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ABSTRACT

Accurate prediction of traffic flow is crucial for optimizing transportation net-
works, mitigating congestion, and improving urban planning. However, existing
approaches like graph neural networks (GNNs) and traffic simulations face chal-
lenges in predicting flow for unseen road networks without historical data. With-
out abundant training data, GNNs often generalize poorly to new graphs, while
simulations can be computationally infeasible for large-scale networks. This pa-
per tackles the problem of few-shot traffic flow prediction in unseen road net-
works. We propose a novel traffic simulation algorithm that efficiently predicts
flow based on node and edge attributes. Through theoretical analysis, we demon-
strate our approach closely approximates true flow with asymptotically optimal
runtime complexity. Experiments on real-world road networks show our simu-
lation algorithm outperforms GNNs for predicting traffic in unseen cities after
training on only three cities. While motivated by traffic prediction in road net-
works, we expect our contributions to have broader applicability to general graph
flow prediction problems across domains.

1 INTRODUCTION

Flow is a fundamental property of graphs that characterizes the movement or transfer of entities,
such as information, resources, or traffic, across the edges of the graph. In many real-world appli-
cations, predicting the flow within a graph is crucial for optimizing resource allocation, identifying
bottlenecks, and making informed navigation decisions (Chen et al., 2023). Typically, historical
flow data in a graph is used to predict graph flow in the future using graph neural networks (GNNs)
or simulations. However, predicting flow in large unseen graphs without historical data and with a
limited number of training graphs can be significantly more challenging due to weaknesses of the
most common flow prediction models: 1) GNNs trained on a small number of training graphs of-
ten generalize poorly to unseen graphs because flow patterns can drastically vary across regions, 2)
simulations can be computationally infeasible on large graphs.

In this work, we aim to tackle the problem of few-shot flow prediction, with a particular focus on
the case of traffic flow prediction in road networks. Traffic flow in a road segment is the number of
vehicles crossing over the segment in a unit time interval (whether an hour, a day or a year). Traffic
flow prediction is a critical task for urban planning, transportation management, and route opti-
mization, as it enables proactive measures to mitigate congestion and improve the overall efficiency
of transportation networks. Predicting flow in unseen cities reduces the dependency on extensive
data collection, offering a cost-effective solution for urban planning and traffic management. Be-
sides, accurate flow information can help simulate the potential impact of transportation policies
(e.g., congestion pricing and low-emission zones), providing valuable insights for decision-makers.
Although our motivation and experiments consider this particular use-case, we emphasize that our
approach can be applied to general graph flow prediction problems.

Our contributions in this paper are threefold:

• We propose a novel traffic simulation algorithm that efficiently predicts traffic flow based
on node-level and edge-level attributes in a graph.

• We provide a theoretical analysis demonstrating that our proposed approach can closely
approximate the true flow within the graph and achieves asymptotically optimal runtime
complexity, making it computationally efficient and scalable.
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• We demonstrate that our traffic simulation algorithm outperforms GNNs in predicting traf-
fic flow in unseen cities using data from only three training cities, showcasing the effec-
tiveness of our approach in real-world scenarios.

2 RELATED WORK ON GRAPH FLOW PREDICTION

Graph flow prediction requires predicting flow (which could represent fluid volume, vehicle count,
monetary transactions etc.) along each edge of a network based on graph features provided at the
edge and/or node level. Typically, graph flow prediction is done in a time-series setting, with his-
torical graph flow data available for each edge (Medina-Salgado et al., 2022; Nie et al., 2023; Lv
et al., 2020; Wang et al., 2020; Chen et al., 2020; Bao et al., 2023; Tang et al., 2020; Wang et al.,
2022). Models used to predict graph flow largely fall under two categories: data-driven approaches
and simulation-based approaches.

Data-driven approaches Given graph flow data, flow at unobserved timepoints or locations in
the graph can be predicted with a wide variety of machine learning models ranging from nearest-
neighbor approaches, linear models and tree ensembles to neural networks (Medina-Salgado et al.,
2022; Lartey et al., 2021; Sharma et al., 2001). In road networks, these models use topological and
geographical features, socioeconomic features, temporal features, and historical traffic data; they
don’t exploit the spatial dependency of road network. With the emergence of graph neural networks
(GNNs) in recent years, flow prediction has increasingly leveraged GNNs due to networks’ inherent
graph structure. GNNs (Bruna et al., 2013; Kipf & Welling, 2017) are a type of neural network
architecture that uses and maintains the graph structure of its input (Lv et al., 2014; Nie et al., 2023;
Chai et al., 2018; Peng et al., 2021; Li et al., 2021; Wang et al., 2021; Li et al., 2022). A key
advantage of GNNs are their large representational capacity and ability to leverage arbitrary graph-
level features. In principle, GNNs may be used to predict graph flow in unseen graphs; however,
in practice, GNNs are susceptible to over-fitting (Zhou et al., 2021), yielding poor performance on
unseen graphs particularly when there are only a small number of training graphs. Some recent
works have investigated few-shot learning on graphs, but methods to generalize to entirely unseen
graphs from a small number of training graphs mostly remain limited to meta-learning settings (in
which many different graph generalization problems are provided) (Zhang et al., 2022a).

