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ABSTRACT

We consider price competition among multiple sellers over a selling horizon of T’
periods. In each period, sellers simultaneously offer their prices (which are made
public) and subsequently observe their respective demand (not made public). The
demand function of each seller depends on all sellers’ prices through a private, un-
known, and nonlinear relationship. We propose a dynamic pricing policy that uses
semi-parametric least-squares estimation and show that when the sellers employ
our policy, their prices converge at a rate of O(Tﬁl/ ") to the Nash equilibrium
prices that sellers would reach if they were fully informed. Each seller incurs a
regret of O(T°/7) relative to a dynamic benchmark policy. A theoretical contribu-
tion of our work is proving the existence of equilibrium under shape-constrained
demand functions via the concept of s-concavity and establishing regret bounds of
our proposed policy. Technically, we also establish new concentration results for
the least squares estimator under shape constraints. Our findings offer significant
insights into dynamic competition-aware pricing and contribute to the broader
study of non-parametric learning in strategic decision-making.

1 INTRODUCTION

Pricing plays a central role in competitive markets, where firms continuously adjust prices in response
to demand fluctuations and rival strategies. A major challenge in competition-aware pricing lies in
inferring rivals’ pricing behavior from limited observations (Li et al., 2024). Firms cannot easily
estimate price sensitivity through controlled experiments since competitors do not coordinate to
hold prices constant while one firm tests different price values. Although existing sequential pricing
algorithms yield low regret and converge toward a Nash Equilibrium (NE), they often rely on a
linear demand framework (Kirman, 1975; Li et al., 2024), or nonlinear approaches restricted to a
fixed parametric family (Goyal et al., 2023), limiting applicability. Because nonlinear demand better
reflects reality (Gallego et al., 2006; Wan et al., 2022; 2023), we adopt a flexible semiparametric
model with unknown parametric and nonparametric components.

Over T periods, IV sellers set prices simultaneously; each seller’s demand depends on both their own
and rivals’ prices, an effect amplified beyond linearity. Sellers observe competitors’ prices but not
competitors’ realized demand. For analysis, we assume that all sellers use the same algorithm — a
realistic simplification: for instance, Pri (2025) describes a pricing service used by numerous local
hotels in Colorado. These hotels, while independently operated, utilize the same class of algorithmic
tools provided by the platform to set their prices. Importantly, although they observe competitors’
prices, they do not share underlying demand information with one another, as we assume in this work.

We design a tuning-free pricing policy purely based on shape constrained estimation that (i) maximizes
each seller’s revenue and (ii) guarantees convergence to the NE, the pricing configuration that would
arise under full information (iii) attains sublinear regret against a dynamic benchmark, defined as the
worst-case gap between a seller’s average revenue under our proposed pricing policy (where neither
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model parameters nor competitors’ demands are known) and an optimal policy in hindsight (which
assumes fixed competitor prices and full knowledge of the demand model).

The Role of Shape Constraints in This Work. In this paper, we assume that the mean demand for
aselleri € [N] = {1,2,..., N}, given the price vector (p;, p—;) (Where p_; denots the competitors’
prices), follows a single index model of the form Elyi|lpi, p } Ui (—Bipi + (i, P—i)), where the
demand link function v; is assumed to be both monotone and s-concave ({-,-) denotes the euclidean
inner product) and 3; > 0, which generalizes the linear demand setting in Li et al. (2024), where 1;
is linear (that is monotone and log-concave, i.e. s-concave with s = 0). Below, we summarize the
motivation and relevance of these shape constraints, whose importance will become further evident
throughout the paper.

Monotonicity aligns with economic intuition, where the standard form of demand is decreasing in the
seller’s own price (Li et al., 2024; Friesz et al., 2012; Kirman, 1975), and consequently, since 3; > 0,
the functions ¢/; must be increasing to preserve decreasing demand with respect to p;. Indeed, in this
case, Op,Ely; | pi, p—i] <O.

The s-concavity assumption of v; also arises naturally as a generalization of the commonly used
log-concavity (recovered when s = 0), and plays a crucial role in guaranteeing convergence anal-
ysis towards equilibrium (see Section 3.1). We emphasize that s-concavity, being a higher-order
smoothness constraint than monotonicity, drives the convergence rate results.

2 RELATED LITERATURE AND CONTRIBUTIONS

Sequential Price Competition with Demand Learning. Classic price competition with known
demand goes back to Cournot (1838); Bertrand (1883), with later variants including multinomial
logit (Gallego et al., 2006; Aksoy-Pierson et al., 2013; Gallego & Wang, 2014), fixed-point methods
for mixed logit (Morrow & Skerlos, 2011), and multi-epoch competition (Gallego & Hu, 2014;
Federgruen & Hu, 2015; Chen & Chen, 2021). However, over the last two decades, demand learning
for competitive pricing has advanced substantially.

In this paper, we study sequential price competition with demand learning. Early work (Kirman,
1975) analyzed symmetric duopolies with linear demand. Li et al. (2024) achieved optimal v/T
regret for asymmetric linear demand, \;(p) = a; — Bip; + > i ViiD» with unknown sensitivities.
However, nonlinear demand is more realistic and widely used (Gallego et al., 2006; Wan et al.,
2022; 2023). For instance, Gallego et al. (2006) study A\i(p) = ai(pi)/ (2, a;(p;) + &) for known

increasing a; and x € (0, 1]. In contrast, we analyze an unknown monotone single-index model
Ai(P) = ¥i(=Bipi + 22,2 7%iipi) = ¥i((0:,P)) , ey

where 0; has —; in coordinate ¢ and -y;; elsewhere, and both 8; and v); are unknown. This strictly
generalizes Li et al. (2024): setting ¢; (u) = u + «; recovers their linear model.

Monotone Single-Index Models. By Equation (1), we have N single-index models E(y; | p) =
¥;((6;,p)), i € N ={1,2,..., N}, with unknown 8; € RY and unknown links 1;. We assume 1);
is nondecreasing, which makes demand \; nonincreasing in its own price p;, a standard assumption
in the economics literature (Birge et al., 2024; Li et al., 2024). Monotonicity also permits fully
data-driven, tuning-free nonparametric estimators (Balabdaoui et al., 2019). The monotone SIM is
identifiable under mild conditions: ||0;||2 = 1, and p has a strictly positive density on its domain
(see Balabdaom et al. (2019, Prop. 5.1)). Baldbdaom et al. (2019) also propose a joint estimator

(85,1, 1hi ) with L2 error of order n /3 for 1;((6;, -)), and study the normalized linear estimator
n é'i n n 2 = n
ei”ﬂ = mu 02 n € arg mlnBERN Zt 1(yz <0 p p>) , P= %Zt:l P(t)a (2)

which remains consistent under elliptically symmetric p(*) (Brillinger, 2012). In this work, we also
assume that p(*) follows an elliptically symmetric distribution during the exploration phase. However,

for our purpose, an L? convergence alone for 7@((@, -)) is insufficient to establish a regret bound,
but a uniform (supremum-norm) rate suffices and is derived in this paper.

Connection with NE, virtual valuation, and s-concavity. We propose a sequential price competi-
tion online algorithm that provides sublinear regret. The first step to achieve this goal is to establish
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the existence and uniqueness of a Nash Equilibrium p*, which is the fixed point of an operator "
(see Section 3.1 for more details). A necessary condition for its existence is that each seller’s virtual
valuation

pi(u) = u+ Vi /() ?3)
is increasing with derivative bounded below: ¢} (u) > ¢; for some ¢; > 0 for all : € N. This mirrors
the V = 1 literature (monopolistic setting) such as Fan et al. (2024); Chen & Farias (2018); Cole &
Roughgarden (2014); Golrezaei et al. (2019); Javanmard (2017); Javanmard & Nazerzadeh (2019),
which often assume log-concavity of ¢; and 1 — v; (implying ¢; > 1).

Our key observation links the NE and shape constraints as follows: ¢} (u) > ¢; iff ¢; is (¢; — 1)-
concave (Proposition 3.5; see the section below for definition of s-concavity), with log-concavity
recovered as a special case when ¢; = 1. This connection allows us to estimate 1); via nonparametric
least squares under s-concavity — yielding a fully data-driven, tuning-free estimation procedure.

s-Concavity. A technical contribution of this work is the study of the uniform rate of convergence
of the least-squares estimator of a unidimensional s-concave regression function. As defined in Han
& Wellner (2016), a unidimensional function ¢ : U — (0,00), Y C R, is said to be s-concave for
some s € R, and we write ¢ € Fs(U) if ¥ (1 — Nug + Aug) > M (¢ (uo) , 2 (ug) ; A), for all
ug,u1 € U and X € (0,1), where

((1_)\)y(s)+>\yf)l/sa 5 #0,y0,y1 >0
M (yo,y1;A) £ 10, s<0,yo=y1=0
oyl s =0.

This notion generalizes concavity (s = 1) and log-concavity (which holds for s = 0, in the sense that
lims—,0 M5 (Y0, y1; A) = Mo(yo,y1; \)). These classes are nested since Fs(U) C Fo(U) C Fr-(U),
if —oo < r < 0 < s < oo. The class of log-concave densities has been extensively studied: see
Bobkov & Madiman (2011); Diimbgen & Rufibach (2009); Cule & Samworth (2010); Borzadaran
& Borzadaran (2011); Bagnoli & Bergstrom (2006); while Han & Wellner (2016); Doss & Wellner
(2016); Chandrasekaran et al. (2009); Koenker & Mizera (2010) deal with general s-concavity. It is
easy to see that such functions ¢ have the form ¢ = (¢..)'/* for some concave function ¢ if s > 0,
where ;. = max{0, z}, 1) = e? for some concave function ¢ if s = 0, and 1) = (¢, )'/* for some
convex function ¢ if s < 0. Then, v has the following representation: 1) = hg o ¢ where ¢ : U — R
is concave and

ev, s=0,z € R, log(y), s=0,y>0,
he(z) = d; ' (x) = (—2)'/°, s<0,z<0, ds(y) =< —y®, s<0,y>0, 4
a:l/s, s>0,x >0, Y, s> 0,y >0.

Different from previous results, we study the convergence rate for the more general class F}, (see
Appendix H for details) that contains functions of the form ¢ = ho¢ : U — R, where h : R — (0, 00)
is a known increasing function in C? and ¢ : U — R is an unknown concave function. Specifically,
we consider i.i.d. observations (U;,Y;) ~ (U,Y) fori = 1,2,...,n where Y7,...,Y,, are noisy
representations of the mean function ¥g(u) = E (Y|U = u) = h(¢o(u)) and Uy < Us < --- < U,

are contained in /. We study the uniform convergence rate of v,, = h o ¢,,, where ¢,, is the LSE
N . n 2
d)n € argming concave Zi:l (YPZ —ho ¢ (UZ)) .

The uniform convergence of @n to 1o plays a crucial role in establishing the convergence of our
proposed pricing strategy to the Nash Equilibrium, as we will see later in the paper.

2.1 SUMMARY OF KEY CONTRIBUTIONS

We now provide a summary of our key contributions.

A novel semiparametric pricing policy for nonlinear mean demand. We extend the standard
approach to estimating the mean demand function of a firm \;(-) by introducing a monotone single
index model \;(p) = ;((6;,p)), where v; is increasing and s;-concave for some s; > —1,
providing substantially more flexibility than previous parametric models (Li et al., 2024; Kachani
et al., 2007; Gallego et al., 2006).



Published as a conference paper at ICLR 2026

s-concave mean demand functions. In many existing works, necessary conditions for the existence
of the NE are derived by assuming that the virtual valuation function defined in Equation (3) is
increasing, often by invoking log-concavity of the mean demand function. We show how all such
assumptions can be cast under the more general framework of s-concavity. This reformulation allows
the development of a fully data-driven, tuning-parameter-free algorithm using shape constraints.

Regret upper bound and convergence to equilibrium. We establish an upper bound on the total
expected regret and analyze the convergence to the NE for a general exploration length of order
7 o T¢ for £ € (0,1) (Theorem 5.4). Our results reveal the existence of an optimal choice of ¢ that

minimizes the total expected regret for each seller, leading to a regret of order o (N3/2T5/7), where
O excludes log factors (Remark 5.6). Moreover, we show that by the end of the selling horizon, the
joint prices set by sellers converge to Nash equilibrium prices at a rate of O(N3/4T7~1/7),

Concentration inequality for s-concave regression functions in the supremum norm. Our work
involves establishing a concentration inequality for the nonparametric LSE, under the supremum
norm, for a large class of shape constraints that includes s-concavity (Appendix H). As a minor
contribution, we derive a concentration inequality for the parametric component 8; of the monotone
single index model (Proposition D.3), while previous results show convergence in probability or
distribution (Balabdaoui et al., 2019).

General Notation. We use || - ||1, || - |2 (or || - ])s]| - || for the L', Euclidean, and sup norms,
respectively, and (u, v) = u' v for the inner product. The unit sphere in RV isSy_; = {x € RY :
Ix|l2 = 1}. We write O(-) to suppress logarithmic factors and use < to hide absolute constants. For
functions, C™(£2) denotes m-times continuously differentiable f : Q@ — R. A Lipschitz function
f has constant Ly > 0 with respect to prespecified norms. f is a contraction if Ly < 1. If
f € C3(Q), Q C R, itis u-strongly convex if f”(x) > p > 0. Finally, following Delmas et al.
(2024, Pag. 86), a random vector Z ~ &(m, A, g) has elliptically symmetric distribution with
location m, scale matrix A > 0 (positive definite), and density generator g : [0, 00) — [0, 00), if

fz(z) x g ((z —m)"AY(z — m))

3 PROBLEM FORMULATION

We adopt a problem setup similar to that of Li et al. (2024). We consider N sellers, each selling a
single type of product with unlimited inventories over a selling horizon of 7" periods. We use t € 7 £

{1,2,...,T} to index time periods and i € A" £ {1,2,..., N} to index sellers. At the beginning

of each period, each seller simultaneously selects their price. For seller 7, pl@ ep 2 [pi, il

denotes the price that seller i offers in period ¢, with price bounds p; < p; and p;, p; € [0, 4-00). Let

p) & (p;t))jeN\{i} denote the competitor prices at time ¢, p(*) £ (p;t)

vector, and let P £ HieN[&’ Pi|. The vector p® is made public at time t, then observed by all the
sellers. A common knowledge is also the set

_on\1/2
u £ [_pmaxvpmax], Pmax = (Zieszz) / . (5)

The demand ygt) of seller i in period t is observed by seller i and is kept private, i.e., not shared

)jenr denote the joint prices’

among competitors. The individual demand yft) depends on the offered prices of all sellers, p(*) € P,
and follows a nonlinear model:

yft) =N(pW) + 51@; Ai(p®) £ 1/%(—51'10?) + (v, p(_tb) =;((6;,p1)), teT, (6)

where {55” }teT are (zero mean) o;-sub-gaussian demand noises following independent and identical
()
J

dimension N with i-th entry equal to —f3; and the remaining entries being the values of v; € RV ~1,
ordered. The parameter vector «; measures how seller ¢ ’s demand is affected by competitor prices.
We assume that the parameter space is such that the average demand ); is non-negative and 9, \; < 0
among all values of {0;, ¥; };car; a similar assumption is found in Birge et al. (2024); Li et al. (2024).
The above conditions hold if 1;, 1, > 0 and /3; > 0, which are explicitly assumed in Assumption 3.1.

Assumption 3.1. For everyi € N, ; : U — [B,,, By,], where: 1; € C*(U) is unknown; 0 <
By, < Bd,i < oo are known; 0 < B, < Ph < ng and [} < By, where Ethw;va;’ >0

distributions (5§t> and ¢’ can be correlated with ¢ # j, i, 7 € N), and 6; is an unknown vector of

4
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are not necessarily known. We also assume
Bi =B, I6:ll3 =87+ vl =1, ie 6 €Sy,
where 3, € (0, 1] is an unknown constant.

The constants B, , By, are known by the seller i (they are used to compute the optimization problem
in (11)), however, firms can estimate them easily from historical sales data and operational capacity
limits; moreover loose bounds suffice and do not affect the rates in Theorem 5.4. The condition
||6;]]2 = 1 guarantees the differentiability of the monotone single index model (Chmielewski, 1981;
Balabdaoui et al., 2019). Note that Equation (6) is well defined, that is <0i,p(t)> € U, indeed
10:2 =1 = [{(0;,P)| < |Ipll2 < Pmax, VP € P. Regarding ~;, while many applications assume
7vi; > 0, this restriction is not required for our algorithm or theoretical guarantees - our results remain
valid when ~y;; > 0. We allow +;; to be negative to capture settings with negative cross-effects, such
as vertically differentiated products, where raising a competitor’s price may reduce my demand if
consumers perceive their product as higher quality.

Individual Regret. Seller i € A aims to design a policy {p\" };c7 that maximizes their individual
(cumulative) revenue

R,(T) £ ]Ethzl pE”yEt) = EZtT:l TEVz‘(py(;t) | P(_tZ% rev; (pi|p—i) = pithi(—Bipi + (Vis P—i))-

Maximizing a seller’s revenue can be reframed as minimizing their regret. Each seller competes
with a dynamic optimal sequence of prices in hindsight while assuming that the other sellers would
not have responded differently if this sequence of prices had been offered. Under such a dynamic
benchmark, the objective of each seller 7 € A is to minimize the following regret metric in hindsight:

Reg(T) £ [EX, revi(Ti(p) | pU)| = Ri(T), Ti(p) € axgmax vevi(pi [ p-0), - ()
Dpi i

where T'; : P_; — P; is denoted as the i-th seller’s Best Response Map, and p_; = (p;) JEN\{i}-

Nash Equilibrium (NE). A Nash equilibrium p* = (p;),.,, € P is defined as a price vector
under which unilateral deviation is not profitable for any seller. Specifically,

revi(p; | pZ;) 2 revi(pi | PZ;),  Vpi € Py, Vi€ [N],
or, equivalently, p* is a solution to the following fixed point equation:

p*=T(") =T1(p~y),....In(P yN)), T:P =P, ®)

where I' is called Best Response Operator, and its components I'; are defined in (7).

3.1 MAIN ASSUMPTIONS

Before presenting the main assumptions, we clarify why our framework requires two key properties:
the best-response map must be contractive, and each seller’s revenue function must be strongly
concave. These conditions ensure well-posedness of the equilibrium and enable the stability and
convergence guarantees developed later.

