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Abstract

Optimization-based meta-learning typically as-
sumes tasks are sampled from a single distribu-
tion – an assumption that oversimplifies and lim-
its the diversity of tasks that meta-learning can
model. Handling tasks from multiple distributions
is challenging for meta-learning because it adds
ambiguity to task identities. This paper proposes
a novel method, ST-MAML, that empowers model-
agnostic meta-learning (MAML) to learn from mul-
tiple task distributions. ST-MAML encodes tasks
using a stochastic neural network module, that sum-
marizes every task with a stochastic representa-
tion. The proposed Stochastic Task (ST) strategy
learns a distribution of solutions for an ambiguous
task and allows a meta-model to self-adapt to the
current task. ST-MAML also propagates the task
representation to enhance input variable encod-
ings. Empirically, we demonstrate that ST-MAML
outperforms the state-of-the-art on two few-shot
image classification tasks, one curve regression
benchmark, one image completion problem, and a
real-world temperature prediction application.

1 INTRODUCTION
Meta-learning aims to train a model on multiple machine
learning tasks to adapt to a new task with only a few
training samples. Optimization-based meta-learning like
model-agnostic meta-learning (MAML) facilitate such a
goal by involving the optimization process. For example,
MAML trains a global initialization of model parameters
that are close to the optimal parameter values of every
task (Finn et al., 2017). Recent methods expand MAML’s
“global initialization” to a notion of“globally shared knowl-
edge”, including not only initialization (Finn et al., 2017;
Li et al., 2017; Rajeswaran et al., 2019) but also update
rules (Andrychowicz et al., 2016; Ravi and Larochelle,
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Figure 1: We are given three red dots representing the training
data for a meta-test task. The dashed and solid curves are potential
explanations of the data (better read in color). (a) Homogeneous
setup. All meta-training tasks are sampled from linear regression
family. (b) Heterogeneous setup. The meta-training tasks are sam-
pled from three possible function families including sinusoids,
straight line, and quadratic. It is difficult to figure out what family
this meta-test task is sampled from, due to limited annotated data
and three possible meta distributions.
2017). Globally shared knowledge allows these methods
to produce good generalization performance on new tasks
with a small number of training samples.
Most optimization-based meta-learning algorithms assume
all tasks T are identically and independently sampled from
a single distribution (Andrychowicz et al., 2016; Finn et al.,
2017; Li et al., 2017; Ravi and Larochelle, 2017; Rusu et al.,
2018). We refer to meta-learning’s task distribution as the
“meta-distribution”. Formally, these methods assume T ∼
P (T ). Real-world tasks, however, may come from multiple
meta-distributions, T ∼ {P1(T ), P2(T ), · · · , Pk(T )}. For
instance, when analyzing multiple writers’ hand written dig-
its, writers from different age group (like children versus
adults) indicate different meta-distributions. This more chal-
lenging setup, we call task heterogeneity, poses technical
challenges to homogenous strategies like MAML (Vuorio
et al., 2019).
For task heterogeneity, a naive and widely accepted meta-
learning solution first learns a globally shared initialization
across all meta-distributions and then tailors model param-
eters to the current task (Vuorio et al., 2019; Yao et al.,
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2020, 2019; Lee and Choi, 2018; Oreshkin et al., 2018).
The tailoring step needs to rely on the task-specific infor-
mation or, ideally, the identity information of the task. It,
therefore, requires the meta-learner to infer the potential
identity of a new task from a limited number of annotated
samples (Finn et al., 2018). This requirement raises severe
uncertainty issues – a challenge known as “task ambiguity”.
Figure 1 provides a concrete example of the task ambiguity
that arises from limited annotated data and unknown meta
distribution when facing task heterogeneity. Surprisingly,
recent optimization-based meta-learning literature pays lit-
tle attention to the task ambiguity challenge (Vuorio et al.,
2019; Yao et al., 2020, 2019; Lee and Choi, 2018). Besides,
the task heterogeneity amplifies the “distribution shift” is-
sue (Zhang et al., 2021; Dubey et al., 2021). The difference
between two tasks can significantly increase in the heteroge-
neous setup since tasks are from various meta-distributions.
This paper proposes a novel meta-learning method
ST-MAML for the task heterogeneity challenge. Our ap-
proach extends MAML by modeling tasks as a stochastic
variable that we call the “stochastic task”. Stochastic tasks
(STs) let us learn a distribution of solutions to capture the
uncertainty of an ambiguous new task. At the same time,
STs enable self-adaptive model initialization based on the
current task. We use variational inference as a solver and
the whole learning process is meta-distribution agnostic. We
apply ST-MAML to a wide range of common meta-learning
benchmarks including synthetic regression, image comple-
tion, and few-shot image classification, where ST-MAML
exceeds the performance of existing work. We also build
a large temperature prediction dataset that highlights the
challenges of real-world meta-distributions. Our empirical
results demonstrate that ST-MAML outperforms the MAML
baselines by 40% on this new task.

