
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST FEW-SHOT GRAPH FLOW PREDICTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Accurate prediction of traffic flow is crucial for optimizing transportation net-
works, mitigating congestion, and improving urban planning. However, existing
approaches like graph neural networks (GNNs) and traffic simulations face chal-
lenges in predicting flow for unseen road networks without historical data. With-
out abundant training data, GNNs often generalize poorly to new graphs, while
simulations can be computationally infeasible for large-scale networks. This pa-
per tackles the problem of few-shot traffic flow prediction in unseen road net-
works. We propose a novel traffic simulation algorithm that efficiently predicts
flow based on node and edge attributes. Through theoretical analysis, we demon-
strate our approach closely approximates true flow with asymptotically optimal
runtime complexity. Experiments on real-world road networks show our simu-
lation algorithm outperforms GNNs for predicting traffic in unseen cities after
training on only three cities. While motivated by traffic prediction in road net-
works, we expect our contributions to have broader applicability to general graph
flow prediction problems across domains.

1 INTRODUCTION

Flow is a fundamental property of graphs that characterizes the movement or transfer of entities,
such as information, resources, or traffic, across the edges of the graph. In many real-world appli-
cations, predicting the flow within a graph is crucial for optimizing resource allocation, identifying
bottlenecks, and making informed navigation decisions (Chen et al., 2023). Typically, historical
flow data in a graph is used to predict graph flow in the future using graph neural networks (GNNs)
or simulations. However, predicting flow in large unseen graphs without historical data and with a
limited number of training graphs can be significantly more challenging due to weaknesses of the
most common flow prediction models: 1) GNNs trained on a small number of training graphs of-
ten generalize poorly to unseen graphs because flow patterns can drastically vary across regions, 2)
simulations can be computationally infeasible on large graphs.

In this work, we aim to tackle the problem of few-shot flow prediction, with a particular focus on
the case of traffic flow prediction in road networks. Traffic flow in a road segment is the number of
vehicles crossing over the segment in a unit time interval (whether an hour, a day or a year). Traffic
flow prediction is a critical task for urban planning, transportation management, and route opti-
mization, as it enables proactive measures to mitigate congestion and improve the overall efficiency
of transportation networks. Predicting flow in unseen cities reduces the dependency on extensive
data collection, offering a cost-effective solution for urban planning and traffic management. Be-
sides, accurate flow information can help simulate the potential impact of transportation policies
(e.g., congestion pricing and low-emission zones), providing valuable insights for decision-makers.
Although our motivation and experiments consider this particular use-case, we emphasize that our
approach can be applied to general graph flow prediction problems.

Our contributions in this paper are threefold:

• We propose a novel traffic simulation algorithm that efficiently predicts traffic flow based
on node-level and edge-level attributes in a graph.

• We provide a theoretical analysis demonstrating that our proposed approach can closely
approximate the true flow within the graph and achieves asymptotically optimal runtime
complexity, making it computationally efficient and scalable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

• We demonstrate that our traffic simulation algorithm outperforms GNNs in predicting traf-
fic flow in unseen cities using data from only three training cities, showcasing the effec-
tiveness of our approach in real-world scenarios.

2 RELATED WORK ON GRAPH FLOW PREDICTION

Graph flow prediction requires predicting flow (which could represent fluid volume, vehicle count,
monetary transactions etc.) along each edge of a network based on graph features provided at the
edge and/or node level. Typically, graph flow prediction is done in a time-series setting, with his-
torical graph flow data available for each edge (Medina-Salgado et al., 2022; Nie et al., 2023; Lv
et al., 2020; Wang et al., 2020; Chen et al., 2020; Bao et al., 2023; Tang et al., 2020; Wang et al.,
2022). Models used to predict graph flow largely fall under two categories: data-driven approaches
and simulation-based approaches.

Data-driven approaches Given graph flow data, flow at unobserved timepoints or locations in
the graph can be predicted with a wide variety of machine learning models ranging from nearest-
neighbor approaches, linear models and tree ensembles to neural networks (Medina-Salgado et al.,
2022; Lartey et al., 2021; Sharma et al., 2001). In road networks, these models use topological and
geographical features, socioeconomic features, temporal features, and historical traffic data; they
don’t exploit the spatial dependency of road network. With the emergence of graph neural networks
(GNNs) in recent years, flow prediction has increasingly leveraged GNNs due to networks’ inherent
graph structure. GNNs (Bruna et al., 2013; Kipf & Welling, 2017) are a type of neural network
architecture that uses and maintains the graph structure of its input (Lv et al., 2014; Nie et al., 2023;
Chai et al., 2018; Peng et al., 2021; Li et al., 2021; Wang et al., 2021; Li et al., 2022). A key
advantage of GNNs are their large representational capacity and ability to leverage arbitrary graph-
level features. In principle, GNNs may be used to predict graph flow in unseen graphs; however,
in practice, GNNs are susceptible to over-fitting (Zhou et al., 2021), yielding poor performance on
unseen graphs particularly when there are only a small number of training graphs. Some recent
works have investigated few-shot learning on graphs, but methods to generalize to entirely unseen
graphs from a small number of training graphs mostly remain limited to meta-learning settings (in
which many different graph generalization problems are provided) (Zhang et al., 2022a).

Simulation-based approaches Simulations are an alternative approach used to predict flow prop-
erties in a graph. In road networks, traffic simulations can model graphs at different resolution
levels, ranging from modeling individual agents on the graph to modeling continuous flows on
edges (Dorokhin et al., 2020; Azlan & Rohani, 2018; Pell et al., 2017; Barceló et al., 2010). Relative
to GNNs, traffic simulations are able to model flows at a much finer scale, as well as easily incor-
porate known physical constraints of flow in a network (such as relationship between traffic density
and traffic speed along a road segment) (Fritzsche & Ag, 1994). Regardless of resolution level, traf-
fic simulations typically first model origin-destination pairs for agents on the graph, then compute
traffic flow by summing together flows of individual routes from origins to destinations (Van Aerde
et al., 1996; Pursula, 1999). However, this approach can be infeasible for large graphs as enumerat-
ing over all possible origin-destination pairs is computationally expensive. More recent approaches
have incorporated neural networks into traffic simulations, aiming to make them more efficient or
performant (Zhang & El Kamel, 2018; Gora & Bardoński, 2017; Zhang et al., 2022b). However,
these methods do not provide theoretical guarantees and do not reduce the fundamental computa-
tional complexity of enumerating over origin-destination pairs.

