
Published as a conference paper at ICLR 2022

ON-THE-FLY DISCOVERY OF LOCAL BUGS USING IN-
CONSISTENCY ANALYSIS

Srinivasan H Sengamedu
AWS AI
sengamed@amazon.com

Qiang Zhou
AWS AI
zhouqia@amazon.com

Hangqi Zhao∗
AWS AI
hangqizhao@gmail.com

ABSTRACT

Traditional bug detection mechanisms have focused on a limited set of important
issues and have specialized detectors for each of them. As the code corpora continue
to grow in size and complexity, newer opportunities for a developer to make
mistakes emerge, leading to long tail of local bugs. Hence, we must investigate
generalizable approaches that can detect such bugs. In this paper, we formulate
and use the inconsistency principle that can be applied to discover bugs at arbitrary
code granularity, for example at the package level. We experiment with two types
of formulations: Pointwise Mutual Information (PMI) based and Sequence based
approaches that respectively model smaller and larger contexts. The techniques
learn code usage patterns from the code under analysis and apply the learnings
on the same code – thereby enabling on-the-fly bug detection. Experiments are
conducted with two different program representations: token-based and graph-
based. We show how the different variations capture diverse and complementary
types of issues. The technique is integrated with Amazon CodeGuru Reviewer.
The approach has detected 12 types of bugs with 70% acceptance by developers in
real-world code reviews.

1 INTRODUCTION

Software developers spend about half of their work time on debugging Britton et al. (2013), and
therefore automated bug detection in software is of crucial importance for improving the efficiency of
software development cycle. Different tools and methodologies have been developed to improve such
efficiency and software quality. Most of the currently available tools are based on static analysis, and
the primary disadvantage of these tools is the high number of false positives. Recently there have
been several attempts at using machine learning based approaches for detecting bugs Pradel & Sen
(2018), Islam et al. (2019). Such tools usually aim to detect predefined types of code bugs, or require
a prior knowledge to define system rules, which typically involves mining and extracting appropriate
rules from large code bases. However, the main issues of the machine learning based approaches are
as follows.

1. Some coding conventions are code-based specific. For example, checking for a pre-condition
or using a certain log-level for some types of messages are code-base specific. Violation
of these conventions can have serious consequences and it is not possible to create generic
models for detecting such bugs. In other words, there is a long tail of local bugs and many
bug types are likely to be left out by generic detectors.

2. There are no large-scale labeled datasets for bug detection, and, as a result, supervised ML
techniques are not readily applicable and we need to explore unsupervised approaches.

3. Since the bugs are local, it is essential to learn from code under analysis during analysis and
apply the learnings on-the-fly in the same session (say, code review or repository scan).

∗Currently with Twitter

1

Published as a conference paper at ICLR 2022

4. Detecting specialized or new types of bugs requires effective communication of the rationale
for the detected bugs to the developers. This is essential to the acceptance of the tool by the
developers.

In this paper, we define and develop an unsupervised approach to bug detection. We call the underly-
ing principle inconsistency detection. Software is repetitive and it is possible to mine specifications
from analysis of code bases. While the mined specifications are often correct, violations of the speci-
fications are not often bugs. For example, one precondition for string object is str.length()>0
(see Nguyen et al. (2014)). While this is a valid precondition, performing this check before every use
of the string is considered too defensive by developers. The reason is that the code uses are contextual
and contextual analysis is required for detecting genuine violations. Hence a naive enforcement of
learned specifications leads to lots of false positives.

Inconsistency principle is based on the following observation: while deviations from frequent behavior
(or specifications) are often permissible across repositories, deviations from frequent behavior inside
a given repository are worthy of investigation by developers and these are often are bugs or code
smells. The following is an example of inconsistent behavior that is worthy of inspection: assume
that access to the object foo is synchronized in 10 occurrences in a package and is not synchronized
in one occurrence. As another example, if a package uses str.length()>0 as a pre-condition
in several cases and the condition is missed once or twice, in the best case, this is a bug and in the
worst case, this is at least worthy of examination. Hence, our approach aims to automatically detect
inconsistent code pieces that are abnormal and deviant from common code patterns in the same
package, assuming that the common behaviors are correct. This anomaly detection approach does
not need a prior knowledge and minimizes the human effort to pre-define sets of rules, as it can
automatically and implicitly “infer” rules, i.e. common code patterns, from the source code.

While it is possible to detect inconsistencies in specific aspects (such as synchronization, exceptions,
logging, etc.) of programs, our goal is to build a single framework to detect inconsistencies in
multiple aspects of programs. Our approach is not restricted to certain types of code bugs but covers
diverse categories of bugs.

We organize our experiments to answer the following research questions. The main conclusions for
the questions are also summarized alongside.

The primary contributions of the paper are summarized below.

1. Propose Inconsistency Principle as an unsupervised approach to identify bugs in code bases.
2. Propose two approaches for detecting inconsistencies in code.

(a) PMI-based approach on bigrams of tokens or graph nodes. This technique models local
context.

(b) Sequence-based inconsistency detection based on association rule derivation. This
approach models longer code context.

3. Demonstrate that the proposed approaches are able to uncover diverse set of bugs in real-
world code reviews. The overall precision of the approach is higher than the that reported in
recent research Bryksin et al. (2018).

The proposed approaches detect issues on-the-fly in the sense that the learning of code patterns and
the detection of bugs happen on the same repository during the analysis of the repository. The paper
uses several ideas – such as repetitiveness in code, locality of code patterns, and associative rule
mining – that are familiar to the research community. We combine the ideas in a novel manner and
show that the resulting approaches are effective in real-world code reviews and detect a broad range
of issues. The related work section highlights the novel aspects and the experimental results section
contains developer feedback.

We organize the paper as follows. Section 2 expands on the idea of inconsistency principle. Section 3
discusses the feature extraction that are common to both the PMI and sequence based approaches.
In Section 4, we present the PMI based approach on code tokens and on code graphs. Section 5
is devoted to the sequence based framework for inconsistency detection. In Section 6, we present
experimental results on running our detection tool on private (company internal) and open source
packages. In Section 7, we review related work on inconsistency detection in source code. Section 8
makes concluding remarks.

2

Published as a conference paper at ICLR 2022

Figure 1: Inconsistency-based bug detection: Overview

2 INCONSISTENCY PRINCIPLE-BASED BUG DETECTION

An overview of inconsistency-based bug detection is shown in Figure 1.

Program Representation: We use two different representation of programs: tokens in program
text as well as graph-representation of programs. The token-based representation requires no
programming-language specific processing and hence scales to multiple programming languages. At
the same time, the token-based representation does not capture proximities captured by data-flow and
control-flow relations and hence misses several code usages. We have found that the inconsistencies
detected in the two representations are complementary.

