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Abstract

Spoken dialog systems are slowly becoming001
and integral part of the human experience due002
to their various advantages over textual inter-003
faces. Spoken language understanding (SLU)004
systems are fundamental building blocks of005
spoken dialog systems. But creating SLU sys-006
tems for low resourced languages is still a chal-007
lenge. In a large number of low resourced lan-008
guage, we don’t have access to enough data009
to build automatic speech recognition (ASR)010
technologies, which are fundamental to any011
SLU system. Also, ASR based SLU systems012
do not generalize to unwritten languages. In013
this paper, we present a series of experiments014
to explore extremely low-resourced settings015
where we perform intent classification with016
systems trained on as low as one data-point017
per intent and with only one speaker in the018
dataset. We also work in a low-resourced set-019
ting where we do not use language specific020
ASR systems to transcribe input speech, which021
compounds the challenge of building SLU sys-022
tems to simulate a true low-resourced setting.023
We test our system on Belgian Dutch (Flem-024
ish) and English and find that using phonetic025
transcriptions to make intent classification sys-026
tems in such low-resourced setting performs027
significantly better than using speech features.028
Specifically, when using a phonetic transcrip-029
tion based system over a feature based system,030
we see average improvements of 12.37% and031
13.08% for binary and four-class classification032
problems respectively, when averaged over 49033
different experimental settings.034

1 Introduction035

Spoken Language Understanding (SLU) systems036

form an integral part of any spoken dialog system.037

A traditional SLU pipeline is made up of two mod-038

ules (Figure 1) - a speech to text module which039

converts input audio into textual transcripts, and040

a natural language understanding (NLU) module041

which aims to understand the semantic content in042

the user utterance from the textual transcripts (Tur 043

and De Mori, 2011; Lugosch et al., 2019). The 044

conventional two-module SLU pipeline is prone to 045

making speech recognition errors which propagate 046

through the system. To minimize these errors, a 047

lot of recent research has been focused on creating 048

end-to-end spoken language understanding (E2E- 049

SLU) systems (Qian et al., 2017; Serdyuk et al., 050

2018). 051

Building E2E-SLU systems requires an even 052

larger amount of task-specific annotated data when 053

compared to the two-module split SLU pipelines 054

(Lugosch et al., 2019; Bastianelli et al., 2020; Wu 055

et al., 2020). While high resourced languages like 056

English are moving towards E2E-SLU, the chal- 057

lenges presented by low resourced languages are 058

very different. Low resourced languages operate in 059

a regime where we have access to only tens or hun- 060

dreds of labelled utterances, which are not enough 061

to build robust E2E-SLU systems. Creating robust 062

automatic speech recognition (ASR) systems for 063

low resourced languages is itself a challenge as 064

these require large amounts of manual annotation. 065

For many low resourced languages, we might not 066

even have ASR technologies. Creating ASR tech- 067

nologies for unwritten languages or languages that 068

have only a few hundred or a few thousand speak- 069

ers alive is not even a viable option. But can we 070

create spoken dialog systems for such languages? 071

‘Low-resourced-ness’ of a particular language is 072

a very broad term often used loosely to describe var- 073

ious types of inadequacies when creating language 074

technologies. It affects creating speech technolo- 075

gies in mainly two ways. For the purpose of this pa- 076

per, we explicitly define and differentiate between 077

these two scenarios. The first scenario is what we 078

call language-specific low-resourced-ness, where 079

we do not have enough resources to create robust, 080

language specific speech recognition technologies. 081

Speech recognition systems are fundamental to cre- 082

ating various kinds of speech technologies includ- 083
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Figure 1: A traditional spoken language understanding system consisting of a speech-to-text system followed by a
natural language understanding module.