The objective of this paper is to design an algorithm that guarantees sublinear regret for every seller,
i.e., Reg;(T) = o(T) for every i € N. Our policy consists of two phases: an exploration phase,
in which each seller learns their individual best-response map I by consistently estimating the
parameters (6;,1);), and an exploitation phase, in which, at each round ¢, seller i sets their price
according to pgt) = fi(p(fi_l)), or equivalently p() = I'(p(t=1). The link between regret and
equilibrium is straightforward: the individual regret is controlled if the iterates converge to the NE. In
fact, Reg;(T) < TE|p™) — p*||3, were p* is a NE (see (37) for a detailed bound). By the triangle
inequality, we have

Ip® —p*| < TP ) =T )|+ T ) ~T(p")| < IT=Tjw+ Lrllp" —p*,

where Lr is the Lipschitz constant of T and ||F|| = suppcp ||F(p)||- Therefore, convergence to
p* requires two ingredients: (7) Contraction: 0 < Ly < 1 which ensures that deviations from the
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NE shrink geometrically; (ii) Consistent estimation for ||I' — I'|| o, which follows from consistent
estimation of (0;,1;) and strong concavity of rev;(- | p—;) uniformly in p_,, for each seller i € N.
Putting these together, we obtain (see (39) for a formal inequality):

E|p™ —p*| < L%T_l)EHp(O) — p*|| + estimation error E||T' — T'l|oc asT — oco.  (9)

shrinks under contraction vanishes under strong concavity

Additionally, strong concavity ensures the existence of the NE, while the contraction property of the
best response map implies the uniqueness of the NE.

Assumption 3.2. For everyi € N, rev,(- | p_;) is strongly concave in P;, uniformly onp_; € P_;".

By twice differentiability of 1;, Assumption 3.2 is guaranteed if p; = 28;B, — B2p; By > 0.
Indeed, since by Assumption 3.1 [¢;'| < By and ¥} > By, we have

—dyrevi(p | p-i) > 20:B.y — BiDiByy = pui.

Assumption 3.2 guarantees that the best-response map I'; in (7) is well defined for every p_;.
More importantly, it guarantees the existence of the Nash equilibrium, in line with standard results
in competitive games (Scutari et al., 2014; Li et al., 2024; Tsekrekos & Yannacopoulos, 2024).
Instances where Assumption 3.2 is satisfied include linear demand models (Li et al., 2024), concave
demand specifications, and a class of s;-concave demand functions with s; > —1. A more detailed
discussion of these and further examples is provided in Appendix I.1. The next result is an immediate
consequence of Theorem 3, in Scutari et al. (2014).

Lemma 3.3 (Existence of NE). Under Assumptions (3.1) and (3.2), there exists a p* € P satisfying
the fixed point equation in (8).

By Assumption 3.2, the map I';(p—_;) can be recovered by solving the first order conditions (FOCs),
Op, rev;(p; | P—i) = 0, and projecting the solution onto P;. We now determine a shape constraint
assumption that is sufficient to satisfy the FOCs. Specifically, we can show that I'; can be written as
(see the proof of Lemma 3.7 for the derivation)

Li(p_i) = p,o:(vip-0)/5;,  gi(u) Eu— ;' (u),  @i(u) £ u+ vy,

provided gp{l exists. Here Ilp, is the projection into P; and ; is called virtual valuation function of
firm ¢. For this purpose, we introduce Assumption 3.4, which makes the ¢;’s invertible.

Assumption 3.4. Vi € N, there exists a constant c; > 0, known to seller i, such that ¢} > c;.

Assumption 3.4 covers the linear demand model by Li et al. (2024) for which 1;(u) = «; + u =
wi(u) = 2u+ a; = 1, > 2 and can also be found in several works with N' = 1 (monopolistic
setting); for example, Assumption 2.1 in Fan et al. (2024), Assumption 1 in Chen & Farias (2018),
Equation 1 in Cole & Roughgarden (2014) and Golrezaei et al. (2019); Javanmard (2017); Javanmard
& Nazerzadeh (2019) which assume v; and 1 — 1); to be log-concave (which specifically implies
c; > 1), where 1; is a survival function.

We now present an equivalent formulation of Assumption 3.4 in terms of s-concavity, a condition that
will allow us to estimate ); via shape constraints (the proof is provided in Appendix B). Examples of
s-concave functions can be found in Appendix L.

Proposition 3.5. For everyi € N, ¢} > ¢; if and only if 1; is (¢c; — 1)-concave.

We now establish a sufficient condition under which the operator ' = (I'; ;¢ is a contraction in P.

Assumption 3.6. sup;c s [|gi]|ooI7ill1/8: < 1.

Assumption 3.6 generalizes Assumption 2 in Li et al. (2024) (in their case ¥;(u) = u + @; =
gi(u) = (u+«a;)/2 = ¢} = 1/2, matching the contraction constant L in Equation 30 of their
work). Similar assumptions are found in Kachani et al. (2007). The proof of the following result is
relegated to Appendix C. In practice, Assumption 3.6 states that the influence of competitors’ prices
on seller ¢’s optimal response is sufficiently small relative to the sensitivity to its own price.

'This means that there exists & > 0 independent of p_; such that for all 2,y € P; and all p_; € P_;,
revi(y | p—i) —revi(z | p—i) < darevi(z | p-i)(y — z) — §lly — 2.
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Lemma 3.7. Let Assumptions 3.2, 3.4 and 3.6 hold. Then, T' = (I';);c[n) : P — P is a contraction
with contraction constant Ly = sup;c nr ||95 || solIVilli/g: < 1. Consequently, the NE p* is unique.

Remark 3.8. In the specific case where the ;s are s;-concave for some s; > —1/2 (i.e. ¢; > 1/2,
which happens for example if the 1); are log-concave, i.e. c; = 1, or concave, i.e. ¢; = 2), then

gi(u) =1 =Ygl ) 21 =e; > =1, gi(u) =1=1Yle; @) <1, = [|gilloo < 1.

In this case Assumption 3.6 reduces to 3; > ||7i||1, but since B; = (1 — ||7:]|3)*/?, the condition
becomes ||v;||? + ||1vill3 < 1. But since ||;||2 < ||vill1, a sufficient condition is ||v;||1 < 1/v2.

4 PROPOSED ALGORITHM

Our Algorithm | consists of an initial exploration phase for parameter estimation, followed by an
exploitation phase where sellers set prices based on the learned demand model. In the exploration

phase, each seller ¢ € A/ samples prices pgt) from a distribution &; fort = 1,2, ..., 7. The common

exploration length is 7 oc T for some ¢ € (0, 1), to be specified later (Remark 5.6).
Remark 4.1 (The common exploration phase). See Appendix I.2 for a clear discussion of why sellers
have no incentive to alter the exploration phase.

The random prices p(-t)

, ~ charged by different sellers in the exploration phase are not necessarily
independent, and we will use & from now on to denote the joint distribution of the price vector in the
exploration phase. Recall that at every time ¢, each firm i observes their own (random) demand value

o 0) )7

while the prices p®) = (3 () N N are made public. At the end of the exploration

phase, firm 4 estimates (6;, ;) using data {(p®, yit))}tST. More precisely, each firm ¢ chooses a
proportion «; of initial data points in the exploration phase 7;(1) ={1,2,...,K,7} to estimate 6;,
and subsequent time points 7'(2) = {Hﬂ' +1,...,7} to estimate ;. For simplicity of notation we
define n{" = |7,V = 7, and n{* |T(2)| (1 — ;).

Remark 4.2 (Need for two different phases for model estimation). Owing to space constraints, we
defer to Appendix I.3.

Remark 4.3 (Selection of 7 and ;). For every seller i € N, the parameter r; can be chosen to
minimize that seller’s total expected regret. By Theorem 5.4 there is a unique optimum, denoted
kf = kX(N,7) € (0,1) that is characterized by Equation (14). Choosing k; = K} improves only
the leading constant of the regret but leaves the convergence rate unchanged. For the exploration
horizon T we set T oc T¢ for some & > 0. Remark 5.6 argues that €* = 5/7 is the unique value that
minimizes the total expected regret across all sellers. These values k) and £* are “optimal” only in
the sense that they aim to minimize the regret constant and the exponent of T' respectively within our
derived upper bound; we do not claim minimax optimality of the regret rate itself.

(1) Exploration phase part 1: 7;(1). Each seller ¢ estimates (— 51», i) =6; = 0; i/118;12, Where

o~

0, = argmin{.,iﬂi(e) 2%,y ~ (0.p0 — p))? } p=23,_ 00 (10)
9cRN ’

2) Exploration phase part 2: 7, ) Bach seller i defines w (0 p®) fort € T( ) (note that

) € U because |6;]l2 = 1, where U is defined in (5)) and the estimator w 5, =hs, 0 ¢z 5.
Where s; = ¢; — 1 (known by Assumption 3.4), and

~

0,5, € argminger, 3, e (0" — b, (B(w]")))?, (11

where hg, is defined in (4). The class H; consists of all functions ¢ : U — [B, ¢i,l§¢,i] that
are both monotone non-decreasing and concave. The bounds B, and By, are chosen so
that [B,, , By,| = hs,([By,, Bg,]), and are therefore known, indeed B, , By, (defined in
Assumption 3.1) are known. A detailed justification of this estimator in (11) is provided in
Appendix D.2.
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At the end of the exploration phase, seller ¢ obtains an estimator of their revenue function:

wovi(pilp" V) 2 pith, g (—Bipi + (7P V). Vi € Py, (12)

where p(_tz_ Y are the prices of all the other firms at time ¢ — 1, that are made public. A price pgt) is
then offered by firm ¢ as a maximizer of (12) over P;. We present the full procedure in Algorithm 1
and a visual representation of the exploration-exploitation scheme in Figure 9 in Appendix K. A

summary of the information available to each seller to run Algorithm 1 can be found in Appendix A.

Algorithm 1 SPE-BR (Semi-Parametric Estimation then Best-Response)

Input: the (joint) distributions of the exploration phase 2.
Output: Price pf ) that seller i € A offers in periodt € T = {1,2,...,T}.
fort < rdo
Sample p(*) =
end for o
Each seller i € N constructs an estimator (6;,%, 5 (-)) using data {(p(t),yz(t))}t:u’”_ﬂ. as
defined in (10) and (11)
fort=7+1,7+2,....,Tdo
(1) Each seller ¢ € A offers a price pgt) = argmax,, cp, pi@ . (—Bips + (i, p(_tl 1)>)

= ® @) ())

D1 sDs DN 2, and let y(t) denote seller <’s demand as in (6).

7

(2) After all prices have been posted, each seller observes their demand y( ) asin (6).
end for

5 REGRET ANALYSIS

We begin by analyzing, for each seller ¢ € N\, the convergence of 6; and z/) 8 from the exploration
phase. An informal overview is given in Sectlon 5.1, while formal results appear in Appendix D
— Appendix D.1 for 0 and Appendix D.2 for w 8- We then study NE convergence and the regret
bound in Section 5.2.

5.1 ESTIMATION OF THE MODEL PARAMETERS

In the single-index setting, the linear estimator in (10) attains a /n rate when covariates (here,
joint prices p(*)) are elliptically distributed (Balabdaoui et al., 2019; Brillinger, 2012). We impose
this elliptical law during exploration to ensure consistency and, unlike prior work, we derive a
concentration inequality for (10) (Proposition D.3), which underpins our regret bound.

Assumption 5.1. 2 = &(m, A, g) with ¢min I S A X Cmax Lfor some 0 < cimin < Cmax < 00, and
g satisfying g(x +y) = g(z)g(y) for all z,y > 0.
Assumption 5.1 covers Gaussian and, more generally, elliptically symmetric laws with g(z) = a=7*

(a > 0, v > 0). This yields sub-Gaussian samples, crucial for the concentration result in Proposi-
tion D.3. We defer to Remark D.1 and Remark D.2 for a detailed motivation on Assumption 5.1.

O((Niogn{" /nm)1/2),
Theorem 5.3 (Informal version of Theorem D.6). Let Assumptions 3.1, 3.4 and 5.1 hold. Then, for
every compact K C U we have E[sup,,c i |¢; g (u) — ¥i(u)[] = O((tos(n{?)/n)2/5),

5.2 CONVERGENCE TO NASH EQUILIBRIUM AND INDIVIDUAL REGRET BOUNDS.

We are now ready to prove our main result for a fixed value £ € (0, 1), which, we recall, represents
the proportion of (common) exploration length 7 oc T¢.

Theorem 5.4. Suppose that Assumptions 3.1, 3.2, 3.4, 3.6 and 5.1 hold. Then, Algorithm 1 produces
a policy such that, for eachi € N:

(1) Individual sub-linear regret: Reg,(T) = O(T¢ 4 T*~*/*N*>(log T')*).
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(2) Convergence to NE: E [||p'") — p*||3] = O(N*/*T~**/>(log T')*/*). More precisely, we have
Ellp" —p*l3) £ N T (g 7Y + L'V, bz 741, (13)

Moreover, for each i € N, there exists a unique k% € (0, 1) that minimizes the seller’s i regret, and
satisfies the implicit equation:

46TV VO = 5BNV2(1 — ;)70 (14)
where B; and €; are defined in (17) and (21), respectively.

Remark 5.5. Since €; and %; depend on unknown quantities, it is typically difficult for seller i to
compute k; exactly. However, any positive choice of €; and B; guarantees r; € (0,1), while the
regret and NE convergence rates remain unaffected, with only the leading constants changing.

Remark 5.6 (Optimal value of £ and comparison with monopolistic results). By Theorem 5.4, the
value of € that minimizes the expected regrets Reg,(T') is the value that equalizes the exponents of
T in the regret upper bound: T¢ + T'=*/> (ignoring logarithmic factors). This yields € = 5 /7.
Consequently, with this choice of &, we have that for eachi € N

Reg,(T) = O(N**T*"(log T)?*), and
Ellp™ —p*[la < (E[p™" — p*[5)"/* = O(N*T~"(log T)"7*).

For N =1 (i.e. in a monopolistic setting), our regret upper bound matches that of Fan et al. (2024),
who estimate the link function via a kernel-based method. Their result is stated for binary outcomes
y;, whereas our framework accommodates continuous y;; nevertheless, our estimation procedure can
be straightforwardly adapted to the binary-response setting, yielding the same regret rate as in the
continuous case. Moreover, relative to the kernel approach in Fan et al. (2024), our method offers the
advantage that is fully data-driven and requires no bandwidth selection.

Remark 5.7 (Mispecifying s;). As established in Remark G.3, if the sellers choose parameters
sh < s; satisfying sup;c pr 11=1/(si+ Dl 1villi/g; < 1, then the convergence rates of the regret and the
NE are preserved. This phenomenon is also confirmed empirically in Section 6.

Remark 5.8 (Algorithmic collusion). Our results indicate that when all sellers employ the same
class of learning algorithm that we propose, the dynamics do not give rise to collusive behavior:
the learning process converges to the pure Nash equilibrium, and prices do not drift upward in a
coordinated way. This is beneficial from a consumer perspective, as it prevents the emergence of a
price increase. However, if some sellers deviate and adopt different algorithms or learning rules,
then the interaction dynamics may create conditions under which algorithmic collusion can emerge.

6 NUMERICAL EXPERIMENTS

We evaluate the performance of Algorithm 1 in markets with N € {2,4,6} sellers. A detailed
description of the simulation setup is provided in Appendix J; here we present the main setup
together with a discussion of the results. For each seller i € N' = {1,2,..., N}, the price vector
p® is supported on P = [0,3]*". For every N, we examine the convergence behavior as the
contraction constant Ly varies — specifically, when Lr =~ 0, Ly ~ 0.5, and Lr ~ 1. The link
functions are 0-concave and their price sensitivities are generated such that 8, = (—0;,;) has
unitary L2-norm and satisfies Assumption 3.6. A fixed point exists and is unique by Lemma 3.7 and
is recovered using a simple root-finding algorithm. The demand noise of each firm follows a uniform
distribution on [—0.05, 0.05]. For every T' € [100, 400, 800, 1600, 3200], we apply Algorithm 1. We
independently repeat the simulation 30 times to obtain average performances and 95% of confidence
intervals. In Figure 5 and Figure 6 we summarize the results. The panels show: (i) the convergence
of the estimators 8; and v;; (ii) convergence of prices to the Nash equilibrium p* and the expected
cumulative regret plotted on log—log axes (with fitted slopes) to reveal the empirical rate. Across runs,
the observed rates are consistently faster — i.e., exhibit smaller slopes than the theoretical upper bound.
Regarding the minimization problem in (11) under the class of monotone increasing and s-concave
functions, we note that designing efficient algorithms specifically tailored to s-concavity remains an
open and largely unexplored area. Nonetheless, in this work, we leverage a fast optimization solver
to approximate the solution. Additionally, in Appendix J.2 we provide simulations under different
exploration phases across the sellers and in Appendix J.3 simulations showing how mispecifying s;
affects the regret and NE convergence rates.
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7 FUTURE RESEARCH DIRECTIONS.

There are several promising directions for future research. One is to design an algorithm allowing each
seller to independently set their exploration length, which is not permitted in our setting as outlined
in Remark 4.1. For this purpose, a key theoretical goal is to obtain uniform convergence for the joint
estimator (6;, ;). While this would not change regrets or NE rates (it will only improve constants), it
could yield practical gains: currently, 8; uses ;7 samples and 1); the remaining (1 — ;)7, whereas a
joint estimator would leverage the full 7. Existing results are limited: Balabdaoui et al. (2019) shows
only L? convergence under monotonicity (we additionally require s;-concavity), and Kuchibhotla
et al. (2021) provides uniform convergence under convexity/concavity (s; = 1) with only Op rates.
Our setting instead calls for non-asymptotic supremum-norm concentration for the joint estimator,
i.e., tail bounds as in (52).

Another challenge is estimating the s;’s themselves. While we assume them to be known, in practice,
this may not be the case, and developing a theory for this harder setting remains to be explored.

Finally, an ambitious direction is to design algorithms that bypass the classic exploration-exploitation
trade-off. Here, each seller ¢+ would use the entire history of public prices and private demands

{(p®, ygs)}sgt, ensuring p(™) — NE as T — oo. The main challenge is avoiding incomplete
learning (Keskin & Zeevi, 2018), which can yield poor parameter estimates and higher regrets.