Simulation-based approaches Simulations are an alternative approach used to predict flow prop-
erties in a graph. In road networks, traffic simulations can model graphs at different resolution
levels, ranging from modeling individual agents on the graph to modeling continuous flows on
edges (Dorokhin et al., 2020; Azlan & Rohani, 2018; Pell et al., 2017; Barceló et al., 2010). Relative
to GNNs, traffic simulations are able to model flows at a much finer scale, as well as easily incor-
porate known physical constraints of flow in a network (such as relationship between traffic density
and traffic speed along a road segment) (Fritzsche & Ag, 1994). Regardless of resolution level, traf-
fic simulations typically first model origin-destination pairs for agents on the graph, then compute
traffic flow by summing together flows of individual routes from origins to destinations (Van Aerde
et al., 1996; Pursula, 1999). However, this approach can be infeasible for large graphs as enumerat-
ing over all possible origin-destination pairs is computationally expensive. More recent approaches
have incorporated neural networks into traffic simulations, aiming to make them more efficient or
performant (Zhang & El Kamel, 2018; Gora & Bardoński, 2017; Zhang et al., 2022b). However,
these methods do not provide theoretical guarantees and do not reduce the fundamental computa-
tional complexity of enumerating over origin-destination pairs.

3 EFFICIENTLY PREDICTING GRAPH FLOW

In this section, we present our flow-simulation based approach to efficiently predict graph flow in
unseen graphs; this is valuable in settings where collecting graph labels is expensive, requiring
generalization from only a small number of labeled graphs. We prove error bounds on the output of
our simulation, and demonstrate that it is computationally efficient, requiring only linear time in the
size of the graph to predict flow at each edge.
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3.1 SETUP AND NOTATION

Suppose we have a directed graph with m edges and n nodes. Assume that each edge has d features
associated with it; in a traffic graph, these may correspond to road type (e.g. highway, surface
road), number of lanes, road width etc. We also assume that each node has f features; these may
correspond to the local population density or the identity of any points of interest (POIs) nearby.

We also suppose that each edge has a flow associated with it; in a traffic graph, this may correspond
to the average traffic flow on the corresponding road segment. We denote the flow in all edges as
Q ∈ Rm. Our goal is to predict Q from the edge and node features.

3.2 FLOW SIMULATION

Now, we present our efficient flow simulation algorithm to predict Q. In many natural flow predic-
tion problems, flow is the result of agents taking trips on the graph; for instance, in a traffic graph,
people take trips between origin-destination pairs, and the flow on a road segment is the total number
of trips taken on the segment during a given time period. Thus, we assume that flow Qi for any edge
i can be decomposed by counting all origin-destination pairs traversing through the edge:

Qi =
∑
O,D

N (O,D)p(i ∈ SO,D) (1)

where O and D denote origin and destination respectively, N (O,D) denotes the number of trips
between O and D, p indicates probability and SO,D is a path from O to D.

We make two key assumptions: we assume that the count of the number of trips between O and D
can be approximated as: N (O,D) ≈ ϕ(O)Tψ(D) where ϕ(O), ψ(D) ∈ Rl are feature vectors.
With sufficiently many features, we may approximate any N with arbitrary precision. We also
assume that for any two points O and D, agents traverse the minimum cost path between the points,
denoting the cost of the minimum cost path as c(O,D) ≥ 0. We assume that the costs obey the
triangle inequality:

c(A,B) ≤ c(A,C) + c(C,B) (2)
for all A,B,C. By convention, we also assume c(A,A) = 0. Note that the cost need not be
symmetric: c(A,B) ̸= c(B,A) in general.

Finally, we assume the cost can be approximated as: c(O,D) ≈ ||O−D||/R where R is a constant
and || · − · || represents a metric between nodes. We may interpret this as R roughly being an
‘average’ travel speed across the network; thus, ||O − D||/R would represent an ‘average’ travel
time between O and D. We may then show the following result:

Theorem 1. Assume for all O,D, |N (O,D) − ϕ(O)Tψ(D)| ≤ ϵ and |c(O,D) − ||O−D||
R | ≤ ε.