ing dialog systems, speech emotion recognition084

systems, keyword spotting systems, speaker recog-085

nition and diarization systems. When creating di-086

alog systems, ASR systems allow us to convert087

input speech to text, after which text based lan-088

guage models like BERT (Devlin et al., 2018) can089

be used to understand the content of speech and090

build NLU modules. This allows us to create SLU091

systems with smaller amounts of task-specific an-092

notated data. But in settings where we do not have093

access to speech recognition systems, it becomes094

important to have enough annotated task-specific095

data to compensate for the lack of ASR systems096

and text-based language models. This introduces097

the second source of ‘low-resourced-ness’, which098

we call task-specific low-resourced-ness - where099

we do not have enough annotated data for a particu-100

lar task. Two challenges occur in this scenario - one101

where we do not have enough speakers to create a102

task-sepcific speech corpus, and another where we103

do not have enough recordings per speaker. Not104

having enough annotated data for a particular task,105

when combined with lack of speech recognition106

technologies compounds the problem of creating107

speech technologies for such languages. We work108

in this compounded low-resource setting, where109

we assume language specific and task-specific low-110

resourced-ness.111

In this paper, we present a series of experiments112

to empirically re-create language-specific and task-113

specific low-resourced-ness scenarios and work in114

the compounded setting where we tackle both chal-115

lenges at the same time. As we assume language116

specific low-resourced-ness, we work in a setting117

where we don’t have access to language specific118

ASR systems. One way to tackle this setting is to119

use an ASR system built for a higher resourced120

language and use the transcriptions generated to121

perform downstream tasks as used in (Buddhika122

et al., 2018; Karunanayake et al., 2019b,a). It was123

later shown in (Gupta et al., 2021; Yadav et al.,124

2021) that using language and speaker indepen-125

dent systems trained on many languages to ex-126

tract speech features works much better than using 127

ASR systems built for a different language, as a 128

different language usually contains a different set 129

of phonemes with a different phone to phoneme 130

set mapping. When this setting is compounded 131

by task-specific low-resourced-ness, we are at an 132

extremely low resourced setting where each data 133

point becomes valuable. To simulate this setting, 134

we pose an I-class intent classification problem 135

(I = 2, 4) where we have a varying number speak- 136

ers (S) available for recording training data. Each 137

speaker provides only k-utterances per intent for 138

training. In this k-shot setting, we evaluate our sys- 139

tem in a granular manner for very small values of 140

S and k. Specifically, we evaluate our system for 141

S = 1, 2, 3, 4, 5, 6, 7 number of speakers, where 142

each speaker records k = 1, 2, 3, 4, 5, 6, 7 utter- 143

ances per intent. We evaluate our SLU system on 144

robust test sets containing hundreds of utterances 145

collected from multiple speakers which are not 146

present in the training set. 147

We find that using language independent or mul- 148

tilingual speech recognition systems performs sig- 149

nificantly better in such low-resourced settings. 150

Furthermore, what works even better is to generate 151

a language independent symbolic representation 152

of input speech and create NLU systems for this 153

symbolic representation. This hints that creating 154

SLU systems for even extremely low-resourced 155

settings is likely trace conventional SLU pipelines 156

where we represent input speech symbolically in 157

the form of text and then build NLU blocks on 158

top of this. The symbolic representation of speech 159

used here is the phonetic transcription. We find 160

that using a phonetic transcription based system 161

is significantly better than using speech features 162

for classification for low-resourced settings. We 163

see average improvements of 12.37% and 13.08% 164

for binary and four-class classification problems 165

respectively, when averaged over 49 different ex- 166

perimental settings, for Belgian Dutch (Flemish) 167

language. 168
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2 Related Work169