Identifying frequent uses: A key step towards detecting inconsistencies is identifying “consistencies”
in code. There are many different forms of consistencies in code analysis, and in this paper we will
focus on two particular types: bigram consistency and sequence consistency. For bigram consistency,
the fundamental idea is that if two (or more) code elements <a> and are strongly associated,
i.e. they almost always appear together in the package, then any individual appearance of <a> (or
) without (or <a>) could be a potential inconsistency as it is deviant from common code
patterns. Namely, an implicit rule learned from this pattern is a => b: <a> must be followed by
in the code. A simple analogy in detecting misspellings in plain texts is that if a word a (e.g. “Los”)
and a word b (e.g. “Angeles”) are strongly associated, then any scenarios “Los” is not followed by

“Angeles” or vice versa are potential misspellings. In the context of source code, the code elements
can be simply code tokens, or any nodes, links and derived features in the tree or graph representation
of the source code. To find strong associations in code elements, we adopt a technique widely used in
natural language processing called Pointwise Mutual Information (PMI) to identify collocations of
code elements. To our knowledge, this is the first time PMI has been utilized for code bug detection.

For identifying co-occurring patterns of size larger than two, we use itemset mining. We use the
frequent itemset mining framework followed by sequence alignment to identify the consistent patterns
and detect outliers. The bigram and sequence consistency approaches are complimentary: one focuses
on the very local pattern while the other one looks at much broader context. In terms of the actual
bug findings there are almost no overlaps between these two.

Identifying violations: After obtaining strongly collocated code elements, we retrieve the source
code snippets containing code elements that contradict such collocations through statistical analysis.
These contradictions are outliers or counter examples that do not follow the common patterns. Such
counter examples are not necessarily code bugs or code smells – they can be coincidences or different
uses of code elements due to natural variations of code. To reduce such false positives, we have
developed approaches including similarity analysis and program parsing to ensure that the inconsistent
use of code tokens share similar or same context as the consistent ones.

Example based messaging: Detection of diverse types of issues requires appropriate communication
of the issues to the developers. We pursue example based messaging and provide examples of frequent
usages. Since the examples are from the same repository, developers relate very easily to the examples.

Messaging – Majority is not always right: The detector identifies frequent uses and violations of
certain patterns. While violations are often bugs, in some cases the violations are correct usages and
the frequent usages are bugs. One example scenario is rolling out the new version of an API. It is
common that the updates are made only in a few places and not in all the uses. The inconsistency
detector identifies the correct uses as outliers. Hence, in our messaging, we point out the inconsistency
and ask the developer to resolve the inconsistency without claiming that the frequent usage is correct.

3

Published as a conference paper at ICLR 2022

3 PROGRAM REPRESENTATION

In general, the features used for inconsistency detection can be divided into two categories: tokens in
the source code and paths in a graph representation of code.

3.1 TOKENS

In natural language, a token is a string of contiguous characters between two spaces, or between a
space and punctuation marks in the source code. It is natural in code that we see very long tokens as
variable names or API calls, e.g., ‘getCustomerAccountId’. We do not sub-tokenize long tokens as the
scope of analysis is a package and the token-level vocabulary has manageable size at package-level.

3.2 PATHS IN MU GRAPHS

For a more elaborate analysis of the code, we utilize a graph representation of the code which
includes data and control flow information of the source code. We use the graph representation called
MU Graph Amann et al. (2019), which represents programs at statement and expression levels and
captures both control and data flows between program elements. (Control flow represents the order
of the execution and the data flow represents the flow of data along the computation.) We build MU
Graphs at method level. (Figure 2 in Appendix A shows an example.)

The advantage of graph representation is that program elements (e.g., API calls) which are not
adjacent in textual representation can be adjacent in the graph based on control- or data-dependence.
Consider the following code snippet.

1 Account account = daoFactory.getAccountDao().getAccount(accountId);
2 Item item = daoFactory.getItemDao().getItem(itemId)
3 validate.notNull(account, item);

Though getItem() and notNull() are are not adjacent in the textual representation, they are
adjacent in the MU Graph (Figure 2 in Appendix A) reflecting semantic adjacency while they. This
relation helps us discover high-value inconsistencies.

4 PMI-BASED INCONSISTENCY DETECTION

PMI (Pointwise Mutual Information) is widely used in Natural Language Processing (NLP) commu-
nity to find collocations of n-gram in texts. We adopt this technique to extract strong associations
between code tokens. The PMI for bigram (a, b) compares the frequency of the bigram to the
frequency of the individual components of the bigram, and is defined as:

PMI(a, b) = log
p(a, b)

p(a)p(b)
(1)

where p(a, b) is the joint probability of bigram (a, b) in the code corpus and p(a), p(b) are individual
probabilities. Counting of occurrences and co-occurrences of tokens in the code corpus of a package
is used to approximate the probabilities p(a), p(b) and p(a, b). Higher value of PMI indicates stronger
associations between tokens.

Detecting inconsistencies based on bigram tokens has the following three steps.

1. Mine code patterns. Mine from the package and extract all strongly associated bigram of code
elements (a, b) through PMI analysis. This results in code patterns that a must be followed by b, or b
must be preceded by a. The associated PMI value can be regarded as confidence score;

2. Detect abnormal code. Identify occurrences of code snippets in the same package that violate the
code patterns. This results in a set of abnormal code that are candidate inconsistencies;

3. Prune false positives. Remove violations that are not true inconsistencies by comparing the
context of violations and the context of common code patterns. The code elements in both contexts
should share similar/same use cases and intent. This is done by analyzing a combination of code
similarity and syntactic information obtained through code parsing.

4

Published as a conference paper at ICLR 2022

Table 1: Path Features and the corresponding detectors

Path Detector
All API calls within a method Missing API
API calls associated with the same receiver object Missing API-rcv
APIs and exceptions associated with the same throw edge Try-Exception
Pair of APIs with producer and consumer relationship Null-Check
Paths that connect input parameters to certain validation APIs Missing Input Validation
Two neighboring API nodes with one node related to precondition Missing Precondition Check
Two neighboring API nodes with one node related to logging API Missing/inconsistent logging

Appendix B contains an illustrative example.

4.1 PMI ON GRAPH REPRESENTATION

We extend the PMI approach on token level to graph level by not directly utilizing the source code
tokens but representing the program as a graph. Compared to token level approach, which can be
regarded as a line-based detector, i.e. it compares all lines of code and detects inconsistent lines,
the graph level approach looks at a bigger picture and more contexts. It detects inconsistencies in
graph nodes, links or other features based on the structural information of graph representation of the
source code. For example, considering each API call as a node in the graph representation, we can
detect Missing API (MAPI) if a node is present in most cases of similar graph structures but is only
missing in a certain graph. We have implemented such a MAPI detector based on this approach.

