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(a) Input (b) Son et al. [SLKL14] (d) Ours

Figure 1: Image tone enhancement. Our method is trained to mimic the behavior of Son et al.’s method [SLKL14] while preserving the
naturalness for tone enhancement. While Son et al.’s method may produce unnatural-looking results because of their goal to maximize tone
and detail, our method produces natural-looking tone enhancement results with appropriately boosted local contrasts and details.

Abstract
This paper proposes a deep learning-based image tone enhancement approach that can maximally enhance the tone of an
image while preserving the naturalness. Our approach does not require carefully generated ground-truth images by human
experts for training. Instead, we train a deep neural network to mimic the behavior of a previous classical filtering method that
produces drastic but possibly unnatural-looking tone enhancement results. To preserve the naturalness, we adopt the generative
adversarial network (GAN) framework as a regularizer for the naturalness. To suppress artifacts caused by the generative
nature of the GAN framework, we also propose an imbalanced cycle-consistency loss. Experimental results show that our
approach can effectively enhance the tone and contrast of an image while preserving the naturalness compared to previous
state-of-the-art approaches.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

Photographic tone is one of the most important components
that make pictures aesthetically appealing. For tone adjust-
ment, many image filtering techniques have been developed such
as classical contrast enhancement methods using intensity his-
tograms [GW06], two-scale tone management [BPD06], local
Laplacian filters [PHK11], and art-photographic detail enhance-
ment [SLKL14]. However, most of these methods require the in-
volvement of a user to adjust the parameters to maximize the en-
hancement effects while preserving the naturalness, as simply max-
imizing filtering effects often leads to unnaturally-looking results
as shown in Fig. 1(b).

Recently, many deep learning-based approaches have been intro-
duced to automatically enhance images without manual interven-
tion [YZW∗15, IKT∗17, CWKC18, IKT∗18, HHX∗18, PLYK18].
These methods can produce high-quality results without man-
ual parameter controls. However, they require carefully designed
ground-truth labels, i.e., ideally adjusted results for input images,
which have to be manually prepared by human experts, as done for
the MIT-Adobe FiveK dataset [BPCD11]. Otherwise, the networks
may learn to produce unnatural-looking results.

In this paper, we propose a deep learning-based approach to pho-
tographic tone enhancement (Fig. 1(c)). Our approach trains a deep
neural network (DNN) to mimic the behavior of previous classi-
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cal filtering while preserving the naturalness. Our approach does
not require any manually generated ground-truth labels, but directly
learns from pairs of an input image and its automatically-generated
filtering result that could look unnatural due to inappropriate pa-
rameters. To preserve the naturalness while mimicking the effect
of a classical filter, we adopt the generative adversarial network
(GAN) framework as a regularizer for the naturalness.

Simply adopting GAN to preserve the naturalness, however, may
produce artifacts in the results, such as synthetically generated
structures that are not present in the input images due to the gen-
erative nature of GAN. Besides, there may be remaining artifacts
that occur in mimicking the classical filtering results. To resolve
this limitation, we propose an imbalanced cycle-consistency loss to
suppress the generator from producing artifacts. Experimental re-
sults show that our approach can effectively enhance the tone and
contrast of an image while preserving the naturalness compared to
previous state-of-the-art approaches.

Our contributions can be summarized as follows:

• We propose a novel deep learning-based approach that can auto-
matically adjust tone and contrast while preserving the natural-
ness.
• We propose a new training strategy that can train a deep neural

network without ground-truth images that have been manually
adjusted by experts.
• We propose a GAN based regularization approach to preserving

the naturalness.
• We propose an imbalanced cycle-consistency loss to effectively

remove artifacts remaining after the regularization.