English has been the most widely studied language170

for creating SLU systems. Various datasets have171

been released to aid this development (Hemphill172

et al., 1990; Saade et al., 2018; Lugosch et al., 2019;173

Bastianelli et al., 2020). There have been many174

previous works on creating SLU systems in a two-175

module split fashion (Gorin et al., 1997; Mesnil176

et al., 2014). A typical SLU pipeline, as shown in177

Figure 1, consists of an ASR system that converts178

input speech to text and an NLU module that pro-179

cesses the input text to understand the user query.180

As with any system composed of multiple modules,181

errors that occur in one part of the system propa-182

gate through the system. To prevent this, a large183

amount of recent work has been focused on creat-184

ing E2E-SLU systems (Qian et al., 2017; Serdyuk185

et al., 2018; Chen et al., 2018). The caveat with186

making such systems to work is that they require187

an even larger amount of task-specific annotated188

data, which is usually not a luxury available to189

low-resourced languages.190

Apart from English, there are many other spo-191

ken dialog datasets available for various languages192

including French (Devillers et al., 2004; Saade193

et al., 2018), Dutch (Tessema et al., 2013; Ons194

et al., 2014; Renkens et al., 2014), Chinese Man-195

darin (Zhu et al., 2019; Guo et al., 2021), Sinhala196

and Tamil (Karunanayake et al., 2019b), and cross-197

lingual SLU datasets exist for English, Spanish198

and Thai (Schuster et al., 2019). In this paper, we199

work with two languages - Belgian Dutch (Flemish)200

(Tessema et al., 2013; Ons et al., 2014; Renkens201

et al., 2014) and English (Lugosch et al., 2019).202

One of the major bottlenecks in creating SLU203

systems for low-resourced languages is the creation204

of ASR systems in such low data scenario. This205

scenario is what we refer to as a language-specific206

low-resourced setting. Previous works have tried to207

use English-based ASR systems for languages like208

Tamil and Sinhala. In these sytems, input speech209

in Sinhala/Tamil is converted into English script210

using an English speech recognition system that211

is then processed by an NLU system (Buddhika212

et al., 2018; Karunanayake et al., 2019b,a). We213

use a similar idea as baseline and use Wav2Vec214

(Schneider et al., 2019; Baevski et al., 2020) to215

extract speech features for Flemish. Wav2Vec is a216

self-supervised speech recognition system trained217

on large amounts of unlabelled speech data which218

boasts to learn superior language representations219

for English. In this work, we use Wav2Vec 2.0 220

(Baevski et al., 2020) to extract speech features. 221

A series of recent works (Gupta et al., 2020b,a, 222

2021; Yadav et al., 2021) replace the ASR module 223

in the SLU pipeline by a universal phone recog- 224

nition system called Allosaurus (Li et al., 2020). 225

Allosaurus is a universal phonetic transcription 226

system that creates language and speaker indepen- 227

dent representations of input speech. Allosaurus 228

is trained to recognize and transcribe input speech 229

into a series of phones contained in the utterance, 230

providing superior representations of input audio 231

which can also be used for languages linguistically 232

distant from high resourced languages like English. 233

(Yadav et al., 2021) show that using embeddings 234

generated from Allosaurus to encode speech con- 235

tent outperforms previous state-of-the-art methods 236

for Sinhala and Tamil by large margins, while main- 237

taining high performance on high resourced lan- 238

guages like English (99.08% classification accu- 239

racy for a 31-class intent classification problem). 240

But the performance drops as the dataset size de- 241

creases and is not optimal for the task-specific low 242

resourced settings that we are dealing with in this 243

paper. To tackle this, we convert input speech into 244

phonetic transcriptions using Allosaurus as pro- 245

posed in (Gupta et al., 2020a) for our compounded 246

low resourced setting. 247

In our paper, we explore a novel and rather un- 248

explored language-specific low-resourced setting 249

compounded with task-specific low-resourced-ness. 250

Our aim it to push the limits and demonstrate 251

performance of using existing technologies in ex- 252

tremely low resourced settings, where each data 253

point becomes crucial. 254

3 Dataset 255

In our paper, we work with two languages - Bel- 256

gian Dutch (Flemish) and English. We use two 257

popular SLU datasets for our experiments - the 258

Fluent Speech Commands (FSC) dataset (Lugosch 259

et al., 2019) for the English language and the Grabo 260

dataset (Tessema et al., 2013; Ons et al., 2014; 261

Renkens et al., 2014) for Flemish. 262

The primary reason behind the choice of the 263

datasets was that each utterance in the two datasets 264

had clear speaker identities associated with each 265

utterance. Our aim is to test true low resourced set- 266

tings where getting speaker recordings is extremely 267

hard. Intent recognition datasets in other languages 268

like French (Devillers et al., 2004; Saade et al., 269
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Figure 2: A generic SLU system for language-specific low-resourced setting where we do not have access to speech
recognition technologies.

Dataset Number of
Intents

Chosen Intents Speakers in
Validation Set

Utterances in
Validation Set

Speakers in
Test Set

Utterances
in Test Set

FSC (English) 2 ‘bring newspaper’, ‘activate
washroom lights’

10 194 10 232

FSC (English) 4 ‘bring newspaper’, ‘activate
washroom lights’, ‘change

language to German’, ‘decrease
volume’

10 519 10 634

Grabo (Flemish) 2 approach’, ‘lift’ 2 106 2 108
Grabo (Flemish) 4 approach’, ‘lift’, ‘point’, ‘grab’ 2 212 2 216

Table 1: Validation and Test Set statistics for chosen intents for the FSC and Grabo dataset.