3 EFFICIENTLY PREDICTING GRAPH FLOW

In this section, we present our flow-simulation based approach to efficiently predict graph flow in
unseen graphs; this is valuable in settings where collecting graph labels is expensive, requiring
generalization from only a small number of labeled graphs. We prove error bounds on the output of
our simulation, and demonstrate that it is computationally efficient, requiring only linear time in the
size of the graph to predict flow at each edge.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3.1 SETUP AND NOTATION

Suppose we have a directed graph with m edges and n nodes. Assume that each edge has d features
associated with it; in a traffic graph, these may correspond to road type (e.g. highway, surface
road), number of lanes, road width etc. We also assume that each node has f features; these may
correspond to the local population density or the identity of any points of interest (POIs) nearby.

We also suppose that each edge has a flow associated with it; in a traffic graph, this may correspond
to the average traffic flow on the corresponding road segment. We denote the flow in all edges as
Q ∈ Rm. Our goal is to predict Q from the edge and node features.

3.2 FLOW SIMULATION

Now, we present our efficient flow simulation algorithm to predict Q. In many natural flow predic-
tion problems, flow is the result of agents taking trips on the graph; for instance, in a traffic graph,
people take trips between origin-destination pairs, and the flow on a road segment is the total number
of trips taken on the segment during a given time period. Thus, we assume that flow Qi for any edge
i can be decomposed by counting all origin-destination pairs traversing through the edge:

Qi =
∑
O,D

N (O,D)p(i ∈ SO,D) (1)

where O and D denote origin and destination respectively, N (O,D) denotes the number of trips
between O and D, p indicates probability and SO,D is a path from O to D.

We make two key assumptions: we assume that the count of the number of trips between O and D
can be approximated as: N (O,D) ≈ ϕ(O)Tψ(D) where ϕ(O), ψ(D) ∈ Rl are feature vectors.
With sufficiently many features, we may approximate any N with arbitrary precision. We also
assume that for any two points O and D, agents traverse the minimum cost path between the points,
denoting the cost of the minimum cost path as c(O,D) ≥ 0. We assume that the costs obey the
triangle inequality:

c(A,B) ≤ c(A,C) + c(C,B) (2)
for all A,B,C. By convention, we also assume c(A,A) = 0. Note that the cost need not be
symmetric: c(A,B) ̸= c(B,A) in general.

Finally, we assume the cost can be approximated as: c(O,D) ≈ ||O−D||/R where R is a constant
and || · − · || represents a metric between nodes. We may interpret this as R roughly being an
‘average’ travel speed across the network; thus, ||O − D||/R would represent an ‘average’ travel
time between O and D. We may then show the following result:

Theorem 1. Assume for all O,D, |N (O,D) − ϕ(O)Tψ(D)| ≤ ϵ and |c(O,D) − ||O−D||
R | ≤ ε.

Finally, assume that for all O,D, the cost of the second lowest cost path between them is greater
than the first lowest cost by at least ∆. Then, for edge i from A to B, we may approximate Qi as
Q̂i:

Q̂i =

(∑
O

e
κ
R (||O−B||−||O−A||−Rci)ϕ(O)

)T (∑
D

e
κ
R (||A−D||−||B−D||−Rci)ψ(D)

)
(3)

for a constant κ > 0 with approximation error bounded as:

|Qi − Q̂i| ≤ n2ϵ+ (n2ϵ+
∑
j

Qj)(e
−κ∆ + e4κε − 1) (4)

See Appendix A for a proof. For each edge i, this approximation computes a weighted average of
the feature vectors ϕ(O) and ψ(D) over all possibilities of origin and destination; each triple of
edge, origin and destination is assigned a weight. For a given origin-destination pair, the weighting
of an edge depends on two factors: 1) the cost of the edge ci, with higher cost edges being assigned
less weight, 2) the ‘progress’ an edge makes towards the destination and away from the origin, with
more progress being assigned more weight. The resulting weighted vectors associated with the edge
correspond to the origin and destination characteristics of all likely paths passing through the edge.
The final flow is then simply computed as the dot product of the two weighted vectors. Intuitively,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

this approach assigns less flow to costlier edges, and more flow to edges in the direction of common
routes. It is also biased towards assigning more flow on shorter edges: it is costlier to incorrectly
predict a longer edge lies on a shortest path compared to a short edge, so the simulation prefers
avoiding flow on long edges.

Observe that the approximation error bound approaches zero as ϵ and κε approach zero and κ∆
approaches infinity. We may set κ to minimize the bound at κ =

log ∆
4ε

4ε+∆ when ∆ > 4ε, although
in practice the κ minimizing the bound may not necessarily be the one minimizing the empirical
estimation error.

3.3 RUNTIME ANALYSIS

We assume that computing feature vectors ϕ and ψ takes constant time. Then, computing Q̂i fol-
lowing Equation 3 takes O(n) time, where n is the number of nodes in the graph. Computing Q̂ for
all edges takes O(mn) time where m is the number of edges.