We represent program in the format of MU Graph. See Section 3.2. To detect MAPI, we extract all
the nodes that represent an API call in the MU Graph of a Java method, and obtained a sequence
of API calls within each method. Each item in the sequence is analogous to the token in a line
of code in the token level approach. We can thus perform the same PMI analysis to the API call
sequences within a package to extract all bigrams of API call that are strongly associated with each
other. Those two APIs represent two nodes in the MU Graph that may be directly connected or share
same paths. Similar to token level approach, the basic principle is that if two API calls A and B are
strongly associated within the package, then A almost always should be called before (or after) B,
otherwise it could be a potential missing call. A particular application of this could be detecting
missing precondition check, as the precondition is almost always checked before invoking the method
call it guards.

5 DETECTING INCONSISTENCY BASED ON SEQUENCE MINING

With respect to Figure 1, sequence mining approach represents code at method-level by paths in
graph representation. Itemset mining is used to identify frequent sub-paths and we detect violations
of frequent sub-paths. For the purposes of specific messages in recommendations, we focus on
specific types of paths. More specifically, sequence-based inconsistency mining has the following
high-level steps.

Creation of itemsets: The itemsets are essentially paths in MU Graphs. While it is technically
feasible to work with all paths, we found that developers relate to the recommendation
better if the recommendation message is more explanatory. For the purposes of explanation,
we work with typed paths: paths conforming to certain programming constructs. These
constructs are shown in Table 1.

Itemset mining: We perform standard itemset mining on the collection of paths belonging to a given
type.

Rule derivation: Once frequent itemsets are identified with support values, we construct rules
satisfying minimum support and confidence values.

Sequence alignment: Since itemsets do not contain order information, the sequence alignment step
incorporates order information. This step produces missing items and their locations.

Appendix C contains details of the steps.

5

Published as a conference paper at ICLR 2022

Table 2: Categorized Token Level Detections – PMI-based approach

CATEGORY USEFUL NOT USEFUL UNSURE TOTAL ACCURACY

MESSAGING 7 3 0 10 70.0%
LOGGING 7 2 1 10 70.0%

TYPO 9 1 0 10 90.0%
VISIBILITY 8 0 2 10 80.0%

TOTAL 31 6 3 40 77.5%

Table 3: Categorized Detections – Sequence Mining

CATEGORY USEFUL NOT USEFUL UNSURE TOTAL ACCURACY

API 7 3 4 14 50.0%
API-RCV 17 4 5 26 65.0%

TRY-EXCEPTION 25 7 9 40 62.5%
NULL CHECK 24 11 5 40 60.0%

6 EXPERIMENTAL RESULTS

6.1 OFFLINE EVALUATION

PMI-based Approach
We evaluated our token level approach on internal Java packages. We have randomly selected 10
detections from 4 subcategories of code issues and conducted blind review by software developers on
the correctness of the findings. 31 out of 40 findings are labeled as useful detections, 6 out of 40 are
labeled as not useful, and the remaining 3 are unsure. The overall acceptance rate defined by number
of useful detections over total number of detections is 77.5%. We summarize the performance of 40
detections in Table 2.

For the PMI on Graph representation, we have conducted human review by developers on the
correctness of missing precondition detected by our tool. From 33 detections (obtained with a
similarity threshold of 40) we got feedback from the developers: 14 of them are rated as Useful, 15
are rated as Not Useful and 4 are Unsure. The overall accuracy is 14/33 = 42.4%. As the precision of
bug detection tools is often more important than recall because high false positive rate could hurt user
experience, we increase the threshold. With a similarity threshold of 90, the precision reaches 74%.

Sequence-based Approach
We have performed offline validation of four detectors in this category including general missing API,
missing API on the same receiver, null check, and try-exception, using sequence-based approach.
They were tested on a mixture of open source GitHub and some internal packages. Table 3 summarizes
the accuracies of these four detectors.

6.2 METRICS ON LIVE CODE REVIEW RECOMMENDATIONS

We have integrated this inconsistency detector family with our internal review tool and have validated
with developers. The initial launch includes a total of 12 detectors covering the following issues:
typo, message, log level, declaration, pre-condition check, missing log, missing API (4 variants),
null-check, and exception handing.

Developers have an option of rating the code review comments with "USEFUL", "NOT USEFUL",
and "NOT SURE". During a 4-week period, the recommendations from the detector got 44 feed-
back with 31 USEFUL, 12 NOT USEFUL, and 1 NOT SURE ratings. Hence the accuracy of
recommendations is 70.5%.

An example recommendation is shown below.

For the code

6

Published as a conference paper at ICLR 2022

LOG.warn("Document {} did not have a marketplace", id);

the recommendation was the following:
The detector found 3 occurrences of code with logging similar to the selected lines. However, the
logging level in the selected lines is not consistent with the other occurrences. We recommend you
check if this is intentional. The following are some examples in your code of the expected level of
logging in similar occurrences:

LOG.info("Document {} does not have state", id);

LOG.info("Document {} did not have attributes", id);

One human code reviewer responded with “+1”, and the developer responded with “will fix. Didn’t
realize as this was just copied from somewhere else.”

Another example is shown below.

For the code document.deleteEntity(preEntity);

the recommendation was the following:
We found 4 occurrences in your code of a similar method that calls Document.acceptChanges. Based
on those occurrences, we expected it to be called after the selected line. We recommend you check if
this is intentional. The following is an example in your code of when this method is called ...

The detection basically indicates a missing call of Document.acceptChanges after docu-
ment.deleteEntity. One human code reviewer responded with "Looks like it is recommended by <an
internal service> also in their CodingGuidelines to call document.acceptChanges() after deleting stale
entities." This shows the detector is capable of detecting missing API calls in custom libraries as well
as in popular ones.

Appendix D contains more examples from real-world code reviews.

6.3 COMPARISON WITH PUBLISHED RESULTS

As references for performance evaluation, Bryksin et al. Bryksin et al. (2018) used outlier detection
techniques to detect anomalies in Kotlin code with 46/146 (31.5%) precision; Li et al. Li & Zhou
(2005) developed PR-Miner to detect bugs in C code with frequency mining and achieved 52/127
(40.9%) precision if specifications are also counted as correct detections. NAR-Miner Bian et al.
(2018) mines negative association rules. The reported true positive rate is 46.5% for rules and 4.8%
for violations. Ahmadi et al. (2021) reports false positive rates exceeding 74% in several cases. See
Table 4 in the paper. In contrast, our approach has a overall precision of about 70% in live code
reviews.

Note that this is not an apples-to-apples comparison as the approaches have been tested on different
datasets and on different languages. Despite the differences, this indicates that our approach achieved
competitive performance compared to previous anomaly detection based techniques for code bug
detection, and can be a good complement to previous tools for bug detection.

7 RELATED WORK

Our work on inconsistency-based bug detection is at the intersection of several threads of research:
repetitiveness in code, local structure of code, local structure of code changes, mining from code/code
changes/execution traces, and finding anomalies.

Repetitiveness in code: Several classical papers have quantified the repetitiveness in code through
entropy measurements, e.g., Hindle et al. (2012). While high entropy itself is correlated with bugs Ray
et al. (2016), entropy has not been used for generating actionable recommendations to developers.