2018), Chinese Mandarin (Zhu et al., 2019; Guo270

et al., 2021), Sinhala and Tamil (Karunanayake271

et al., 2019b) do not maintain speaker identities272

and hence were not suitable for our work. Main-273

taining a mapping of (anonymized) speaker iden-274

tities allowed us to create validation and test sets275

with no speaker overlap with the training set. This276

allows us to do the most robust evaluation of our277

systems. Moreover, these datasets also allow us to278

create large test sets such that the results are robust279

enough to evaluate the system performance and yet280

have no overlapping speakers with the training set.281

We choose Flemish as our low-resourced language282

since Flemish is not used to train Allosaurus or283

Wav2Vec 2.0.284

FSC is a large and well maintained SLU dataset285

for the English language. The dataset contains 19286

hours of speech data collected from 97 different287

speakers. The dataset contains commands suitable288

for a smart home system. An example command289

would be asking the system to ‘change language to290

Chinese’ or to ‘turn off the lights in the kitchen’.291

Each utterance has a clear, anonymized speaker292

identity associated with it. This allows us to cre-293

ate large validation and test sets with no speakers294

overlap with the training set. The intents chosen295

for our experiments and the corresponding number296

of samples in the validation and test sets are shown297

in Table 1.298

The Grabo dataset contains 11 speakers and is299

much smaller than FSC. The dataset consists of300

commands given to a robot such as ‘moving right’301

or ‘drive backwards fast’. We use speaker IDs 2-302

8 to create the training set, speakers 9 and 10 for 303

the validation set, and speakers 11 and 12 for the 304

test set. Thus there is no speaker overlap between 305

the training, validation and test sets. The chosen 306

intents and the validation and test set statistics are 307

shown in Table 1. 308

4 System and Model 309

To simulate a language-specific low-resourced set- 310

ting, we do not use a language specific ASR sys- 311

tem. We tackle this challenge by exploring two 312

experimental settings. First we use a generic SLU 313

pipeline as shown in Figure 2. The first step in 314

this pipeline is to extract speech features. We use 315

Wav2Vec 2.0 to extract speech features for Flem- 316

ish, which represents using a speech recognition 317

system built for a different language. Then, we use 318

the SLU system proposed in (Gupta et al., 2020a) 319

as shown in Figure 3. It replaces a language spe- 320

cific ASR system with Allosaurus (Li et al., 2020), 321

which is a universal phonetic transcription system. 322

We use Allosaurus to convert input speech to pho- 323

netic transcriptions. We then build an NLU system 324

from these phonetic transcriptions to perform intent 325

recognition. 326

The model used in this work is very similar to the 327

model used in (Gupta et al., 2020a) which is a char- 328

acter level model built for a sequence of phones 329

generated by Allosaurus. The model creates its 330

own embeddings using the annotated task-specific 331

dataset and uses Convolutional Neural Networks 332

(CNN) (LeCun et al., 1998) to extract contextual 333

information from phonetic input, and a Long-Short 334
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Figure 3: Phonetic transcription based SLU system as proposed in (Gupta et al., 2020a).