REPRODUCIBILITY STATEMENT

In the Supplementary Materials, we provide a . zip archive with all the code required to reproduce
the results and figures in this paper. The archive contains three top—level folders whose names
match the corresponding figure labels in the PDF. Inside each folder, we include Python notebooks
with step-by-step instructions that describe how to run the experiments and regenerate the figure.
Running the notebooks as instructed will recreate the plots and save them to the corresponding
folders’ directory named “PLOTS”.

8 DETAILS OF LLM USAGE

We used generative Al tools when preparing the manuscript to polish our sentences and correct
potential typos; we remain responsible for all opinions, findings, and conclusions or recommendations
expressed in the paper.
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A  SUMMARY OF INDIVIDUAL INFORMATION

In this section, we summarize the information each seller must know to implement Algorithm 1.

Table 1: Values known by seller : € A/

Known (or observed if specified) Description

T Time horizon

y; (observed) Demand realization of seller ¢

p—; (observed) Competitors’ prices

P; = [p;, pi] Price domain of seller ¢

U = [—Pmax, Pmax) Domain of v; : U — [ﬁww By,

(B, By, Range of ¢; : U — [B,,., By,]

¢; (or equivalenty s; = ¢; — 1) ¢;: lower bound of ¢}. s;: concavity parameter of ;.
7 Joint price distribution during exploration

T Length of the common exploration phase

13
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Table 2: Values unknown by seller i €

Unknown (or unobserved if specified) Description
(0, ;) Semi-parametric population parameter

; Lower bound of the price sensitivity 3;
5_,- (unobserved) Demand realization of the i-th competitors
; Variance of the ¢-th demand noise &;
P_i=[p,,pi] Price domains of the i-th competitors
Bwl ng Lower and upper bound of v}
Byy Upper bound of |4}/
{[B¢] By, 1}jzi Ranges of i-th competitors demands {1; }
{cj}ji Lower bounds of competitors {¢/}

B PROOF OF PROPOSITION 3.5

Recall the definition

wi(u)
U , ueu
pl) =t )
We have ¢} = 1+ & "’(w/;"; Vi =9 f e = e iff gy + (si = D)%) < Owith s; = ¢ — 1.

The statement follows by Lemma B.1.

Lemma B.1. Ler ¢) be a positive function defined in an interval (a,b) that is twice continuously
differentiable. Then 1) is s-concave iff 1 - " + (s — 1)(¢')* < 0 in (a, b).

Proof of Lemma B.1. Asfor s = 0 is a known result, we prove it for s 0. A function % is s-concave
if and only if ds o v is concave, where d; is defined in (4). Then v is s-concave if and only if

2 (] — fo P ) + (5 = D@ (@)
() = 2o [l (@ ()] = s o

<0, uc€(a,b).

O

C PROOF OF LEMMA 3.7

We first find an analytic form of IT';(p* ;). We have
Ai(p) = ¢i(6i(p)),  0i(p) = —Bipi + 7 P—i-

First note that, by strong concavity of p; — rev;(p; | p—;) (see Assumption 3.2), the best response
map is the projection onto P; or the value p; that solves the first order condition. More specifically

Li(p~;) = p,p;,
where IIp, is the projection into P; and p; solves the first order condition of (8), that is

i(pilp—i) = 0. (15)

0
Opi
where we that rev; (p;|p—;) = pivi(0;(p)). Solving Equation (15) we have

B(07) ~ B (61 (07) =0 it~ T ;;
& 0i(0:(p*) =
Assum{p:;on 3.4 Bl(p*) (’YZ _i)
_ P e (’n— p*;)
’ Bi
opr = gi(’ViBip*i).

< p;

14
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Thus

(~Tp* .
Li(pt,) = Hpigl("”ﬂ,p")- (16)

We now compute an upper bound of the Lipschitz constant of the Best Response Operator I' £
(I';) ;e - on the compact space P. This will allow us to ensure contractiveness when this constant is
strictly less than 1. For any p, p’ € P, we have

IT(P) =T ) = sup ITi(p—i) — Ti(pL,)|

- (v p=i) — g:(v' P;)
< sup
ieEN Bi

IN

1
sup — [|gillos [ P—i — i P’
ieEN Pi

< g l / . o
< sup —||g; oo il 1 1P —i = P lloo
i€EN Bz
Yill1
< 1P = P'lloo sup flgt oo 12
i€EN @'
=Lr|p — P'llocs

where
A
1gillcc = sup [gi(v)], V£ @i(U).
veV

In the second inequality, we used the contraction property of the projection operator, and where

[[illx
Bi

Ly £ sup || gl
ieN
which is strictly less than 1 by Assumption 3.6.

D FORMAL ESTIMATION OF THE MODEL PARAMETERS IN SECTION 5.1

In this section, we formally explain the estimation procedure of the model parameters (6;, v;), for

ieN.
D.1 ESTIMATION OF THE PARAMETRIC COMPONENT.

In a single-index model, the linear estimator in (10) converges to the true 6; at a /n rate provided
that the covariates (in this case, the joint prices p(*)) follow an elliptical distribution (Balabdaoui
et al., 2019; Brillinger, 2012). We adopt the same elliptical assumption on the (joint) distribution of
the prices during exploration, to ensure the consistency of the estimator in (10). In contrast to earlier
work, we establish a concentration inequality for this estimator (Proposition D.3), which serves as a
key tool in deriving our regret upper bound.

More specifically, in Assumption 5.1 we assume that Z = & (m, A, g), where cpminl < A X Cmaxl
for some 0 < ¢pin < Cmax < 00 and the density generator g is such that g(z + y) = g(x)g(y) for
all z,y > 0, i.e.

fo(p) < g((p — m)"A™ (p — m)).
Remark D.1. Ir should be noted that from a purely theoretical standpoint, we do not restrict the
domain of the price vector p in the exploration phase to ‘P, but this has essentially no implication for
the application of the pricing algorithm in practice. To ensure that the i’th seller’s exploration prices
can, realistically, never lie outside P; = [p;, D], all they need is to take 9; be a normal distribution
(for example) centered at the midpoint of this interval with variance o? taken to be an adequately
small fraction of the length of P;. If the sellers function independently, as is generally the case, the
Jjoint distribution is certainly elliptically symmetric. More generally, view the parameters A, m, and
g as concentrating the mass of 9 in P with overwhelmingly high probability. Theoretically, some
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proposed price in many thousands of time steps could lie outside P, but realistically, the procedure
entails no financial consequence for them. Letting 9 belong to an infinitely supported elliptical
distribution allows the implementation of a simple consistent linear regression-based estimation to
learn 0; which satisfies the concentration inequality proved in Proposition D.3 below, and is also
important for certain conditioning arguments involved in estimating appropriate surrogates for v; in
the following subsection, while compromising nothing in terms of the core conceptual underpinnings
of the problem.

Remark D.2. Assumption 5.1 holds for a wide range of distributions, including Gaussian distributions
and, more generally, all elliptically symmetric distributions for which g(x) = a="%, for a > 0 and
v > 0. Before describing Assumption 5.1, we emphasize that selecting an appropriate distribution
for the design points (here, the exploration prices) is standard in exploration—exploitation algorithms.
This choice is crucial because it ensures that the learner can perform exploration design and obtain
a consistent estimator. For example, both Fan et al. (2024) and Luo et al. (2024) employ uniformly
randomized prices precisely to guarantee consistency of their estimators. We now describe the
components of Assumption 5.1:

1. The requirement that exploration prices follow an elliptically symmetric distribution is
used to guarantee the consistency of the estimator of 0; in the single-index model. In
particular, this assumption is invoked in Lemma E.2 to derive the normal equations (the
same assumption can be found in Balabdaoui et al. (2019) and Brillinger (2012)). If the
exploration distribution were not elliptically symmetric, the resulting estimator could fail to
be consistent.

2. As we will discuss in Appendix D.2, the property that g(x + y) = g(x)g(y) (satisfied, for
example, by Gaussian distributions) supports the estimation of 1;. It ensures that 1; g(u)
(defined in (18)) depends on u solely through the argument of v; rather than that of g
(see Equation (29)). This decoupling guarantees that 1; g inherits key properties from 1);,
such as smoothness and adherence to the prescribed shape constraints, as highlighted in
Proposition D.4. In turn, these properties are crucial for establishing consistency of the
estimator of ;.

We denote

¥ = var(p),
which is proportional to A. Then, there exists 0 < ¢ui, < 0o such that ¢,;, < X. These constants
will appear in Proposition D.3, which proof is provided in Appendix E.
Proposition D.3. Under Assumption 3.1 and Assumption 5.1, there exist a positive constant c (that
depend solely on the variance proxy o, of the sub-Gaussian random variable x*) = p®) — p) such

that, for ngl) sufficiently large, with probability at least 1 — 2e—CSminny /16 _ (21), the estimator in
ni
(10) satisfies
5 Nlogn{"
16; — 0ill2 < iy | — &7
where
B — 4\/§M (17
v )\igmin .
cov(wi(BTx) B.Tx)
where \j = ——— 217 5 0 forx ~ x) = p® — pand 0y, is the variance proxy of the the

var(0, x)

()

i

sub-Gaussian random variables y

D.2 ESTIMATION OF THE LINK FUNCTION VIA S-CONCAVITY.

This section provides a uniform convergence result of 1@,9 to v; for any fixed @ € Sy_1. In this
section, all the results must be considered as conditioned on 0 = gz estimated using data in ’7;(1)
independent of data in 7;(2). For simplicity of notation, we re-index 7;(2) as [n] = {1,2,...,n}.
To estimate »; we would need to know 6, in advance, indeed we remind that E(ygt) | p®) =
¥;((0;,p™)). However, our knowledge is limited to an approximation @ of ;, and the observable
design points are wgt) £ (9, p™). Note that

wgt) eu
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because [|0;|2 = 1 implies [w”| < [p®|l2 < pmax. This implies that, with data { (w'", yi(t))}te[n],
we are only able to estimate

bio(uw) 2B | wl =), uweu. (18)

We now construct an estimator of 1); ¢ and establish, in Theorem D.6, a uniform convergence result
over any bounded subset K C U (where U is defined in (5)). Our approach draws on techniques
from Mosching & Diimbgen (2020); Diimbgen et al. (2004), which study uniform convergence in the
context of shape-constrained estimation. A key assumption in these works — one that does not require
smoothness of the unknown nonparametric function — is that the density of the design points, f,
is bounded away from zero on U. This ensures that the design points wft) € U are asymptotically
dense within every subinterval of ¢/, which in turn is sufficient for establishing uniform convergence
of the estimator on such intervals. In our setting, f,, is supported on all of R, and thus it is bounded
away from zero on any bounded set K. Consequently, the uniform convergence result applies to any
bounded subset K C U.

Before establishing the convergence result, we must first characterize the shape constraints satisfied
by the family of functions {¢; ¢(-) : & € Sy_1}. In Proposition D.4 (with proof deferred to
Appendix F), we derive a closed-form expression for ¢; ¢(-) and show that both the monotonicity
and the s; = ¢; — 1-concavity of the original function ; are preserved by 1; ¢, uniformly over
0 cSy_.

Proposition D.4. Under Assumption 3.1 and Assumption 5.1 we have the following properties:
(1) Yip(u) = [pn-1 i (<0i, m,) + B;FAoz) J(a)da, u €R, 8 € Sy_1, where

~ 2y . 2 (u — <0’ m>)
gle) = oUlel2)f fon 1 g(l613)d8, My = m + AO-— =,

and A is such that AAT = A.
(2) Yip € C*(U)and 0 < B,,, < i 0 < By, uniformly in @ € Sy _1.
(3) [i(uw) — i o(u)| S |10 — ;2 forall w € U and @ € Sy _;.

T .
(4) 1); o is monotone increasing in U for all @ such that ||6 — 0;||2 < %. Moreover |1 ol is

bounded uniformly in 6 € Sx 1 and there exists L > 0 independent of 0, such that |; g(u) —
o) < Llu—v| forallu,v €U, 6 € Sy_1.

(5) If also Assumption 3.4 holds (i.e. 1; is s;-concave for some s; > —1 as it arises from Proposi-
tion 3.5) then 1; g is s;-concave for any 6 € Sn_1.

By definition of s-concavity, from point (5) in Proposition D.4 we have that for every @ € Sy _1 there
exists a concave function ¢; ¢ that ©); 9 = hs, © ¢; g, where h,, is defined in (4), and s; = ¢; — 1 is
known by Assumption 3.4. We could then estimate ¢, ¢(u) using LSE under concavity restriction,
that is

o € argminges, > () — hy, 0 (w”))?, Si={¢:U — [B,,, By,] concave}, (19)

te[n]

where we recall w'”) £ (6, p®). The interval [B,,, By, is such that [B,, . By,] = h,([Bg,, Bg,]).
Note that [By, By,] is known because B,, and B, are known by Assumption 3.1 (recll that, by
point (2) in Proposition D.4, the bounds B, , By, are inherited from ¢; to 1; ). We want to highlight
that for any fixed @ € Sy_1, the problem (19) is not infinite dimensional, indeed we only need
to recover n variables (qﬁi(wgt)), ¢i(w§t)), ce qﬁz(w,(f))) € [By,, By,]. A full discussion on the
optimization problem (19) can be found in Appendix H.

Remark D.5. The problem in (19) serves purely as a theoretical intermediate step for establishing
the regret upper bound in Theorem 5.4. In practice, we do not compute 1/31-79 for every 0. As
discussed in Algorithm 1, we only solve (19) once, with 0 = 0;, to obtain QZJi’éi. Moreover, by point

(4) in Proposition D.4, the function 1; g is increasing (for 0 sufficiently close to 6;). Since h,
is also increasing, it follows that ¢; ¢ inherits this monotonicity. Nonetheless, we did not include

17
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this monotonicity constraint in the definition of S; in (19). This omission is justified because the
theoretical convergence rate in Theorem D.6, and consequently the regret upper bound in Theorem 5.4,
is driven entirely by the concavity constraint, which imposes a higher-order smoothness condition
than monotonicity. However, we do enforce monotonicity in the algorithmic implementation in
Algorithm 1.

We are now prepared to demonstrate the convergence of v; g to 1; g, where

Vi = hs, 0 bjp.

Theorem D.6. Let Assumptions 3.1, 3.4 and 5.1 hold. Then, by Proposition 3.5 and Proposition D.4,
;¢ is s;-concave, where s; = ¢; — 1 > —1. Let m = 7n, where m = fu fuw(w)du is the proportion

of data points {w,gt) }eepn) Lying in the set U as n — oc. For every y > 4 there exists my, a constant

€; > 0 and 6; > 0 depending only on constants in the assumptions such that

P{ sup  sup [¢,0(u) — Vi 0(u)| < %(log(m)/m)ws} >1—1Ym=2, m>my,  (20)
OESN 1 uEUn,

where U, = {u € U : [u =+ 6] CUY, with by, = ‘é(log(m)/m)l/5. More specifically,

D, D, 2
BL, - WTBynoi /B3 + B,
‘B v el 21)

%; = max i s
3 B2 (Cq/8)'

where L; = SuPgcs, ,SUDy yetduzrtv W, Cy > 0 is such that

infoesy_, infucy forp(u) > Cg, and o; is the sub-gaussian variance proxy of the error
Ei.

Moreover, for 0 = éi we have
E { Slzlf{p |1Z“9~1 (u) — wl(u)@ = O((log(m)/m)Q/S). (22)
ueUm

Proof of Theorem D.6. We first prove the concentration inequality in (20).

Let m = mn be the asymptotic fraction of points lying in ¢/, where n is the sample size and
= fz,{ fuw(w) dw. Define the empirical fraction of points in ¢/ as the random quantity

O )
W"_nzl{wi eU}.

t=1

Qz{jr>1—en},
Tn

holds with probability at least 1 — 1/2(n + 2)7 for some v > 0, provided that n is sufficiently
large and €,, — 0 as n — co. Now, we apply Theorem H.5, using Remark H.6, with the following
substitutions:

By Lemma H.9, the event

Yo < ig, Ve, a2, s« s, h hy =d;,

where h, is defined in (4). Intersecting 2 with the high-probability event in Theorem H.5 yields the
desired result. The only remaining step is to verify that the assumptions of Theorem D.6 imply those
of Theorem H.5.

(1) %4 ¢ is s;-concave for some s; > —1. According to Proposition D.4, this condition is satisfied
provided 1); is s;-concave for some s; > —1, which holds by Proposition 3.5 and Assumption 3.4,
with s; = ¢; — 1.

18
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(2) Assumption H.2 holds uniformly in @ € Sy_; because the design points are drawn from an i.i.d.
elliptically symmetric distribution with density generator g > 0 and then fp > 0 on any bounded
interval. Thus, infgeg,_, infuecy forp(u) > Cg for some Cy > 0.

(3) Assumption H.3 holds because yl(t) are sub-gaussian (indeed 1; is bounded and ¢
gaussian) and 1); ¢ is bounded uniformly in @ € Sy _; by Proposition D.4.

®

%

are sub-

(4) We prove that Assumption H.4 holds uniformly in 6. Recall that ¢; 9 = d, o ¥; ¢ (Where
ds; £ h;! is defined in (4)). Then Vi o(u) = di, (ie(u)); g(u). Forevery u,v € U and
0 € Sy_1 we have
(W50 (1) — i g(v)] = |dy, (1,0 ()] g (1) — di, (vi,0(v)) Y] o (V)]

< |d, ($i0(u)) — di, (V0 (0))[[47 ()] + ¥ 6 (1) = 1 o (v)[|dy, (i.6(v))]-

The first component |}, (i 6(u)) — di, (ie(v))| < La|u — v| by Appendix H.1, where
Lq = sup, d{ (z) depends only on s; and bound of ¢;. The component [¢); 5(u)| is bounded
uniformly by Proposition D.4 point (4). The other component [¢); o(u) — ¥; o(v)| < L|u — v|

for some L > 0 independent of @ by Proposition D.4 point (4) and |d, (1; ¢(v))| is uniformly
bounded by Appendix H.1. This proves that 1/}2) o 1s Lipschitz uniformly in @ € Sy_;.

