.58%, surpassing the previous best model, VadCLIP (Wu
et al., 2024), by 3.56%. This significant improvement illustrates the effectiveness of our model in
detecting complex video anomalies in real-world datasets. Additionally, when considering the per-
formance on the abnormal videos (AUCA) only, GS-MoE achieves a score of 83.86%, which con-
stitutes a remarkable 13.63% improvement over the second-best approach, UR-DMU (Zhou et al.,
2023a), at 70.81%. This result supports one key hypothesis of our work: different types of anoma-
lies require class-specific fine-representations for more effective detection. UR-DMU performance
remains limited due to feature-magnitude based optimization which overlooks the subtle cues and
enhances the sharp cues. However, the proposed TGS loss promotes both subtle and sharp cues to
take part in the separability optimization. Further, the mixture-of-experts architecture is capable of
capturing these class-specific representations, leading to substantial performance gains, especially
on complex anomalies.
On the XD-Violence dataset, GS-MoE achieves an AP score of 82.89%, which is competitive with
the best-performing multi-modal VadCLIP (Wu et al., 2024) model (84.15%). Moreover, when fo-
cusing on anomalous videos only, GS-MoE achieves an APA score of 85.74%, outperforming the
second-best approach, UR-DMU (Zhou et al., 2023a), which achieved an APA score of 83.94%.
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Since the AP metric considers both normal and anomaly videos for evaluation, the performance gets
elevated by accurately predicting many normal videos.

As a result, methods performing well on the AP metric may still struggle in anomaly detection. The
proposed method outperforms previous SOTA in the APA metric, reinforcing its utility in real-world
scenarios.
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Figure 4: Category-wise performance analysis and comparison with UR-DMU.

(a) UR-DMU features. (b) GS-MoE features.

Figure 5: Category-wise t-SNE feature distribution comparison between the baseline, the experts
and the gate model.

Category-Wise Performance Analysis. To bring additional analytical insights on the complex
anomaly performance, Figure 4 provides an anomaly category-wise performance comparison be-
tween GS-MoE and the baseline UR-DMU method on the UCF-Crime dataset. Notably, significant
performance boosts are recorded for complex categories like “Arson”, “Assault”, “Fighting”, “Steal-
ing” and ”Burglary”, up to +24.3%. These performance gains corroborate the benefits of GS-MoE
in detecting complex video anomalies.
Figure 5 shows the t-SNE plot (van der Maaten & Hinton, 2008) of the logits obtained at each of
the three stages of GS-MoE for the anomalous videos in the test set. The plot in Figure 5a, obtained
from the baseline UR-DMU, shows a low degree of separability. The class diversification performed
by the experts and shown in Figure 5b demonstrates the capability of GS-MoE to learn enhanced
class representations.

4.2 QUALITATIVE RESULTS

As shown in Figure 6, the Gaussian kernels extracted from the abnormal score contain a precise
representation of the anomalous events present in videos of the UCF-Crime dataset. The kernel
temporal activation (heatmaps) demonstrate the capabilities of this approach. By correctly distin-
guishing the peaks of the anomalous events and from the spurious peaks, the model is trained to
predict high anomaly scores for the associated anomalous snippets. In the ”Assault-010” video
sample, two peaks are detected in the abnormal score and the TGS finds a small variance for both,
leading to a steep normal distribution for each of them. On the other hand, in the ”Arson-011”
and ”Explosion-033” samples, the TGS creates much longer distributions by leading the model to
estimate a large variance and producing a long time-window for the anomaly.
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Figure 6: Visualization of sample frames and ground truth (green shed) vs. prediction scores (red
shed) for various cases in Row-1 and Row-2. For each plot in Row-2, the X and Y axis denotes
the number of frames and corresponding anomaly scores. Row-3 shows the temporal activation
(heatmaps) learned by Gaussian splatter (GS).

4.3 ABLATION STUDIES

Baseline TSG MoE AUC(%) APA(%)
Experts Gate UCF-C XD-V UCF-C XD-V

✓ - - - 86.97 94.07 45.65 82.91
✓ ✓ - - 88.74 94.13 46.01 83.39
✓ ✓ ✓ - 89.53 94.29 47.17 84.16
✓ ✓ ✓ ✓ 91.58 94.52 51.63 85.74

Table 2: Impact of each component in GS-MoE framework on UCF-Crime and XD-Violence
datasets.