2. Related Work

Manipulating the tone and contrast of an image has been widely
investigated with different goals such as tone mapping, detail en-
hancement, inverse tone mapping, tone transfer, and artistic tone
and contrast enhancement. Durand et al. [DD02] propose a fast bi-
lateral filter, and use it for tone mapping. They use the fast bilat-
eral filter to decompose a high-dynamic-range (HDR) image into
base and detail layers, which contain large-scale structures and
small-scale details, respectively. Only the base layer has its con-
trast reduced, and then recomposition with the detail layer pro-
duces a low-dynamic-range (LDR) image while preserving details.
Bae et al. [BPD06] propose a tone transfer method that transfers the
tone of a reference image to a target image. Fattal et al. [FAR07]
use multi-scale bilateral decomposition to enhance surface details.
Paris et al. [PHK11] present local Laplacian filters to decompose an
image into multiple scale details, and transform the details for edge-
preserving smoothing, detail enhancement, tone mapping, and in-
verse tone mapping. Aubry et al. [APH∗14] speed up the local
Laplacian filters by simplifying pixel neighborhood calculation.
Son et al. [SLKL14] propose a detail enhancement method inspired
by art photography. Their method extremely exaggerates fine-scale
details of an image to make a hyper-realistic HDR-looking image.

Recently, deep learning-based approaches have also been intro-
duced. Bychkovsky et al. [BPCD11] propose a global color tone
adjustment method by learning photographers’ retouching styles.
Gharbi et al. [GCB∗17] introduce a DNN architecture to predict

local affine transforms in a bilateral grid [CPD07], which is a
3D array that combines the two-dimensional spatial domain with
a one-dimensional range dimension, for real-time color adjust-
ment. Ignatov et al. [IKT∗17, IKT∗18] propose learning a transla-
tion function from photos taken by smartphone cameras to DSLR-
quality images. Talebi and Milanfar [TM18] propose a deep learn-
ing based image assessment approach and use it for automatic
parameter selection of existing enhancement methods. Chen et
al. [CWKC18] use the CycleGAN [ZPIE17] to learn color en-
hancement from unpaired data. Recently, reinforcement learning
based approaches [HHX∗18, PLYK18] have also been proposed to
enhance photos step-by-step using simple adjustment operations.

While all these methods show excellent results, they require
either careful parameter tuning or carefully generated training
data, such as the MIT-Adobe FiveK dataset [BPCD11] and the
DPED dataset [IKT∗17], to retain the naturalness in the results.
CycleGAN-based methods such as Chen et al.’s [CWKC18] do not
need manually generated training data as they can directly learn
from unpaired data. However, learning from unpaired data is diffi-
cult as unpaired data provide only indirect guidance on image en-
hancement. On the other hand, in our framework, we have specific
target images generated by a classical image filtering method, so
our network can be trained more effectively and produce better im-
age enhancement results as will be shown in Sec. 4.

3. Photographic Tone Enhancement Framework

In this work, we aim to develop a photographic tone enhancement
method to maximize tone and detail while retaining the naturalness.
We also aim to avoid manual parameter tuning and carefully gener-
ated training data. To achieve these goals, we design our framework
as shown in Fig. 2. Our framework consists of one tone enhance-
ment network and three different losses for training the network.
The tone enhancement network takes a photograph as input and
produces its enhanced version. The color similarity loss trains the
enhancement network to mimic the behavior of a classical image
filter with automatically generated training data. The naturalness
loss trains the network to retain the naturalness based on the GAN
framework. Finally, the artifact suppression loss trains the network
to remove artifacts in enhancement results based on an imbalanced
cycle-consistency. In the following, we describe each part of the
framework in detail. Detailed architectures of our networks can be
found in the supplementary material.

3.1. Enhancement Network

The enhancement network G adopts an encoder-decoder struc-
ture, which consists of an encoder, residual blocks, and a decoder
as shown in Fig. 2. It is well-known that a small CNN struc-
ture [XRY∗15] effectively learns classical image filtering such as
bilateral filtering [TM98] and L0 smoothing [XLXJ11]. However,
our problem requires region-specific tone adjustment, which needs
large receptive fields. To effectively enlarge the receptive fields, we
use encoder-decoder network with symmetric skip-connections and
additionally place 16 residual blocks with two convolution layers
between the encoder and decoder. The upsampling in the decoder is
implemented by a resize-convolution layer using nearest neighbor
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Figure 2: Our framework consists of an enhancement network and three loss functions for training the network.