To prove (22) we apply the triangular inequality
¥ 6,(w) = Pi(w)] = |9, 5, (w) = ¥, 5, (W) + ¥, g,(u) — Pi(u)]

and for the first component we apply the concentration inequality in (20) while for the second we use
point (3) of Proposition D.4

9; 6, (W) = ¥i(w)] < [16: — 64|
and then the concentration inequality in Proposition D.3, while retaining the dominating term
O((log(m)/m)*/®). H
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E PROOF OF PROPOSITION D.3

For simplicity, we redefine 7;(1) as {1,2,...,n},x® = p®) —p. The loss function .%;(0) is defined

as
n

20)= =3 (4 —07x)

t=1

Then the gradient and Hessian of .Z;(6) is given by

NE
S
-

1
Vo2(6) = ~ > "2 (07x — ") x,
t

Il
—

n

1
V2L(0)=ViYL = - D oxx0T,
t=1

Let 51 be the global minimizer of .%;(0). We do a Taylor expansion of .Z; (é\z) around \;0;, with )\;
to be determined:

. . 1/~ .
L)) — L (\8;) = <vz (\i6;),0; — /\i0i> + <01v N0, V3L (0 — )\7;07;)> .
As @ is the global minimizer of loss .%;(0), we have .,5,”1(52) < .% (\0;), that is
. 1/~ ) N
(VL (76:).0, = Xi0:) + 5 (0, = \0,, V3.2, - (8 — 1.6,)) <0,
which implies
~ 1 < ~ ~
<ei —26;,— > xx0T (B, Aiei)> < (Vo i (\3), N0 — 0;)
n
t=1

< IVoZ: (X)), 1Xi8; — B3l
<VN||Vo.% (N8|l A:6: — 65

[

By Lemma E.1, the LHS satisfies

~ 1 n ~ Smi ~
)0 - B«®OT (9. _ \.0. min g p2
<01 \i0;, - tEZI xx\ (0, )\101)> > 5 IX:€; — 6:]|5,

w.p. at least 1 — e~ CSminn/16 (for n sufficiently large) for certain constants ¢ > 0 that depends only
on the variance proxy o, of the sub-Gaussian random variable x(*), and by Lemma E.2 the RHS
satisfies

VN Vo2 (Xi8))|. I1Xi0; — ;|- < B;*

with probability at least 1 — % (as long as n > N), where Z;* is a constant defined in (23) that
depends solely on \; and the variance proxies of the sub-Gaussian random variables ygt) and x(®).
Putting the two inequalities together we get with probability at least 1 — 2~ CSmin™/16 _ % that, for

n sufficiently large
~ N1
[Ai0; — Oill2 < 27 82,
n

where B = 2% Now we conclude. Recall that A; > 0 where \; is defined in (25). Let

N1
W, = {0 L IN6; — 0]|s < &4/ ;’g”}.
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Let n be large enough so that %4/ W < \;: this guarantees that any 8 € WV, is such that
[|0]|2 # 0, which come from the fact that ||A;6;]|> = ;. Then for 8; € W, we can write

~ 0; X0, 6
||0i_0i||2:‘0i_ S =\~ "1z
16:ll2 ||, i 6illz2]],
\i0; — 6, §‘<1_ 1 )
a Ao, Aio6illz ) |,
N6 —0ill2 ~, |1 1
= ——— +0ill2 |+ — —=—
Ai Ai o 6:l2
1%6: = Billa o | Ai = [16ill2
i ICAIPRY
_ 128 = Bill2 | [ A:8ill2 — |18l
Y i
1X:0; — 6:]:
<2—
< " :

and, as @; € W, with probability at least 1 — 2¢ = Smin"/16 _ 2V for n sufficiently large, this implies
that with the same probability bound

~ N1
10; — ;]2 < %; Zgn,

where B B (A )

¥ o 0z (NiOg + 0y,
R S W) vi2
)\i )\igmin \f )\igmin

This concludes the proof.

Lemma E.1. There exist ¢ > 0 such that with probability at least 1 — 2e~min"/16 e have
($min/2) I X X, for n sufficiently large, where

n
y, 2l 3 x0T,
n
t=1

Proof of Lemma E. 1. To get a lower bound of the minimum eigenvalue of 3,, we use the following
remark 5.40 of Vershynin (2010): let A be a n x N matrix whose rows A; are independent sub-
gaussian random vectors in R™ with second moment matrix 3 (non necessarily isotropic), then there
exist ¢, C > 0 depending only on the sub-gaussian norm o, such that for every r > 0 we have
[L37  A;AT — 2| < max{d, 6%} with probability at least 1 — 2¢=°, where § = C\/g + 7
In our case, since 3, is an average of n i.i.d. random matrices with mean & = E [x)x()T] and
that {x(t)} are sub-Gaussian random vectors (recall that x(*) is sub-gaussian because the generator g
satisfies g(z + y) = g(x)g(y) for all z, y), then there exist ¢, C' > 0 such that for each r > 0 with

—CT‘2

probability at least 1 — 2e ,

N 7
Y, -2 <m 2 h = — 4+ —.
I | < max {4,6%}, where d £ Cy/ — Tn

Here ¢, C are both constants that are only related to o, sub-Gaussian norm of x*). Now, choosing
' = Gminy/7/4, then as long as n > N16C?/c2; wehave § = C'y/ & 4 smin < Smin | Smin — Smin,

Thus with probability at least 1 — 2e~%min™/16 we have

2
Smin  Spj
Zn 3 < (5, 62 < , min ,
I ||_max{ }_max{ 5 4 }

21



Published as a conference paper at ICLR 2026

and since Ginl < T < Gmax] We get sminl — X < B =25 < Smaxl— < max {Gnin/2, 5240 /4}
and considering the first and last term we get

Smin §I2nin
Smin + max ) I '\< va
2 4
2
and since ¢yi, + max {CT, CT} > Gmin/2 we get (¢min/2) 1 < X,,. O

Lemma E.2. With probability at least 1 — %, for n sufficiently large, we have

V62" (65) |0 < B \/1og(n)/n,

B =20, (Niow +0y,) (23)
is a constant that depends solely on \; (defined in (24)) and the variance proxies o, and o, of the
(t)

%

where

sub-Gaussian random variables vy, and x), respectively.

Proof of Lemma E.2. We first prove that forallt =1,2,... n,
E [()\ﬂ;rx(t) - ygt))x(t)] = 0.

Using the known property of elliptically symmetric random variables (see, e.g. Li (1991, page 319,
comment following Condition 3.1) or Balabdaoui et al. (2019, Section 9.1)) we have that

E [X(t) \ Hjx(t)} =6, xMp,

where b is a vector that has to satisfy E [xV6x®] = var(,x®)b or equivalently (using
var(x®) = %), b = ¥£0,(8,£60,) . We have

E [)\Z-x(t)ei—rx(t) - x(t)ygt)} =\ var(0, x)b - E _yft)x(t)]

) —E [E {ygt)x“) 167 x<t>H

0 x
0 xMp—E

Gi(07 xE [x) | 6] x| |

A; var(
A; var(
A var(8 xM)b — E _z/;i(ejx(t))ejx(t)b}

= ()\7; var(0, x®) — cov [¢i(ejx<t>), OiTx(t)]) ,
which is equal to O as long as we choose
& <o [6:(67x),67x)
’ var (8, x)
Note that \; > 0: indeed, as 1; is increasing, it implies that, given z(*) independent copy of x*)

0 <[ (ws (6720 —vi (67x)) (672 - 67xV)] = 2cov (v (67x) .67x(").
(25)

(24)

Thus, E [V¢.Z; (M\;0;)] = 0, then every entry of V¢.%; (\;60;) is mean zero, i.e.
E [(Aﬂj;&t) - ygt))xgt)} —0, i=1,...,N.
Now, since yl@ is sub-gaussian (because agt) is sub-gaussian) with variance proxy denoted as o,

and x(*) is sub-gaussian (because the generator g satisfies g(z + y) = g(x)g(y) for all z,y) with
variance proxy denoted as o, \;0," x®) — yl(t) is sub-gaussian, and given that xl(-t) is sub-gaussian,
the product ();0, x(*) — yft))xl(-t) is sub-exponential. More specifically
10 % = )%, < 1007 x =3 I s
t t
< llBT % s + 11y o)1

< (Niog + 0y, )00 = v, (26)
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where || - ||, is the Orlicz norm associated to ¢, (z) = e — 1, withp > 1. Forp = 1, | X ||y, <
oo is equivalent to X belonging to the class of sub-exponential distributions, while with p =
2, | Xy, < oo is equivalent to X belonging to the class of sub-gaussian distributions. Then

(N0 x® — yl(t))xz(.t) ~ SE(v?,v;) fori =1,..., N, thatis

1 2
P (’2 ()\,;OiTx(t) — yz@) th)‘ > u) < 2exp <2 min{u27 u}) .
vy v

Now, using that X; = 2();0, x(*) —yft))xgt) ~ SE(v2, v;) are independent for all ¢, with E(X;) = 0
we get
> u)

)

n

P([|vez™ (:) > 20 x® — )k
t=1

1
n

(i

1

< NP ( - E 2(M0; x® — yl(t))xgt)
n

t=1

2
< 2N exp (—Zmin{u27 u}) ,
v v

By taking u = v/2v;+/log n/n, for sufficiently large n we have that

. [u? u u?
min{ —,— ¢ = —
vy, vi’

K2

Vo2 (6]l < ﬁui,/loi" — B /10%,

with probability at least 1 — 2Ne~loe(m) =1 — 2%, O

and then
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F PROOF OF PROPOSITION D .4

F.1 PROOFOF (1)

We have p ~ &x(m, A, g) be an elliptically symmetric random vector with density

fo(p) =kg((p—m) A~ (p — m)),
where m is the location vector, A is a positive-definite scatter matrix, g is the density generator, and
k is a normalizing constant. We wish to find the conditional density of p given 8 " p = u, where
0 € RV is a fixed vector. The constraint defines a hyperplane:

H,={peRY:0"p=u}.
The conditional density satisfies:

fp|9Tp:u(p) ES fp(p)» p € H,,

that is,

Foto7p-u(P) = 7705 9((p —m) A} (p — ), for p such that 07p =

where Z(u) is the normalizing constant. Define the transformation:
y = A71 (p - m)7

where A satisfies A = AA". Then, since (p — m)'A~!(p — m) = y "y, the density becomes:
Fy(y) < gy ")

The constraint transforms as:
u=0"p=0"(m+Ay)=0"m+(A79)"y.
Define v = AT 8, so that the constraint simplifies to:
va =u—60"m. 27
Decomposing y into components parallel and perpendicular to v, we write:

y=— yi+a, witho a=0. (28)
[v]l2

Theny 'y = y? + ||c||3. From the constraint in Equation (27):
u—6"m

v
u—0'm=v" <y1+a> = u—-0"m=|v|oyn = = ol

[v]l2

Since the original density in the y-space is

Fy(y) o g(y? + lledll3),

when conditioning on ¥, the conditional density on the (N — 1)-dimensional space of c is:

uw—0Tm\"
fawT v omm(@) g<() + ||a||%>.

Now, using the assumption that g(z + y) = g(x)g(y) we have that

fa|va:u—97m(a) x g(”aH%) 29)
Now, recall that
iy
p:m+Ay:m+A(UM+a>:mu+Aa, (30)
[vll2 (o]l
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where we defined the conditional center (the ”shift”)

v u—0"Tm (u—6"m)
m,=-m+A4A—————— =m+ANO———~n——~.
[v]l2 [[v]l2 07T A0

Thus,
Vio(u) = E, p)(yi | wi = u)
=Ep(Ec,(y; | p) | wi = u)
= Ep(4i(0, p) | wi =)
=Ep (i (6 'p) |p'6 =u)
(39 Eo (¢; (0; m, + 6] Aa) |v'y =u—6"m)

(29)/ T T g(”“”%)
= r 01’ m, + 01 Aa) ——————  _do
vl ) T o0

This completes the proof of (7).

F.2 PROOF OF (2)

We first define
d 0. A0
A T 2
C(g) = @OL m, = m,
— Tm
where we recall from Equation (31) that m,, = m + AB%. Note that

Cmi Cmi Cmi
c(0)] < == 16,6 < —(6i2]6]]> < =,
Cmax JEN Cmax Cmax

where we used that 8;,0 € Sy_;1. By (32) we have

Yig(u) = / P; (OiTmu + BiTAa) Jla)da, weU,ecSy_q,
RN-1

g(llexl3)

where §(a) = m is independent of u. Then, for £ = 0, 1, 2 we can write
R

W = (@) [ o (07 m, + 0] Aa) jla)da.
RN-1

3D

(32)

(33)

(34)

(35)

proving that v; g € CQ(U) for all 6. By Assumption 3.1 we have that 0 < Ewi < < wa which

immediately implies that 0 < B,, < ;9 < By, uniformly in 6, proving point (2).

F.3 PROOF OF (3)

We can write

s.0(w) - / s (6] My + 6] Act) — ()| §()dex

IN

/ 67 m, + 0] Aax — ulg(e)dax
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Note that
16, m, + 0, Ao — u| = |0; (m-i—A@W) +6] Ao —u
0" Aa=0by Equation (28) 0, <m + Ag(ltg_Ti;rrI)) +(0;,—0) " Aa —u
< 110; — 02| Ac]|2 + ||ml|2 ||0; — ziﬁz H +u |‘ ziﬁz )
S 16: = Ol2]lel2 + ||0: — 6 + 6 <1 - ZZ:/XZ) H2 + Z;ﬁz -1 9
<~ ol + ol |1 - 936 | -+ %28 1
<16~ Ol lals + ]W 2
S 110 — 02|z + (|8 — O]l gTAg H
S 16; = 0l2]lel2 + 116; — 62 oTAg H
S 16; = Ol2flel2 + 16; — ‘9”26;:1]:':%

S 116: = Bll2(c + [lell2),

for some ¢ > 0, where in the second inequality we used that v € U/, which is a bounded set, and we
also used, at different points, that ||0;||2 = ||€||2 = 1. We then have

Brow =il < [ 107 m,+ 6] Ao~ uli(a)da

<100l (c+ [ lalhi(@)a) < 6: - o]
RN-1

where we have used that
1
ell2g(a)da = —/ ledll2g([lex][3)dex
/RJH Jav-19(16]13)d6 Jen -1 ?
is finite because since g(x + y) = g(z)g(y), then g has exponential decay.

F.4 PROOF OF (4)

From (35) we have

Vi o(u) = c(0) i (6] m, + 6 Aa) j(a)dex
RN—1
.
where ¢(0) £ 46, m, = Z"T ﬁg as defined in (33). Then we only need to prove that 8,” A@ > 0 for
0 sufficiently close to ;. Recall by Assumption 5.1 that A € RV <V is symmetric positive definite
matrix with ¢pminl X A < ¢maxl for some 0 < ¢pin < Cmax < 00, and that ||0]|2 = [|0;]|2 = 1. We
are interested in the conditions under which
6" AB; > 0.
We begin by writing:

0"A0; =0 A6, + (06, A6,
Let a := 0, A@;. Since A is positive definite and ||@;| = 1, we have
a > Cmin > 0.
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Next, we bound the second term using the Cauchy—Schwarz inequality:
(0 —6,)TAB;| < [0 — 6|z - || A2
Moreover,
||A01||2 S Cmax||0i||2 = Cmax-
Therefore,
0 AO; > a — cpax|0 — 65|z
To ensure that 8T A@; > 0, it suffices to require:

a

10 —0;]2 <

Cmax

_ (39 _
We now prove that [1; o| < [c(8)|By, < &= B,,. Lastly, we prove that ¢; , is Lipschitz uniformly

Cmax

in@ € Sy_1. Forallu,v € U, and 8 € Sy_1, we have

|¢§,9(U) - ¢§,9(U)|

= |c(0)] /RIH V) (6 my, + 6, Aat) G(a)dox —/ ¢; (6 m, + 0, Aa) j(a)dor

RN-1

Assumption 3.1

£ Buye(@)] |07 m, - 6]m,)

< By ™ |m, — m, |3

cde

_ 3 Cmin +A0(u70Tm) Ae(vaTm)
P e VR C0TA m+ AT ,
Cmin ||AO]] 2.
= " — < B " min — .
W o 87A8 " VS P
F.5 PROOF OF (5)
Recall that
bio(u) = / ¥i (0] m, + 6] Aa) g(a)da = / bi (E(e,u)) §(@)da,
RN-1 RN-1
where

£(o,u) = 0 m, + 6 Aa.

First note that if @ = 0;, we have £(a, u) = u, since 67 Ao = 0, and then 1;.0, = ¥;. Now suppose
6, # 0. More generally, we will prove that for non-negative functions h, fi, fo integrable in R that
satisfy

(1 =Nz + Ay) = M(fi(z), f2(y); 1= A A), 2,y €R,
then
H ((1 — )\)U1 + /\Ug) Z Ms (F1 (ul),FQ (UQ) 3 1-— )\,/\), Ui, u2 S R,
where

where P is a probability measure.
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LemmaF.1. Let0 < A < 1, =1 < s < o0, and f, g, and let h nonnegative be integrable functions
on R satisfying

h((l—A)JZ—FAy) ZMS(fl(x)va(y)vl_A7/\)a x7yeR7
For every fixed u € R define H, '} and F5 as

H(u) £ / h(E(er,u))dP(e)
Fy(u) & / f(E(au)dP(a), j=1,2,

where (o, u) = a' b + cu + a for a non zero vector b, a nonzero real value c and a constant a,
and P is a probability measure, then

H((l — )\)ul + /\Ug) > MS/(S+1) (Fl (U1) , Fy (UQ) 31— )\,)\) , Ui, uz € R,

where we have defined

N +my*)*, s £0

Ms(x7y7A777) é {m)\yn S:O

Proof. We have
H((1 = XNuy + Aug) = /h({(a, (1 = XNug + Aug))dP(ar).