Term Memory (LSTM) (Hochreiter and Schmidhu-335

ber, 1997) network to make utterance level decision336

and account for sequential information. This model337

achieved state-of-the-art intent classification per-338

formance for low-resourced languages like Tamil339

and Sinhala when used without language specific340

ASR. We keep the model used across experiments341

constant to identify difference in performance oc-342

curring due to difference in feature extraction meth-343

ods.344

We reduce the model size to account for the345

scarcity of data. We use a 256-dimensional embed-346

ding layer with just one CNN layer of kernel size 3347

and one or two LSTM layers of hidden dimension348

256 depending on the dataset size. For the case349

of the generic SLU, the embeddings are removed350

and input feature dimension is dependent on the351

features extracted. For Wav2Vec 2.0, the feature di-352

mensions are 768. A detailed description of model353

architecture is provided in the appendix A. Batch354

normalization (Ioffe and Szegedy, 2015) layer is355

removed because there are scenarios where we are356

working with a training set of as low as 2 samples,357

which are not enough to learn batch statistics and358

give unstable performance.359

5 Experiments360

In this paper, we try to emulate a real world low-361

resourced data collection scenario. A challenging362

aspect of building SLU systems for low resourced363

languages is having access to language specific364

ASR systems. To tackle this, we experiment with365

two alternatives. We first use a speech recognition366

systems created for a higher resourced language367

(English) to extract speech features and use those368

features for intent recognition on Flemish data (Sec-369

tion 5.1). Then, we create an intent recognition370

system using a phonetic transcription generated371

by Allosaurus (Section 5.2). The input audio is372

converted to language independent phonetic tran-373

scriptions, and intent classification is done using374

the phonetic transcriptions generated.375

Data collection is expensive and difficult, even376

more so in extremely low resourced languages.377

For example, Canadian Indigenious languages like 378

Inuktitut or Siksika have only a few thousand living 379

speakers. Native speakers of such languages are 380

hard to catch hold of for data collection process. 381

This makes every data point collected crucial. This 382

task-specific low-resourced setting compounds the 383

difficulty in making speech technologies for low- 384

resourced languages. 385

We pose two I-class intent classification prob- 386

lems, where I = 2, 4. The columns of each of the 387

Tables 2-9 in the following sections show results for 388

different values of k, where k is the number of utter- 389

ances recorded by a speaker per intent. This means 390

that if k = 3, each speaker provided 3 recordings 391

for each intent, which amounts to a total of 3 ∗ I 392

recordings per speaker. In general, each speaker 393

records k ∗ I audios, where k is the number of au- 394

dios recorded by a speaker per intent, and I is the 395

number of intents. The rows for each of the tables 396

represent the number of speakers (S) involved in 397

creating the dataset. The total training dataset size 398

is S ∗ k ∗ I . All data points in all the following 399

tables represent an average classification accuracy 400

over 3 different random selections of dataset and 401

training the model from scratch on top of it. 402

5.1 Experiments with Wav2Vec Features 403

First, we use Wav2Vec 2.0 (Baevski et al., 2020) 404

to extract representations of input speech and use 405

those to perform intent classification on Flemish 406

data. The results for the binary classification set- 407

ting are shown in Table 2 and for the four-class 408

classification setting is shown in Table 3. 409

One obvious trend to notice here is that increas- 410

ing the number of total training samples in general 411

increases the accuracy of the models. This trend 412

is consistently seen in the four-class classification 413

results ( Table 3). We also notice a saturation in per- 414

formance on increasing the number of utterances 415

per speaker. This usually occurs around k = 4, 5. 416

For each value of S, we see that adding number of 417

recordings for the same speaker increases the per- 418

formance significantly, but the rate of this increase 419

starts to reduce when we have 4− 5 utterances per 420
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.53 74.69 69.44 72.83 74.07 74.38 74.07
S = 2 69.75 74.69 67.90 63.27 78.70 67.59 69.13
S = 3 68.20 76.85 82.40 80.86 76.85 74.38 72.83
S = 4 78.39 64.50 69.13 71.60 75.92 76.85 75.30
S = 5 70.98 74.07 75.92 78.39 82.09 78.70 76.23
S = 6 79.62 75.61 87.03 83.95 84.56 83.33 93.82
S = 7 75.00 76.85 89.19 85.49 91.66 91.97 94.44

Table 2: Binary classification results for the Grabo
dataset with 768 dimensional features from Wav2Vec
2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 35.49 37.03 37.19 37.80 39.96 40.12 42.28
S = 2 39.19 45.21 45.21 45.83 48.76 49.69 53.08
S = 3 41.82 47.83 53.70 61.57 55.55 63.88 67.59
S = 4 49.22 45.06 51.23 52.93 60.80 65.27 64.50
S = 5 44.59 53.39 56.32 66.04 64.96 70.83 66.82
S = 6 48.14 52.77 58.64 71.91 74.07 74.69 75.30
S = 7 52.77 56.66 67.12 72.83 79.62 80.09 76.69

Table 3: Four class classification results for the Grabo
datasetwith 768 dimensional features from Wav2Vec
2.0.

speaker.421

5.2 Experiments with Phonetic422

Transcriptions using Allosaurus423

The performance in the compounded low-resourced424

intent classification setting using Wav2Vec features425

as seen in the previous was encouraging. In this sec-426

tion, we use Allosaurus to generate phonetic tran-427

scriptions of user audio, using the pipeline shown428

in Figure 3. We then build intent classification429

systems on top of these phonetic transcriptions.430

The results for the binary classification setting are431

shown in Table 4 and for the four-class classifica-432

tion setting in Table 5.433

We consistently see better classification perfor-434

mances for almost all experiments when using pho-435

netic transcriptions. We see an average improve-436

ment of 12.37% for the binary classification prob-437

lem and 13.08% for the four-class classification438

problem, when averaged over 49 different experi-439

ments performed in each I-class classification prob-440

lem. Each experiment represents a accuracy av-441

eraged over 3 different random selections of the442

dataset. Note that the test sets in all the experiments443

for the binary classification problem are exactly the444

same with no speaker overlap with the training or445

the validation set, irrespective of the size of the446

training set. The same is true for the four-class447

classification problem.448

For the binary classification in Flemish, we see449

that the improvement in performance when using450

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 75.30 81.17 73.45 79.93 76.23 82.40 78.39
S = 2 84.87 85.49 93.82 89.81 87.65 91.35 89.50
S = 3 79.94 95.37 87.65 92.90 90.12 94.75 92.59
S = 4 83.33 90.74 93.20 95.06 88.58 95.37 92.28
S = 5 86.11 92.59 92.90 91.35 96.29 94.75 97.83
S = 6 91.04 91.97 92.28 94.13 96.91 91.97 92.28
S = 7 85.80 90.74 90.74 90.43 94.44 91.66 95.06