In fact, we may show that the per edge cost of O(n) is asymptotically optimal: for any graph size,
there exists a graph such that some edge in the graph requires O(n) time to compute its edge flow.
Formally,

Theorem 2. Consider all graphs for which edge flow Qi for all edges i may be decomposed as:

Qi =
∑
O,D

ϕ(O)Tψ(D)p(i ∈ SO,D) (5)

whereO,D are a pair of nodes in the graph, ϕ(O) and ψ(D) are functions ofO andD respectively,
and SO,D denotes the lowest cost path between O,D. Then, for any number of nodes n ≥ 4, there
exists a set of graphs and associated ϕ, ψ with the same nodes, edges and edge costs such that 1) for
some edge i, Qi is different for all graphs, 2) for any n− 3 nodes a1, a2, ...an−3 and evaluations of
either ϕ or ψ on each node, there exist two distinct graphs with the same measured values. Thus, it
takes at least n− 3 measurements of ϕ or ψ to identify a graph from the set.

See Appendix B for a proof. Intuitively, this theorem states that inferring the edge flow at a particular
edge can require examining (nearly) all nodes in the graph because all nodes may contribute to the
edge flow. We note that there may be certain graphs for which edge flows can be computed more
cheaply; however, in the worst case, the time to compute edge flow is O(n).

Algorithm 1 Compute Q̂

Require: Number of origin nodes nO, number of destination nodes nD, number of edges m, origin
node features fNO ∈ RnO×dN , destination node features fND ∈ RnD×dN , Edge features fE ∈
Rm×dE , Node encoders GO, GD, Edge encoder H , hyper-parameters R, κ
Q̂ = 0 ∈ Rm

Φ = GO(fNO) ∈ RnO×l

Ψ = GD(fND) ∈ RnD×l

for edge i do
ci = H(fEi) ∈ R
vO = 0 ∈ RnO

for origin node j do
vOj = e

κ
R (||j−i[1]||−||j−i[0]||−Rci) // i[0], i[1] are start and end nodes of segment i

end for
vD = 0 ∈ RnD

for destination node j do
vDj = e

κ
R (||j−i[0]||−||j−i[1]||−Rci) // i[0], i[1] are start and end nodes of segment i

end for
Q̂i = (vOTΦ)(ΨT vD) // Updated flow estimate

end for
return Q̂

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Architecture diagram of our neural network flow simulation. The method works by first
encoding edges and roades (representing either origins or destinations) into node embeddings and
cost with separate neural network encoders. The resulting origin (or destination) embeddings are
then weighted based their cost and spatial location to produce a weighted origin (or destination
embedding). The dot product between weighted origin and destination embedding produces the
final predicted flow.

3.4 NEURAL NETWORK PARAMETERIZATION

So far, we have treated edge costs ci and feature embeddings ϕ and ψ as known. However, in prac-
tical problems, we may not know the true costs of traveling on each edge or the likelihood of a trip
between each pair of nodes. Instead, we may learn these quantities via neural networks. Specifi-
cally, we assume that instead of edge costs and node feature embeddings, we have properties for
nodes and edges. In a traffic flow graph, these properties may include population density and the
popularity of an area for a node, and road width and length for an edge. Given these properties we
propose using three neural networks: one to map edge properties to costs and one each to map node
properties to either origin or destination node feature embeddings. In our implementation, the two
node embedding networks share all but the last layer. Importantly, these neural networks are applied
independently across edges and nodes respectively (they are not graph neural networks). Given a
set of edge flow labels Qi, we may then train these networks to predict flow end-to-end with the
simulation algorithm. Figure 1 illustrates the full architecture of the neural network parameterized
traffic simulation; observe that the neural networks simply parameterize the inputs to the remaining
components of the algorithm. In order to make the algorithm computationally tractable when using
neural network predicted feature embeddings, instead of considering all possible origin and desti-
nation nodes, we randomly sub-sample possible origin and destination nodes. Algorithm 1 presents
the full procedure to compute graph flow from a sample of edge and node features.

4 RESULTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We consider a real-world traffic prediction problem: we are provided traffic flow data for three train-
ing cities in Texas (Austin, Dallas and San Antonio), and we wish to predict traffic flow in two test
cities (Fort Worth and Houston). Traffic flow in road networks is measured as Average Annual Daily
Traffic (AADT) (Administration, 2015), the average number of vehicles passing through any given

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

road segment on each day. Data comes from four sources: 1) OpenStreetMap features, 2) European
Space Agency satellite imagery, 3) National Aeronautics and Space Administration (NASA) popu-
lation density data, 4) road traversal data. The first three sources provide features for the prediction
problem, while the last data source provides labels.

OpenStreetMap The OpenStreetMap (OSM) dataset includes both geographic information about
road segments as well as features of each road segment. Road segments are short sections of road
often ranging from 10 to 100 meters. OSM lists the geographic coordinates of the points on the
road segments as well as their intersections. OSM features include various attributes of the road
segments, such as road functional class (e.g., highway, local, residential), presence of stop signs or
traffic signals and number of lanes. Most of these features are categorical, with the exception of
the following numeric features: speed limit, number of lanes, and the maximum allowed weight
and height. Categorical features are one-hot encoded while numerical features are encoded directly.
Appendix C Table 4 lists all OSM features. Each city has between 105 and 106 road segments; how-
ever, with the exception of road functional class, other features are not available for every segment.
For numeric features, we add an additional binary feature indicating whether the numeric feature is
available or not.

European Space Agency satellite imagery The European Space Agency provides a number of
high-resolution images of different geographic regions. Each image is 10980× 10980 and captures
a rectangular block (in terms of latitude and longitude coordinates). For each city in our dataset, we
collect images overlapping with the city; for all cities, at most two images are sufficient to cover
the entire metropolitan area. We then process the images as follows: for each road segment in the
dataset, we center the full image to center around the road segment, rotate it such that the road
segment points left to right, and then center-crop the image to produce a 24 × 24 cropped image.
This produces a single cropped image centered at each road segment in the dataset. We then pass this
image through a 5-layer convolutional neural network (CNN) to produce a 64-dimensional encoding
of the image. This CNN is trained end-to-end with the downstream model.