We can write

E(a, (1 = Nug + Mug) = a b+ a+ c((1 = Nug + Aug)
= (1 = Neus +a+ a'b] + Aecup + a + a ' b
= (1 - )\)E(avul) + >\§(Q7 u2)7

and by assumption on h we have that

h(&(ex, (1 = Nur + Aug)) > Mi(f1(€(e,ur)), fa(§(o, uz)); 1= A A),

and then

H((1 = Nuy + Aug) > /Ms(fl(ﬁ(a,ul)), f2(€le,uz)); 1 = A, A)dP(a)
Y (/ f (f(a,ul))dP(a),/fg(f(a,ug))dP(a); - A,A)

Q)
> M (Fi(ur), Fa(uz); 1= A, A),
where in (x) we used that for s > —1 the map
(2,y) = Malw,y51 = A 0) = [(1= N)a® + 2y]/*

is convex on (0, 00) x (0, 00), and then we can apply Niculescu & Persson (2006, Theorem 3.5.3),
which is an extension of the Jensen’s inequality for in 2 variables. O
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G PROOF OF THEOREM 5.4
We compute the regret upper bound of a single firm 7. Recall the definitions
revi(p | P—i) = pUi(—Bip + v P—i), Tevi(p|p—;) = p@gﬁ. (—Bip + 7, P—i),
so that
Rog;(T) = EY_[revi(Ty(p)) | &) —revi(p{” | D))
where

®

1
Fi(p(fz) = argmax,, . p, rev;(p; | p(jz), p; = argmax, cp. rev;(p; | p(t ))

By optimality condition of I'; we have

revi(p!” | p) = revi(Ti(p™) | p))
+8previ(p | PUD) per, oo (0 — Ti(p')))

>0
+ 82 1evi(p | PU) ey (1) — Ti(p)))?

for some p’ in the segment between the points p( and I'; ( ) From this, we derive

revi(Ti(p) | p) —revi(p{” | pY)) < =07 revi(p | P ey (i) — pi)2.
Now, note that
~0% 1evi(p | D)) jpmy = 28:05(—Bip' + 4 DY) — B W (B + i pY)
< 28; By + B} pi By,
where we used Assumption 3.2: 0 < ﬁw; <y < B% and || < By, onU for some (unknown)
Ew;vaM;’ By > 0. This implies

revi(T(p) | p) —revi(pl” | p) < (Ti(™) — p{")?

SIre®) —p@3

SITeE®) —p*l5 + [p* —p™|13

= r(e") -TE")3 + Ip* —p"|3

S Ip® = p*ll3 + p* — ™13

<™ - p73 (36)
Observe that this implies

Reg,(T) < EZ Ip® — p*|3. (37)

Lemma G.1. If Assumptions in the Theorem hold, for T sufficiently large we have
Elsup,cp [¢i(68] p) — ngg(gg—p)ﬂ < .%\/N(lo%)wa where Z; = max{¢;, #B;}, and B;
and €; are defined in (17) and (21), respectively. Moreover, there exists a unique value x} € (0, 1)
that minimizes E[sup,cp [¢:(6, p) — zzi,@: (g;rp) . This value satisfies the implicit equation:

4%7’1/10/{?/2 = 5@2N1/2(1 - I{Z‘)7/5.
Lemma G.2. If Assumptions in the Theorem hold, for T sufficiently large, sup,cp |v:(8 p) —

1}\1. g, (gjp)| < ¢; implies |p® — p*||3 < N sup;cp € + Li(t_T_l)for everyt > 1+ 1.
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By Lemma G.1, Lemma G.2 have that for ¢ > 7 4 1 with 7 sufficiently large,

(
Efrevi(Ti(p) | pY) —revi(p” | pU))] < "Ellp® — p*[2)

Lemma G.1,Lemma G.2

~

. log 7\ %/° e
2;N3/? (g> JrL%(t 1)’

-
(38)

and as a consequence, give that 7 T¢, for every t > TS +1

Reg IEZ rev;( \ p ) TeVz‘(pZ(-t) | p(jZ)]
4+ E Z rev;( (t)) | p(,tZ) — TeVi(pz(-t) | p(fZ)]
t=7+1
log T 2/5 d 2 1)
P t—7—
<74 (T —7)2;N>/? <T> + > Ly
t=7+1
< 4T N2 (18T 2/5+Ti1[,2j
~ 7 T = r

log TE\>® 11— L%(TfT)
T¢ > 112

< TE + 2T 2/5N3/2 (10g T)Y/5 4 1.

=T¢ + T N3/? (

Note that we are retaining the dependence on Z; = Z;(s;) to demonstrate the way that s; affects the
rate of the regret. Substituting back the value 7 o< T°¢ into Equation (38), we get

Ellp® — p*[13] S ZiN*2(E7) 4 L30TV
< %N3/2(b%7?5)2/5 +Li(t—T5—1)
- 2(t—T5 -1
= 2NV T (log T)* + L3 ™Y,
and fort =T s
E[lp® — p*|3] < 2;N2T~*(log T)¥* + LXT-T°7D

This completes the proof.
Remark G.3 (Dependence of the regret and NE convergence rate on s;). The value of £ that
minimizes the expected regret Reg,(T) is obtained by equalizing the exponents of T in the upper
bound T¢ + T ~**/>, ignoring logarithmic factors. Solving this balance gives € =5 /7. Consequently,
for each i € N we obtain

Reg,(T) = 0(5&9— N¥2 T (log T)Z/S) ,

Elp™ — p*} = O(2i N2 T~ (log T)" + LEH ) | 7 o,
These bounds retain the constants Z; and Ly because they depend on the parameters s, ..., Sy (or
equivalently c1, . .., cy). Note that the dependence on {s;} jc[n| enters only through the multiplica-

tive constant Z; and the additive constant Ly, never through the powers of T. This makes explicit
how the choice of s; influences the regret and the convergence to the NE. Below we show that if s;
are the optimal-concave parameters (as defined in Definition L.3), i.e.

t; + sup [¢s (W (w) + (¢ — 1) (¥)(u))?] < O}v

S; = sup{
u€U;
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then any misspecification s} < s; satisfying

1—-1/si+1 ;
qup L= e il
1N Bi

does not affect the regret or the NE convergence rates.

(1) Multiplicative constants Z;. The constant Z; = {¢;, %;} contains B; and C; (defined in
(17)—(21)), which are the multiplicative constants in the concentration bounds for

~

i =t g llec  and  [|6; — 62,

respectively. Any value s # s; does not affect the rate of linear estimator 0, but it could
introduce a bias in the estimator ’l/Ji’ 6. Precisely, if we choose s; < s;, the inclusion property
of Proposition L.1 implies that an s;-optimal-concave function remains s;-concave. Thus no
bias is introduced in the concentration of ||{; — 1, 5 ||oc, whereas a choice s; > s; would. Then

Sor s, < s;, since B; and €; are uniformly bounded in s;, i.e. %$;,6; < C for some C > 0
independent of s;, they do not affect the regret or NE rates.

(2) Additive constant Ly. The constant Ly is the contraction modulus of the best-response map

and determines the geometric decay term in the NE convergence. Convergence holds whenever
Lr € (0,1), or equivalently sup, ¢ 5 191l 17ill1/8; < 1. Because gi(u) =1 — 1/¢} (o7 (u)), we
have

1

1—— < gi(u) <1, ¢ =si+ 1.

i
Thus any s, satisfying sup;e n 11=Y/<i+1l Ivilli/g; < 1 preserves contraction. If Ly > 1, contrac-
tion fails and the regret guarantees break down.

Combining both components, we conclude that as long as the sellers choose s, < s; (where s; are
the optimal-concave parameters of 1;) and sup;c z 11="/<i+11 1vill1/p; < 1, the convergence rates of
both the regret and the NE remain unchanged.

G.1 PROOF OF LEMMA G.1
(1)

Let 7 be the minimum exploration phase among the N firmsand ¢t € {r +1,7+2,...,T}. Letn,

1(-2) the remaining length for estimating the
~ (1)

link function ;. Define the event &; = {||0; — ;|| < Rnil)} where Rngl) = B; le% where

be the length of the exploration phase to estimate 8; and n

A is defined in Proposition D.3, and
Ri(pilp—i) 2 [Wi(—Bipi + 4 P-i) — U, 5. (—Bipi + ¥ P-i)l, pi € Pipi € P,
We can write
Ri(pilp—i) = Zi(pilp—i)1(E:) + Zi(pi|p—i) L(ET).
Analyzing the Z; (p;|p—:)1(Ef):
By Proposition D.3 we have E[Z; (p;|p—:)1(EF)] S P(EF

3

2 (1)
— — inT; 16 2
) = Q"Lgl) = 2¢ C1min"; / + Ty -

S

Analyzing the Z;(p;|p—:)1(&;):

Zi(pilp-)I(E:) < |1, 5, (= Bipi + 7, P—i) — ¥, g, (—Bipi + 7, p-i)[1(£:)

—A
+ |1/)Z-}§i(_§ipi + % poi) — ¥, g,(—Bipi + v p=i)|I(&)
=B
+ |, g, (=Bipi + ¥ P-i) — Vi(—Bipi + i P—i)[1(&:).
—C
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Analyzing A on &;: Define the event Q; = {sup,,;, \1@ g.(u) — ¢, 5 (u)] < %pw(f)}. For n!?

7

sufficiently large, by Theorem D.6 we have that for every v > 4

P(Qz) >1- m

Consequently,
E(A) = E(AL(Qi,N&)) + E(A(Q N &;))

< (sup17,5,(0) - 15, (I € ) + 2E(GDIP(E

log n'? 2
- ( g(2§ ) P(Q; N &) + 2P(QF)
ne ——
7 <1
2/5
logn(-z) 1
< : +2
( n? (n?)-2
2/5
log n{?
s%( E ) :
n;
2)

where we chose v > 4 and ni sufficiently large.

Analyzing B on &;: By Proposition D.4, 1, 5 is Lipschitz, then

. log n'M 2
E[BI(E)] 5 116; = 0ill2 < R, = %, (N 0 ) |
i ni

Analyzing C on &;: By Proposition D.4 we have

1/2
log nz(-l)
oD

.6, (w) — Vi(W[I(E) S 116; — 0|2 < R, = % (N

Combining the terms %, (p;|p—;)1(E) and Z; (p;|p—:)1(E;): We got that

log nt? 2o log n Yz
N ) < . 2 i i
Zi(pilp—i) < % =% + B | N—r

% n;

Bound of the non parametric error associated with 1; Bound of the parametric error associated with 6;

We now derive the optimal choice of k;. Since %;(p;|p—;) appears as a multiplicative factor in the

total regret we want to make %; (p;|p—;) as small as possible. Using that nz(l) = Tk, n?) = 7(1—k;),
excluding log-factors, we have that

Ri(pilp—i) S Ci(r(1 — ki) "2/° + BN (115;) 712

‘We want to minimize the function
flr) == Gi(r(1 = k) 7>/° + BN (7)1

for constants 7 > 0, N > 0, and x; € (0,1). Define for simplicity A; = €;77%/°, B; =
B;NY/27=1/2_ Then:

24,

(1= )75 = Bi=are
5

Fri) = Al — k)25 4+ B2 fl(mi) = ' o i

(2
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Setting f'(x;) = 0 gives:

24; B; _: : 5 B;
(1- M)—7/5 = Sik; 3/2 o K;_s/2 i 71001 _ )T/5
Substituting back the expressions for A; and B;:
5 B, 5
Iif/Q _ 1%N1/2771/10(1 o Hi)?/o
The optimal 7 € (0, 1) satisfies the implicit equation:
5 B,
H?/z _ Z?iNuzTA/m(l _ Hi)7/5
We now prove that there exists a unique x; satisfying this equation. Let g(k;) = mf/ 2
SZINY2r=110(1 — ;)7/% and note that g(0) = —53ZENY/2r=1/10 < 0, g(1) = 1 and
g (ki) = %53/2 + INY2Zir=1/10(1 — £;)2/5 > 0. Note that, since we are excluding all the

constants when upper bounding %;(p;|p—;), the optimal value 7 is independent of ¢ and only
depends on the exploration length 7 and number of sellers in the market V.

(1) _ 1=xf (2) @)

Now, since the optimal «} € (0, 1) is fixed, and n; ——n;  ocn,;~ we have that the dominating
term is '
] 1— k; 2/5 | . 1/2 log
Fipilp-i) < 6 (BT RD )T g (IosRI )T o g (LB
(1 — k) TK; n®

where Z; = max {6, %, }.

G.2 PROOF OF LEMMA G.2
Recall the definition

revi(p | ps) = pUi(—Bip + 7 P-i),  1&Vi(p | P-s) = Pt 5, (—Bip + 7 p-a),
and

[i(p-i) = argmax, cp, revi(p; | P—i), Ti(p—i) = argmax,, cp, 7ev;(p; | P—i)-
We have

Is)lelg [revi(pi | p—i) — tevi(pi | p—i)| < P 2161172 4:(0; p) — @gi 6] p)| < e

Then we have that for every p € P,
rev;(Di(p—;) | P—i) < tevi(Di(p—i) | pi)+ei, revi(Ti(p—i) | p—i) > tev;(Ti(p_i) | P—i)—€s,
that implies
revi (T3(p—) | pi)—revi(Ti(p—i) | P—s) < 1V (Ta(p—s) | p—i) — 1&Vi(Ti(p—) | p—i)+26: < 26:.

<0

Now define
pi :=2Bi By, — 5i2ﬁi3w;'7
which is strictly positive by Assumption 3.2. Then we have

26 > revi([u(pi) | p-i) — revi(Ti(p—) | i) = 5 (Tulp—s) ~ Ti(p-)*

This implies

IT() ~Ep)ll = /> (Tilp—i) — Ti(p_i))? < 2 <o [NsupE =i, VieN.
1EN 1EN Hi iEN i
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This implies that

=)

sup [T(p) — L(p)[2 < e

pEP

Forevery t > 7+ 1 we have

Ip® - p*ll2 = [T(P“) — p*|2

IT(*D) — T V)2 + DY) — T(p*)|2
e+ Lp[p" — p*|l

e+ Lr(e+ Lr|p"~? — p*|2)

€1+ Lr) + L3 [p"~ — p*||2

ANRVAN

IN

{—1
e[ DoLL | +Lpllp" 0 = ptlla, Le{1,2,..t—7—1}
j=0

t—7—1 —(t—7— *
< ept + LYY ptm )

—r=1)) (7 .
= 6171Lr + Lg )||P( ) —p [|2

< et + 2pman LY, (39)

We conclude that, for every t > 7 + 1,

2
* 2(t—71—
Ip" —p*|l5 <2 (ﬁ) €+ 8pF Ly Y

2 €; 2(t—r—1
(o) (g ) bt

2(t—7-1)
r >

S Nsupe; + L
iEN

2
1 1 2
where we have absorbed the constants 8 (17 s ) TR and 8pz ..
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H NPLS FOR s-CONCAVE REGRESSION

Inspired by the work of Diimbgen et al. (2004), we prove a uniform convergence result for the NPLSE
of a mean function that can be written as an increasing function h composed with a concave function
¢o. Suppose that we observe (U,Y1),(Us,Ya), ..., (Uy,,Y,) with fixed numbers U; < Uy <
-+ < U, and independent random variables Y7, Y5, ..., Y, with

EY |U=u)=1p(u),
for unknown function ¢y : U — (0, 00), where I is an known interval containing
T ={U1,Us,...,Up,}.

Assume that
o = h o ¢y, (40)

for some known increasing twice differentiable function h : R — (0, 00) and unknown concave
function ¢y : Y — R. We denote the class of functions g that can be written as h o ¢g with Fp,
which includes log-concave functions (h(x) = ) and more generally s-concave functions for every

real s (h(z) = (—2)Y/* if s < 0 and h(x) = z'/* if s > 0).

Now we go back to the general known transformation h. We assume that ¢ € [B " B, for some
known 0 < B,, < By < oo, sothatUf = {u: By < ¢o(u) < By}. Let [By, By] C R such
that [B,,, By] = h([Bg, By]). Then b/ € [B,,, By] on [B¢,B¢} for some 0 < B), < By, < oo,
where B), and Bj, depend on B, and By,. Note that B),, By, are well defined, indeed, by Weierstrass

theorem, k' is locally bounded, that is for every compact set K there exists 0 < B, < Bj, < +00
such that B, < h/ < By, in K. Then we can write

qbnEargmln{ )& (Yi—hog (U, ))}, (41)

1=1
Un 2 ho oy,

where C is the set of all concave functions ¢ : Y — [B b B¢]. Note that the problem is not infinite
dimensional, indeed we only need to recover n variables (p(U1), ¢(Us), ..., ¢(Uy)) € [B,, Byg).
When h(z) = z (or equivalently for 1-concave functions, i.e. concave functions), (41) was studied
by Diimbgen et al. (2004), for which ¢,, exists and is unique and doesn’t need restrictions on the
codomain of @y, that is [B,, By can be the whole R. Existence and uniqueness come from the
coercivity of the loss £, which is a property that only applies for h(x) = . Since in our case h is
not necessarily the identity map, we rely on Weierstrass’ theorem (which guarantees the existence
of at least a minimum for a continuous function F' : 2 C R™ — R defined on a compact set {2 of
R™). Thus a solution of (41) exists (but might not be unlque) because the n-dimensional variable
(¢(U1),9(Us),...,d(Un)) € [By, By where (B, By) is compact. Uniqueness is not an issue in
our case since we only care about the construction of a consistent estimator. Proposition H.1, which
is followed by Lemma H.7, shows the constraints on the codomain of ¢y when vy : U — [ﬁ " By)]
is s-concave for s # 1.

Proposition H.1 (Constraints for s-concave transformations). Suppose that 1) is s-concave, that is
o = hg 0 g for some s # 1, where hy = d; ! as defined in (4). Then

_ - [IOg(ﬁw)Llog(Bd,)] s=0
$o € [By, By] = ds([By, By]) = { [-B}, —Bj], s <0
[f:[}7 pr]u s> 0.

‘We now establish the assumptions to guarantee the convergence of the estimator defined in Equa-
tion (41). We consider a triangular scheme of observations U; = U,, ; and Y; = Y, ; but suppress the
additional subscript n for notational simplicity. Let .#,, be the empirical distribution of the design
points U;, i.e.

///n(B)é%Zl{UieB}, BCR.
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We analyze the asymptotic behavior of @n on a fixed compact interval
[a,b] C U,
under certain conditions on ./, the probability measure of the design points, and the errors
E;2Y —o(Uy), i=12,...,n
Assumption H.2. The probability measure A of the design points satisfies M ([u,v]) > C 4z (v —u)

for some C 5 > 0 and for all u < v with u,v € U.
Assumption H.3. For some constant o > 0,

Inax Eexp (pE;) < exp (J2u2/2) Sforall iy € R.

Assumption Hd4. There exists a « € [1,2] and L > 0 such that for all u,v € [a, b]

|po(u) — ¢o(v)| < Llu—v|  ifa=1 @)
|6 (u) — dh(v)] < Llu— o[>t ifa> 1.

Assumption H.2 holds if the density fi; of the measure .# is bounded away from zero, that is
fu > C_y, which is a standard assumption for uniform convergence of non-parametric functions
(see e.g. Diimbgen et al. (2004); Mosching & Diimbgen (2020)) as well as for L? convergence (see
e.g. Groeneboom & Hendrickx (2018); Balabdaoui et al. (2019)).