2 METHODS

2.1 PRELIMINARIES ON META LEARNING
We describe a supervised learning task in meta-learning as

T = {Loss(),fθT ,Dtr
T ,D

te
T }

= {Loss(),fθT , [Xtr
T ,Y

tr
T ], [Xte

T ,Y
te
T ]}, (1)

Here Loss(), which takes as input model fθT and dataset,
describes the loss function that measures the quality of
learner fθT , whose parameter weight is θT . Every task
includes an annotated training setDtr

T = [Xtr
T ,Y

tr
T ] and a

test set Dte
T = [Xte

T ,Y
te
T ]. During meta-training, the test

setDte
T is fully observed, but during meta-testing only its in-

putXte
T is available.Dtr

T andDte
T are sampled from X ×Y ,

X describes the input space and Y is the output space.
The goal of meta learning is to train a learning machine
which can perform well on Dte

T after fine-tuning on this
task’s training set Dtr

T . The difficulty lies at finding a bal-
ance between underfitting to all tasks and overfitting to any
particular task. MAML (Finn et al., 2017) achieves such

a goal by learning a globally shared weight initialization
θ∗ that is close to the optimal weight parameter of every
task. We can write its training objective for getting the best
initialization θ∗ as:

min
θ

E
T ∼P (T )

[Loss(fθ1
T
,Dte
T )],

where θ1T = θ0T − α∇θ[Loss(fθ0
T
,Dtr
T )],

and θ0T = θ. (2)

MAML samples a set of tasks {T } from the meta distri-
bution P (T ) and initialize each task’s weight θ0T from the
global knowledge θ (to be learnt): i.e., setting θ0T = θ. On
each task, the learner performs gradient descent on its train-
ing setDtr

T to reach task-specific fine-tuned parameters θ1T .
The test set Dte

T of task T is used for evaluating parame-
ter θ1T , and the evaluation will be used as the objective to
optimize for learning the best global knowledge θ.
In probabilistic language, the above objective (in Eq. (2))
can be equivalently framed as maximizing the likelihood:

max
θ

∏
T ∼P (T )

[L(T )] =
∏

T ∼P (T )

p(Y te
T |Xte

T ,D
tr
T ,θ) (3)

=
∏

T ∼P (T )

∑
θ1
T

p(Y te
T |Xte

T ,θ
1
T )p(θ

1
T |Dtr

T ,θ), (4)

where p(θ1T |Dtr
T ,θ) is a Dirac distribution derived by mini-

mizing the negative log-likelihood(NLL) onDtr
T with gra-

dient descent.

2.2 PREVIOUS HETEROGENEOUS META
LEARNING

Task-homogeneous meta-learning assumes that there exists
one meta-distribution P (T ) and all tasks are identically
and independently (i.i.d.) sampled from P (T ). Differently,
in a task-heterogeneous setup, there exist multiple meta-
distributions T ∼ {P1(T ), P2(T ), · · · , Pk(T )}.
We can naively use MAML and assign all tasks with the
same global initialization (though they come from different
distributions). Figure 1(a, b) show that the “task ambiguity”
issue is more critical in task-heterogeneous setup and will
hinder the generalization from MAML initialization since
multiple very different task distributions exist.
A handful of previous works learn a customized initializa-
tion that was tailored from global initialization, in order to
tackle the task heterogeneity challenge. MMAML (Vuorio
et al., 2019) learns a deterministic task embedding with an
RNN module. HSML (Yao et al., 2019) manually designs
a task clustering algorithm to assign tasks to different clus-
ters, then customizes the global initialization to each cluster.
ARML (Yao et al., 2020) models global knowledge and
task-specific knowledge as graphs; the interaction between
tasks is modeled by message passing.
However, none of the recent works consider the task ambi-
guity issue when solving task-heterogeneous domains. Most
frameworks are still based on the assumption that only one
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Figure 2: Probabilistic model overview of ST-MAML . The
stochastic variable ZT conditioned on task information
(XT ,YT ) is used for model’s self-adaptation and input vari-
able’s re-encoding.

Algorithm 1 ST-MAML META-TRAINING PROCEDURE.