Population density data The NASA population density data we use provides population density
estimates for administrative units, providing a latitude-longitude center point for each administrative
unit. To associate these point-wise population densities to road segments, for each point in the
population density dataset, we assign its population density to the nearest road segment intersection.
This provides a population density estimate at each road segment intersection; note that the majority
of road segments have no population assigned.

Road traversals We use a third-party road traversal dataset consisting of a large set of traversals of
the North American road network. The traversals provide GPS trajectory data with a high-resolution
sampling rate of 5 seconds. We apply a Hidden Markov Model map-matching algorithm to align
GPS trajectories with corresponding segments onto the OSM road network. Once the raw trajecto-
ries are map-matched to OSM segments, we calculate the average daily traversal count for each road
segment in each of the Texan cities in our dataset. These volumes serve as our labels. As Figure 2
shows, generally larger road functional classes (such as motorways and primary roads), tend to have
larger AADT mean and variance. Moreover, AADT statistics are consistent across different cities.
We note that these AADT numbers only represent the subset of the true traffic traveling on the road
network since not all vehicles are tracked by our dataset. However, we assume that the sampled ve-
hicles are representative of all vehicles traveling on the road; thus, our AADT label is a reasonable
proxy for the ‘true’ AADT up to a constant scale factor.

4.1.2 ARCHITECTURES & BASELINES

We compare our approach with a baseline graph neural network (GNN). Both the GNN and our
traffic simulation use a CNN image encoder first to convert satellite images into a lower dimensional
representation. This output is then appended with OSM features to form the full set of features for
each edge. For GNNs, we append the features associated with the road intersections at the ends
of each road segment to the road segment features (thus, each road segment has two sets of road
intersection features). Road intersection features consist of population density measurements and
a positional encoding; these features are used by both the GNN and our method. The GNN is

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Austin (b) San Antonio (c) Dallas

Figure 2: Histograms of AADT for road segments categorized by road functional class in Austin,
San Antonio and Dallas.

constructed using a graph with road segments as nodes and road intersections as nodes. This allows
the GNN to predict attributes at the road segment level. The GNN uses 3 convolutional layers.
For our traffic simulation, the node and edge feature encoders are 8 layer neural networks. See
Appendix C for more details.

As an additional baseline, we consider a full traffic simulation that computes flow on each road
segment by enumerating over all possible origin and destination node combinations and adding their
individual flow contributions. This enumeration is computationally infeasible; thus, we include an
estimate of its runtime instead of the actual results with this method. We estimate the runtime by
using one floating point operation to account for the flow contributed on each road segment by each
origin-destination pair.

4.2 EVALUATING PREDICTION PERFORMANCE

We compare the performance of the GNN vs. our method under a number of error metrics, each
split up by road functional class and averaged. Table 1 reveals that the GNN and our method both
perform well in an absolute sense, with the RMSE of AADT errors averaging on the order of 100.
Comparing to the AADT distribution in Figure 2, these errors can be considered small; they are
roughly the size of one histogram bin in the plot.

Nevertheless, our method significantly outperforms the GNN, outperforming the GNN on all error
metrics on average and outperforming the GNN on nearly all road functional classes. Appendix D
Table 5 shows training set results, where we find that the GNN performs worse than our method on
the training set as well. This suggests that the GNN is simply less capable of capturing the structure
of traffic flow relative to our traffic simulation which, unlike the GNN, explicitly models the structure
of traffic flow.

Figure 3: Example road segments in Austin with actual and predicted AADT by our traffic simula-
tion model.

Figure 3 shows representative road segments where the our traffic simulation either dramatically
overestimates or underestimates traffic flow. In all three cases, the road segment connects to a high-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Test set AADT error metrics by road functional class and on average for two models trained
on Austin, San Antonio and Dallas; root mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE).

Our Traffic Simulation

Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 1067.48 816.53 1.01 1095.47 848.83 0.39
Trunk 395.33 307.06 0.60 382.13 314.28 2.88
Primary 354.86 267.78 0.80 301.73 230.20 0.76
Secondary 203.93 148.94 0.99 196.81 140.55 0.85
Tertiary 76.27 48.88 1.07 82.91 50.98 0.99
Residential 17.68 9.11 0.99 17.79 8.14 0.76
Service 16.52 6.54 0.77 15.60 6.07 0.62

Average 102.02 28.17 0.89 91.96 24.35 0.68

GNN

Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 1911.06 1447.67 2.31 1434.86 1138.85 0.52
Trunk 621.43 450.15 0.85 419.16 308.37 1.40
Primary 645.37 364.53 1.09 410.79 309.95 0.66
Secondary 331.34 213.89 1.06 263.02 191.14 0.81
Tertiary 126.98 62.45 1.33 93.01 59.06 0.88
Residential 84.74 20.10 2.64 22.54 9.40 0.85
Service 68.93 12.36 1.92 22.31 7.67 0.96

Average 167.79 39.91 2.26 100.84 27.88 0.90

way on-ramp or off-ramp, with dramatic variation in both the actual and predicted AADTs despite
similar road topology. This suggests our approach struggles with AADT prediction on highways
which align with our tabulated metrics: errors are largest for major roadways, with RMSEs on the
order of 1000 vehicles/day.

4.3 EVALUATING RUNTIME

We compare the per epoch training time of our traffic simulation with the GNN and the baseline
full traffic simulation (Appendix C describes our computing infrastructure). In Table 2, we find that
the GNN trains roughly 10 times slower per epoch than our traffic simulation despite its shallower
architecture. This is primarily due to the relatively high cost of graph convolution in the GNN while
our approach encodes road segments independently. A full traffic simulation is practically infeasible,
requiring on the order of 10 years to run.

Table 2: Projected per epoch training times of three different approaches to compute AADT. Train-
ing is conducted on Austin; we estimate per epoch runtimes by projecting runtimes from 10 training
iterations. We report mean ± standard deviation over 5 trials.