(a) Input (b) Results of [SLKL14]

Figure 3: Examples of Son et al.’s method [SLKL14]. The method
maximizes tone and details of an input image and the result may
look unnatural.

upsampling. In our preliminary test, we used deconvolution lay-
ers instead of resize-convolution layers, but it caused severe blocky
artifacts in our task. We use batch normalization after each convo-
lution layer except the final layer. In our preliminary test, we tested
batch normalization, instance normalization, and no normalization,
and found that batch normalization provided the most stable train-
ing. We use a long skip-connection to add the input image to the
output of the network for residual learning.

3.2. Color Similarity Loss

The color similarity loss enforces the enhancement network G to
learn the behavior of classical image filtering. Specifically, in our
work, we adopt an enhancement filter of Son et al. [SLKL14],
which increases local contrast as much as possible. For generat-
ing training data, we sampled 2,000 input images before retouch-
ing of human experts in the MIT-Adobe FiveK dataset [BPCD11].
We applied Son et al.’s method to the sampled images with the de-

fault parameters in a fully automatic way, and obtained their filtered
results, which we call guide images. The generated guide images
have more contrast and details, but may look unnatural when the
contrast and details are overly enhanced as shown in Fig. 3.

During the training phase, we feed the sampled input images to
the enhancement network G, and update the network parameters
to minimize the loss between the network outputs and the guided
images. The color similarity loss Lcolor is defined as:

Lcolor = Ex∼pdata(x)[MSE(G(x), ID)], (1)

where Ex is an expectation over the distribution pdata(x) of x, MSE
is the mean squared error, and ID is a guide image corresponding
to an input image x. By minimizing Lcolor, the network G is trained
to mimic the behavior of Son et al.’s method, which produces tone-
enhanced but possibly unnatural-looking images.

3.3. Naturalness Loss

To retain the naturalness, we adopt an adversarial loss based on the
GAN framework. Specifically, we define a discriminator network
D that discriminates synthetically enhanced images against natu-
ral images. Using the discriminator, we define the naturalness loss
Lnatural based on least-square GAN [MLX∗17]:

Lnatural = Ex∼pdata(x)[(D(G(x))−1)2]. (2)

By minimizing Lcolor and Lnatural together, the enhancement net-
work is trained to produce images that are similar to enhanced re-
sults of Son et al.’s method and natural-looking.

To train the discriminator, we define the discriminator loss Ldis
as:

Ldis = Ey∼pdata(y)[(D(y)−1)2]+Ex∼pdata(x)[(D(G(x))2], (3)

where pdata(y) is the distribution of natural-looking images, and y
is a sample from the distribution. For the natural-looking images,
we collected 3,200 high-resolution images larger than 1000×1000
that are labeled as ‘HDR’ from Flicker. During the training phase,
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(a) Input (b) Son et al. [SLKL14] (c) Color similarity only (d) Color similarity (0.01)
+naturalness

(e) Color similarity (0.001) (f) Color similarity (0.0001) (g) Color similarity (h) Color similarity
+ naturalness + naturalness + naturalness + artifact (big) + naturalness + artifact (small)

Figure 4: Ablation study. v in ‘Color similarity (v)’ is the weight for the color similarity loss function. The default value for the weight used
in (c), (g), and (h) is 0.02. Please zoom for better comparison.

we train the enhancement network G and the discriminator D alter-
natingly as done in the conventional training process of the GAN
framework [LTH∗17, PSC∗18]. The choice of the GAN method is
flexible in our framework. A more recent GAN method such as
Wasserstein GAN [GAA∗17] can be readily applied to improve the
overall quality.