Finally, assume that for all O,D, the cost of the second lowest cost path between them is greater
than the first lowest cost by at least ∆. Then, for edge i from A to B, we may approximate Qi as
Q̂i:

Q̂i =

(∑
O

e
κ
R (||O−B||−||O−A||−Rci)ϕ(O)

)T (∑
D

e
κ
R (||A−D||−||B−D||−Rci)ψ(D)

)
(3)

for a constant κ > 0 with approximation error bounded as:

|Qi − Q̂i| ≤ n2ϵ+ (n2ϵ+
∑
j

Qj)(e
−κ∆ + e4κε − 1) (4)

See Appendix A for a proof. For each edge i, this approximation computes a weighted average of
the feature vectors ϕ(O) and ψ(D) over all possibilities of origin and destination; each triple of
edge, origin and destination is assigned a weight. For a given origin-destination pair, the weighting
of an edge depends on two factors: 1) the cost of the edge ci, with higher cost edges being assigned
less weight, 2) the ‘progress’ an edge makes towards the destination and away from the origin, with
more progress being assigned more weight. The resulting weighted vectors associated with the edge
correspond to the origin and destination characteristics of all likely paths passing through the edge.
The final flow is then simply computed as the dot product of the two weighted vectors. Intuitively,
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this approach assigns less flow to costlier edges, and more flow to edges in the direction of common
routes. It is also biased towards assigning more flow on shorter edges: it is costlier to incorrectly
predict a longer edge lies on a shortest path compared to a short edge, so the simulation prefers
avoiding flow on long edges.

Observe that the approximation error bound approaches zero as ϵ and κε approach zero and κ∆
approaches infinity. We may set κ to minimize the bound at κ =

log ∆
4ε

4ε+∆ when ∆ > 4ε, although
in practice the κ minimizing the bound may not necessarily be the one minimizing the empirical
estimation error.

3.3 RUNTIME ANALYSIS

We assume that computing feature vectors ϕ and ψ takes constant time. Then, computing Q̂i fol-
lowing Equation 3 takes O(n) time, where n is the number of nodes in the graph. Computing Q̂ for
all edges takes O(mn) time where m is the number of edges.

In fact, we may show that the per edge cost of O(n) is asymptotically optimal: for any graph size,
there exists a graph such that some edge in the graph requires O(n) time to compute its edge flow.
Formally,

Theorem 2. Consider all graphs for which edge flow Qi for all edges i may be decomposed as:

Qi =
∑
O,D

ϕ(O)Tψ(D)p(i ∈ SO,D) (5)

whereO,D are a pair of nodes in the graph, ϕ(O) and ψ(D) are functions ofO andD respectively,
and SO,D denotes the lowest cost path between O,D. Then, for any number of nodes n ≥ 4, there
exists a set of graphs and associated ϕ, ψ with the same nodes, edges and edge costs such that 1) for
some edge i, Qi is different for all graphs, 2) for any n− 3 nodes a1, a2, ...an−3 and evaluations of
either ϕ or ψ on each node, there exist two distinct graphs with the same measured values. Thus, it
takes at least n− 3 measurements of ϕ or ψ to identify a graph from the set.

See Appendix B for a proof. Intuitively, this theorem states that inferring the edge flow at a particular
edge can require examining (nearly) all nodes in the graph because all nodes may contribute to the
edge flow. We note that there may be certain graphs for which edge flows can be computed more
cheaply; however, in the worst case, the time to compute edge flow is O(n).

Algorithm 1 Compute Q̂

Require: Number of origin nodes nO, number of destination nodes nD, number of edges m, origin
node features fNO ∈ RnO×dN , destination node features fND ∈ RnD×dN , Edge features fE ∈
Rm×dE , Node encoders GO, GD, Edge encoder H , hyper-parameters R, κ
Q̂ = 0 ∈ Rm

Φ = GO(fNO) ∈ RnO×l

Ψ = GD(fND) ∈ RnD×l

for edge i do
ci = H(fEi ) ∈ R
vO = 0 ∈ RnO

for origin node j do
vOj = e

κ
R (||j−i[1]||−||j−i[0]||−Rci) // i[0], i[1] are start and end nodes of segment i

end for
vD = 0 ∈ RnD

for destination node j do
vDj = e

κ
R (||j−i[0]||−||j−i[1]||−Rci) // i[0], i[1] are start and end nodes of segment i

end for
Q̂i = (vOTΦ)(ΨT vD) // Updated flow estimate

end for
return Q̂
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Figure 1: Architecture diagram of our neural network flow simulation. The method works by first
encoding edges and roades (representing either origins or destinations) into node embeddings and
cost with separate neural network encoders. The resulting origin (or destination) embeddings are
then weighted based their cost and spatial location to produce a weighted origin (or destination
embedding). The dot product between weighted origin and destination embedding produces the
final predicted flow.