1: Input: Meta-distribution set {P1(T ), · · · , Pk(T )}, Hyper-parameters γ1 and
γ2.

2: Randomly initialize model parameter θ, stochastic task module parameters φ,
tailoring module parameters w, input encoding parameters β.

3: while not DONE do
4: Sample batches of m tasks {T } from meta-distribution set.
5: for every task T do
6: Infer the posterior distribution of stochastic task variable q(ZT |T ) and

sample zT ∼ q(ZT |T ). [eq.(8) and eq.(10)]
7: Tailor θ with sample zT to get task-specific initialization θ0T . [eq.(12)]
8: Revise the encoding of input variable by augmenting the raw input.

[eq.(13)]
9: Evaluate the inner loss Lin(T ) on training setDtr

T . [eq.(17)]
10: Compute adapted parameter and augmented feature with gradient descent

[eq.(18)]:
θ1T = θ0T − γ1∇θ0

T
Lin(T ), h1

T = h0
T − γ1∇h0

T
Lin(T ).

11: end for
12: Update θ,φ,w,β with γ2

1

m
∇[θ,φ,w,β]

∑
T LELBO(T ). [eq.(16)]

13: end while

distribution exists to explain a task’s observed training set
(e.g., a new task should be assigned to only one cluster in
HSML). However, the source of a task can be highly uncer-
tain based on limited annotated data. Figure 1(b) shows that
there can be multiple explanations of an observed dataset in
the task-heterogeneous setup and we should not expect to
obtain a unique solution.

2.3 STOCHASTIC ZT TO ENCODE TASK
When facing the task-heterogeneous setup, we hypothesize
that a meta-learner that can encode potential tasks’ pat-
terns will help alleviate the task ambiguity issue. These
patterns could describe valuable information about tasks
like the more possible shapes of curves for a regression
meta-application. Moreover, we propose to enable task en-
coding with uncertainty estimates. This is because learning
a task representation from its limited annotated data is chal-
lenging and such uncertainty measures can help inform the
downstream meta-adaptation to new tasks (see Figure 1(b)).
This hypothesis motivates us to describe a task T with a
stochastic variable ZT and model its distribution to condi-
tion on observations. With this additional latent variable, we
can rewrite the per task likelihood L(T ) in Eq. (3) as:

L(T ) =
∑
ZT

p(Y te
T |Xte

T ,D
tr
T ,ZT ,θ)p(ZT |Dtr

T ). (5)

We assume in the second term from above, ZT only condi-
tions onDtr

T . Figure 2 shows our design.
In Section (2.5), we show that the likelihood is intractable as
defined above, and choose to maximize its evidence lower
bound (a.k.a ELBO) instead. Optimizing this variational
objective requires the prior p(ZT |Dtr

T ) and the posterior
q(ZT |T ). We model the prior p(ZT |Dtr

T ) as a Gaussian
distribution, whose mean and variance are outputs from a
multi-layer perceptron (MLP) module with input vector rT :

p(ZT |Dtr
T ) = N (µ(rT ),σ(rT )). (6)

Here vector rT is a vector summarizing the encoding of a
task T . We propose a neural network module to learn rT
from the sample observations Dtr

T . The training observa-
tions of task T consist of unordered annotated data pairs
[(xtr
T ,y

tr
T )]. Permutation invariance is a desirable property

for functions acting on sets. Zaheer et al. (2017) showed
any function acting on sets S is permutation invariant if and
only if it can be decomposed as ρ(

∑
s∈S φ(s)) for suitable

choice of transformations ρ, φ. We follow such a design,
and encode a task by encoding every pair of its observation
inDtr

T through a neural network layer:

rT ,j = g
Enc
φ (xtr

T ,j ,y
tr
T ,j), j = 1, · · · , |Dtr

T |, (7)

rT =
1

|Dtr
T |

|Dtr
T |∑

j=1

rT ,j . (8)

Eq. (8) uses average function as aggregation operator to
obtain the task embedding because it is able to remove the
inductive bias due to different sizes of training set from rT .
In Eq. (7), gEnc

φ () is implemented as a MLP module with
learnable parameter φ.
We then approximate the intractable posterior distribution
q(ZT |T ) of ZT as conditioned on the whole {Dtr

T ,D
te
T }

(see Appendix S2):

q(ZT |T ) = q(ZT |Dtr
T ,D

te
T ) = N (µ(r′T ),σ(r

′
T )), (9)

r′T =
1

|T |

|T |∑
j=1

rT ,j , j = 1, · · · , (|Dtr
T |+ |Dte

T |), (10)

where |T | = |Dtr
T | + |Dte

T | , µ(·) and σ(·) are the same
MLP modules we have in Eq. (6).