Mining from X: Associative rule mining and its variants have been used on several code-related
artifacts: source code Acharya & Xie (2009); Zhong et al. (2009); Nguyen et al. (2014), code
changes Meng et al. (2013); Nguyen et al. (2013), and execution traces Kumar et al. (2011); Yang
et al. (2006). Li et al. (2006) identifies copy-paste errors at package-level.

Acharya & Xie (2009) addresses mining error handing specification for APIs and Zhong et al. (2009)
mines API specifications for recommendations. Nguyen et al. (2014) addresses mining pre-condition

7

Published as a conference paper at ICLR 2022

specifications of APIs. Unlike these approaches, the approaches proposed in this paper are capable of
identifying package-level specifications of not just APIs but other aspects of code such as logging
level, messages, etc.

Local structure of code and code changes: Code has local structure in terms of files and packages.
In LASE Meng et al. (2013), the user provides examples of code changes and the edit script is inferred
and applied on the package. Leveraging local structure provides additional gains. Language models
leveraging local structure have shown increase in recommendation accuracy Franks et al. (2015).
Ammonia Higo et al. (2020) mines project-specific edits.

Inconsistencies: Code inconsistencies have been investigated in previous studies. Engler et al.
Engler et al. (2001) proposed a general approach to infer errors in system code that detects bugs
as deviant behaviors. In Tomb & Flanagan (2012), Tomb et al. detected code inconsistencies via
universal reachability analysis, which applies the weakest precondition operator to several modified
versions of an input program. Schaf et al. Arlt & Schaf (2012) McCarthy et al. (2015) presented
a tool called Joogie to detect infeasible code and a tool called Bixie to detect inconsistent code
in Java program. They also proposed an algorithm Schaf et al. (2013) for explaining inconsistent
code. Ocariza et al. Ocariza et al. (2017) implemented an anomaly detection based tool to detect
inconsistencies in Javascript web application code. They found code patterns from tree-based data
structures transformed from source code and detected violations of rules established from the code
patterns. Similarly, Reiss Reiss (2007) found “unusual code” by reading a large corpus of code
and building a library of common patterns from Abstract Syntax Trees. Dillig et al. Dillig et al.
(2007) built a null dereference analysis of C programs based on semantic inconsistency inference.
Monperrus et al. Monperrus et al. (2010) detected missing method calls in object-oriented software
via identifying deviant code.

The papers closest to the research reported in this paper are Li & Zhou (2005), Bian et al. (2018)
and Ahmadi et al. (2021). The first two use associative rule mining. Each bag consists of information
at a function level. Unlike the path representation used by us, this information is too coarse. Hence
the true positive rates reported are small and the techniques are applied on a small number (1-3)
repositories. The last paper uses two-step clustering identify inconsistencies in C code. The technique
works on LLVM bitcode (which requires compilation) and the detection latencies is of the order
of hours. Our approach works on source code and is faster (most runs take less than 10 minutes).
Section 6.3 shows that our approach has higher accuracy compared to these baselines.

Although we may work in the similar regime of anomaly detection, our work differs from previous
studies and tools mainly in three aspects: 1) our framework works on package level instead of mining
from a large corpus of packages. This not only improves the efficiency of detections as it does
not require massive training, but also reduces false positives because patterns learned from various
packages are prone to mistakes due to natural variations and diversity of code. Each package may
maintain its own conventions. For instance, the use of an API call may be appropriate in one package
but does not apply for another package. 2) We have proposed and developed a novel approach of
finding common code patterns through PMI analysis or sequence mining to identify true deviant
behaviors. 3) Unlike many previous tools that detect certain types of code issues, we developed a
single model to cover a wider ranges of code bugs. Also, the results from our model could be further
utilized for further fine tuning of specific classes of code issues.

8 CONCLUSIONS

In this paper we presented the idea of automatic bug detection using the inconsistency principle.
We proposed two complimentary approaches based on package level inconsistency. The PMI-based
method focuses on local patterns and sequence-based framework takes more contextual information
into account. The two algorithms focus on different aspects of the problem and in general they
could potentially provide complementary information to each other. We have developed 12 different
bug detectors based on this inconsistency principle. They cover a wide variety of important and
challenging bugs, including typo, null check, exception handling, logging, declaration, precondition
check, and API usage, etc. This unsupervised approach does not require labeled dataset or massive
training process. Meanwhile, it works on package level and does not require a prior knowledge on
the codebase. We have demonstrated that our tool can detect diverse types of code issues and the
performance is competitive to similar bug finding tools in previous studies. This family of detectors

8

Published as a conference paper at ICLR 2022

have been launched internally and the recommendations have received 70% acceptance in addition to
good qualitative feedback from the developers. The package level inconsistency is proven to be a
powerful concept and there are many more bug detection scenarios that could be beneficial from this
concept. Our approach could be easily extended to other programming languages such as Python, Go,
as well as other representations of code such as Abstract Syntax Tree. In the future, we will continue
to develop detectors based this inconsistency principle on more scenarios, and expand the feature
extraction to more varieties of representation for code.

REFERENCES

Mithun Acharya and Tao Xie. Mining API Error-Handling Specifications from Source Code. In
FASE, 2009.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association rules. In
Proceedings of the 20th International Conference on Very Large Data Bases, VLDB, 1994.

Mansour Ahmadi, Reza Mirzazade Farkhani, Ryan Williams, and Long Lu. Finding bugs using
your own code: Detecting functionally-similar yet inconsistent code. In 30th USENIX Security
Symposium, 2021.

S. Amann, H. A. Nguyen, S. Nadi, T. N. Nguyen, and M. Mezini. Investigating Next Steps in Static
API-Misuse Detection. In Mining Software Repositories, 2019.

S. Arlt and M. Schaf. Joogie: Infeasible code detection for Java. In CAV, 2012.

Pan Bian, Bin Liang, Wenchang Shi, Jianjun Huang, and Yan Cai. NAR-Miner: Discovering Negative
Association Rules from Code for Bug Detection. In FSE, 2018.

Tom Britton, Lisa Jeng, Graham Carver, and Paul Cheak. Reversible debugging software. Cambridge
Judge Business School, 2013.

Timofey Bryksin, Victor Petukhov, Kirill Smirenko, and Nikita Povarov. Detecting anomalies in
Kotlin code. In ISSTA ’18: Companion Proceedings for the ISSTA/ECOOP 2018 Workshops, 2018.

Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection using semantic inconsistency
inference. In PLDI ’07: Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2007.

Dawson Engler, David Y. Chen, Seth Hallem, Andy Chou, and Benjamin Chelf. Bugs as deviant
behavior: a general approach to inferring errors in systems code. In SIGOPS Operating Systems
Review, 2001.

Christine Franks, Zhaopeng Tu, Premkumar Devanbu, and Vincent Hellendoorn‡. CACHECA: A
Cache Language Model Based Code Suggestion Tool. In ICSE, 2015.