3.4 NEURAL NETWORK PARAMETERIZATION

So far, we have treated edge costs ci and feature embeddings ϕ and ψ as known. However, in prac-
tical problems, we may not know the true costs of traveling on each edge or the likelihood of a trip
between each pair of nodes. Instead, we may learn these quantities via neural networks. Specifi-
cally, we assume that instead of edge costs and node feature embeddings, we have properties for
nodes and edges. In a traffic flow graph, these properties may include population density and the
popularity of an area for a node, and road width and length for an edge. Given these properties we
propose using three neural networks: one to map edge properties to costs and one each to map node
properties to either origin or destination node feature embeddings. In our implementation, the two
node embedding networks share all but the last layer. Importantly, these neural networks are applied
independently across edges and nodes respectively (they are not graph neural networks). Given a
set of edge flow labels Qi, we may then train these networks to predict flow end-to-end with the
simulation algorithm. Figure 1 illustrates the full architecture of the neural network parameterized
traffic simulation; observe that the neural networks simply parameterize the inputs to the remaining
components of the algorithm. In order to make the algorithm computationally tractable when using
neural network predicted feature embeddings, instead of considering all possible origin and desti-
nation nodes, we randomly sub-sample possible origin and destination nodes. Algorithm 1 presents
the full procedure to compute graph flow from a sample of edge and node features.

4 RESULTS

4.1 EXPERIMENTAL SETUP

4.1.1 DATASET

We consider a real-world traffic prediction problem: we are provided traffic flow data for three train-
ing cities in Texas (Austin, Dallas and San Antonio), and we wish to predict traffic flow in two test
cities (Fort Worth and Houston). Traffic flow in road networks is measured as Average Annual Daily
Traffic (AADT) (Administration, 2015), the average number of vehicles passing through any given
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road segment on each day. Data comes from four sources: 1) OpenStreetMap features, 2) European
Space Agency satellite imagery, 3) National Aeronautics and Space Administration (NASA) popu-
lation density data, 4) road traversal data. The first three sources provide features for the prediction
problem, while the last data source provides labels.

OpenStreetMap The OpenStreetMap (OSM) dataset includes both geographic information about
road segments as well as features of each road segment. Road segments are short sections of road
often ranging from 10 to 100 meters. OSM lists the geographic coordinates of the points on the
road segments as well as their intersections. OSM features include various attributes of the road
segments, such as road functional class (e.g., highway, local, residential), presence of stop signs or
traffic signals and number of lanes. Most of these features are categorical, with the exception of
the following numeric features: speed limit, number of lanes, and the maximum allowed weight
and height. Categorical features are one-hot encoded while numerical features are encoded directly.
Appendix C Table 4 lists all OSM features. Each city has between 105 and 106 road segments; how-
ever, with the exception of road functional class, other features are not available for every segment.
For numeric features, we add an additional binary feature indicating whether the numeric feature is
available or not.

European Space Agency satellite imagery The European Space Agency provides a number of
high-resolution images of different geographic regions. Each image is 10980× 10980 and captures
a rectangular block (in terms of latitude and longitude coordinates). For each city in our dataset, we
collect images overlapping with the city; for all cities, at most two images are sufficient to cover
the entire metropolitan area. We then process the images as follows: for each road segment in the
dataset, we center the full image to center around the road segment, rotate it such that the road
segment points left to right, and then center-crop the image to produce a 24 × 24 cropped image.
This produces a single cropped image centered at each road segment in the dataset. We then pass this
image through a 5-layer convolutional neural network (CNN) to produce a 64-dimensional encoding
of the image. This CNN is trained end-to-end with the downstream model.

Population density data The NASA population density data we use provides population density
estimates for administrative units, providing a latitude-longitude center point for each administrative
unit. To associate these point-wise population densities to road segments, for each point in the
population density dataset, we assign its population density to the nearest road segment intersection.
This provides a population density estimate at each road segment intersection; note that the majority
of road segments have no population assigned.

Road traversals We use a third-party road traversal dataset consisting of a large set of traversals of
the North American road network. The traversals provide GPS trajectory data with a high-resolution
sampling rate of 5 seconds. We apply a Hidden Markov Model map-matching algorithm to align
GPS trajectories with corresponding segments onto the OSM road network. Once the raw trajecto-
ries are map-matched to OSM segments, we calculate the average daily traversal count for each road
segment in each of the Texan cities in our dataset. These volumes serve as our labels. As Figure 2
shows, generally larger road functional classes (such as motorways and primary roads), tend to have
larger AADT mean and variance. Moreover, AADT statistics are consistent across different cities.
We note that these AADT numbers only represent the subset of the true traffic traveling on the road
network since not all vehicles are tracked by our dataset. However, we assume that the sampled ve-
hicles are representative of all vehicles traveling on the road; thus, our AADT label is a reasonable
proxy for the ‘true’ AADT up to a constant scale factor.