Ours GNN Full Traffic Simulation

Time per epoch (s) 358.7± 7.7 3348± 35 4.207± 0.135× 108

4.4 ABLATION STUDY

Next, we perform an ablation of our model to to interpret how it works. We test a segment-wise
neural network (NN) that replaces the convolutions of a GNN with independent computations for
each road segment. This can also be viewed as a version of our traffic simulation that predicts flow
purely from edge cost ci for edge i. Table 3 reveals that the segment-wise NN outperforms the GNN,
showing that the GNN does not effectively use the connectivity structure of road segments. We also
find in Appendix D Table 5 that the segment-wise NN performs closer to our traffic simulation on
certain road classes and test cities, sometimes even outperforming it. However, the segment-wise
NN performs much better on the training set than the traffic simulation, indicating that it is prone to
overfitting. Thus, we believe our traffic simulation generalizes much better to unseen graphs.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Average test set AADT root mean squared error (RMSE) for three models trained on Austin,
San Antonio and Dallas and tested on Houston and Fort Worth.

Method Our Traffic Sim GNN Segment-wise NN

Houston 102.02 167.79 120.95
Fort Worth 91.96 100.84 79.62

5 DISCUSSION

We demonstrate theoretically and empirically that our traffic simulation achieves accurate flow pre-
dictions under limited run-time. Unlike GNN approaches, which struggle to generalize in few-shot
settings, our approach readily predicts flow on unseen graphs without any additional fine-tuning.
Moreover, it is highly scalable, computing city-scale traffic flows under limited computational re-
sources.

We highlight some potential directions to extend our work. Our current implementation uses a
simplified cost approximation between nodes based on their Euclidean distance, which assumes that
nodes lie in a Euclidean geometry. Extending this to a neural network parameterized cost function
could further improve accuracy. In our work, we also primarily study traffic flows on road networks.
We believe that a more flexible cost function could also allow our approach to be applied to general
graphs with non-planar and even non-Euclidean geometries.

Given the significant cost of traffic simulation approaches and their widespread use for prediction
in transportation, logistics and communication networks, we hope our work can provide an efficient
alternative to traditional simulations. More broadly, we hope our approach can facilitate highly
efficient and generalize flow prediction on general graphs.

REFERENCES

Federal Highway Administration. Assessing roadway traffic count duration and frequency impacts
on annual average daily traffic (aadt) estimation. US Department of Transportation, 2015.

Nurul Nasuha Nor Azlan and Munzilah Md Rohani. Overview of application of traffic simulation
model. In MATEC Web of Conferences, volume 150, pp. 03006. EDP Sciences, 2018.

Yinxin Bao, Jiashuang Huang, Qinqin Shen, Yang Cao, Weiping Ding, Zhenquan Shi, and Quan
Shi. Spatial–temporal complex graph convolution network for traffic flow prediction. Engineering
Applications of Artificial Intelligence, 121:106044, 2023.

Jaume Barceló et al. Fundamentals of traffic simulation, volume 145. Springer, 2010.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. arXiv preprint, 2013.

Di Chai, Leye Wang, and Qiang Yang. Bike flow prediction with multi-graph convolutional net-
works. In Proceedings of the 26th ACM SIGSPATIAL international conference on advances in
geographic information systems, pp. 397–400, 2018.

Ken Chen, Fei Chen, Baisheng Lai, Zhongming Jin, Yong Liu, Kai Li, Long Wei, Pengfei Wang,
Yandong Tang, Jianqiang Huang, et al. Dynamic spatio-temporal graph-based cnns for traffic flow
prediction. IEEE Access, 8:185136–185145, 2020.

Yuguang Chen, Jintao Huang, Hongbin Xu, Jincheng Guo, and Linyong Su. Road traffic flow
prediction based on dynamic spatiotemporal graph attention network. Scientific reports, 13(1):
14729, 2023.

Sergey Dorokhin, Alexander Artemov, Dmitry Likhachev, Alexey Novikov, and Evgeniy Starkov.
Traffic simulation: an analytical review. In IOP Conference Series: Materials Science and Engi-
neering, volume 918, pp. 012058. IOP Publishing, 2020.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Hans-Thomas Fritzsche and Daimler-benz Ag. A model for traffic simulation. Traffic Engineering+
Control, 35(5):317–21, 1994.

Paweł Gora and Marek Bardoński. Training neural networks to approximate traffic simulation out-
comes. In 2017 5th IEEE International Conference on Models and Technologies for Intelligent
Transportation Systems (MT-ITS), pp. 889–894. IEEE, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017.

Benjamin Lartey, Abdollah Homaifar, Abenezer Girma, Ali Karimoddini, and Daniel Opoku. Xg-
boost: a tree-based approach for traffic volume prediction. In 2021 IEEE International Conference
on Systems, Man, and Cybernetics (SMC), pp. 1280–1286. IEEE, 2021.

Fuxian Li, Jie Feng, Huan Yan, Depeng Jin, and Yong Li. Crowd flow prediction for irregular regions
with semantic graph attention network. ACM Transactions on Intelligent Systems and Technology
(TIST), 13(5):1–14, 2022.

Wei Li, Xin Wang, Yiwen Zhang, and Qilin Wu. Traffic flow prediction over muti-sensor data
correlation with graph convolution network. Neurocomputing, 427:50–63, 2021.

Mingqi Lv, Zhaoxiong Hong, Ling Chen, Tieming Chen, Tiantian Zhu, and Shouling Ji. Temporal
multi-graph convolutional network for traffic flow prediction. IEEE Transactions on Intelligent
Transportation Systems, 22(6):3337–3348, 2020.

Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
with big data: A deep learning approach. Ieee transactions on intelligent transportation systems,
16(2):865–873, 2014.