3.4. Artifact Suppression Loss

As the loss Lnatural follows the conventional GAN formulation,
minimizing it can cause artifacts in the results of the enhancement
network G, such as synthetically generated image structures and
details. While we may avoid such artifacts by giving more weight
to Lcolor, this will guide the enhancement network G to simply re-
produce Son et al.’s results without preserving the naturalness. To
resolve this problem, we introduce an artifact suppression loss that
measures only the structural difference between an input image and
its enhanced result, disregarding tone enhancement effects. The un-
natural artifacts in guide images affect image structures more than
the tone enhancement effects so that minimizing this loss can help
to remove artifacts while preserving tone enhancement effects.

Our artifact suppression loss is based on an imbalanced cycle-
consistency, which is inspired by CycleGAN [ZPIE17]. We first
introduce an inverse enhancement network C, which is similar to
an inverse network in CycleGAN. The inverse enhancement net-
work C takes an enhanced result from the enhancement network
G as input, and predicts the original input image before the en-
hancement. For the inverse enhancement network, we use a small
network architecture that consists of five convolution layers with a
single skip-connection, so it cannot remove structural artifacts in
the enhanced images. This is a sharp contrast to the CycleGAN
where the inverse network tries to fully learn the inverse operation.
If the inverse enhancement network C can fully revert the enhance-
ment operation done by the enhancement network G, then it will

also be able to revert any artifacts caused by the enhancement net-
work G. As a result, the artifact suppression loss will not be able to
remove any artifacts.

Using the inverse enhancement network C, we define the artifact
suppression loss Larti f act as:

Larti f act = Ex∼pdata(x)[MSE(C(G(x)),x)]. (4)

By minimizing Larti f act , G is constrained to preserve structural de-
tails of the input image x in the tone enhancement result. We use
MSE to measure the distance between an input image x and the
inverse enhancement result C(G(x)), but other distance functions
such as SSIM [ZBSS04] can be used instead of MSE. We refer the
reader to our supplementary material for an additional experiment
using SSIM.

3.5. Training

We trained our framework in three steps. First, we pre-trained the
enhancement network G using Lcolor to learn tone enhancement.
In the second step, we pre-trained our inverse enhancement net-
work C with Larti f act while fixing G. For pre-training G and C,
we used a learning rate 10−4 and a batch size 3. We trained G
and C for 70,000 and 35,000 iterations, respectively. We did not
use pre-training for D as training a discriminator is usually eas-
ier than training a generator in the GAN framework as shown
in [LTH∗17, PSC∗18]. Finally in the third step, we used all the
three loss functions while alternatingly updating the networks G,
C, and D. In this fine-tuning step, we used smaller learning rates to
prevent a sudden change of pre-trained weights and to fine-control
the weights. We used a learning rate 10−6 for D, and 10−7 for G
and C with 35,000 iterations. The loss functions Lcolor, Lnatural ,
and Larti f act were weighted by 0.02, 0.003, and 0.1, respectively.
We resized all input images to 530× 530, and randomly cropped
512×512 regions were used for training.
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4. Experiments

In this section, we first analyze the effect of each loss in our
framework, and evaluate the performance of our method compared
to previous state-of-the-art image enhancement methods. We also
present our user study results.

4.1. Ablation Study

For analyzing the effect of each loss, we performed an ablation
study. As the quality of image enhancement cannot be quantita-
tively measured, we qualitatively compare the results of different
combinations of the loss functions in Fig. 4. The model using only
the color similarity loss is simply trained to reproduce Son et al.’s
method [SLKL14], so the result in Fig. 4(c) looks similar to Son
et al.’s result in Fig. 4(b). This result also proves that our enhance-
ment network can effectively reproduce Son et al.’s method. Figs.
4(d-f) are results of combining the color similarity and naturalness
loss functions with different weights of Lcolor. Giving more weight
to the naturalness loss (or equivalently giving less weight to the
color similarity loss) results in more natural-looking results. How-
ever, we can see there are still remaining artifacts in those results.