4.1.2 ARCHITECTURES & BASELINES

We compare our approach with a baseline graph neural network (GNN). Both the GNN and our
traffic simulation use a CNN image encoder first to convert satellite images into a lower dimensional
representation. This output is then appended with OSM features to form the full set of features for
each edge. For GNNs, we append the features associated with the road intersections at the ends
of each road segment to the road segment features (thus, each road segment has two sets of road
intersection features). Road intersection features consist of population density measurements and
a positional encoding; these features are used by both the GNN and our method. The GNN is
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(a) Austin (b) San Antonio (c) Dallas

Figure 2: Histograms of AADT for road segments categorized by road functional class in Austin,
San Antonio and Dallas.

constructed using a graph with road segments as nodes and road intersections as nodes. This allows
the GNN to predict attributes at the road segment level. The GNN uses 3 convolutional layers.
For our traffic simulation, the node and edge feature encoders are 8 layer neural networks. See
Appendix C for more details.

As an additional baseline, we consider a full traffic simulation that computes flow on each road
segment by enumerating over all possible origin and destination node combinations and adding their
individual flow contributions. This enumeration is computationally infeasible; thus, we include an
estimate of its runtime instead of the actual results with this method. We estimate the runtime by
using one floating point operation to account for the flow contributed on each road segment by each
origin-destination pair.

4.2 EVALUATING PREDICTION PERFORMANCE

We compare the performance of the GNN vs. our method under a number of error metrics, each
split up by road functional class and averaged. Table 1 reveals that the GNN and our method both
perform well in an absolute sense, with the RMSE of AADT errors averaging on the order of 100.
Comparing to the AADT distribution in Figure 2, these errors can be considered small; they are
roughly the size of one histogram bin in the plot.

Nevertheless, our method significantly outperforms the GNN, outperforming the GNN on all error
metrics on average and outperforming the GNN on nearly all road functional classes. Appendix D
Table 5 shows training set results, where we find that the GNN performs worse than our method on
the training set as well. This suggests that the GNN is simply less capable of capturing the structure
of traffic flow relative to our traffic simulation which, unlike the GNN, explicitly models the structure
of traffic flow.

Figure 3: Example road segments in Austin with actual and predicted AADT by our traffic simula-
tion model.

Figure 3 shows representative road segments where the our traffic simulation either dramatically
overestimates or underestimates traffic flow. In all three cases, the road segment connects to a high-

7
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Table 1: Test set AADT error metrics by road functional class and on average for two models trained
on Austin, San Antonio and Dallas; root mean squared error (RMSE), mean absolute error (MAE),
mean absolute percentage error (MAPE).

Our Traffic Simulation

Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 1067.48 816.53 1.01 1095.47 848.83 0.39
Trunk 395.33 307.06 0.60 382.13 314.28 2.88
Primary 354.86 267.78 0.80 301.73 230.20 0.76
Secondary 203.93 148.94 0.99 196.81 140.55 0.85
Tertiary 76.27 48.88 1.07 82.91 50.98 0.99
Residential 17.68 9.11 0.99 17.79 8.14 0.76
Service 16.52 6.54 0.77 15.60 6.07 0.62

Average 102.02 28.17 0.89 91.96 24.35 0.68

GNN

Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 1911.06 1447.67 2.31 1434.86 1138.85 0.52
Trunk 621.43 450.15 0.85 419.16 308.37 1.40
Primary 645.37 364.53 1.09 410.79 309.95 0.66
Secondary 331.34 213.89 1.06 263.02 191.14 0.81
Tertiary 126.98 62.45 1.33 93.01 59.06 0.88
Residential 84.74 20.10 2.64 22.54 9.40 0.85
Service 68.93 12.36 1.92 22.31 7.67 0.96

Average 167.79 39.91 2.26 100.84 27.88 0.90

way on-ramp or off-ramp, with dramatic variation in both the actual and predicted AADTs despite
similar road topology. This suggests our approach struggles with AADT prediction on highways
which align with our tabulated metrics: errors are largest for major roadways, with RMSEs on the
order of 1000 vehicles/day.