Boris Medina-Salgado, Eddy Sánchez-DelaCruz, Pilar Pozos-Parra, and Javier E Sierra. Urban
traffic flow prediction techniques: A review. Sustainable Computing: Informatics and Systems,
35:100739, 2022.

Tong Nie, Guoyang Qin, Yunpeng Wang, and Jian Sun. Towards better traffic volume estimation:
Jointly addressing the underdetermination and nonequilibrium problems with correlation-adaptive
gnns. Transportation Research Part C: Emerging Technologies, 157:104402, 2023.

Andreas Pell, Andreas Meingast, and Oliver Schauer. Trends in real-time traffic simulation. Trans-
portation research procedia, 25:1477–1484, 2017.

Hao Peng, Bowen Du, Mingsheng Liu, Mingzhe Liu, Shumei Ji, Senzhang Wang, Xu Zhang, and
Lifang He. Dynamic graph convolutional network for long-term traffic flow prediction with rein-
forcement learning. Information Sciences, 578:401–416, 2021.

Matti Pursula. Simulation of traffic systems-an overview. Journal of geographic information and
decision analysis, 3(1):1–8, 1999.

Satish Sharma, Pawan Lingras, Fei Xu, and Peter Kilburn. Application of neural networks to esti-
mate aadt on low-volume roads. Journal of Transportation Engineering, 127(5):426–432, 2001.

Cong Tang, Jingru Sun, Yichuang Sun, Mu Peng, and Nianfei Gan. A general traffic flow prediction
approach based on spatial-temporal graph attention. IEEE Access, 8:153731–153741, 2020.

M Van Aerde, B Hellinga, M Baker, and H Rakha. Integration: An overview of traffic simulation
features. Transportation Research Records, 1996.

Hanqiu Wang, Rongqing Zhang, Xiang Cheng, and Liuqing Yang. Hierarchical traffic flow predic-
tion based on spatial-temporal graph convolutional network. IEEE Transactions on Intelligent
Transportation Systems, 23(9):16137–16147, 2022.

Wei Wang, Junyang Chen, Yushu Zhang, Zhiguo Gong, Neeraj Kumar, and Wei Wei. A multi-
graph convolutional network framework for tourist flow prediction. ACM Transactions on Internet
Technology (TOIT), 21(4):1–13, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Xiaoyang Wang, Yao Ma, Yiqi Wang, Wei Jin, Xin Wang, Jiliang Tang, Caiyan Jia, and Jian Yu.
Traffic flow prediction via spatial temporal graph neural network. In Proceedings of the web
conference 2020, pp. 1082–1092, 2020.

Chuxu Zhang, Kaize Ding, Jundong Li, Xiangliang Zhang, Yanfang Ye, Nitesh V Chawla, and Huan
Liu. Few-shot learning on graphs. arXiv preprint, 2022a.

Jian Zhang and Abdelkader El Kamel. Virtual traffic simulation with neural network learned mobil-
ity model. Advances in Engineering Software, 115:103–111, 2018.

Yihang Zhang, Aristotelis-Angelos Papadopoulos, Pengfei Chen, Faisal Alasiri, Tianchen Yuan, Jin
Zhou, and Petros Ioannou. Integrated traffic simulation-prediction system using neural networks
with application to the los angeles international airport road network. In 2022 IEEE 61st confer-
ence on decision and control (CDC), pp. 832–837. IEEE, 2022b.

Kuangqi Zhou, Yanfei Dong, Kaixin Wang, Wee Sun Lee, Bryan Hooi, Huan Xu, and Jiashi Feng.
Understanding and resolving performance degradation in deep graph convolutional networks. In
Proceedings of the 30th ACM International Conference on Information & Knowledge Manage-
ment, pp. 2728–2737, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOF OF THEOREM 1

Proof. First, recall that a path between O and D is the lowest cost path if all its segments are on
the minimum spanning tree to D (denoted M:D) and the minimum spanning tree from O (denoted
MO:). Thus, we may write:

p(i ∈ SO,D) = p(i ∈M:D)p(i ∈MO:) (6)
where p denotes probability. Note that this factorization is valid for O ̸= D since the probabilities
are always either 0 or 1. We may then write: Qi =

∑
O,D N (O,D)p(i ∈ M:D)p(i ∈ MO:) Next,

observe that if i connects point A to B, then i is on M:D if and only if:
c(A,D) = c(B,D) + ci (7)

where ci is the cost of segment i; this is because if i is not on the minimum cost path, c(A,D) will
be less than the right hand side. Given this, we approximate p(i ∈M:D) as:

p(i ∈M:D) ≈ eκ(c(A,D)−c(B,D)−ci) (8)
for a constant κ > 0. This has error bounded as:

|p(i ∈M:D)− eκ(c(A,D)−c(B,D)−ci)| ≤ e−κ∆ (9)
where equality can be achieved when i is on the second lowest cost path between A and D (when
p(i ∈M:D) = 0). Similarly:

|p(i ∈MO:)− eκ(c(O,B)−c(O,A)−ci)| ≤ e−κ∆ (10)
Combining these bounds:

|p(i ∈ SO,D)− eκ(c(O,B)−c(O,A)−ci+c(A,D)−c(B,D)−ci)| ≤ e−κ∆ (11)
where equality is reached when each and p(i ∈ M:D) = 1, p(i ∈ MO:) = 0 and the bound on the
approximation of p(i ∈MO:) is tight or vice versa.