Table 4: Two class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 47.83 50.61 50.92 53.85 50.77 52.31 50.00
S = 2 56.48 64.50 66.82 65.89 67.74 72.22 68.82
S = 3 59.87 63.58 68.36 69.90 69.75 72.22 70.52
S = 4 63.88 64.19 68.36 67.43 72.22 71.75 73.76
S = 5 64.66 67.28 69.44 74.84 72.22 77.31 76.69
S = 6 66.51 69.59 77.93 77.46 79.62 80.55 82.56
S = 7 68.51 80.55 81.01 82.09 85.33 85.64 88.73

Table 5: Four class classification results for the
GRABO (Flemish) dataset using phonetic transcrip-
tions.

phonetic transcription becomes more significant 451

as the dataset size reduces. This can be observed 452

when we look at the first 3 columns of Table 4 when 453

compared to Table 2. For example, when S = 7 454

and k ∈ [5, 7], the performance of the Wav2Vec 455

system is comparable to the phonetic transcription 456

based system. In all other experiments, the pho- 457

netic transcription based system outperforms the 458

Wav2Vec feature based system. Table 4 also shows 459

that using just 2-3 speakers are enough to learn 460

generalizable speaker independent features when 461

using Allosaurus phonetic transcription, which al- 462

lows the classification performance on the test set 463

to be in the 90’s. A similar performance requires 6- 464

7 speakers when using Wav2Vec features as shown 465

in Table 2. This can be seen if we look at a system 466

developed with 3 speakers recording 4 utterances 467

each using phonetic transcriptions in Table 4, it 468

is comparable to a 7 speaker system where each 469

speaker records 7 utterances per intent when using 470

Wav2Vec features (Table 2) . We attribute this ef- 471

fect to Allosaurus that creates speaker independent 472

embeddings of input audio. These embeddings 473

when projected to the space of a universal set of 474

phones is more robust to speaker variations. 475

The performance improvement observed for 476

Flemish when using phonetic transcriptions gets 477

amplified in the four-class classification problem. 478

We see significant improvements when using pho- 479

netic transcriptions for all experiments. We see an 480

average improvement of 13.08% over the 49 exper- 481
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k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 72.84 82.32 84.48 86.20 79.45 83.90 86.78
S = 2 84.05 89.79 91.23 86.20 94.10 94.10 95.11
S = 3 77.29 87.78 93.82 95.40 98.27 96.55 97.98
S = 4 84.33 89.51 93.10 94.97 98.41 98.85 98.13
S = 5 86.20 89.65 95.25 97.27 98.13 98.70 98.27
S = 6 86.06 95.25 96.55 98.56 98.70 97.70 99.13
S = 7 96.69 95.97 96.26 98.70 99.13 98.85 98.85

Table 6: Two class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 38.53 42.79 50.36 58.41 59.20 56.15 62.19
S = 2 46.58 53.73 62.56 64.30 75.23 77.97 84.01
S = 3 48.63 58.25 75.44 85.80 81.65 81.80 92.74
S = 4 51.84 76.39 77.70 87.22 89.53 94.00 96.89
S = 5 77.86 81.59 86.33 91.48 95.58 96.79 96.31
S = 6 72.02 90.37 81.75 95.58 95.58 95.58 97.05
S = 7 65.87 85.06 92.32 94.21 95.26 97.21 94.79

Table 7: Four class classification results for the FSC
(English) Dataset using speech features extracted from
Wav2Vec 2.0.