2.4 ST-MAML : SELF ADAPTATION WITH ZT

We propose to revise MAML for the heterogeneous meta-
learning setup using the summary task representation ZT ,
creating ST-MAML .ZT helps tailor the global initialization



θ to task-specific initialization θ0T for a task T . Its basic
motivation is to improves flexibility by incorporating task
information into the model. This self adaption design is
motivated by the recent ideas that design self-adaptation
conditioned on global knowledge to conquer distribution
shift issue in domain generalization/adaptation (Zhang et al.,
2021; Dubey et al., 2021; Xiao et al., 2021; Vuorio et al.,
2019).
There exist many potential ways to use ZT to tailor the
global initialization θ to task-specific initialization θ0T . We
assume our target learning machine is a composition of a
base learner and a task learner:

fθT = fθc(fθb).

Here the base learner’s parameters are θb, and the task
learner’s parameters are θc. For example, in an image clas-
sification domain the base learner would be the the CNN
backbone and the task learner would be the last linear layer.
We can then rewrite θ = [θb,θc]. We propose to only cus-
tomize θc with ZT :

θ0T = gGate
w (θ,ZT ) = [θb, σ(w1zT +w0)� θc], (11)

= [θb, σ(wgate)� θc] (12)

Here zT is sampled from the distribution q(ZT |T ) during
meta-training and from p(ZT |Dtr

T ) during meta-testing. σ
is the sigmoid function, � represents the element-wise mul-
tiplication,w = [w1,w0]

T are learnable parameters.wgate,
the gate vector will apply element-wise scaling to navigate
global initialization θ to task-specific initialization θ0T .
Moreover, we design additional customized knowledge for
task T . The basic intuition is that the final prediction of a
meta-learner depends on both model parameters and input
representations. To increase the capacity of the task-specific
knowledge, we propose to further propagate task represen-
tation ZT into encoding augmented feature representations
we denote as hT . We concatenate hT with a sample’s input
representation xT , and feed the combined vector x̂T to our
learning machine as its new input.

h0
T = gInβ (ZT ) = β1zT + β0, x̂T = [xT ,h

0
T ]. (13)

Same as Eq. (12), zT is sampled from its distribution, β =
[β1,β0] are learnable parameters.
Now when facing a new task T , a meta-model will first
generate the task-specific knowledge that includes both aug-
mented feature hT and task-specific parameter θT . We de-
note the combined knowledge set for task T as:

ΘT = [θT ,hT ]. (14)

This is the meta-knowledge we need to learn in ST-MAML .
We note its initial values as Θ0

T = [θ0T ,h
0
T ] and fine-tuned

values as Θ1
T = [θ1T ,h

1
T ].

Aiming to learn the meta knowledge defined in Eq. (14), we

can rewrite our objective (task likelihood) in Eq. (5):

L(T ) =
∑

Θ0
T ,Θ1

T ,ZT

p(Y te
T |Xte

T ,Θ
1
T )p(Θ

1
T |Θ0

T ,D
tr
T )

p(θ0T |θ,ZT )p(h0
T |ZT )p(ZT |Dtr

T ).

(15)

This follows the Bayesian graph provided in Figure 2.

Design Choices: There exist many other possible proba-
bilistic designs besides Figure 2. For instance, we can model
every variable in the figure as a stochastic distribution and
build a complicated hybrid framework. However, this will
lead to excessive stochasticity and increase the potential of
underfitting in a limited data situation. Instead, similar to
p(Θ1

T |Θ0
T ,D

tr
T ), we choose to model both p(h0

T |ZT ) and
p(θ0T |θ,ZT ) as deterministic (see Eq. (12) and Eq. (13))
that allow us to employ an amortized variational inference
technique Ravi and Beatson (2019).
Our design is different from recent probabilistic extensions
of MAML Finn et al. (2018); Yoon et al. (2018). They
conduct inference on model parameters θT (initial value θ0T
or fine-tuned value θ1T ). Our ST-MAML shifts the burden of
variational inference to the task representation ZT , whose
dimension is of multiple orders smaller than the size of
model parameters.

2.5 ST-MAML : UPDATE RULES
Variational Objective: To optimize the intractable like-
lihood as defined in Eq. (15), we choose to maximize its
evidence lower bound (a.k.a ELBO) instead:

LELBO(T ) = EΘ1
T ∼q(Θ1

T |T ) log p(Y
te
T |Xte

T ,Θ
1
T )

−KL(q(ZT |T )||p(ZT |Dtr
T ). (16)

During meta-training, we sample m tasks and optimize the

empirical average
1

m

m∑
t=1
LELBO(Tt).