4.3 EVALUATING RUNTIME

We compare the per epoch training time of our traffic simulation with the GNN and the baseline
full traffic simulation (Appendix C describes our computing infrastructure). In Table 2, we find that
the GNN trains roughly 10 times slower per epoch than our traffic simulation despite its shallower
architecture. This is primarily due to the relatively high cost of graph convolution in the GNN while
our approach encodes road segments independently. A full traffic simulation is practically infeasible,
requiring on the order of 10 years to run.

Table 2: Projected per epoch training times of three different approaches to compute AADT. Train-
ing is conducted on Austin; we estimate per epoch runtimes by projecting runtimes from 10 training
iterations. We report mean ± standard deviation over 5 trials.

Ours GNN Full Traffic Simulation

Time per epoch (s) 358.7± 7.7 3348± 35 4.207± 0.135× 108

4.4 ABLATION STUDY

Next, we perform an ablation of our model to to interpret how it works. We test a segment-wise
neural network (NN) that replaces the convolutions of a GNN with independent computations for
each road segment. This can also be viewed as a version of our traffic simulation that predicts flow
purely from edge cost ci for edge i. Table 3 reveals that the segment-wise NN outperforms the GNN,
showing that the GNN does not effectively use the connectivity structure of road segments. We also
find in Appendix D Table 5 that the segment-wise NN performs closer to our traffic simulation on
certain road classes and test cities, sometimes even outperforming it. However, the segment-wise
NN performs much better on the training set than the traffic simulation, indicating that it is prone to
overfitting. Thus, we believe our traffic simulation generalizes much better to unseen graphs.

8
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Table 3: Average test set AADT root mean squared error (RMSE) for three models trained on Austin,
San Antonio and Dallas and tested on Houston and Fort Worth.

Method Our Traffic Sim GNN Segment-wise NN

Houston 102.02 167.79 120.95
Fort Worth 91.96 100.84 79.62

5 DISCUSSION

We demonstrate theoretically and empirically that our traffic simulation achieves accurate flow pre-
dictions under limited run-time. Unlike GNN approaches, which struggle to generalize in few-shot
settings, our approach readily predicts flow on unseen graphs without any additional fine-tuning.
Moreover, it is highly scalable, computing city-scale traffic flows under limited computational re-
sources.

We highlight some potential directions to extend our work. Our current implementation uses a
simplified cost approximation between nodes based on their Euclidean distance, which assumes that
nodes lie in a Euclidean geometry. Extending this to a neural network parameterized cost function
could further improve accuracy. In our work, we also primarily study traffic flows on road networks.
We believe that a more flexible cost function could also allow our approach to be applied to general
graphs with non-planar and even non-Euclidean geometries.

Given the significant cost of traffic simulation approaches and their widespread use for prediction
in transportation, logistics and communication networks, we hope our work can provide an efficient
alternative to traditional simulations. More broadly, we hope our approach can facilitate highly
efficient and generalize flow prediction on general graphs.
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APPENDIX

A PROOF OF THEOREM 1

Proof. First, recall that a path between O and D is the lowest cost path if all its segments are on
the minimum spanning tree to D (denoted M:D) and the minimum spanning tree from O (denoted
MO:). Thus, we may write:

p(i ∈ SO,D) = p(i ∈M:D)p(i ∈MO:) (6)
where p denotes probability. Note that this factorization is valid for O ̸= D since the probabilities
are always either 0 or 1. We may then write: Qi =

∑
O,D N (O,D)p(i ∈ M:D)p(i ∈ MO:) Next,

observe that if i connects point A to B, then i is on M:D if and only if:
c(A,D) = c(B,D) + ci (7)

where ci is the cost of segment i; this is because if i is not on the minimum cost path, c(A,D) will
be less than the right hand side. Given this, we approximate p(i ∈M:D) as:

p(i ∈M:D) ≈ eκ(c(A,D)−c(B,D)−ci) (8)
for a constant κ > 0. This has error bounded as:

|p(i ∈M:D)− eκ(c(A,D)−c(B,D)−ci)| ≤ e−κ∆ (9)
where equality can be achieved when i is on the second lowest cost path between A and D (when
p(i ∈M:D) = 0). Similarly:

|p(i ∈MO:)− eκ(c(O,B)−c(O,A)−ci)| ≤ e−κ∆ (10)
Combining these bounds:

|p(i ∈ SO,D)− eκ(c(O,B)−c(O,A)−ci+c(A,D)−c(B,D)−ci)| ≤ e−κ∆ (11)
where equality is reached when each and p(i ∈ M:D) = 1, p(i ∈ MO:) = 0 and the bound on the
approximation of p(i ∈MO:) is tight or vice versa.