Theorem H.5. Suppose that Assumptwn H. 2, Assumption H.3 and Assumption H.4 are satisfied. Let

an be a solution of (41), and let z/;n =ho (bn Then, for all v > 4 there exists a integer ngy and a real
value € > 0 such that

N a/2a+41
IP’{ sup  [Yo(u) — ¥n(u)] <<€<logn> } >1-2n"77, n>ny,

ue[a+5mb—5n] n

where € depends on C 4, By, B, L, o, o and vy, and 6,, = ‘g(log(n)/n)l/”“rl for some € =
€ (L, ). More specifically, € needs to satisfy

gltog, _ 4\ﬁ§h’ya'\/B}21 + Ei
Bh7
(0%

B2 (C.0/8)"?

The proof can be found in Appendix H.3.

Remark H.6. If vy and zZn depends also on a parameter @ € ©, 1y ¢ and ’(Z)\n’g, for which the
domain U does not depend on 0 and such that Assumption H.2 and Assumption H.4 hold uniformly
in @ € © and all the constants C_y4, By, B;,, L, o, v, a, b are independent of 0, then

N a/2a+41
P{ sup sup%,a(u)wn,e<u>g<g(10g”> }zlznﬂ
n

u€a+6y,b—5,] 0€O

H.1 TECHNICAL LEMMA 1
Lemma H.7. Recall the definition

log(y), s=0,y>0

ds(y) =1 —y*,  s<0,y>0

y°, s> 0,y > 0.

Then it holds
0 < Cy(By) < dy < C{(By) and CJ(B,) < d) < C(By), uniformly on [B,, By],

where
di(By), 1<s<2
{O}a s=1
{2}, s=2
d”(ﬁw), s € (1,2)°,

&(B,), s> 1,
Ci(By) =41 s=1, and CJ(B,)=
dy(By), s<1

(43)
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C? < 0fors < land C! > 0 for s > 1. As a consequence, for every real s, the function hs = d*
is increasing on [B,,, By with the following bounds

0< ! h. < L
Ci(By) = ° 7 CUBy)
Proof.
1 1
= =0 0 —= =0
dy)=3v STV gy = e =0
|S|y ) 57&07y20 ‘8‘(8_1)y ) 57’507y20

Case 1. s > 1. Then d., is increasing and d’/ is increasing for s > 2, d?/ = 2 for s = 2 and d” is
decreasing for s € (1, 2).

Case2. s =1. Thend, =1andd” = 0.
Case 3. s < 1. Then d, is decreasing and d/ increasing.
Conclusion. If 0 < ¢ < u < 1 — ¢, then we

11 1" (R
(4,(B,), d,(By), 5> 1 (e (By),dy(Be))y 1< <2

dy e {1}, s=1 and de % - ;
(dy(By),dy(By)), s<1 (d’;éBw),dg(ﬁw), .
and specifically
0 < C{(By) < dy < Cy(By)and CY(B,,) < di < C{(By), uniformly on [B,,, By,
where
dy(B,), s>1, f{lgng)’ ifi<2
C’;(ﬁw) =<1, ) s=1, and C;/(Ew) — {2}: : ; ;
dy(By), s<1 1B, ey
C! <0fors<landC? >O0fors > 1. -
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H.2 TECHNICAL LEMMA 2

Assumption H.2 implies the following Lemma H.8 that will be used to prove the uniform convergence
consistency in Theorem H.5.

Lemma H.8. Ler p, £ 10% and Leb(-) stands for Lebesgue measure and Uy,Us, ... U, i.id.
points with probability measure M that satisfies Assumption H.2, then for a given constant C3 > 0,
and for any v > 2 there exists ng € N and a sequence €, = €,(,Cs3,a) > 0, €, — 0 such that

1

]P)(An,”y) > ]. - W,

77/2”01

where A,, ~ is the event

: L > 5, = /2ot | > 1—¢,).
bl U U eb (U,) > 6, = Csp > Cu(l—en)

This result immediately follos from the proof of the more general result by Mosching & Diimbgen
(2020, Section 4.3) which can be stated as follows:

Lemma H.9. Let §,, > 0 such that 6,, — 0 while nd,,/log(n) — oo (as n — o). Then for every
v > 2, there exists ng = no (7, 0n) and €, = €,(7y, 6n) > 0, €, — 0 such that

o P (Un) 1
P f : P > > 1 — 1—
(m { P U CUP W) > 5n} > en> > 1= e

where P(-), P, (-) are respectively the probability measure and the empirical probability measure of
the design points U1,Us, ..., U,, that is

nZ”O)

n

P(B)é/BfU(u)du, Pn(B)é%ZL[UieBL for BC U,

t=1

and

€n 2 max (cn/(sn7 \/M) + (nén)—l — 0,

where c,, = ylog(n + 2)/(n + 1). The value ny is the smallest integer n that satisfies ¢, < 1.

38



Published as a conference paper at ICLR 2026

H.3 PROOF OF THEOREM H.5

First note that for every ¢ € C, since ¢ € [B,, By, then h o (;S € [By, By). By assumption we
also have b’ € [B,,, By] for some 0 < B, < Bj, < co. Let qﬁn be a solution of (41) ie. the LS
estimate of ¢g. Then, being (bn a minimizer, we have that for any direction A such that an + A eC

for 6 > 0 sufficiently small, E(gbn +0A) > E(qﬁn). Hence the directional derivative at g, along
direction A satisfies

dé

~ bn + 6A) — L(dy,
£(Bo +68) =l HOn T8 = L(0n)
50 510 1)

Fix such a direction A : R — R that will be selected later. We have

a
do

> 0.

n

> (¥~ (@ ) + 68 )

6=0 ;—1

- QZA VI (@0 (U)) (R(6n (U) = Yi) -

0< Ll L£@G+en)

T dd s,

Adding and subtracting o (U;) = h(¢o(U;)) we get
—ZA )R (B (V) Es 2 ZA VW (@ (U) [ 60 (U) = hodn (U] (44)

In what follows, we apply (44) to a special class of perturbation functions A and write

1/2
1A, £ (ZA ) . llonll & \/ B}, + BE, where oy, = (By,, Bx)"

The next Lemma H.10 is proved in Appendix H.4

Lemma H.10. For an integer m > 0, let D,,, be the family of all continuous, piece-wise linear
Sfunctions on R with at most m knots. Then for any fixed v > 4,
A

A S AU) h/(é/ﬁ\n (Ul))Ez’
Bm,n,)\ = Sn(m) = sup

< vo(m+1)Y2(logn)'/? forallm > 0,
AeD,, 1Al llonl

A2
with probability at least 1 — 2n =

The next ingredient for our proof is a result concerning the difference of two concave functions,
which can be found in Diimbgen et al. (2004, Lemma 5.2) and we report the proof in Appendix H.5
for completeness.

Lemma H.11. Let ¢ satisfy Assumption H.4. There is a universal constant ¢ = ‘K(L «) with the
following property: for any € > 0, let 6 < % min (b —a 51/0‘) Then, for any concave function gi)

tzl[i},)b]<$_ 9)=¢ o s (6 6) > ¢,
implies
L G- =4 o int (0=0) > /4,
for some c € [a,b — 8]. More specifically we have € = min {32, o} = it

Now, we have to show that one of our classes D,,, does indeed contain useful perturbation functions
A. We denote with ¢ the unique continuous and piecewise linear function with knots in & N (Uy, U,,)

such that ¢,, = an on .7 = {Uy,Us,...,U,}. Thus ¢, is one particular LS estimator for ¢o. The
following technical Lemma H.12 can be found in Diimbgen et al. (2004, Lemma 3).
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Lemma H.12. ForO < u <b—alet

My (u) == min My[c,c+ u.

c€la,b—u]

Suppose that \(Zn — ¢o| > £ on some interval [c,c + ] C [a,b] with length § > 0. Then there is a
Sunction A € Dg such that

bn + AA is concave for some X > 0,
A(go — 6n) > EA* on 7,
AR > ns,(5/2)/4. (45)

Now we prove the theorem. Consider the event

su _ - ¥n
V() = { Plettndo) tozvnl, %} :
for some (random) ¢ > 0 that we aim to prove to be O, (1). Then we have |1y — 1Zn| = |vogy—

00 G| < Bp|do — ¢n). It follows that

—~ 172 o
sup |po — Bl(u) > 1376"'
u€la+dy,b—08,] h

From Lemma H.11, replacing

0 < 0n
€ 50,
there is a (random) interval [¢,,, ¢, + 0,,] C [a, b] on which [ — ¢y | > %6;‘; , provided that

« n is sufficiently large to guarantee that £/ < b — a, so that min{b — a, €€/} = €¢V/e.

. };6: > &—. This condition comes from the fact that & < %751/ @ that is 6, <

%(iaa)w.

By,

Because [c,,, ¢,,+0,,] is a sub-interval of U on length §,,, Lemma H.8 (which holds by Assumption H.2)
guarantees that this interval contains at least one observation U;. This implies Lemma H.12. For any

A € Dg define In = {i : A(U;) < 0}. Define also J = {i : ¢o(U;) — én(U;) > 0}. Using that
0 < k' € [By,, By] with B;,, By, > 0 (which comes from Lemma H.7) we have that

0 < By, (¢ — bn) < h(o) — h(dn) < Bu(do — ¢y) on points U; with i € J,
Bi(¢o — ¢n) < h(¢o) — h(n) < By(¢o — én) <0 on points U; with i € J°,

and as a consequence, using that 0 < b’ € [B,,, By] we have

0 < B2(¢o — bn) < W () (h(cbo) — h(hn)) < B2(do — ) on points U; with i € J,
" 2

B2 (o — dn) < h' (&) (o) — h(dn)) < B2 (o — ¢n) <0 on points U; with i € J.  (46)
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Recall that o;, = (B, Br)". By the definition of S,,(6) and Lemma H.12, there is a (random)
function A € Dg such that

S A (U)W (6 (U2) B
5n(6) > 1 lon]

(1 S AU W (G (V) [0 (U1)) = hiGn (U)]
- 1ATwlon]

=UAlalloaldH ] S+ S+ >+ Y

i€land i€lanJe €IgnJ  i€I§nJe

(||A|| lonl) ™ Juz Y A Ui) — éu(Us) FY . AU Ui) — on(U2)) +
ZGIAﬂJ ZGILOJ
+B7 > AU (0(U) = ¢a(U) + B2 Y AU bo(Us) — b(U5))
i€elanJe ieIgnJe
(45) @ o
> Ao B Y AW +EL Y AW
i€lang ieIgnJ
+B, Y AWU)+BE > AU
i€elanJe ielgnJe

&
> 5YA -1p?
2 7500 1A, llowll ™ B3

45
> 0 sa
— 4u, "

Consequently,

(45) € —~ 1/2 _
(nln (0u/2) /4) " llon| ™ B3,

© <4B;onll0;7 (nda (6502 /1) 5,(6).
Now consider the event Bg ;, ,, in Lemma H.10 and the event A,, ., in Lemma H.8. For v > 4 define
Gn~y = An~ N By,
which holds with probability at least 1 — 2n*~7. In G,, ,, we have
€ < 4Bylonl| B}, 6, ((C.a (1= €,)/8 + 0(1))nd,) /2 5, (6)
= 4Bylon| By (C.ar(1 = €0) /8 + 0(1))) "/ (log(n)) ~/2S,,(6)
< 4Biflon| B, (C.ar/8)™* (l0g(n))~1/25.,(6).

where we used that o(1) is a positive quantity appearing in the denominator. More precisely we have
that

V() = {Supm"’b_fi] ot ‘5} C {80(6) = € (4B) " flonl| B2 (C.ar/9)/? (10 m) 2},

then with probability less than 2n2~7 we have SUP[qts,,0—5,] [P0 — zzn| > Cgyds provided (by
Lemma H.10)
€(Bn) " flonl 7' B} (C./8)'"? 2 10T,

. ... . o—aD ~yo/T
More precisely, the condition on %’ is that € > max {Cﬁ By, @B Tlon] - B2 (Ca /) } where

~ > 4. Using that o, = (By,, B,)T and ¢ = & (from Lemma H.11), this condition becomes

gi+er,  4VTBpyo,/ B} + B;,
% > max B h

h>

a B2 (C.0/8)"?
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H.4 PROOF OF LEMMA H.10
Assumption H.3 implies the following inequality

i C(U )h/(¢n( Ui))E;
1<l llon |

772
=1 < 2exp (—2 2>, (47)
g

for any function ¢ with ||C||, > 0 and arbitrary n > 0. Indeed, since 0 < B;, < h’(g/b\n (U;)) < B,
we have

n

> U)W (60 (U))E: < B> _C(U) Ei+ By Y ¢ (Us (48)

i=1 i€l iele
where I = {i: ((U;) E; >0} and I¢ = {i : ( (U;) E; < 0}. We get

. {Z?lcwi)h'wn WU)E: n}

1€l llonl

<P{B;LZ( VEi+ By Y ¢ (U E>n||<||n||0h||}

el iele

eXp{BhZC ) E; +BhZC E}

el iele

< exp (=1l[Cllnllonl) E

= exp (=nl[¢llnllonl) JTE [exp { Bu¢ (Vi) Ei}] ] Elexp {B,,¢ (Us) Ei}]

el iele

< exp (=n|[¢llnllonll) [ ] [exp {B2¢* (U:) 02/2}] ] [exp {Br¢* (Us) 02 /2}]

el iele

< exp (=n|¢llnllonll) exp {lonlI?[IClI2 0% /2}
<exp (—n*/(20%)),

where we used that —nz||op|| + |lon ||?220% /2 is maximized at z = 1/(0?||op||). Equivalently we

get
P{ Sy (U)W (60 (U))E, Zn}gexp (_n)

€l llon 20°

and

SLcwawGwns| ) ( n2>
€ —_— .
Il llon] =T =20 T

For1 <j <k <n,let

WY ) =1 {u € (U3, U} - fé{ and  h2(w) = 1{u € [U;, U]}

U —U;’
if U; < Uy. Otherwise let ¢} (u) := 1 {u = Uy} and ¢} (u) := 0.

This defines a collection ® of at most n? different nonzero functions CJ(.?. Then for any fixed v, > 2,
(47) implies

2
IP’{Sn < 'yoa(logn)l/2} >1- a2
where R
(S0 C (W) W (6 (U)E:
S, = max
ced <l llonl
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Plot of (ﬁ-,l\.)(t) and (;i)(t)

) — o
: sH0)
t; tr
t
Figure 1
For let Gy (¢) := [¢]l5* 322, h (Ui) E;. Then by (47),
P{Snz'yo (logn) 1/2} ZIP’{ Q)| > o0 (logn)l/Q} 49)
ced
< 2n?exp (—fyg 1og(n)/2)
42
= 2n74 pl

— 0asn — oo,

because 7, > 2. Recall that D,,, is the family of all continuous, piecewise linear functions on R with
at most m knots. For any A € D,,,, there are m’ < 2m + 2 disjoint intervals on which A is either
linear and non-negative, or linear and non-positive. For one such interval B with .#,,(B) > 0 let
{U1,...,U,} N B={Uj,...,Ug}. Then

A(u) = A (U) Y () + A U;) ¢ (w) - foru € [Uy, U] .

. Pie(’(?\x'ise Linear Function A € D,,, with m = 10 Knots Plot of C,[Ll)(t) gﬁ)(f) and A(t)
Alt) e Alt
e Knots ®) - C‘;l’ﬂ)
I$40)
— At)
\ ] Alty)
— 0
tu ti tog tas 30 3 ty tas tj t;
Figure 2 Figure 3
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This shows that there are real coefficients Ay, . .., Ag14 and functions (1, . . ., (4m+4 in @ such that
A= Z4m+4 ¢ on{Uy,...,Uy,}, and A\jAx(; ¢, > O for all pairs (7, k). Consequently,

Sy A (U)W (6 (U)E; B DY I‘Zz 1 G (U)W (6 (U)E;

Allnllo m
[ATullon] (S zig2) " o
S Al 1

< 75 5n
(Simre )
< (4m +4)'28,,.
The last inequality is due to Cauchy-Schwarz inequality
4m+4 4m+4 1/2 4m+4 1/2
> Wl < 1= { 32 A Ikl >
j=1 j=1 j=1
Thus by (49) we have that
P < sup sup ‘Zl 140 )h/((bn( Z))Ez‘ < 2%0(logn)1/2 >1-2n" 472,
m>0aeD,  [[Alnllon](m + 1)1/2

Setting v = 2+, we get the result.

H.5 PROOF OF LEMMA H.11

We divide the proof in 2 parts. Part A: (¢—¢) (t,) > & for some t, € [a, b]. Part B: (—¢) (t,) > €
for some ¢, € [a + 6,0 — d].

Part A

Suppose that (ngS — ¢) (to,) > & for some t, € [a,b]. Without loss of generality let t, < (a + b)/2.
Define the linear function

qg() L o (to) ifa=1
T A(te) + @ (to) (- —to)  ifa>1,
Define the concave function ® := (;AS — 5 Now, note that by Assumption H.4 we have
|6 — ol < LIt = to]*/a, (50)

Now, since by assumption sup,¢, 4 gi) ¢ > & we have

-~

O(t,) = ¢(to) —¢(to) > €. (51)
Now let0 < 6 < (b—a)/8.

* Step 1.A. Since ® is concave, it follows that if ® (¢, + ) > £/2 then, joint with (51),
® > ¢&/20n [ty t, + 4.