Update Rules: Much like MAML, the optimization of
ST-MAML consists of two nested loops. Figure 3 shows the
iterative optimization process. In the inner loop, for the jth
training data, we concatenate xtr

T ,j with augmented feature
h0
T to get augmented input vector x̂tr

T ,j . We feed x̂tr
T ,j into

the learning machine f whose parameter is θ0T to calculate
the inner loss:

Lin(T ) =
1

|Dtr
T |

|Dtr
T |∑

j=1

L(fθ0
T
, [x̂tr
T ,j ,y

tr
T ,j ]). (17)

The inner loss is then used for updating θ0T and h0T :

h1
T = h0

T −
∂Lin(T )
∂h0
T

, θ1T = θ0T −
∂Lin(T )
∂θ0T

. (18)

Figure 3 shows we can optimize the inner loss for K iter-
ations to achieve a closer approximation for optimal val-
ues in Eq. (17). In the outer loop, we maximize the ap-
proximated ELBO LELBO in Eq. (16) using a batch of m
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Figure 3: Iterative optimization process. In the inner loop, Starting from task-specific parameter initialization θ0T and augmented features
h0
T , their fine-tuned values θKT ,h

K
T are inferred by performing gradient descent on the training setDtr

T for K iterations.

tasks. The amortized variational technique allows us to con-
duct the sampling from q(Θ1

T |T ) by first sampling from
q(ZT |T ) and then applying a deterministic transformation
using Eq. (12) and Eq. (13).

Algorithm of ST-MAML : We describe the procedure of
ST-MAML in the form of pseudo code as shown in Algo-
rithm 1. Note, parameters of neural functions µ(·), σ(·),
gEnc
φ (), gGate

w (), and gInβ () are updated in the outer loop.

Theoretical Analysis of ST-MAML : We also provide a
second interpretation of our objective from an information
bottleneck perspective and prove they lead to exactly the
same target. See Appendix S3 for detailed proofs.

2.6 CONNECTING TO RELATED WORK
Optimization-based meta-learning methods facilitate the
model’s adaption to new tasks through global knowledge
learned by the optimization process. Meta-LSTM (Ravi
and Larochelle, 2017) meta-learns the update rule with
an RNN meta-learner. MAML (Finn et al., 2017) trains
a global initialization close to the optimal value of every
task. Leveraging diverse meta-knowledge further acceler-
ates the learning process. In Meta-SGD (Li et al., 2017),
the meta-knowledge consists of both initialization and learn-
ing rate. ALFA (Baik et al., 2020) proposes to meta-learn
both initialization and hyperparameter update module. Most
methods assign the same global knowledge to every task
that leads to sub-optimal solutions for heterogeneous set-
tings. Besides, they are all deterministic and can only learn
one solution for a new task.
Bayesian approaches are a long-standing discipline that in-
corporates uncertainty in modeling. Multiple recent works
extend MAML into the Bayesian framework and recast
meta-learning as the probabilistic framework (Finn et al.,
2018; Grant et al., 2018; Yoon et al., 2018; Ravi and Beat-
son, 2019; Garnelo et al., 2018b). BMAML (Yoon et al.,
2018) recast MAML into probabilistic framework and pro-
vides a Bayesian explanation of MAML. PLATIPUS (Finn
et al., 2018) builds upon amortized variational inference and
injects Gaussian noise into the gradient during the meta-
testing time to learn a distribution over model parameters.
LLAMA (Grant et al., 2018) applies Laplace approxima-
tion for modeling the parameter distribution, but it requires
the approximation of a high dimensional covariance ma-

trix. These methods view model parameters (i.e. network
weights and bias) as random variables and perform inference
on them. This leads to significant challenges when working
with complicated models and high-dimensional data.
Our work also loosely connects to the “prototype meta-
learning" (Triantafillou et al., 2019; Snell et al., 2017).
These studies learn a prototype for every class we need to
predict and the final prediction depends on the distances be-
tween instances and prototypes. Amortized bayesian proto-
type meta-learning (Sun et al., 2021) assumes a distribution
over class prototypes. This design requires prior knowledge
about the classes of tasks and only applies to the classifica-
tion homogeneous-meta setup.
Another line of related works studies neural approximators
of the stochastic process family (Garnelo et al., 2018b;
Wang and Van Hoof, 2020; Louizos et al., 2019; Kim et al.,
2018). They learn a prior for every task or further use a
hierarchical model that learns the instance prior. However,
these methods don’t share knowledge across tasks. Table S1
compares related lines of works with ours.