Yoshiki Higo, Shinpei Hayashi, Hideaki Hata, and Meiyappan Nagappan. Ammonia: an approach
for deriving project-specific bug patterns. Empirical Software Engineering, 2020.

Abram Hindle, Earl T. Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On the naturalness
of software. In ICSE, 2012.

Md Johirul Islam, Giang Nguyen, Rangeet Pan, and Hridesh Rajan. A comprehensive study on deep
learning bug characteristics. In arXiv:1906.01388, 2019.

Sandeep Kumar, Siau-Cheng Khoo, Abhik Roychoudhury, and David Lo. Mining message sequence
graphs. In ICSE, 2011.

Zhenmin Li and Yuanyuan Zhou. PR-Miner: automatically extracting implicit programming rules
and detecting violations in large software code. In ACM SIGSOFT Software Engineering Notes,
2005.

Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: Finding Copy-Paste and
Related Bugs in Large-Scale Software Code. In IEEE Trans. Software Engineering, 2006.

9

Published as a conference paper at ICLR 2022

Tim McCarthy, Philipp Rummer, and Martin Schaf. Bixie. Finding and understanding inconsistent
code. In ICSE, 2015.

Na Meng, Miryung Kim, and Kathryn McKinley. LASE: Locating and Applying Systematic Edits
by Learning from Examples. In Proceedings of 35th IEEE/ACM International Conference on
Software Engineering, 2013.

Martin Monperrus, Marcel Bruch, and Mira Mezini. Detecting missing method calls in object-oriented
software. In Proceedings of the 24th European Conference on Object-Oriented Programming,
2010.

Hoan Anh Nguyen, Anh Tuan Nguyen, Tung Thanh Nguyen, Tien N. Nguyen, and Hridesh Rajan.
A study of repetitiveness of code changes in software evolution. In In Proceedings of the 28th
IEEE/ACM International Conference on Automated Software Engineering, 2013.

Hoan Anh Nguyen, Robert Dyer, Tien N. Nguyen, and Hridesh Rajan. Mining preconditions of APIs
in large-scale code corpus. In FSE, 2014.

Frolin S Ocariza, Karthik Pattabiraman, and Ali Mesbah. Detecting unknown inconsistencies in web
applications. In ASE, 2017.

Michael Pradel and Koushik Sen. DeepBugs: A Learning Approach to Name-based Bug Detection.
In arXiv:1805.11683, 2018.

Baishakhi Ray, Vincent Hellendoorn, Saheel Godhane, Zhaopeng Tu, Alberto Bacchelli, and Premku-
mar Devanbu. On the ’naturalness’ of buggy code. In ICSE, 2016.

S. P. Reiss. Finding unusual code. In Proceedings of the International Conference on Software
Maintenance, 2007.

M. Schaf, D. Schwartz-Narbonne, and T. Wies. Explaining inconsistent code. In ESEC/FSE, 2013.

A. Tomb and C. Flanagan. Detecting inconsistencies via universal reachability analysis. In ISSTA,
2012.

J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Terracotta: mining temporal API rules from
imperfect traces. In ICSE, 2006.

Hao Zhong, Tao Xie, Lu Zhang, Jian Pei, and Hong Mei. MAPO: Mining and Recommending API
Usage Patterns. In ECOOP, 2009.

Appendix

A GRAPH REPRESENTATION

Figure 2 shows the an example code snippet and its graph representation. The graph representation is
used with both PMI-based approach (Section 4.1) and sequence-mining based approach (Section 5).

B ILLUSTRATIVE EXAMPLE FOR PMI-BASED DETECTION

We will discuss each step in more detail in the next a few subsections. To illustrate this process, a
simple token level example that we detected is shown below.

violation:
private static final String newStage = AppConfig.getDomain();

normal (10 times, shown 1):
private static final String stage =
AppConfig.getDomain().toLowerCase();

We first mine from the package and find that the code tokens (’getDomain’, ’toLowerCase’) are
strongly associated with high confidence (PMI = 13.2, appeared 10 times in the package). This gives

10

Published as a conference paper at ICLR 2022

(a)
1 Account account = daoFactory.getAccountDao().getAccount(

accountId);
2 Item item = daoFactory.getItemDao().getItem(itemId)
3 validate.notNull(account, item);

(b)

Figure 2: (a) Code snippet (b) Corresponding MU Graph.

11

Published as a conference paper at ICLR 2022

an implicit rule that the token ’getDomain’ has to be immediately followed by ’toLowerCase’.
We then identify a code snippet that violates such pattern, where getDomain() is not followed by
toLowerCase(). This is a potential inconsistency that leads to a missing API call. As a final step,
we verify that the context of getDomain() in the abnormal code snippet is similar to the common
patterns: both are initializing a string by getting the domain information from AppConfig. This
results in a correct inconsistency detection that has been verified by the developer.

In the following subsections, we introduce the token level approach and graph level approach in more
detail. The graph level approach is largely an extension of the token level approach, so the steps
shared by both will be mostly introduced in the token level section.

B.1 TOKEN LEVEL APPROACH

In this approach, we take all the source code within a code repository as our data source. We use
regular expression to tokenize source code and remove tokens with low frequencies. The code tokens
maintain the same relative orders as in the source code. The n-gram of code tokens is defined in the
same way of n-gram in texts. After the preprocessing we perform the following steps.

B.1.1 MINE CODE PATTERNS

We collect the bigram of tokens with PMI higher than a pre-set threshold as our set of extracted
code patterns. Alternatively, we can choose top bigrams ranked by their PMI values. Extracting
bigrams with high PMI value will not only make the whole detection process more computationally
efficient because of reduced candidate sets of bigrams, but also help reduce noises in the extracted
code patterns, which may result in improved detection accuracy.

B.1.2 DETECT ABNORMAL CODE

We assign a conditional probability for each strongly associated bigram identified in the first step,
defined by p = N(a, b)/N(a), where N(a, b) and N(a) are the frequency of occurrences (known as
support) of bigram (a, b) and token (a) individually. For instance, p = 0.95 indicates there is 95%
chance that token a has to be followed by token b. We further reduce our bigram set by only keeping
bigrams with the conditional probability higher than a threshold. To find the outliers, we retrieve
the source code where a is not followed by b. As this is rare case, it is abnormal and a potential
inconsistency. The same procedure works in another direction. We assign a conditional probability
of p = N(a, b)/N(b) and find the cases where b is not preceded by a as outliers. We have a lower
bound of N(a, b) to ensure the conditional probability is statistically significant.

B.1.3 PRUNE FALSE POSITIVES

A violation of the common code patterns is not necessarily incorrect as the same code token may be
used in various scenarios. After we obtained an outlier (a, x), where x 6= b, a key question to ask
is: is (a, x) used in a similar way or similar context with (a, b) in common cases? If the context of
(a, x) is functionally different than (a, b), it is a false violation and thus should not be regarded as
inconsistent use of a.