Figs. 4(g) and 4(h) show results of using all the loss functions
together. In Fig. 4(g), we use a larger network structure for the in-
verse enhancement network C, which is the same structure as our
enhancement network G. A large inverse enhancement network is
able to learn even removing artifacts caused by the color similarity
loss. Consequently, the result in Fig. 4(g) still has artifacts caused
by the color similarity loss. For our final result in Fig. 4(h), we use
a small network described in Sec. 3.4 for the inverse enhancement
network. In that case, the inverse enhancement network can learn
the inverse of the enhancement operation only, excluding the arti-
facts in the enhanced images that would need a larger capacity to
handle. As a result, our enhancement network G can be trained to
enhance the tone of an input image while avoiding artifacts in guide
images, which could be reproduced by the color similarity loss.

4.2. Comparisons with Baseline Methods

One simple baseline method to control the trade-off between the
naturalness and the tone enhancement effect would be a linear
blending of an input image and its unnatural-looking tone enhance-
ment result. Specifically, we can define a baseline method as:

I = αIenhance +λ(1−α)Iinput , (5)

where I is a linear blending result, Ienhance is the result of Son et
al.’s method [SLKL14], Iinput is the input image, and α is the blend-
ing weight. λ is a scale factor for the input image, which is included
because we can also enhance the contrast of an input image while
preserving the naturalness by setting λ larger than 1. Fig. 5 shows
a comparison between our result and linear blending results with
different parameters. As shown in the figure, linear blending can-
not adaptively suppress artifacts in different image regions as it is
uniformly and globally applied to images regardless of tone and
details. For example, Fig. 5(c) with α = 0.50 still contains artifacts
from Ienhance, while Fig. 5(d) with α = 0.25 shows less contrasts
of image details than our result in Fig. 5(f), especially in dark re-
gions. Using λ larger than 1 may enhance contrast in dark regions

(a) Input (b) [SLKL14] (α = 1.0,λ = 1.0)

(c) α = 0.50,λ = 1.0 (d) α = 0.25,λ = 1.0

(e) α = 0.25,λ = 1.4 (f) Ours

Figure 5: Comparison with linear combinations of an input image
and the tone enhanced result by Son et al. [SLKL14].

as shown in Fig. 5(e), but it causes saturated pixels in bright re-
gions. On the contrary, our result in Fig. 5(f) shows enhanced tone
and details in both bright and dark regions.

To further suppress artifacts, our system adopts the imbalanced
cycle-consistency loss with a small-capacity inverse enhancement
network, which is not capable of reverting structural artifacts. One
question that naturally follows is why don’t we directly use a small-
capacity network for the image enhancement network G? In other
words, we may adopt a small-capacity network for image enhance-
ment instead of the imbalanced cycle-consistency loss in order to
prevent artifacts. However, we found that such a small-capacity
network cannot sufficiently mimic the classical tone enhancement
method. As shown in Fig. 6(b), adopting a small-capacity network
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(a) Input (b) Small network (c) Ours

Figure 6: Comparison with directly using a small-capability en-
hancement network.

cannot consistently adjust tones in large objects (red box in Fig.
6(b)) and produces artifacts such as halo (green box in Fig. 6(b)).

4.3. Qualitative Comparison

For qualitative evaluation, we compare our method with four
state-of-the-art image enhancement methods, which include two
classical image enhancement methods of Aubry et al. [APH∗14]
and Son et al. [SLKL14], and two deep learning-based image
enhancement methods of Ignatov et al. [IKT∗17] and Chen et
al. [CWKC18]. Ignatov et al.’s method learns a mapping from
iPhone3 camera images to DSLR-quality images. Chen et al.’s
method adopts the CycleGAN framework and learns a mapping
from an image to its enhanced version from unpaired data. For the
comparison, we used the models trained by the authors for the deep
learning-based methods, and used test images of [SLKL14] and
other images collected from Flickr.