Table 1: A summary of datasets and tasks.
Problems Tasks Cardinality |Dtr

T | → |Dte
T |

Regression
2D regression k = 6 10→ 40

Weather prediction k > 9000 10→ 100
Image completion k = 3 40→ 784

Classification
PlainMulti classification k = 4 5way 5shot

CelebA binary classification
k = 1 2way 5shot(see Appendix S4)

3 EXPERIMENTS
Our experiments are designed to answer the following:

Q1. Does ST-MAML successfully meta-learn from hetero-
geneous tasks across a variety of applications?
Q2. How does ST-MAML perform when we have more or
less task ambiguity?
Q3. How does ST-MAML compare to previous heteroge-
neous meta approaches in terms of accuracy and adaptation?
Q4. How does ST-MAML perform when applied to a chal-
lenging real-world dataset?
To answer Q1, we select a wide range of applications in our
experiments. We provide a summary of our experimental
datasets, and their properties in Table 1 .



Table 2: Prediction error with 95% confidence interval on 2D regression tasks.
Model MAML MetaSGD BMAML MMAML HSMAML ST-MAML ST-MAML w/o aug ST-MAML w/o tarilor
MSE 2.29± 0.16 2.91± 0.23 1.65± 0.10 0.52± 0.04 0.44± 0.03 0.37± 0.04 0.44± 0.05 0.41± 0.06

(a) (b) (c) (d)
Figure 4: Few-shot 2D regression with various number of training data and noise level. (a) |Dtr

T | = 2, σ = 0.3 (b) |Dtr
T | = 5, σ = 0.3,

(c) |Dtr
T | = 10, σ = 0.8, (d) |Dtr

T | = 10, σ = 0.1. Black star represents training data, dashed lines characterize different sampled
models, the blue curve is the true mapping. Solutions sampled from ST-MAML span a wide range and stay faithful around annotated data.

We compare against several baselines representing four
meta-learning groups: (1) meta-learning methods designed
for homogeneous tasks: MAML (Finn et al., 2017) and
MetaSGD (Li et al., 2017). (2) Meta-learning methods de-
signed for heterogeneous tasks including MMAML (Vuo-
rio et al., 2019) and HSMAML (Yao et al., 2019). (3)
Bayesian meta-learning methods: Bayesian MAML (Yoon
et al., 2018), which recasts MAML into the Bayesian frame-
work. (4) Neural processes (NPs) methods (Garnelo et al.,
2018a,b). NPs learn a distribution over solutions and are
regarded as state-of-the-art methods for small scale meta-
learning regression applications.

3.1 2D REGRESSION: SIMULATED STUDIES
To answer Q2, we generate synthetic heterogeneous regres-
sion tasks that come from multiple functional families of
curves. We use probabilistic meta-learning models to sample
and visualize multiple solutions.

Setup. We follow a similar setup as (Yao et al., 2020)
to generate 2D regression tasks. The meta-distribution set
{Pk(T )} consists of 6 function families including sinusoids,
straight line, quadratic, cubic, quadratic surface, and ripple
functions. We perturb the output by adding Gaussian noise
with standard deviation 0.3 in meta-train tasks. During meta-
training, every task is uniformly randomly sampled from
one of the 6 function families, and the size of the training
set |Dtr

T | = 10. We adopted mean square error (MSE) to
measure prediction accuracy. A detailed description of the
setup and model architecture is available in Appendix S5.

Results, ablations, and analysis. We train models on
around 10, 000 tasks and evaluate it on over 1, 000 newly
sampled tasks. The results are summarized in Table 2. We
can see clearly ST-MAML outperforms the baselines. To
better investigate the contribution of each component, we
perform ablation experiments by either removing model
tailoring or input variable augmentation. Table 2 shows that
both types of task-specific knowledge provide important
contributions and their combination gives the best perfor-

mance.
We visualize example curve fits in Figure 4 and Figure S1.
During meta-testing, we can decrease the size of training
set or increase the noise level such that tasks ambiguity can
be more concerning. In Figure S1, all sampled solutions
are close to the ground-truth since tasks are less uncertain.
Differently, Figure 4 shows that as tasks become more am-
biguous, those sampled solutions by ST-MAML tend to span
a wider range. However, they stay faithful around those an-
notated training data. More analysis visualization results
can be found in Appendix S5.