For instance, here is an example of false positive.

violation:
private static List<Comment> filterAndSort(
list<Comment>unfilteredComments)
normal (11 times, shown 1):
return filterAndSort(unfilteredComments)

In this case, we found the token pair (filterAndSort, unfilteredComments) is
strongly associated, because the method filterAndSort is called as many times as
filterAndSort(unfilteredComments). We found an outlier shown above that
filterAndSort is not immediately followed by unfilteredComments. However, it is clear
that the outlier is a method declaration clause and should not be in the same format as the method

12

Published as a conference paper at ICLR 2022

call clause. We should remove such false violations by ensuring the context of the abnormal code
is similar as the context of the code patterns. For simplicity, we define the context of a bigram as
the line of code that contains the bigram. That says, the line of code that contains abnormal use of a
token should be largely similar to the lines that normally use the token with the bigram. This forces
us to look at not only the bigram but also the sequences of tokens around the bigram. We define
3 similarity measures to prune the false positives: a semantic similarity, token type similarity and
code type similarity. Only when the violation passes all 3 similarity checkers it is determined as an
inconsistency.

Semantic similarity Here, we regard the code snippets as plain texts and investigate the semantic
similarity between the context of the abnormal code and the context of normal patterns. Intuitively,
the more similar between those two, the more likely there is a true inconsistency given the abnormal
code is different from the normal patterns. Empirically, we find this similarity relative to the similarity
within the the contexts of normal patterns to be more helpful. Formally, for any abnormal code
(i.e. bigram) i, we define the context of it as c(i), and the set of all corresponding normal pattern
occurrences in the whole corpus to be J . We define the relative similarity score (S-score) for i as:

S-score(i) =
1
|J|

∑
j∈J Sim(c(i), c(j))

1
N

∑
j1,j2∈J Sim(c(j1), c(j2))

(2)

where N is the number of times we randomly select j1 and j2 from J, and Sim(c(i), c(j)) is defined
as the Jaccard similarity between c(i) and c(j), each being one line of code. The Jaccard similarity
between any two sets A, B is defined as Jaccard(A,B) = (|A ∩B|/|A ∪B|). We have a pre-set
threshold of S-score(i) for the abnormal code i to pass this checker.

Token type similarity As a complement for the first similarity, we also check the similarity of
token types in c(i) and c(j) as the token types will provide extra structural information on the code.
We use a Java parser javalang to parse any line of Java code and retrieve the type of each token in
it. For instance, after parsing the line of code private static final String DOMAIN =
AppConfig.getDomain(), we obtained the type for each token: (Modifier)private
(Modifier)static (Modifier)final (Identifier)String (Identifier)DOMAIN (Operator)=
(Identifier)AppConfig.(Identifier)getDomain(). We define a similar S-score as Equation 2 but
the Jaccard Similarity Sim(c(i), c(j)) is based on the type of each token instead of the value of each
token. A threshold is also set to pass this checker.

Code type similarity The abnormal code should share similar intent or functionality as the normal
cases to qualify as an inconsistency. We infer the high level type of a code snippet using the
same Javalang parser. In the false positive example we discussed in Section 3.4, the abnormal
code snippet is doing a method declaration while all the normal case snippets are doing a method
call, thus the abnormal code is not an true inconsistency but a different use case of code token
filterAndSort. Inferring such code type mismatch is a straightforward and efficient way to
prune such false violations.

C SEQUENCE MINING-BASED INCONSISTENCY DETECTION

Extending the PMI-based bug detection to more than two tokens is fraught with scalability and data
sparsity challenges: n-gram frequencies are not reliable as probability estimations when calculating
PMI values for larger values of n. Hence we use sequence mining approach which is more scalable.

C.1 SEQUENCE MINING

The proposed approach consists of five steps: feature extraction, frequent itemset mining, association
rule derivation, multiple sequence alignment, and contextual pruning. The following subsections
explain the steps in detail.

13

Published as a conference paper at ICLR 2022

C.1.1 STEP 1: EXTRACT FEATURES

We extract paths in MU Graphs as features. The types of paths extracted are listed in Table 1. Each
type of path leads to detection of specific code bugs. The corresponding bugs are also indicated in the
table.

For the missing API scenario, the extracted features from the MU Graph are nodes associated with
API calls.

For the missing null check scenario, the feature extraction starts from the parameter or receiver edge
between two API calls, and it also looks for additional edges coming out form the first API node and
checks whether they are linked to any null-check related comparator or APIs.

For the missing input validation scenario, the feature extraction starts with the input parameter node
in a method and follows its outgoing edges to related APIs that perform validation check on this
parameter as well as the ones that consume this parameter. This not only includes the information of
whether it is validated, but also how it is validated and how it is used.

The ordering of nodes in the path requires careful handling due to the complexity of MU Graph. The
starting point is topological sort. However, the order given by topological sort is not necessarily
aligned with the order of lines in the source code and this can cause confusions in the understanding
of recommendations by developers. Therefore, we use a mixed sorting strategy. We firstly sort by
line numbers, then for APIs on the same line, we sort them topologically.

Consider the listing and MU Graph shown in Figure 2. In this graph, there are two path sequences:
getAccountDao()->getAccount()->validate.notNull() and
getItemDao()->getItem()->validate.notNull().
If we perform topological sort only, there are two possibilities:
getAccountDao()->getAccount()->getItemDao() ->getItem()->validate.notNull()
or
getItemDao()->getItem()->getAccountDao() ->getAccount()->validate.notNull().
Instead, when we firstly sort by line numbers, and on the same line we determine API orders based
on topological order, the API ordering is unique and what we want:
getAccountDao()->getAccount()->getItemDao()-> getItem()->validate.notNull().

C.1.2 STEP 2: FREQUENT ITEMSET MINING

Frequent patterns are patterns (itemsets, subsequences, or substructures etc.) that appear frequently
in a dataset. Here we mine frequent patterns within the code repository under analysis. There are
many choices for frequent itemset mining algorithms. In our implementation we use the Apriori
algorithm Agrawal & Srikant (1994). Apriori is a seminal algorithm for mining frequent itemsets for
Boolean association rules. Apriori employs an iterative approach known as a level-wise search, where
k-itemsets are used to explore (k+1)-itemsets. The output of frequent itemsets mining are a group of
frequent itemsets, i.e. "similar" sets (called "baskets") that contain many common items. In general,
the larger the k, the fewer the number of baskets containing these k items. In our bug detection case,
we observed the tendency that the larger the value of k, the more compelling the detection.