iments when using phonetic transcriptions. This482

improvement is large when the amount of data is483

small which we can check by comparing the first484

three columns of Tables 3 and 5. If we calculate the485

improvement when S ≤ 3 and k ≤ 3, which we486

call the 3×3 matrix of the tables, we get an average487

improvement of 16.25% over the 9 experimental488

settings. But we also see significant improvement489

when the amount of data is larger. For example,490

phonetic transcription based system performs sig-491

nificant better for 7 speakers and 7 recording per492

speaker when compared to the Wav2Vec features493

based system. Thus, as the task complexity in-494

creases, we see that using phonetic transcriptions495

is a significantly better option when compared to496

features from speech-to-text systems created for a497

different language.498

The pipeline proposed in Figure 3 is analo-499

gous to the traditional SLU pipline as shown in500

1. High resourced languages allows the use of501

ASR systems which project speech, which is a502

very long sequence of high dimensional input503

into a much shorter, 1-dimensional sequence of504

characters. Thus, ASR systems try to give a505

1-dimensional symbolic representation to input506

speech. This sequence of characters is usually507

grouped into words or sub-words, which we re-508

fer to as tokens in general, and are then projected509

back into a higher dimensional space as word-510

embeddings, encoding meaning and context. This511

is usually done using pre-trained models like BERT512

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 91.98 93.27 95.56 95.27 95.85 96.71 96.56
S = 2 95.13 97.99 97.99 98.56 98.56 98.14 97.28
S = 3 95.85 98.28 97.85 97.65 99.14 99.71 99.28
S = 4 97.28 98.42 98.14 98.88 98.99 98.85 98.71
S = 5 98.56 97.56 98.99 98.71 99.28 98.85 99.28
S = 6 96.71 97.85 98.42 98.56 98.56 98.71 99.58
S = 7 97.42 99.57 99.42 99.71 99.85 99.57 99.42

Table 8: Two class classification results for the FSC
(English) using phonetic transcriptions.

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
S = 1 61.06 62.06 62.79 70.59 69.75 72.29 72.21
S = 2 65.04 63.99 72.05 77.18 80.06 78.64 81.84
S = 3 67.13 74.72 75.35 77.91 83.72 85.55 85.29
S = 4 68.60 79.74 77.18 84.66 84.51 88.54 87.75
S = 5 72.05 79.59 80.58 87.85 88.27 91.57 92.67
S = 6 70.80 82.20 83.41 90.16 89.84 91.05 92.83
S = 7 75.56 80.48 86.65 89.48 91.10 90.99 93.98

Table 9: Four class classification results for the FSC
(English) dataset using phonetic transcriptions.