Next, we use the approximation on c(O,D):

κ(c(A,D)− c(B,D)− ci + c(O,B)− c(O,A)− ci)

≈ κ

R
(||A−D|| − ||B −D|| −Rci + ||O −B|| − ||O −A|| −Rci) (12)

We may bound the approximation error as:

|κ(c(A,D)− c(B,D)− ci + c(O,B)− c(O,A)− ci)−
κ

R
(||A−D|| − ||B −D|| −Rci + ||O −B|| − ||O −A|| −Rci)| ≤ 4κε (13)

Thus,

|eκ(c(A,D)−c(B,D)−ci+c(O,B)−c(O,A)−ci)

− e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)| ≤ e4κε − 1 (14)

with equality when one of the exponents is 0. Combining this bound with the earlier bound on
p(i ∈ SO,D):

|p(i ∈ SO,D)− e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)| ≤ e−κ∆ + e4κε − 1 (15)

Next, combining this result with the approximation of N (O,D), we have:

|N (O,D)p(i ∈ SO,D)− ϕ(O)Tψ(D)e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)|

≤ ϵ+ (ϵ+N (O,D))(e−κ∆ + e4κε − 1) (16)
with equality reached when p(i ∈ SO,D) equals one and the previous inequalities are tight.

Finally, summing over O,D pairs:

|
∑
O,D

N (O,D)p(i ∈ SO,D)−
∑
O,D

ϕ(O)Tψ(D)e
κ
R (||A−D||−||B−D||−Rci+||O−B||−||O−A||−Rci)|

≤
∑
O,D

ϵ+ (ϵ+N (O,D))(e−κ∆ + e4κε − 1) = n2ϵ+ (n2ϵ+
∑
j

Qj)(e
−κ∆ + e4κε − 1) (17)
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B PROOF OF THEOREM 2

Proof. Proof by construction: consider a graph with n nodes labeled Wi for i = 1, ...⌊n
2 ⌋ − 1, Zj

for j = 1, ...⌈n
2 ⌉ − 1 and nodes labeled Y and Z. Suppose all Wi have a directed connection to X

which is connected to Y which is connected to all Z. There are no other edges. Finally, assume that
ϕ(Wi)

Tψ(Zj) ≥ 0 for all i, j and all other ϕ(·)Tψ(·) are 0. Then, the flow QXY on the edge from
X to Y is simply:

QXY =
∑
i,j

ϕ(Wi)
Tψ(Zj) (18)

Now, suppose ϕ(Wi) can take value either 0 or value 2i−1, yielding 2⌊
n
2 ⌋−1 settings of ϕ. Similarly,

suppose ψ(Zj) can take value either 0 or value 2(⌊
n
2 ⌋−1)(j−1) yielding 2⌈

n
2 ⌉−1 possible settings of

ψ. This yields 2(⌊
n
2 ⌋−1)(⌈n

2 ⌉−1) possible settings overall.

Note this allows the QXY to take any integer value from 1 to 2(⌊
n
2 ⌋−1)(⌈n

2 ⌉−1) − 1, with every
possible setting of ϕ and ψ corresponding to a different QXY . Thus, this set of possibilities satisfies
condition (1) of the theorem.

Note also that for any Wi and any setting of ϕ and ψ, we may flip the value of ϕ(Wi) from 0 to 2i−1

or vice versa. Similarly, for any Zj , we may flip the value of ψ(Zj) from 0 to 2(⌊
n
2 ⌋−1)(j−1). This

yields another valid setting of ϕ and ψ with the same values except at either ϕ(Wi) or ψ(Zj).

Observe that for any set of n− 3 or fewer nodes, there will be a W or Z node excluded since there
are a total of n− 2W and Z nodes. We may choose a W or Z node not in the selected set such that
flipping its ϕ or ψ embedding will yield another valid setting of ϕ and ψ. Therefore, condition (2)
of the theorem is satisfied.

C ADDITIONAL EXPERIMENTAL DETAILS

Image Encoder Both the GNN and traffic simulation approaches use a convolutional image en-
coder to encode images into a 64 dimensional vector. This encoder has 5 ReLU-activated convolu-
tional layers with kernel size 3, stride 2 and hidden dimension 64. This is followed by a final global
average pooling layer. The output of the image encoder is appended to the OSM features of each
road segment. The image encoder is trained end-to-end with the downstream model.

Positional encoding of road intersections For each road intersection, we produce a 64 dimen-
sional positional encoding as follows: given that the latitude and longitude of a point is (y, x), the
positional encoding ϕ ∈ R64 is given as:

ϕi = sin((
6

5
)ix), i = 0, 1, ...15 (19)

ϕi+16 = cos((
6

5
)ix), i = 0, 1, ...15 (20)

ϕi+32 = sin((
6

5
)iy), i = 0, 1, ...15 (21)

ϕi+48 = cos((
6

5
)iy), i = 0, 1, ...15 (22)

The exponentially spaced range of frequencies ( 65 )
i allows for encoding of spatial information at

varying scales.