Next, we use the approximation on c(O,D):

κ(c(A,D)− c(B,D)− ci + c(O,B)− c(O,A)− ci)

≈ κ

R
(||A−D|| − ||B −D|| −Rci + ||O −B|| − ||O −A|| −Rci) (12)

We may bound the approximation error as:

|κ(c(A,D)− c(B,D)− ci + c(O,B)− c(O,A)− ci)−
κ

R
(||A−D|| − ||B −D|| −Rci + ||O −B|| − ||O −A|| −Rci)| ≤ 4κε (13)

Thus,

|eκ(c(A,D)−c(B,D)−ci+c(O,B)−c(O,A)−ci)

− e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)| ≤ e4κε − 1 (14)

with equality when one of the exponents is 0. Combining this bound with the earlier bound on
p(i ∈ SO,D):

|p(i ∈ SO,D)− e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)| ≤ e−κ∆ + e4κε − 1 (15)

Next, combining this result with the approximation of N (O,D), we have:

|N (O,D)p(i ∈ SO,D)− ϕ(O)Tψ(D)e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)|

≤ ϵ+ (ϵ+N (O,D))(e−κ∆ + e4κε − 1) (16)
with equality reached when p(i ∈ SO,D) equals one and the previous inequalities are tight.

Finally, summing over O,D pairs:

|
∑
O,D

N (O,D)p(i ∈ SO,D)−
∑
O,D

ϕ(O)Tψ(D)e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)|

≤
∑
O,D

ϵ+ (ϵ+N (O,D))(e−κ∆ + e4κε − 1) = n2ϵ+ (n2ϵ+
∑
j

Qj)(e
−κ∆ + e4κε − 1) (17)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

B PROOF OF THEOREM 2

Proof. Proof by construction: consider a graph with n nodes labeled Wi for i = 1, ...⌊n
2 ⌋ − 1, Zj

for j = 1, ...⌈n
2 ⌉ − 1 and nodes labeled Y and Z. Suppose all Wi have a directed connection to X

which is connected to Y which is connected to all Z. There are no other edges. Finally, assume that
ϕ(Wi)

Tψ(Zj) ≥ 0 for all i, j and all other ϕ(·)Tψ(·) are 0. Then, the flow QXY on the edge from
X to Y is simply:

QXY =
∑
i,j

ϕ(Wi)
Tψ(Zj) (18)

Now, suppose ϕ(Wi) can take value either 0 or value 2i−1, yielding 2⌊
n
2 ⌋−1 settings of ϕ. Similarly,

suppose ψ(Zj) can take value either 0 or value 2(⌊
n
2 ⌋−1)(j−1) yielding 2⌈

n
2 ⌉−1 possible settings of

ψ. This yields 2(⌊
n
2 ⌋−1)(⌈n

2 ⌉−1) possible settings overall.

Note this allows the QXY to take any integer value from 1 to 2(⌊
n
2 ⌋−1)(⌈n

2 ⌉−1) − 1, with every
possible setting of ϕ and ψ corresponding to a different QXY . Thus, this set of possibilities satisfies
condition (1) of the theorem.

Note also that for any Wi and any setting of ϕ and ψ, we may flip the value of ϕ(Wi) from 0 to 2i−1

or vice versa. Similarly, for any Zj , we may flip the value of ψ(Zj) from 0 to 2(⌊
n
2 ⌋−1)(j−1). This

yields another valid setting of ϕ and ψ with the same values except at either ϕ(Wi) or ψ(Zj).

Observe that for any set of n− 3 or fewer nodes, there will be a W or Z node excluded since there
are a total of n− 2W and Z nodes. We may choose a W or Z node not in the selected set such that
flipping its ϕ or ψ embedding will yield another valid setting of ϕ and ψ. Therefore, condition (2)
of the theorem is satisfied.

C ADDITIONAL EXPERIMENTAL DETAILS

Image Encoder Both the GNN and traffic simulation approaches use a convolutional image en-
coder to encode images into a 64 dimensional vector. This encoder has 5 ReLU-activated convolu-
tional layers with kernel size 3, stride 2 and hidden dimension 64. This is followed by a final global
average pooling layer. The output of the image encoder is appended to the OSM features of each
road segment. The image encoder is trained end-to-end with the downstream model.

Positional encoding of road intersections For each road intersection, we produce a 64 dimen-
sional positional encoding as follows: given that the latitude and longitude of a point is (y, x), the
positional encoding ϕ ∈ R64 is given as:

ϕi = sin((
6

5
)ix), i = 0, 1, ...15 (19)

ϕi+16 = cos((
6

5
)ix), i = 0, 1, ...15 (20)

ϕi+32 = sin((
6

5
)iy), i = 0, 1, ...15 (21)

ϕi+48 = cos((
6

5
)iy), i = 0, 1, ...15 (22)

The exponentially spaced range of frequencies (65)
i allows for encoding of spatial information at

varying scales.

GNN model The GNN model consists of three ReLU activated graph convolutional layers of
hidden layer size 64. A layer normalization layer preceeds each graph convolution. We perform
training over small randomly sampled neighborhoods in the graph; each neighborhood has radius
2 and has 4 neighbors in each step. We use 100 such neighborhoods per training step. The GNN
is trained with Adam (Kingma & Ba, 2015) with a learning rate of 10−3 for 1 epoch. We use the
following loss function (log(y+1)− log(ŷ+1))2 where y is the true AADT and ŷ is the predicted

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

AADT. We use a logarithmically scaled AADT in the lose because roads have AADT varying across
magnitudes, and higher AADT roads can be reasonably be expected to have higher prediction error
as well. We add 1 to avoid taking the logarithm of 0 for any roads with no measured traffic flow.

Traffic simulation We set κ = 1.0 and R = 0.01; these parameters are chosen to fit the training
cities. We set the size of the node embeddings to be 128. Because computing flow for all edges
at once considering all nodes at once is computationally costly, we take batches of size 10000 over
edges and batches of size 1000 over nodes. The edge and node encoder neural networks each have 8
layers and hidden dimension 128. We train the encoder neural networks with Adam with a learning
rate of 10−4 for 5 epochs. We use the same loss function as used to train the GNN model.

Computing Infrastructure We run experiments on a 4.05 GHz CPU with 36 GB of memory.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 4: List of OSM features used by models. Categorical features are one hot encoded. RFC
indicates road functional class. The last three features (distance, displacement and log curvature)
are calculated from the list of latitude-longitude coordinates of each road segment.