* Step 2.A. Now assume @ (¢, + J) < /2. By concavity of ® we have

B(ty) < B(to+0) =60 (to+6) = &' (t,+6) < I HD(t, +0)—D(t,)) < —61¢/2.
<~ —_— —~—
@ concave <€/2 >¢
Consequently, for ¢ > t, + 39

D(t) < B(to+0) + (t —t, — )P (t, + )

M~ ——— N————P—— —

@ concave  <¢/2 >26 <—=6-1¢/2

<&/2-26071(¢/2) = —¢/2.
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* Step 1.A + 2.A: @ > £/2 or & < £/2 on some interval J C [t,,t, + 49] with length 4.
Using this fact and (50), we have thatt € J
G—0=0+6-¢ o $—9=0¢-¢-0,
is greater or equal than

§/2—L(t —1t,)" /o > §/2 — L(46)" /v,

1/«
which is greater or equal than £ /4 provided that § < i (%) .
Part B
Now suppose that (¢ — ¢) (t,) > & for some & > 0 and t, € [a + d,b — ], where
0 < 6 < (b—a)/2. By Assumption H.4 and concavity of both ¢, ¢ there exist numbers -y, 5

such that
P(t) > ¢ (to) +7(t —to) = L[t — to|" /o,
and . -
P(t) <P (to) +7 ([t —to).
Thus

(@—d)t) 2 &+ (v =) (t—to) — Lt —t,|" Ja > €~ Lo°,
for all ¢ in the interval [t,, t, + 0] or [t, — J, t,], depending on the sign of v — 5. Moreover,

1/
& — Lé%/a > £/4, provided that § < (%) i
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I

I.1

REMARKS

REMARK ON ASSUMPTION 3.2

In this section, we discuss sufficient conditions under which Assumption 3.2 holds. Under twice
differentiability of v;, the strong concavity of rev; (- | p—;) uniformly over p_;, is guaranteed if
there exists a value p; > 0, such that —852 rev;(p | p—i) > p; for every p € P;, uniformly in

pP—: € P_;. Uniformity in p_; € P_; means that ;; does not depends on p_;. Here we give some

examples where this condition is satisfied.

e))

(@)

3)

Linear demand models (Li et al., 2024). In this case rev;(p | p_;) = p(a; — Bip + 7, P—i),
and 7812,2 rev;(p | p—i) = 25; > 0.

Concave demand models. If ¢; is such that ¢, > By for some By, > 0 as in Assumption 3.1
and is concave, which implies 9, rev;(p | p—i) = ¥;(=Bip+~, P—i) — Bip!(=Bip+7,  P-i)>
then

—02 rev(p | p—i) = 20} (—Bip + v P—i) — BipY) (=Bip + i p—-i)
> 2 (—Bip+ 7, p_i) > 2By, > 0.

Note that requiring concavity of v; is equivalent to requiring 1-concavity of v;, then, by the

inclusion property of s-concave functions, any (positive and strictly increasing) s;-concave 1;
with s; > 1 satisfies Assumption 3.2.

s-concave demand functions. Suppose that v); satisfies Assumption 3.1 and Assumption 3.4.
Then, by Proposition 3.5, 1; is s;-concave for some s; > —1, and by Lemma B.1 this is
equivalent to ¥ < (1 — s;)(2})?/1;. This implies that

— 952 revi(p | p—y)

= 205(=Bip + 7, P—i) — Bipvy (=Bip + 7V P—i)

> 205 (—Bip + v P—i) — BIp(L = si)[Wi(—Bip + v P=i)]*/¢i(—Bip + v P—s)

= i(—=Bip+ 4 p-i) {2 = BIp(1 = s:)Yi(=Bip + v P—i) /i(—Bip + 7 P-i) }

and since ¥; > By, > 0 a sufficient condition is that

2 — B2p(1 — s)¥i(—Bip + v P—i)/Yi(—Bip + v P-i) = Ci,

for some constant C; > 0. Note that since 1} /1); is non-negative, for s; > 1 the condition is
trivially satisfied with C; = 2, indeed this condition coincides with the case studied before for
concave demand functions. When s; € (—1, 1) the condition becomes

Wi (—Bip + 7 p_i)
i(—Bip + ‘Yi—rp—i)
2—-C;

= Note that the left-hand side is always negative, then, a necessary

condition such that the inequality holds is that the right-hand side is negative too, i.e., if 0 < C; <
2, or K; > 0. For example, suppose that v); is 0-concave (i.e. log-concave), that is ; = e® for
some increasing concave function ¢;, where ¢; needs to be increasing in order to guarantee that
1); is increasing. The condition becomes

d
P% {log oty (—Bip +~ P—i)} = —Bip > —K;,

where we set K; =

d
Bipd' (=Bip +~ p-i) = —p g, s vi(—Bip + v pi) <K
and it’s easy to see that any ¢, (z) = ax for a > 0 sufficiently small works. Indeed the condition
becomes p < K;/(S;a) for all p € P;, which holds as long as K; /(8;a) > p;, or a < K;/(8:D;)-
Another example is ¢; (z) = —1/(x + b) for b sufficiently large, indeed the condition becomes

m < K;/B; or p < K for some K(b) > 0, and b must by such that K" > p,.
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1.2  REMARK 4.1 ON THE COMMON EXPLORATION PHASE

To highlight the importance of a common exploration phase, we demonstrate that no seller has an
incentive to extend or shorten the exploration phase. If firm ¢ prolongs its exploration phase, it risks
incomplete learning of its model parameters (Keskin & Zeevi, 2018), leading to inaccurate parameter
estimation and, consequently, a loss in revenue. Conversely, if firm ¢ shortens its exploration phase,
it may achieve consistent estimation but at the cost of higher regret due to insufficient exploratory
data. For a better illustration, consider a scenario where firm ¢ extends its exploration phase to
7' > 7 while all other firms use a phase of length 7. When firm ¢ estimates its parameters using data

{(p®, yi(t))}tgf, the data from times 7 + 1 to 7/ are no longer iid. In this later period, all other
firms have already started their exploration, causing the prices {p(fZ}t:TH’,,,,T/ to be dependent

on the earlier data {p(_tz}tST. This dependency can result in inconsistent parameter estimation and
a loss of efficiency for firm i. Conversely, if firm ¢ opts for a shorter exploration phase than 7, it
may achieve consistent estimation, but the reduced amount of exploratory data could lead to lower
efficiency compared to firms that adhere to the full exploration phase.

1.3 REMARK 4.2 ON THE NEED FOR TWO DIFFERENT PHASES FOR MODEL ESTIMATION

In principle, one could estimate (6;, ;) jointly using the full exploration phase. For instance,
Balabdaoui et al. (2019) employ a profile least squares approach to achieve L? convergence for the

joint LSE of (0;, ;) based on the data {(yft), p)};<.. However, in our context, L? convergence
alone does not suffice to establish an upper bound on the total expected regret. To elaborate, let
(0715 4h7L5) denote the joint estimator proposed in Balabdaoui et al. (2019) based on the data

{(yz( t)’ p(t))}tgf. Their result applied to our setting gives the following L? convergence rate:

(Jp (07550, 6/75) = i((p.6:)))” d9<p>)1/2 =0, (r /).

Here, the convergence is measured with respect to the measure &, which governs the distribu-
tion of prices during the exploration phase. Consequently, the L? distance between (8;,;) and
(0755 4)7L5) can only be evaluated for prices distributed according to 2. However, during the
exploitation phase (t > 74 1), the distribution of prices p*) may differ from 2, making it impossible
to evaluate the performance of the estimators during this phase in an L? sense. A uniform convergence
result, which does not depend on any specific price distribution, solves this issue. However, achieving
uniform convergence of the form

suppep |70 (P, 0/7%)) — i ((p, 6:))] (52)

is challenging when (6; LS, 7/)2“5) are estimated jointly. To overcome this difficulty, our approach is
to first estimate €; and then, conditional on this estimator, separately estimate 1); using an independent
dataset. This two-step procedure ensures conditional independence and yields consistent estimators,
addressing the difficulties of the joint estimation strategy.
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J  SIMULATIONS

J.1 CONTRACTION CONSTANT VARYING REGIMES

We evaluate the performance of Algorithm I in the sequential price competition model with N €
{2,4,6} sellers. Each selleri € N' = {1,2,..., N} sets prices supported on P = [0, 3]*". We
examine how convergence behavior changes as the contraction constant Ly varies —specifically, when
it is close to 0, near 0.5, or approaches 1.

Recall that the contraction constant of the Best Response operator is

Lr = sup ||g. L
r ie/gl\gllloo )

which simplifies to Ly = sup;¢ s HE” L when the link functions 1); are log-concave (see Remark 3.8).

In our experiments, we take

z/)i(u)sz(?u), i=1,2,...,N,

7

where ® is the cumulative distribution function of a standard Gaussian random variable. Since ®
is log-concave, the simplification applies. We now identify the parameter regimes for 3; that yield
Lr~0and Ly ~ 1.

Case 1: Lt | 0. In the extreme case Lt | 0, we must have 8; 1 1 for all i € N, which forces
~; 4 0 component-wise.

Case 2: Ly 1 1. To approach the opposite extreme, Ly 1 1, consider

sup sup vl <1, suchthat B7+|lvl5=1 VieN.

ieN B;>0ycrnt Di
Without loss of generality, fix 7 = 1. By the Cauchy—Schwarz inequality,

[yl < VN = 172

So the largest possible ||71]|1 occurs when entries of «; are equally distributed. In that case, the
requirement becomes

VN —1|mllz < 1.
Since ||y1]]2 = /1 — 32, this becomes /N — 1 /1 — 3# < f31. Squaring both sides gives

N-1
N

(N-1)(1-8) <pi <= pi>
Thus, Ly T 1as 51 | 4/ % In particular, we have the following scheme:

N=2: g 1\/E~0707 = Lptl,

N=d: i1/ ~086 = Lp1l,

N=6: fily/3~0013 = Lp1L
A summary of the two extreme cases can be found in Table 3.

Simulation design. Given the discussion above, and the table in Table 3, for each N € {2,4, 6},
we run simulations under three representative values of 3;, yielding a total of 9 settings:

e N=2. 3; = 0.71,0.84, 0.97.
« N=4. 3; = 0.87,0.93,0.99.
« N=6. 3; = 0.92,0.955, 0.99.
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Table 3: Extreme cases for /3; and corresponding behavior of L.

Case | Condition on f3; | Condition on ~;

Lr L0 | BiTLVieN | lvill1 4 0, Vi € N
Let 1| BidyN-Yn |y 1Y y/Nw=1) for j € N\ {1}
N=2 Bl /Y2 T2 TYVv2

N=4 Bid /34 71,5 T/ vizforj =2,3,4
N=6 /61~J/\/5/6 71,jT1/\/%f0rj:273747576

In all experiments, demand noise follows Unif[—0.05, 0.05]. The common exploration phase has
length %T5/ 7 and the length ; of the first part of the exploration phase is determined using Equa-

tion (14) with €; = 1, %; = 1. During the first phase of the exploration phase, the values of p(*) are
samples from a multivariate Gaussian with mean

p; +Dp. Di — D.
m = (p pl) , 2 =diag b b .
2 ieN 2 ieN

For each horizon T' € {100, 400, 800, 1600, 3200}, we apply Algorithm 1 and repeat the simulation
30 times to obtain averages and 95% confidence intervals.

The results are displayed in Figure 5, and a log-log version to highlight the convergence rate in
Figure 6. As expected, convergence accelerates as the contraction constant approaches 1, in line with
the intuition highlighted in (9).

J.2  DIFFERENT EXPLORATION PHASES ACROSS SELLERS

In this experiment, we replicate the setup in Appendix J.1 but relax the common exploration phase
assumption in order to test the robustness of our algorithm. An illustration of misaligned exploration
phases is provided in Figure 4.

Start of selling horizon

Exploration phase

End of exploration phase

Exploitation phase

End of selling horizon

Private exploration for estimating 6;

seller 4> """"""" Pe '+ > |< :I Private exploration for estimating y;

Common Exploration

Common Exploitation
Non-common

Common y; phase
Vestimation phase?

Figure 4: Illustration of our policy (Algorithm 1) with N = 4 sellers in sequential price competition
under nonlinear demands. For each seller ¢ € {1,2, 3,4}, in their exploration phase (dotted line)
of length 7;, they offer randomized prices following their distribution &;. Within the exploration
phase, each seller has a private phase for estimating 6; (blue box with dotted border), with length
T;k; and a private phase for estimating v; (yellow box with continued border line), with length
7:(1 — k;). The i-th seller’s price experiment ends at period ¢ = 7; (black circles). Subsequently, in
their exploitation phase (represented by the continued black line), seller 7 offers prices based on the
estimators generated in the exploration phase.

We set the exploration length of each seller as

Ti = Thase + Ui * Thase, Ui ~ Unif[0.25,0.75],
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where Tpye = §T5/ 7. The allocation parameter ; for the first part of exploration is computed using
Equation (14), with 7 replaced by 7; and fixed constants ¢; = %; = 1. For this simulation, we set
B; =08for N =2, 5, =0.92 for N = 4, and 8; = 97 for N = 6, which satisfy Assumption 3.6.

During the exploration phase, the prices p(t)

, ~ are sampled independently across sellers from a Gaussian
distribution ' (m;, o;) with

Pi+p, Pi—p,
== gi= g EN

m;

For each horizon T' € {100, 400, 800, 1600, 3200}, we run Algorithm 1 and repeat the simulation 30
times, reporting averages and 95% confidence intervals.

The results are reported in Figure 7, together with a log-log plot in Figure 6, which illustrate the
convergence of prices to the Nash equilibrium and the decay of regret.

As anticipated, the estimation of 1); deteriorates, in line with the intuition of Remark 4.1. Indeed,
as the horizon T' grows, the exploration lengths 7; increase for all sellers, which enlarges the non-
common exploration phase (see Figure 7). Consequently, a larger number of price vectors p(*) are no
longer i.i.d., making parameter estimation increasingly inconsistent. Nevertheless, despite the adverse
effect on the estimation of v;, both convergence to the Nash equilibrium and regret performance
remain robust, with empirical regret rates matching — or even surpassing — the theoretical benchmarks
of —1/7 for equilibrium convergence and 5/7 for regret.

J.3 ROBUSTNESS TO MISSPECIFICATION OF s;.

In this experiment, we replicate the setup of Appendix J.1, except that we fix N = 4 and set 5; = 0.9.
We again take v;(u) = ®(2u/i) for i = 1,2,..., N, where ® denotes the c.d.f. of a standard
Gaussian random variable. Since ® is log-concave, each 1); is 0-concave, that is, s; = 0. We then
run Algorithm 1 under five different shape parameters s; € {—0.2,—-0.1,0,0.1,0.2}. As shown
in Figure 8, this misspecification of s; has no visible effect on either the NE convergence rate or
the regret convergence rate. The small variations in the estimated slopes reported in the legend of
Figure 8 are plausibly due to finite-sample noise (1" = 1600).
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—e— [r=~1 —e— L[pr=~1
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[p™ = p*
—e— L[r~1

Total Expected Regret
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—e— [r=x1
—&— Lpr~05

1000 2000

3000 0 1

2000

T

3000

Figure 5: Performance of Algorithm 1 in sequential price competition with NV € {2,4, 6} sellers for

different values of the contraction constant Ly-.

log [p? — p

—&— m=-0.30
—A— m=-0.32
- m=-0.43

~—@— m=-0.32
—A— m=-0.27

0.0 — m=-033

-1.0

logT

)

log Total Expected Regret
m=0.66
m=0.71
m=0.60

m=0.55
m=0.59
m=0.54

fte

m=0.59
m=0.57
m=0.55

bt

logT

Figure 6: Log-log performance of Algorithm [ in sequential price competition with N € {2,4,6}
sellers for different values of the contraction constant Ly. The slopes, indicated as m, of the
convergence to NE and the regret are always smaller than the corresponding theoretical upper bounds

(—1/7 and 5/7).
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Figure 7: Performance in the different exploration phases.
X8 - 6., S D = o NE Convergence (log-log) Reget (log log)
NE Convergence Slopes
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oo
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Figure 8: Log-log performance of Algorithm | in sequential price competition with N = 4 sellers
for different values of misspecification of s; = 0, specifically {—0.2, —0.1,0,0.1,0.2}. The slopes,
indicated as m, of the convergence to NE and the regret are close to each other. The small variations
in the rates can be attributed to the finite sample experiment (7' = 1600).
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K ADDITIONAL FIGURES

...............................

..............................

..............................

Figure 9: Illustration of our policy (Algorithm 1) with N = 4 sellers in sequential price competition
under nonlinear demands. For each seller ¢ € {1, 2, 3,4}, in their exploration phase (dotted line) of
length 7, they offer randomized prices following their distribution ;. Within the exploration phase,
each seller has a private phase for estimating €; (blue box), with length 7x; and a private phase for
estimating 1; (yellow box), with length 7(1 — ;). The seller’s price experiment ends at period ¢t = 7
(orange circle). Subsequently, in their exploitation phase (dashed line), seller ¢ offers prices using the

estimators generated in the exploration phase.
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L EXAMPLES OF s-CONCAVE NON-DECREASING FUNCTIONS

The notion of s-concave functions generalizes concavity (s = 1) and log-concavity (which holds
for s = 0). The class of log-concave functions has been extensively studied: see Bobkov
& Madiman (2011); Diimbgen & Rufibach (2009); Cule & Samworth (2010); Borzadaran &
Borzadaran (2011); Bagnoli & Bergstrom (2006). Since in this paper we consider a positive
monotone s-concave function 1, we first give some examples of monotone log-concave func-
tions and generalize to s-concavity. Without loss of generality, we log-concave (and s-concave)
CDFs 1), indeed if ¢ is monotone but its range is not contained in [0, 1], it is always possible
to rescale v to consider it as a CDF. Indeed if 1 is s-concave, the ciy is s-concave for every
¢ > 0 because 9 ((1 — Nug + Aug) > M (¢ (uo) , 9 (u1); A) for all ug, u; € U if and only if
- (1= XNug + Aug) > M (e (ug),c- 9 (ug); A) for all ug, u; € U.

L.1 LoG-coNCAVE CDF

In Bagnoli & Bergstrom (2006) we find a large class of log-concave CDF. They prove that if a
density function f is log-concave and continuously differentiable, then the CDF F is also log-
concave. This gives a way to generate log-concave CDFs. Figure 10, by Bagnoli & Bergstrom
(2006), presents several widely used continuous univariate probability distributions whose densities
are log-concave. Except for the Laplace distribution, the log-concavity of each density f can be
verified by checking that the second derivative of In f () is non-positive across its support. For some
families-such as the Weibull, power-function, beta, and gamma distributions-log-concavity holds only
for specific parameter values. The table reports the parameter ranges under which these densities
remain log-concave.