(Devlin et al., 2018), where the different layers of 513

the model encode and understand various possible 514

meanings and contexts in which a token can be 515

used (Tenney et al., 2019). Thus, these pre-trained 516

models can be seen as functions that map an input 517

token into vectors that encode all possible ways 518

the token has been used in the dataset the model is 519

trained on. 520

The projection by ASR systems into a lower 521

dimensional space of characters causes loss of in- 522

formation and results in errors which is not always 523

compensated by the re-projection of words into the 524

space of word-embeddings, which is why recent 525

research in high resourced languages is moving 526

towards creating E2E models. But this process 527

of projecting high-dimensional and long speech 528

input into a much smaller transcription of sym- 529

bols, and then re-projecting into the space of word- 530

embeddings encoding meaning and context allows 531

us to create SLU systems with a very small amount 532

of annotated task-specific data. 533

Our experiments show that the analogous pro- 534

cess of projecting down speech into a symbolic 535

transcription of phones and then re-projecting the 536

symbols into a vector space of symbolic embed- 537

dings created from the phonetic transcription data 538

performs significantly better than using high dimen- 539

sional feature representations of input speech, as 540

done with Wav2Vec in section 5.1. The large size 541

of Wav2Vec vectors (768) requires a larger amount 542

of task-specific data to infer content and meaning 543

of input utterances when compared to using pho- 544

netic transcription. Using phonetic transcriptions 545

7



also allow us to create our own vector spaces of546

symbolic embeddings which are very specific to547

our dataset and encode the meaning and context548

in which each phone has been used for the partic-549

ular task. This is why the pipeline that uses pho-550

netic transcriptions outperforms Wav2Vec based551

embeddings. (Yadav et al., 2021) show that this is552

true even when Allosaurus embeddings are com-553

pared to phonetic transcriptions generated by Al-554

losaurus. As the amount of available data decreases,555

intent classification systems built using phonetic556

transcriptions begin to outperform systems based557

on Allosaurus embeddings, thus showing that pro-558

jecting input speech into phonetic transcriptions is559

the most exhaustive way to use the scarce amount560

of labelled data in the compounded low-resourced561

settings.562

We verify this by performing the same set of563

experiment on the English dataset (FSC). We first564

use Wav2Vec features to extract input speech. The565

binary classification, the results are shown in Table566

6 and for the four-class classification problem, the567

results are shown in Table 7. Note that Wav2Vec568

is specifically trained on large amounts of English569

speech data and thus the features extracted from570

Wav2Vec are likely to perform much better for571

English than they worked for Flemish. This experi-572

mental setting is thus not a language-specific low-573

resourced setting anymore, and only a task-specific574

low-resourced setting. We then create an intent575

classification system using phonetic transcriptions,576

as shown in Table 8 and 9. We see an average577

improvement of 5.42% for the binary classifica-578

tion problem and 2.09% for the four-class classi-579

fication problem, when averaged over 49 experi-580

ments. These improvements are amplified when581

we compare the 3× 3 matrices (when S ≤ 3 and582

k ≤ 3, ) for the two classification problems be-583

tween Wav2Vec based and phonetic transcription584

based methods. We find an average improvement585

of 11.14% for the binary classification problem and586

an average improvement of 14.15% for the four-587

class classification problem, when averaged over588

9 experiments. This shows that a phonetic tran-589

scription based SLU pipeline outperforms a speech590

feature-based pipeline in the low-resourced sce-591

narios, especially when we lack language specific592

speech recognition technologies.593

6 Conclusion 594

In this paper, we provide a series of experiments 595

to empirically recreate a real-world, low-resourced, 596

SLU system building scenario. We work in 597

the compounded setting of language-specific low- 598

resourced-ness and task-specific low-resourced- 599

ness. The challenge posed by a language-specific 600

low-resourced setting is the absence speech recog- 601

nition technologies. We bypass this in two ways - 602

firstly, we use a speech recognition system built for 603

a different higher resourced language. Secondly, 604

we use a universal phone recognition system to 605

convert input speech to phonetic transcriptions. To 606

simulate the task-specific low-resource scenario, 607

we present intent classification results at a gran- 608

ularity where we see the effects of changing the 609

number of speakers and the utterances recorded 610

by each speaker. We simulate these settings for 611

Belgian Dutch (Flemish) and English. 612

We find that using Allosaurus, a universal 613

phone recognition system that creates language 614

and speaker independent representations of in- 615

put speech, performs better than using Wav2Vec 616

for Flemish dataset. When using Allosaurus, we 617

convert input speech into phonetic transcriptions 618

and use these transcriptions to build NLU mod- 619

els. We find that using phonetic transcription based 620

model performs better than using Wav2Vec fea- 621

tures. For Flemish, we see an average improvement 622

of 12.37% for a binary classification problem and 623

an average improvement of 13.08% for a four-class 624

classification over using Wav2Vec features, when 625

averaged over 49 different experimental settings. 626

All results are calculated on a large test set con- 627

taining hundreds of utterances that has no speaker 628

overlap with the training or validation set. Also, 629

we find that as the dataset size decreases, phonetic 630

transcription based method consistently outperform 631

Wav2Vec feature based methods. Phonetic tran- 632

scription based models also need fewer speakers to 633

generalize to a test set with no speaker overlap. 634

Finally, we recommend converting input speech 635

into phonetic transcriptions as an intermediate step 636

for creating SLU systems in such low resourced 637

settings. Doing such conversion allows us to create 638

a task-specific embedding space that uses the small 639

annotated dataset most efficiently. 640
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Model Parameters Value
Embedding Size 256
CNN kernel size 3

No. of CNN filters 256
No. of LSTM layers 1 ( or 2)
LSTM hidden size 256

Batch Normalization False

Table 10: Model Parameters
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A Implementation Details 817

All models are trained using the NVIDIA GeForce 818

GTX 1070 GPU using python3.7. The training is 819

very quick due to the small dataset sizes, with each 820

epoch taking 1-2 seconds. For each experiment, a 821

validation set identical to the test set was used. For 822

the FSC dataset, the validation set had 10 speakers 823

with no speaker overlap with the training or the test 824

set. Similarly for the GRABO dataset, the valida- 825

tion set had 2 speakers that were not present in the 826

training or the test set. Each experiment in Tables 827

2-9 was repeated 3 times with a different training 828

set and the average accuracy has been reported. 829

As mentioned in section 4, we use a 830

CNN+LSTM architecture, as proposed in (Gupta 831

et al., 2020a). We performed a grid search over 832

various parameters of the architecture. The best 833

performing models varied slightly for each experi- 834

ment. The exact model parameters for the results 835

reported in Tables 2-9 are shown in Table 10. For 836

larger amounts of utterances recorded per speaker, 837

we found better results with 2 LSTM layers instead 838

of one. 839
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