Features

RFC 0: road
RFC 10: motorway
RFC 15: motorway link
RFC 20: trunk
RFC 25: trunk link
RFC 30: primary
RFC 35: primary link
RFC 40: secondary
RFC 45: secondary link
RFC 50: tertiary
RFC 51: tertiary link
RFC 55: unclassified
RFC 60: residential
RFC 70: service
RFC 71: service, emergency
RFC 72: service, drive thru
RFC 75: living street
RFC 85: service, alley
RFC 90: unpaved
RFC 95: track
RFC 100: service, parking
RFC 101: service, driveway
RFC 102: service, parking aisle
Stop Sign: none
Stop Sign: minor
Stop Sign: all
Traffic Signal: none
Traffic Signal: signal
Traffic Signal: unknown
Traffic Signal: lights
Toll
Delivery Access Rest.
Is Via Segment
Max Height
No Max Height
No Route To
Roundabout
No Commercial
Is Tunnel
Restricted Ped. Xing
Max Weight
No Max Weight
Restricted Veh. Xing
No Through
Lanes in Seg. Dir.
No Lanes in Seg. Dir.
Is Private Road
No Route From
Total Lanes
No Total Lanes
Max Speed
No Max Speed
Distance
Displacement
Log curvature

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

Table 5: Training and test set AADT error metrics by road functional class and on average for
models trained on Austin, San Antonio and Dallas; root mean squared error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE).

Ours

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 892.41 670.70 1.18 820.21 626.91 0.32 836.36 632.90 0.67 1067.48 816.53 1.01 1095.47 848.83 0.39
Trunk 523.15 420.91 0.43 318.76 241.84 0.68 344.95 271.03 0.74 395.33 307.06 0.60 382.13 314.28 2.88
Primary 252.50 193.66 0.56 257.59 181.83 0.84 234.57 175.46 0.55 354.86 267.78 0.80 301.73 230.20 0.76
Secondary 217.91 154.00 0.66 156.38 111.80 1.39 183.19 127.99 0.86 203.93 148.94 0.99 196.81 140.55 0.85
Tertiary 83.60 52.42 0.91 82.13 52.37 0.86 64.12 37.42 0.96 76.27 48.88 1.07 82.91 50.98 0.99
Residential 20.63 8.75 0.84 18.10 8.74 0.80 13.69 6.67 0.77 17.68 9.11 0.99 17.79 8.14 0.76
Service 16.81 6.66 0.71 15.85 6.19 0.74 13.48 5.66 0.74 16.52 6.54 0.77 15.60 6.07 0.62

Average 84.21 22.71 0.74 78.53 21.61 0.77 76.01 19.87 0.74 102.02 28.17 0.89 91.96 24.35 0.68

GNN

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 2041.77 1311.84 1.95 1834.14 1340.20 0.70 1872.69 1335.05 1.11 1911.06 1447.67 2.31 1434.86 1138.85 0.52
Trunk 648.62 518.60 0.62 383.36 254.23 0.59 437.23 325.36 1.19 621.43 450.15 0.85 419.16 308.37 1.40
Primary 445.80 289.56 0.79 350.00 225.66 0.87 317.23 213.21 0.64 645.37 364.53 1.09 410.79 309.95 0.66
Secondary 316.89 189.02 0.79 242.88 136.25 1.06 242.48 155.18 1.03 331.34 213.89 1.06 263.02 191.14 0.81
Tertiary 130.45 59.13 1.05 109.23 56.77 1.02 89.44 43.67 1.17 126.98 62.45 1.33 93.01 59.06 0.88
Residential 36.69 10.61 0.91 29.43 10.53 0.96 23.68 8.27 0.90 84.74 20.10 2.64 22.54 9.40 0.85
Service 35.58 9.04 1.23 27.99 8.16 1.13 18.60 6.72 1.01 68.93 12.36 1.92 22.31 7.67 0.96

Average 125.83 27.35 1.02 110.34 25.14 1.03 100.77 20.95 0.98 167.79 39.91 2.26 100.84 27.88 0.90

Segment-wise NN

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 695.67 560.35 1.97 973.44 791.40 0.48 889.08 697.26 1.09 1635.17 1310.08 1.98 951.68 754.49 0.42
Trunk 296.02 220.92 0.34 196.73 128.93 0.32 233.50 171.20 0.62 493.93 392.98 0.70 324.08 239.37 1.72
Primary 177.29 130.49 0.65 210.13 145.45 0.61 186.14 140.88 0.45 486.57 375.73 0.73 310.39 233.69 0.54
Secondary 167.40 119.75 0.56 124.20 84.26 0.68 156.95 108.55 0.65 312.04 242.44 0.93 234.91 175.39 0.82
Tertiary 68.31 44.11 0.84 70.23 44.75 0.82 57.71 33.68 0.74 92.33 63.50 0.97 84.48 54.54 0.84
Residential 19.93 8.79 0.92 17.00 8.55 0.84 13.05 6.45 0.70 19.86 11.11 0.94 17.52 8.46 0.90
Service 16.94 6.94 0.75 15.29 6.23 0.75 13.11 5.63 0.72 18.21 7.90 0.68 16.55 6.70 0.62

Average 54.62 17.47 0.77 59.21 17.10 0.74 54.47 14.90 0.68 120.95 34.60 0.79 79.62 24.13 0.73

16

	Introduction
	Related Work on Graph Flow Prediction
	Efficiently Predicting Graph Flow
	Setup and Notation
	Flow Simulation
	Runtime Analysis
	Neural Network Parameterization

	Results
	Experimental Setup
	Dataset
	Architectures & Baselines

	Evaluating Prediction Performance
	Evaluating Runtime
	Ablation Study

	Discussion
	Proof of Theorem 1
	Proof of Theorem 2
	Additional Experimental Details
	Additional Results