3.2 HETEROGENEOUS FEW-SHOT
CLASSIFICATION

To answer Q3, we apply ST-MAML on two common few-
shot classification benchmarks from the literature. With
space limit, results on CelebA data are in Appendix S4.

Setup N-way K-shot classification is a popular setup in
few-shot meta-learning (Chen et al., 2019; Ren et al., 2018;
Vinyals et al., 2016). The training set of every task consists
ofN classes withK labeled data in each class. In the bench-
mark Plain-Multi dataset, each meta-task is sampled from
one of four diverse datasets (Yao et al., 2019). We follow the
benchmark architecture, including a feature learner using
four convolutional blocks. Our ST module takes the input
x into two convolutional blocks with 6 channels, and then
concatenate the output vector with the target variable into a
two-layer MLP to model the mean and variance of ZT .

Results, ablations, and analysis. After training on over
50, 000 total tasks, the model is evaluated on 1, 000 tasks
for each dataset and the results are summarized in Table 3.
The most relevant method is MMAML. It learns a determin-
istic task embedding with an RNN module and encodes all
parameters in both base learner fθb and task learner fθc .
Our method outperforms it on every dataset. Also, the prob-
abilistic framework enables us to achieve consistently low
variance. Note that HSMAML uses the prior knowledge
about the number of clusters, which plays an important role



Table 3: 5-way 5-shot classification accuracy with 95% confidence interval on Plain-Multi dataset.

Settings Algorithms Data: Bird Data: Texture Data: Aircraft Data: Fungi

5-way
5-shot

MAML 68.52± 0.79% 44.56± 0.68% 66.18± 0.71% 51.85± 0.85%
MetaSGD 67.87± 0.74% 45.49± 0.68% 66.84± 0.70% 52.51± 0.81%

BMAML 69.01± 0.74% 46.06± 0.69% 65.74± 0.67% 52.43± 0.84%
MMAML 70.49± 0.76% 45.89± 0.69% 67.31± 0.68% 53.96± 0.82%
HSMAML 71.68± 0.73% 48.08± 0.69% 73.49± 0.68% 56.32± 0.80%

ST-MAML 72.49± 0.53% 46.51± 0.42% 72.64± 0.44% 55.29± 0.57%
ST-MAML (w/o aug) 71.49± 0.55% 47.17± 0.44% 71.62± 0.43% 54.91± 0.56%
ST-MAML (w/o tailor) 71.48± 0.55% 46.07± 0.40% 70.46± 0.44% 54.59± 0.56%

with respect to the final accuracy. Our ST-MAML does not
reply upon such prior and achieves lower variance and simi-
lar performance than HSMAML. We again run two ablated
versions of the proposed ST-MAML , and compare it against
the full version. The combination of input augmentation and
model tailoring yields the best results and is most capable
of confronting task-heterogeneity.

3.3 REAL-WORLD TEMPERATURE PREDICTION
Now we answer Q4 by applying ST-MAML to a challenging
regression problem using real-world data.

Setup. The NOAA Global Surface Summary of the Day
(GSOD) dataset contains daily weather data from thousands
of stations around the world. Each task is created by sam-
pling data points from (station, year) pairs. Each sample
takes in one date of the year along with 15 weather fea-
tures such as wind speed, station elevation, precipitation,
fog, air pressure, etc for that date. It then learns to predict
the average temperature in Fahrenheit on that day. We re-
move important information like the weather station number,
name, latitude, and longitude. Hiding the station information
in this way creates a highly heterogeneous problem where
each station generates its own task distribution. The model
sees 10 days of labeled temperature data before predicting
the temperature on 100 test days. More technical details can
be found in Appendix S5.

Results and analysis. After 100 epochs of training on ap-
proximately 42, 000 unique (station, year) tasks, we evaluate
the model on a test set of 1, 000 (station, year) pairs. The re-
sults are summarized in Table 4. ST-MAML predictions are
approximately 40% more accurate than MAML. MetaSGD,
designed for homogeneous meta-learning, achieves low ac-
curacy because the globally learned learning knowledge
hurts the model’s generalization to unseen tasks from dif-
ferent distributions. This is consistent with our assumption
that incorporating task-specific knowledge into the model
can help solve the task-heterogeneous challenge. We also
perform ablation experiments in Table 4. Both tailored ini-
tialization and augmented features outperform the baselines,
and they combine for further improvement. Figure S2 pro-

vides a visualization of trained ST-MAML on the NOAA-
GSOD temperature prediction task.

3.4 HETEROGENEOUS IMAGE COMPLETION
While we have already demonstrated ST-MAML on regres-
sion and classification tasks, we continue to answer Q1 by
expanding to image completion, which is a popular small
scale meta-learning task.