C.1.3 STEP 3: ASSOCIATION RULE DERIVATION

Once the frequent itemsets have been found, it is straightforward to generate strong association rules
from them, where strong association rules satisfy both minimum support and minimum confidence.
The confidence of rule A=>B is defined as

confidence(A => B) = P (B|A) =
support_count(A ∩B)

support_count(A)
(3)

where both A and B are sets of items (e.g. APIs). We find that the support and confidence measures
are often insufficient for filtering out uninteresting association rules. To tackle this weakness, a
correlation measure can be used to augment the support-confidence framework for association rule.
There are various correlation measures, and we use the "lift" measure given below.

lift(A,B) =
P (A ∩B)

P (A)× P (B)
(4)

14

Published as a conference paper at ICLR 2022

If lift(A,B) < 1, then the occurrence of A is negatively correlated with the occurrence of B,
meaning that the occurrence of one likely leads to the absence of the other. If lift(A,B) > 1, then A
and B are positively correlated, meaning that the occurrence of one implies the occurrence of the
other. If lift(A,B) = 1, then A and B are independent and there is no correlation between them.
Lift and PMI are analogous. The difference is that in the PMI-based approach, A and B are single
items, while in the case of lift, they are sets.

C.1.4 STEP 4: SEQUENCE ALIGNMENT

The association rule gives us the findings of deviation instances from that rule. However, since the
Apriori algorithm is based on set operation, ordering information of the items is lost during the
process. Here, we want to enforce the ordering of items to identify the best supporting samples for
the detection. In bug detection, explaining the findings to developers is as important as generating the
findings. The baskets related to the same association rule A => B all share the same A part of the rule.
However, items in A are only parts of those baskets and there are other items in the baskets. At the
same time, the basket that misses the B part of the rule is the anomaly, i.e. the detection. We aim
to find the basket most similar to the anomaly (but contains B) as our supporting example, which
is included in our detection message to show the correct usage. We model this step as a sequence
alignment process, namely, finding the best alignments for the items in part A for two sequences.
This process not only produces the number of missing items in a sequence, but also their locations,
which are used to filter the findings as well as generating the proper detection message.

C.2 AN ILLUSTRATIVE EXAMPLE

In this section, we will use an illustrative example to better explain the steps 1-4 presented above.
The following code snippet is a Java method and we illustrate the process of find the missing API
using this code snippet.

1 public void newConnectionError(Context context, long maxWaitMillis, Throwable cause) {
2 this.ConnectionDrop(context);
3 connectionErrorsMap.increment(context.getTrafficSource());
4 deck.increment(CounterType.NEW_CONNECTION_FAILED);
5 deck.increment(CounterType.SESSION_TRANSFER_FAILED);
6 LogEntry entry = EVENTS.error()
7 .append("NEW_CONNECTION_FAILED, SESSION_TRANSFER_FAILED, CLIENT_CONNECTION_DROP: src=")
8 .append(context.getSource())
9 .append(", cluster=")

10 .append(getClusterId(context))
11 .append(", id=")
12 .append(context.getConnectionId())
13 .append(". Failed to connect in ")
14 .append(maxWaitMillis)
15 .append(" ms");
16 addCauseIfNotNull(cause, entry);
17 entry.commit();
18 }

The first step is to build the MU Graph and extract paths, and since this is for missing API detection,
the paths/features are the APIs called within this method. The resulting basket for this method is as
follows:

1 (’EventListener.ConnectionDrop’, ’Context.getSource’, ’Map.increment’, ’Deck.increment’, ’Deck.increment’, ’
Log.error’, ’Context.getSource’, ’EventListener.getClusterId’, ’Context.getConnectionId’, ’EventListener
.addCauseIfNotNull’, ’LogEntry.commit’)

The second step is frequent itemset mining which groups the similar baskets that share many common
APIs together, and Figure 3 shows one group containing 10 similar baskets. The third step is the rule
derivation, and for this case, the following rule is derived.

1 A={’Deck.increment’, ’LogEntry.commit’, ’Log.error’, ’Context.getConnectionId’, ’EventListener.
addCauseIfNotNull’, ’EventListener.getClusterId’}

2 ==> B={’EventListener.ConnectionDrop’}

The support of the this rule is 10 as all 10 baskets in the group contain the APIs in A, and the
confidence is 0.8 as there are 8 baskets contain the API in both A and B. The lift for this rule is 3.52
which is larger than 1, meaning that A and B are positively correlated. Figure 4 illustrates step 4, and
all the matching APIs are color coded with the same color. It is clear that there is a missing API call
’EventListener.ConnectionDrop’ at the first location.

15

Published as a conference paper at ICLR 2022

Figure 3: Group of similar baskets after frequent itemset mining

Figure 4: Sequence alignment to find matching and missing items

C.3 LENGTH-SUPPORT TRADEOFFS

The role of support is clear from the frequent itemset mining setup: the higher the support, the more
"compelling” the rule. However, the role of the length of the "A” part of the rule is not as clear. Rule
length and confidence are positively correlated. As a result, the required support could be reduced for
longer sequences. We are interested in rules longer than a minimal length threshold. For these rules,
we set different support constraints for different rule lengths. The longer the rule is, the less likely the
paths/features within the rule co-occur by accident. Therefore, even if there are only a small number
of such occurrences, the rule is still significant. In our bug detection application, longer rules usually
indicate strong reasons to support such rule (e.g. a series of API calls in a method). Thus, only seeing
a few examples is usually enough to derive such a rule.

To understand the length-support tradeoff better, let us compare the missing API detection using
PMI-based and sequence based approaches. Although they are both detecting missing APIs, the
underlying algorithms for them are different. Therefore, their detections usually do not overlap. For
illustration purpose, consider a normal usage of API sequence <a>, , <c>, <d>, <e>, and the API
sequence under analysis is <a>, <c>, <d>, <e>. Clearly, there is a missing API here that could
be potentially problematic. The PMI-based approach looks at the bigrams <a>- and -<c>,
while the sequence-based approach considers the entire <a> to <e> sequence. PMI-based requires
a large support (or high PMI-score) to make the detection. The sequence-based does not require a
support instead, because the entire sequence itself is a strong evidence due to its low probability of
occurrence.

D REAL-WORLD EXAMPLES

We present a selection of sample findings to demonstrate the diversity of these detectors. The
detections from PMI- and sequence-based detectors were complementary and there are almost no
overlaps between the detections.

In the detection examples, some of the variable and API names have been changed to preserve
confidentiality of the code.

16

Published as a conference paper at ICLR 2022

Table 4: Token Level Inconsistency Detection Examples.

Code Issue Detection
Missing API inconsistent:

return Base64.getUrlEncoder().encodeToString(bytes);
normal (13 times, shown 1):
return Base64.getUrlEncoder().withoutPadding().encodeToString(idbytes);

Messaging inconsistent:
error4display.append("Odin User Materials is a required field.");
normal (20 times, shown 1):
error4display.append("User Odin Material is a required field.");

Logging inconsistent:
log.info ("Missing {} from data {}", ID_FIELD, data);
normal (47 times, shown 1):
log.error ("Missing {} from data {}", ID_FIELD, data);

Typo inconsistent:
final String roleArn = String.format("arn:aws:imm ::%s:role/Anonymous",
normal (17 times, shown 1):
final String roleArn = String.format("arn:aws:iam ::%s:role/Anonymous",

Naming inconsistent:
OverlayUtil.renderPolygon(g, poly, color);
normal (26 times, shown 1):
OverlayUtil.renderPolygon(graphics, poly, LINE_OF_SIGHT_COLOR);

Visibility inconsistent:
public boolean equals(Object obj) {
normal (26 times, shown 1):
public boolean equals(final Object obj) {

Exception inconsistent:
throw new InvalidArgumentException ("Argument must be non-null");
normal (15 times, shown 1):
throw new IllegalArgumentException ("Argument must be non-null");

Table 5: Graph Level Inconsistency Detection Examples.