Fig. 7 shows a comparison. Both results of Aubry et al. and Son
et al. are unnatural due to their exaggerated contrast and details.
In the result of Ignatov et al., the colors are brightened, and the
details in the sky are lost. This is because Ignatov et al.’s method
is specifically designed to handle images from iPhone3 camera im-
ages, which are usually darker than images captured by DSLR cam-
eras. Chen et al.’s result shows more vivid color than the input im-
age. However, it has less details and less local contrasts, so it looks
rather foggy. On the other hand, our result shows properly boosted
contrasts and details than the results of Ignatov et al.’s and Chen
et al.’s. Moreover, our result looks more natural than the results of
Aubry et al. and Son et al. thanks to our naturalness loss and arti-
fact suppression loss. Another comparison is given in Fig. 8, which
shows that our method works well for a challenging scene contain-
ing bright and dark regions together. It also shows that our method
produces a sharp result with well-enhanced details for a high reso-
lution image. Fig. 9 shows additional comparison results.

4.4. User Study

Finally, we present our user study result using Amazon Mechanical
Turk. We collected 20 images from Flickr and used them for all 30

participants. For each image, we showed a participant five differ-
ent enhancement results one by one, which have been obtained by
our method and the four other methods. Then, we asked the par-
ticipant two questions for each image: 1) “Does this image look
natural? (score 1(no) - 5(yes))” and 2) “In terms of tone and detail,
rate the quality of this image (score 1(bad) - 5(good))”. The first
question is to validate that our method can preserve the natural-
ness, and the second question is to evaluate the quality of our tone
enhancement. ‘Tone’ and ‘detail’ in the second question are am-
biguous terms that may not be evaluated objectively. Nevertheless,
tone and detail were the most noticeable differences among the im-
ages compared in the user study, as we showed the participants the
results of the same input image produced by different enhancement
methods. Thus we expect that participants rated the images mostly
in terms of tone and detail.

Table 1 reports the user study result. Our method achieved
the second place in terms of naturalness, and the first place in
terms of tone and detail enhancement. The methods of Ignatov et
al. [IKT∗17] and Chen et al. [CWKC18] marginally enhance de-
tails, so their results obtained high naturalness scores. While our
method enhance details rather aggressively, it shows comparable
performance with these methods in term of naturalness. This result
implies that our naturalness loss and artifact suppression loss prop-
erly work in the way they are designed for. Fig. 10 shows some
images used in our user study. We refer the readers to our supple-
mentary material for more examples.

5. Conclusion

In this paper, we proposed a novel deep learning-based approach
to photographic tone enhancement, which can enhance the tone
and contrast of an image while preserving the naturalness. Our ap-
proach does not require carefully generated ground-truth images
for training, but utilizes possibly unnatural-looking images that are
automatically generated by a classical image filtering method. To
preserve the naturalness, we proposed a GAN-based naturalness
loss. To prevent artifacts, we also proposed artifact suppression
loss using an imbalanced cycle-consistency. With our proposed loss
functions, our method successfully produces appropriately tone en-
hanced and natural-looking results without ground-truth labels. We
hope this approach would be useful for other image processing
tasks as well, where it is hard to obtain ground-truth labels.

Limitations In our method, noise and compression artifacts could
be boosted in dark regions as shown in Fig. 11. This limitation is
inherited from our guide algorithm [SLKL14], which tends to mag-
nify such artifacts when enhancing details, as shown in Fig. 11(b).
While our naturalness preserving loss restrains boosting those arti-
facts to some extent, it cannot completely prevent the boosting as
the artifacts already present in the input image are hard to distin-
guish from low-contrast image details.
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Input Aubry et al. [APH∗14] Son et al. [SLKL14]

Ignatov et al. [IKT∗17] Chen et al. [CWKC18] Ours

Figure 7: Qualitative comparison against state-of-the-art image enhancement methods.

Input Ignatov et al. [IKT∗17] Chen et al. [CWKC18] Ours

Figure 8: Additional comparison against state-of-the-art image enhancement methods for a high-resolution image (1600×1200).
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