Name of Support Density Cumulative dist (In f(x))”

distribution function f(x) function F(x)

Uniform [0,1] 1 X 0

Normal (—o0, 00) #e‘”zﬁ * -1

Exponential (0, 00) e~ e 1—e A 0

It -z 1

LOngth (—OO, OO) (T‘,—ee*—z)z m —Zf(.’ﬂ)

Extreme Value (—o0,00) e Texp{—e *} exp{—e "} —e 7

Laplace (Double 1|l er ifr <0  Oforz#0

Exponential) (=00, 00) 2¢ 1-— %e‘m ifx >0

Power Function c—1 ¢ 1—c

(> 1) (0,1] cx z —

Weibull 1. —a g 1—c c

(€>1) [0, 00) cx¢~le 1—e (1 + cz€)
c—1_—=x _

Gamma (¢ > 1) [0, o) ﬁ_f# * 13_3_22

Chi-Squared 2(c=2)/2,—x/2 9 e

(c>2) 10-0) 2¢/20(c/2) ’ 222

. c—1_—a2/2 _

Chife21) 0.00) ey " =

Beta (v > 1, zV 1 (1—z)¥ ! 1-v 1—

w> 1) [0,1] Blow) * el e

Maxwell This is a Chi distribution with ¢ = 3

Rayleigh This is a Weibull distribution with ¢ = 2

Figure 10: (by Bagnoli & Bergstrom (2006)) Distributions with log-concave density functions
(distribution functions marked * lack a closed-form representation).
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L.2 NON LOG-CONCAVE CDF

When the density f is not log-concave, analyzing the behavior of the associated cumulative distribu-
tion function F' is more complicated. Distributions with log-convex densities exhibit a wide range of
behaviors: some have log-concave CDFs, others have log-convex CDFs, and still others have CDFs
that are neither log-concave nor log-convex.

Figure 11, by Bagnoli & Bergstrom (2006) summarizes, for each of these cases, whether the density
and the CDF are log-concave or log-convex.

Name of Density cdf
distribution function

Power function
log-convex  log-concave

(0<e<l)

Weibull log-convex  log-concave
(0<e<l)

Gamma log-convex  log-concave
(0<e<l)

Arc-Sine log-convex  neither
Pareto log-convex  log-concave
Lognormal neither log-concave
Student’s t neither neither
Cauchy neither neither

Figure 11: (by Bagnoli & Bergstrom (2006)) Properties of distributions without log-concave density.

From Figure 11, we note that the CDFs of the Pareto, Lognormal. Student’s t, Cauchy are not
log-concave. In the next section, we prove that they are s*-optimal-concave for some s* < 0.

L.3 S-CONCAVE CDF THAT ARE NOT LOG-CONCAVE

In this section, we present some properties of s-concave functions and give some examples. In this
Section, we will widely use Lemma B.1 without explicit mention, which states that if f is a positive
function defined in an interval (a, b) that is twice continuously differentiable, then f is s-concave iff

Ff+(s=1(f)?<0 in(ab).
We start with the inclusion property.

Proposition L.1. [Inclusion Property] Let f : (a,b) — (0, 00), a twice differentiable function. If f
is B-concave, then f is s-concave for s < .

Proof. 1If f is B-concave, for s < f3 it holds
FQa) f"(w) + (s = D)(f"(u)* < flu) f"(w) + (8 = D(f'(w)* <0,

i.e., f is s-concave. O

As a consequence, log-concavity implies s-concavity for every s < 0. An immediate consequence of
the inclusion property is the following.

Corollary L.2. Let f : (a,b) — (0,00), be a twice differentiable function. Suppose that f is not
s1-concave, but is so-concave for some sy < s1. Then, there exists a s* € [so, s1) such that f is
s-concave for every s < s* and is not s-concave for every s > s*.

Proof. Let s* =sup{s: f- f” + (s — 1)(f’)? < 0}. By the inclusion property, f is s-concave for
all s < s*. However, there not exists a s > s* such that f is s-concave, because it contradicts the
definition of s*. O

Definition L.3. From previous Corollary L.2, we say that a twice differentiable function f : (a,b) —
(0, 00) is s*-optimal-concave if

s* = sup {s 2 osup [flu)f"(u) + (s — 1)(f'(u)?] < O} .

u€(a,b)
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In this case, s* is called optimal-concave parameter.

In the following, we prove under which condition s-concavity is closed under multiplication.

Proposition L.4. Let f,g: (a,b) — (0, 00) be twice differentiable functions

* if f and g are s-concave with s < 0, such that f'- g’ > 0, then the product f - g is s-concave.

e if f and g are 0-concave then the product f - g is 0-concave.

Proof. The second statement is the well-known result that the product of log-concave functions is
log-concave; then, we only prove the first statement, which immediately follows from the equality

heh+(s=1) (W) =g (f - f" + (s =1)(f)) + f2- (99" + (s = 1)(g")*) +25f - g- [ g
O

In the next sections, we first show the existence of some well-known distributions whose density
is s-concave for some s < 0 and not log-concave (i.e., 0-concave). Then we identify a class of
distributions for which if the density f is s-concave, then the CDF F is u(s)-concave for a fixed
transformation p that will be specified later.

L.3.1 s-CONCAVE CONTINUOUS DENSITIES

From now on, we assume that the PDFs that we consider are continuous. As we showed in Ap-
pendix L.2, many density functions are not log-concave, such as Student’s t, Cauchy, Pareto, and
log-Normal. However, for all of them, we can show that the PDFs are s-concave for some s < 0.

Remark L.5. Note that for PDF f such that {u : f(u) > 0} = R, it is necessary to impose
s < 0. Indeed for s > 0 the function ¢(u) = ds o f(u) = f*(u), which is strictly positive on R,
can not be concave. To see this note that, being f a density function, necessarily f(u) — 07 as
|u| = “+oo, and consequently, as |u| — 400 we have ¢(u) — 0 which is not possible if ¢ is concave
and strictly positive on R. The same applies to densities defined on any unbounded interval. This
implies that if a density defined in an unbounded interval is log-concave (that is 0-concave), then it is
0-optimal-concave. However, when a density f is compactly supported, there is no restriction on s.

The proof of Proposition L.6 is deferred to Appendix L.3.5.

Proposition L.6. 1. The Student’s t-distribution PDF is (fﬁ)-optimal-concave where
v > 0 is the degree of freedom.

2. The Cauchy PDF is (—1/2)-optimal-concave (independently of scaling and location param-
eters).

3. The Pareto PDF is (—ﬁ) -optimal-concave, (independently of the location), where o« > 0
is the scaling factor.

0,2

4. The log-normal PDF with parameters (., 0?) is (—7) -optimal-concave, (independently
of ).

L.3.2 s-CONCAVE CDFs AND SURVIVAL FUNCTIONS

Let F be a CDF and F' = 1 — F its survival function, and let f = F’. When {u : f(u) > 0} = R,
for similar reasoning as in Remark L.5, a necessary condition for having ¢ = dso For¢ =dso F
concave, is that s < 0. In the following proposition, we find a necessary condition on s for which F
and F are s-concave when {u : f(u) > 0} = (a,b) for a,b € R.

The proof of Proposition L.7 is deferred to Appendix L.3.6.

Proposition L.7. Let f : (a,b) — (0,00) be twice continuously differentiable function, and
let F(u) = [ f(t)dt for all x € (a,b) and define F® (@) = limy_q f®) (u) and f®(b) =
lim,, ., £ (u) for k =0, 1.

1) If f(a) =0, f'(a) = 0and F is s-concave, then s < 1/2.
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2) If f(b) =0, f'(b) = 0 and F is s-concave, then s < 1/2.

In the following proposition, we prove that, under certain conditions, when a density function is
s-concave, then the CDF and the survival function is u-concave for some p = pu(s). The proof of
Proposition L.8 is deferred to Appendix L.3.7.

Proposition L.8. Fix a function f : (a,b) — (0, 00) continuously differentiable, and let F'(u) =
[ f(t)dt for all z € (a,b) and define f(a) = limy_q f(u). Then:

1) If f is s-concave on (a,b) with f(a) # 0 and s > —1, then F is p-concave for all

p=1- s+1°
2) If f is s-concave on (a,b) with f(a) = 0 and s # —1, then F is p-concave for all
p=1- sil'

3) If f is monotone decreasing, then F is s-concave for any s < 1.

The proof of Proposition L.9 is deferred to Appendix L.3.8.

Proposition L.9. Fix a function f : (a,b) — [0, 00) continuously differentiable, and let F(u) =
[ f(t)dt for all z € (a,b) and define f(b) = lim,_,;, f(u). Then:

1) If f is s-concave on (a,b) with f(b) # 0 and s > —1, then F is p-concave for all
H S 1- sil'

2) If f is s-concave on (a,b) with f(b) = 0 and s # —1, then F is p-concave for all
p<1l-—

s+1°

3) If f is monotone decreasing, then F is s-concave for any s < 1.

The special case s = 0 was proved by Bagnoli & Bergstrom (2006).

L.3.3 s-CONCAVE CDFS THAT ARE NOT LOG-CONCAVE

From Figure 11 we already know that the CDFs of the Pareto, Lognormal. Student’s t, Cauchy are not
log-concave. However, by our Proposition L.9 we immediately get that they are s*-optimal-concave
for some s* < 0.

Corollary L.10. 1. The Student’s t-distribution CDF and survival function are ji-concave for
any p < —% where v > 0 is the degree of freedom.

2. The Cauchy CDF and survival function are p-concave for any p < 1 (independently of
scaling and location parameters).

3. The Pareto CDF and survival function are ji-concave for any i < —=, (independently of

(0%
the location), where « is the scaling factor.

4. The log-normal CDF and survival function are with parameters (u, %) are ji-concave for
2
a
0'2—4’

any p < (independently of ).

From Proposition L.8 (and Proposition L.9), if f is u*-optimal-concave it does not necessarily means
that F (and ) is s(u*) = (1 -

larger than s(u*). However, for the class of distributions in Corollary L.10, we know that s* has to
be < 0.

In the next section, we construct a class of positive s-concave monotone functions that are not
log-concave.

-optimal concave. Indeed, the optimal concave value can be

L.3.4 GENERATE s*-OPTIMAL-CONCAVE NON-DECREASING FUNCTIONS IN [0, 1], FOR s* < 0.

Proposition L.11. Let 9 : (0,1) — R be a twice differentiable non-decreasing function (i.e., 9" > 0)
and strictly convex on a set of positive measure (i.e., 9" > 0 on a set of positive measure). Assume
that there exists s* < 0 such that

s* =sup{s: 9 (z) +s((x))* <0 forallx € (0,1)}.
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Define F(x) = ¢”®). Then F is s*-concave, but F is not log-concave (i.e., F" (x)F (x)—(F'(x))? >
0 for at least one z € (0,1)).
Proof. We compute
F'(z) = F(x)9'(z), F'(z) = F(z)(¥ (z))* + F(2)0" (z).
Hence
F(a)F"(x) + (s = D)(F'(2))* = F*(2) [(0)* +9"] + (s = DF*(2)(9')?
= P(@)[0" + s()?).
Since F?(x) > 0, the inequality
FF'+(s—1)(F')*<0

holds if and only if
9 () + s(¥'(x))* < 0.

Thus the assumed condition shows that F' is s*-concave. On the other hand, log—concavity corre-
sponds to the case s = 0, i.e.

9'(x)+0- ()2 <0 = 9 (z)<0.
Since ¥} is strictly convex on a set of positive measure, we have 9" (x) > 0 for the z in this set, so

this condition fails. Hence F’ is not log-concave. O

Examples of admissible . We provide three explicit choices of strictly convex functions ¥ :
(0,1) — R satisfying
9 (z) + s* (¥ (2))> <0 for some s* < 0,

so that F(z) = €’(®) is s*-concave but not log-concave.

1. Power function example. Fix oo > 1 and set ¥(z) = «®. Then
V() = ax™!, V' (z) = a(a — 1)z 72,
and

V' (z) + 59 () = ax®? [(04 — 1) + sax®|.

Since z* < 1 on (0, 1), a sufficient (and sharp) condition is s < —2=1. Hence F(z) = exp(z®) is

s*-concave for s* = —“T’l, but not log-concave because 9" (x) > 0.

2. Exponential example. Fix & > 0 and set J(z) = €**. Then
19’(1’):]€6kw7 19”(1’):]{2€kx,
and
V' (z) + s(9 (2))? = k%" (1 4 sek).
Since " < e* on (0, 1), a sufficient and sharp condition is s < —e~*. Thus F(z) = exp(e*®) is
s*-concave for s* = —e~*, but not log-concave since ¥ (x) > 0.

L.3.5 PROOF OF PROPOSITION L.6
v+1

i1 ok
Proof of a). We have that f(z) = %2()) (1 + “"—j) * where v > 0 is the degree of freedom.
ez bl

We need to find the values of v such that f - f” + (s — 1)(f’)? < 0 which reduces to

v+1

+ vl vl
2\ T2 42 1 1 2\ ~ "z 2 2 1 2\ =2 1
1+ = V() (14 2 (- (e 2
v Iz 2 2 v v 2 v
7 2
2 1 2 2
Y (s—1) [x(’” )(1+x> ] <0
v 2 v
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iff

iff
42 v+1 2 x? 42 v+1
— | = -1 -1+ — —1)—( — >
w () () rem e () 20
iff
1 2 1
4x2<”+ 1>+2y(1+x>+(31)4x2(”+ )zo
2 v 2
iff

22 (=2 +3) — (s — 1)2(r + 1) +2v) +2v > 0.

As long as the coefficient of 22 is positive the inequality is true for all z, i.e.

-v+3)—-(s-1H)r+1)+1>0 = -1Hr+1)<—rv-2 = s<-—

-1

2
Proof of b). The Cauchy has density f(z) = (17)~! {1 + (%) } where zo € R is the

location and v > 0 the scale parameter. We need to find the values of v such that f- f”/+(s—1)(f')? <
0. However, since this inequality has to hold for all x, we can assume z(y = 0. The characterization
translates to

22\ 7! 2 22172 8a2 2217°
R I [ I ]

v v
iff
2 22172 8x2 22178 472 22178
e I IR R BN I I

iff

2 1‘2 2 2

(-1 [1+2} +or (s —1)— <0

iff

22 2 8x2 x?

B e

iff

2 8 4 2
2
-+ 5+ (s—1 >§0
< vt ( )74 72
the inequality is true for all = as long as

1
6+ (s—14<0=s< .
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Proof of ¢). f(x) = gff"l , where z,,, > 0 is the scale parameter and o > 0 the shape. We need to
find the values of v such that f - " + (s — 1)(f")? < 0 which reduces to

=@ () a4+ 1D)(—(a+1) =Dz @2 4 (s — 1) (a+1)2z20FD2 <

iff
(—D(a+1)(—(a+1)=1)+ (s = )(a+1)2<0
iff
1
1 2 -1 1)2<0=>s<———.
(@4 T)a+2)+ (s~ Dot 1) <05 <~
O
Proof of d). f(z) = —L— exp (—<1“§;#>2), where 7,0 > 0 and i € R. Since —L— > 0 the
problem reduces to prove that f(z) = exp (—%) /x is s-concave. Note that

2 o -
rior= e (SR ) Lo () [
_ 1 (Inz — u)? Inz —pu
_—?exp (—w 1+ p

1 u? 9
= 22 P (m) (0" +u)
where u = Inx — i, and

oy = Lo (ZZ [y ] [

202 o xo

(Inz — p)? ozt — 2z [1 + lnf;}t]
T (_ 202 ) x?

1 Inz — p)? Inx — Inx —
exp((nx i) ) [1+ nx2 ,u] nglc2 oy
x 1% 1%

1 Inz—p

1 _ 2 ?_2[1+T:|
exp<(n:v u)) i
X

1
1o 14 2] 2 _exp Cw o2l ]
3 202 o2l o2 202 x3

1 u?
= i3 P (02> [(02 +u)u — o? 4 20% + 202u]

I
@
4

ko]

- exp <—U2> [u® + 30%u — 0*(1 — 20%)]
o2 '
We need f - " + (s — 1)(f")? <0, that is

2 1 9
otat 0 (52> [w* + 30%u — 0*(1 = 20%)] + (s = 1) g exp <Z2> (02 +u)? <0

iff
u? +30%u — 0?(1 —20%) + (s = 1)(6* +u)* <0
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iff
su? + (1 +2s)0u — o*(1 —20%) + (s — 1)o* <0
iff
su? + (14 2s)0?u + so* +o* — 02 <0.
The determinar;t A = (1+2s)%0* — 4s(s0* + 0% — 02) = 02(0? + 4s). Then we have s-concavity
forall s < —2-.
O

L.3.6 PROOF OF PROPOSITION L.7

Proof We have that F - ' + (s — 1)f2 < 0, which implies f'(u) < (1 — s) f;z((g)) for all u €

(a,b). By sign conservation theorem this implies that f/'(a) < (1 — s)lim,_, % = (1-
$) limy g 2LUEC) — (1 — §)limy, 0 2f7(u) = (1 — 5)2f'(a). Since f(a) # 0 then f'(a) > 0

and then 1 < (1 — s)2 which implies s < 3. Similar proof hold for F'.

L.3.7 PROOF OF PROPOSITION L.8

Proof. We need to prove that F'- f' + (11— 1) f2 < 0. Using that f*~! - f’ is non-increasing (because
(dso f)'<0ie. (dso f) = f5*1 . f is non-increasing) we have

f'(w) f 7 (w) =1
o P = S g J, 100 g [ o oson
_ 1 |:f5+1 fs+1(a):|
fu)f*=H(u) s+1
If f(a) # O then, being s > —1 we have
F L[S )] S
T < T [T <A

which implies 0 > F - ' — =5 f> > F - f' 4 (1 — 1) f?, which proves 1). For 2), being f(a) = 0,

note that J;((“))F( ) < ’; (fl) holds with the only assumption that s # —1. For point 3), notice

that since F*~! is monotone decreasing for s < 1, then F s—1. /' is monotone decreasing, but
F*=(u) f'(u) = 4 (ds(F(u))), which implies that F is s-concave. O

L.3.8 PROOF OF PROPOSITION L.9

Proof. We need need to prove that —F f’ + (u — 1) f? < 0. Using that f*~! - f’ is non-increasing
we have

f’(u) _ fs 1 . 1
Ty = fu fsl /f Oy /f o)
_ s fS“(u)}
~ f(u )fg Hu) [ s+1
If f(b) # O the, since s > —1, we have
f'(u) = 1 o) -7 W] o flu)
P02 e | 2

which implies 0 > —F'f' — =5 f* > —F f’ + (u — 1) f?, which proves 1). For 2), being f(b) = 0,
we have that £ ((“)) F(u) > f (“) holds with the only assumption that s # —1. For point 3), notice

that since FQ is monotone decreasmg for s < 1, then —F'*~! . f” is monotone decreasing, but
—Fs7Y(u) f'(u) = (d‘ (F(u))), which implies that F' is s-concave for any s < 1.
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