Setup. In our heterogeneous image completion
application, the meta distribution set {Pk(T )} =
{MNSIT,FMNIST,KMNIST}. Every task contains one
image of size 28 × 28 sampled randomly from one of
the three dataset distributions. In meta-training, 40 pixels
are observed for every image, thus, |Dtr

T | = 40. We
use coordinates as inputs and pixel value as the target
variable. Each image completion can be interpreted as a
meta-learning task which generalizes the knowledge from
a limited training set |Dtr

T | = 40 to the entire image of
size |Dte

T | = 784. Architecture details can be found in
Appendix S5.

Baselines, results and analysis. The described setup is
a benchmark task for Neural processes (Garnelo et al.,
2018a,b). Thus, we compare our proposed ST-MAML with
neural processes (NP) (Garnelo et al., 2018b) and condi-
tional neural processes (CNP) (Garnelo et al., 2018a) which
is a deterministic NP. The numerical comparison is shown
in Table 5. ST-MAML achieves higher completion precision
compared with NP and CNP. We leave out the variance for
all methods because the difference is insignificant.
Image completion task can be highly ambiguous, because
there exist multiple full image choices that could explain the
pattern of a handful of observed pixels, especially for gray
images. Uncertainty arises on three levels: the inter-class
level, inter-distribution level, and cross-distribution level.
ST-MAML can capture more potential truths by learning a
distribution of possibilities rather than a unique mapping.
We visualize observations and their completions in Fig-
ure 5. Interestingly, when we compare the two half-rows
describing image completion for a button-up shirt image,
the half-row with more pixels observed during meta-testing,



Table 4: 10-Shot temperature prediction. Mean square losses are averaged across over 1,000 sampled test tasks.

Model MAML MetaSGD ST-MAML ST-MAML (w/o aug) ST-MAML (w/o tailor)
MSE 141.43± 9.33 291.42± 14.89 86.56± 4.89 100.27± 5.87 106.37± 5.77

Figure 5: Visualization of completed images. First column contains original images, second column shows the observations which contains
8 annotated pixels (left) and 40 annotated pixels (right). The unobserved pixels have been colored blue for better clarity. The remaining
columns correspond to 4 different sampled solutions (completed images) given observations.
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its task is less ambiguous. Therefore, its completed images
are closer to the original image. This reflects one merit of
ST-MAML : its set operations allows ST-MAML to learn
from any size of the training set during meta-testing.

Table 5: Image completion accuracy. Binary cross entropy values
are averaged across 300 test tasks.

Model NP CNP ST-MAML (deter) ST-MAML
BCE 0.302 0.358 0.272 0.268

3.5 VISUALIZATION OF GATE VECTORS wgate.
As noted in Section (2.4), gate vector wgate (Eq 12),
which originates from stochastic task variable ZT , trans-
lates global initialization θ to task-specific initialization θ0T .
Thus, we hypothesis patterns of gate vectors contain infor-
mation about the relationships between similar tasks. To
gain insights into the tasks’ gate vectorswgate, we visualize
sampled vectors on two applications: 2D regression and im-
age completion. For both applications, we sample 200 tasks
from each Pk(T ), and visualize their gate vectors wgate

using a t-SNE plot (Van der Maaten and Hinton, 2008). The
visualizations are shown in Figure 6. Gate vectors of tasks
from the same distribution (shown as same color points)
are clustered on t-SNE plots while tasks from very distinct
distributions are further away. For instance, In Figure 6 left,
sinusoidal regression tasks (blue) sit far away from ripple
surface tasks (brown). These observations can be seen as
evidence of the task identification capability of ST-MAML

. Furthermore, tasks from similar distributions may entan-
gle (Figure 6 left, linear, quadratic, and cubic regression
tasks). The uncertain identity of similar tasks justifies the
representation of task information as stochastic variables.

4 CONCLUSION
Task heterogeneity is one critical challenge in meta-learning.
Most meta-learning methods assign the same initialization to
every task and fail to handle task heterogeneity. ST-MAML
encodes tasks using a stochastic task module with set-based
operations for permutation-invariance. The probabilistic
framework allows us to learn a distribution of solutions
for ambiguous tasks and recover better potential task iden-
tities. This stochastic task design allows for customizing
global knowledge with a learned stochastic task distribution.
Empirically, we design extensive experiments on various
applications and show that ST-MAML provides an effective
way to learn from diverse and ambiguous tasks. As next step,
we plan to add domain generalization during meta-testing
to enhance our work.
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