Component Impact: Extensive ablation studies are conducted to evaluate the impact of each contri-
bution to the final performance of GS-MoE, as shown in Table 2. Fine-tuning the baseline UR-DMU
model with the TGS loss in Equation 6 leads to a performance increase of +1.77% on the AUC met-
ric of UCF-Crime, while the APA of XD-Violence increases by +0.48%. These results show that
the new formulation of the WSVAD task is beneficial to existing methods as well. The class-experts
outperform the fine-tuned baseline by +0.79% on UCF-Crime. Notably, the APA increases on
both datasets, leading to +1.16% for UCF-Crime and +0.76% on XD-Violence, further supporting
the idea that different classes of anomaly should be treated separately. Adding the gate model to
the framework brings the largest performance increment. For UCF-Crime, the AUC increases by
+2.05% and the APA by +4.46%. On XD-Violence, we observe relatively smaller improvements,
increasing AUC by +0.23% and APA by +1.68%.

Datasets With task-aware features Without task-aware features
UCF-Crime (AUC) 91.58 90.98
XD-Violence (APA) 85.74 81.45

Table 3: Evaluation of the importance of the task-aware features for the gate model on the key
metrics of the UCF-Crime and XD-Violence datasets.

Task-Aware Features. In order to further analyze this performance increment, the gate model
was trained with and without the task-aware features. The results of this experiment are shown in
Table 3. The task-aware features seem to have a key role in the performance on the APA metric of
XD-Violence. In fact, the Gate model trained with the task-aware features outperforms the other
configuration by 4.29% on this setting, and by 0.6% on UCF-Crime.
Class-Experts Impact. The relevance of the expert models on the performance of the gate model
is measured with the class-wise AUC score obtained by masking the respective class expert on
the UCF-Crime dataset. The results of this experiment are shown in Table 4. By masking the

9
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Expert Abuse Arrest Arson Assault Burglary Explosion Fighting RoadAcc. Robbery Shooting Shoplifting Stealing Vandalism

Mask 50.02 50.51 49.27 50.72 49.49 49.92 49.95 49.91 50.04 49.20 49.39 50.52 49.87

W/o Mask 86.37 55.48 61.73 63.12 53.65 57.04 65.14 65.22 72.37 60.89 54.73 77.62 57.43

Table 4: Category-wise performance comparison on UCF-Crime dataset between the UR-DMU
baseline model and GS-MoE without the expert model for a given class. Masking the relevant
experts results in an almost random output from the gate model.

experts, the measured AUC hovers around 50% for each class. On the other hand, the gate model
predictions are much improved when the relevant expert score is included, leading to a significant
performance boost. Most notably, the gate model scores 86.37% on the “Abuse” class, and above
70% for “Robbery” and ”Stealing”.
Class experts vs cluster experts. In practical applications, anomalies often span multiple classes,
making it challenging to train a fixed set of specialized experts. To address this issue, we trained
GS-MoE using cluster-based experts rather than class-specific experts. To form the data clusters, we
calculated the average task-aware features for each anomalous video in the UCF-Crime training set
and applied the K-Means algorithm (Lloyd, 1982) to group them. Each expert was then trained using
videos from a single cluster combined with normal videos, resulting in k specialized expert models.
This approach enabled us to evaluate the model’s performance in real-world scenarios where the
number of classes is undefined. The results are reported in Table 5.

Model AUC

URDMU 86.97
TSA 87.58

TPWNG 87.79
VadCLIP 88.02

GS-MoE (5 clusters / 5 experts) 87.35
GS-MoE (6 clusters / 6 experts) 88.03
GS-MoE (7 clusters / 7 experts) 88.58

GS-MoE (class experts) 91.58

Table 5: Comparison between the performance of GS-MoE with varying number of experts.

In this setting, GS-MoE is able to outperform current sota models by 0.56% clustering the anomalous
training videos in 7 clusters and using 7 experts, while performing on par with other sota models
using fewer experts. These results highlight the capabilities of GS-MoE in a real-world use-case
where the number of anomalous events is not fixed.

5 CONCLUSION

In this work, we propose GS-MoE to provide a novel formulation for weakly-supervised video
anomaly detection by leveraging Temporal Gaussian Splatting to overcome the limitations of pre-
vious methods. More specifically, we address the over-dependency on the most abnormal snippets
for separability optimization. To effectively detect with the diversified categories of anomalies, our
framework utilizes a mixture-of-experts architecture that learns category-specific fine-grained rep-
resentations. Furthermore, it builds a correlation between the coarse abnormal cues and the learned
fine-grained cues to learn a more compact representation for each category. From extensive experi-
mentation on challenging datasets across various metrics, we find that GS-MoE consistently outper-
forms SOTA methods and provides new benchmark results with significant performance gains. In
future works, we aim to leverage large language models to provide more explainability to abnormal
categories.
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