Code Issue Detection
General inconsistent:
Missing API protected static String getVersion(byte[] data) throws Exception {

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(new ByteArrayInputStream(data));

normal (15 times, shown 1):
private Element create() throws Exception {

DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();

dbf.setNamespaceAware(true);
DocumentBuilder db = dbf.newDocumentBuilder();

Document doc = db.newDocument();

Missing inconsistent:
Preconditionpublic static void tearDown() {

AppConfig.destroy();

}

normal (8 times, shown 1):
public static void destroyAppConfig() {

if (AppConfig.isInitialized()){
AppConfig.destroy();

}

}

Missing inconsistent:
Logging private StreamReader getStreamReader(final String stageLabel) {

return Context.getLabel(stageLabel).getStageVersion().getStreamReader();

}

normal (8 times, shown 1):
private StreamReader getStreamReader(final String stageLabel) {

log.debug("Stage Version Label for doc config query : " + stageLabel);
return Context.getLabel(stageLabel).getStageVersion().getStreamReader();

}

D.1 EXAMPLES OF PMI APPROACH

We show some sample detections for various subcategories of code issues from both token-level
(Table 4) and graph-level approach (Table 5). In each example, we show the inconsistent piece of
code (highlighted in bold) we detected as well as how the code snippet normally look like in similar
cases.

17

Published as a conference paper at ICLR 2022

D.2 EXAMPLES OF SEQUENCE-MINING APPROACH

D.2.1 SEQUENCE-BASED: NULL-CHECK

The following code snippet shows a detection made by null-check detector. Typically the output
generated by the API ‘System.getProperty’ is checked against null and then consumed by other APIs
such as ‘log.info’. However, the variable ‘ServerOverride’ missed such check. We found it to be a
copy paste error, namely, the developer used the ‘ClientOverride’ instead of ‘ServerOverride’ for the
second null check in the code. The problematic code is highlighted with red background color while
the corresponding correct code is highlighted with green background color. The same color coding is
also applied for all the other examples.

1 String ClientOverride = System.getProperty(CLIENT_OVERRIDE_PROPERTY);
2
3 if (ClientOverride != null) {
4 log.info("Found Client override {}", ClientOverride);
5 config.setUnitTestOverride(ConfigKeys.Client, ClientOverride);
6 }
7
8 String ServerOverride = System.getProperty(SERVER_OVERRIDE_PROPERTY);
9 if (ClientOverride != null) {

10
11 log.info("Found Server override {}", ServerOverride);
12 config.setUnitTestOverride(ConfigKeys.Server, ServerOverride);
13 }

D.2.2 SEQUENCE-BASED: TRY-EXCEPTION

The following code snippets show a detection on the try-exception handling. The problematic code
snippet is shown as follows

1 try {
2 if (null != PriceString) {
3 final Double Price = Double.parseDouble(PriceString);
4 if (Price.isNaN() || Price <= 0) {
5 throw new InvalidParameterException (
6 ExceptionUtil.getExceptionMessageInvalidParam(PRICE_PARAM));
7 }
8 }
9 } catch (NumberFormatException ex) {

10 throw new InvalidParameterException (
11 ExceptionUtil.getExceptionMessageInvalidParam(PRICE_PARAM));
12 }

The tool made the following recommendation: “We found 4 occurrences of handling an exception
thrown by ’Double.parseDouble’ in your code. We recommend using catch with ’InvalidPriceCon-
figException()’ or an equivalent exception that provides the same level of detail. The selected code
shows an occurrence in which this does not happen. The following is an example in your code of
using catch to provide the recommended detail: "

1 try {
2 final Double Price = Double.parseDouble(launchTemplateOverrides.getPrice());
3 if (Price.isNaN() || spotPrice <= 0) {
4 throw new InvalidPriceConfigException (
5 ExceptionUtil.getExceptionMessageInvalidParam(PRICE_PARAM));
6 }
7 } catch (NumberFormatException ex) {
8 throw new InvalidPriceConfigException (
9 ExceptionUtil.getExceptionMessageInvalidParam(PRICE_PARAM));

10 }

Basically, there is a paticular exception (InvalidPriceConfigException) designed for this logic. The
developer confirmed that it should be fixed and also made the change.

D.2.3 SEQUENCE-BASED: API CALLS

The following code snippets show a detection on missing API (API misuse in this case). The
problematic code snippet is shown as follows.

1 .fold(error -> {
2 System.out.println
3 ("Unknown error occurred while executing [context={}]" + error);
4 if (retryableException.test(error)) {
5 return Outcome.<Work, State>builder()
6 }

18

Published as a conference paper at ICLR 2022

The tool made the following recommendation: “We found 7 occurrences of methods similar to the
method in the selected code that call ‘Logger.error’. However, the selected method does not make
that call. We recommend adding a call to it if this is not intentional. The following is an example of a
similar method in your code that makes this call: "

1 .fold(error -> {
2 log.error
3 ("Unknown error occurred while executing [context={}]", context, error);
4 if (retryableException.test(error)) {
5 return Outcome.<Work, State>builder()
6 }

Basically, these are very similar methods, and in normal cases the error is logged by using logger.error,
but in this case the developer uses printout. Using the logger is usually a better practice as it provide
additional information.

19

	Introduction
	Inconsistency Principle-based Bug Detection
	Program Representation
	Tokens
	Paths in MU Graphs

	PMI-based Inconsistency Detection
	PMI on Graph Representation

	Detecting Inconsistency Based on Sequence Mining
	Experimental Results
	Offline Evaluation
	Metrics on Live Code Review Recommendations
	Comparison with published results

	Related Work
	Conclusions
	Graph Representation
	Illustrative Example for PMI-based detection
	Token level approach
	Mine code patterns
	Detect abnormal code
	Prune false positives

	Sequence Mining-based Inconsistency Detection
	Sequence Mining
	Step 1: Extract features
	Step 2: Frequent Itemset Mining
	Step 3: Association Rule Derivation
	Step 4: Sequence Alignment

	An Illustrative Example
	Length-Support Tradeoffs

	Real-world Examples
	Examples of PMI approach
	Examples of Sequence-mining approach
	Sequence-based: Null-Check
	Sequence-based: Try-Exception
	Sequence-based: API Calls