GNN model The GNN model consists of three ReLU activated graph convolutional layers of
hidden layer size 64. A layer normalization layer preceeds each graph convolution. We perform
training over small randomly sampled neighborhoods in the graph; each neighborhood has radius
2 and has 4 neighbors in each step. We use 100 such neighborhoods per training step. The GNN
is trained with Adam (Kingma & Ba, 2015) with a learning rate of 10−3 for 1 epoch. We use the
following loss function (log(y+1)− log(ŷ+1))2 where y is the true AADT and ŷ is the predicted

13
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AADT. We use a logarithmically scaled AADT in the lose because roads have AADT varying across
magnitudes, and higher AADT roads can be reasonably be expected to have higher prediction error
as well. We add 1 to avoid taking the logarithm of 0 for any roads with no measured traffic flow.

Traffic simulation We set κ = 1.0 and R = 0.01; these parameters are chosen to fit the training
cities. We set the size of the node embeddings to be 128. Because computing flow for all edges
at once considering all nodes at once is computationally costly, we take batches of size 10000 over
edges and batches of size 1000 over nodes. The edge and node encoder neural networks each have 8
layers and hidden dimension 128. We train the encoder neural networks with Adam with a learning
rate of 10−4 for 5 epochs. We use the same loss function as used to train the GNN model.

Computing Infrastructure We run experiments on a 4.05 GHz CPU with 36 GB of memory.
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Table 4: List of OSM features used by models. Categorical features are one hot encoded. RFC
indicates road functional class. The last three features (distance, displacement and log curvature)
are calculated from the list of latitude-longitude coordinates of each road segment.

Features

RFC 0: road
RFC 10: motorway
RFC 15: motorway link
RFC 20: trunk
RFC 25: trunk link
RFC 30: primary
RFC 35: primary link
RFC 40: secondary
RFC 45: secondary link
RFC 50: tertiary
RFC 51: tertiary link
RFC 55: unclassified
RFC 60: residential
RFC 70: service
RFC 71: service, emergency
RFC 72: service, drive thru
RFC 75: living street
RFC 85: service, alley
RFC 90: unpaved
RFC 95: track
RFC 100: service, parking
RFC 101: service, driveway
RFC 102: service, parking aisle
Stop Sign: none
Stop Sign: minor
Stop Sign: all
Traffic Signal: none
Traffic Signal: signal
Traffic Signal: unknown
Traffic Signal: lights
Toll
Delivery Access Rest.
Is Via Segment
Max Height
No Max Height
No Route To
Roundabout
No Commercial
Is Tunnel
Restricted Ped. Xing
Max Weight
No Max Weight
Restricted Veh. Xing
No Through
Lanes in Seg. Dir.
No Lanes in Seg. Dir.
Is Private Road
No Route From
Total Lanes
No Total Lanes
Max Speed
No Max Speed
Distance
Displacement
Log curvature

15
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D ADDITIONAL RESULTS

Table 5: Training and test set AADT error metrics by road functional class and on average for
models trained on Austin, San Antonio and Dallas; root mean squared error (RMSE), mean absolute
error (MAE), mean absolute percentage error (MAPE).

Ours

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 892.41 670.70 1.18 820.21 626.91 0.32 836.36 632.90 0.67 1067.48 816.53 1.01 1095.47 848.83 0.39
Trunk 523.15 420.91 0.43 318.76 241.84 0.68 344.95 271.03 0.74 395.33 307.06 0.60 382.13 314.28 2.88
Primary 252.50 193.66 0.56 257.59 181.83 0.84 234.57 175.46 0.55 354.86 267.78 0.80 301.73 230.20 0.76
Secondary 217.91 154.00 0.66 156.38 111.80 1.39 183.19 127.99 0.86 203.93 148.94 0.99 196.81 140.55 0.85
Tertiary 83.60 52.42 0.91 82.13 52.37 0.86 64.12 37.42 0.96 76.27 48.88 1.07 82.91 50.98 0.99
Residential 20.63 8.75 0.84 18.10 8.74 0.80 13.69 6.67 0.77 17.68 9.11 0.99 17.79 8.14 0.76
Service 16.81 6.66 0.71 15.85 6.19 0.74 13.48 5.66 0.74 16.52 6.54 0.77 15.60 6.07 0.62

Average 84.21 22.71 0.74 78.53 21.61 0.77 76.01 19.87 0.74 102.02 28.17 0.89 91.96 24.35 0.68

GNN

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 2041.77 1311.84 1.95 1834.14 1340.20 0.70 1872.69 1335.05 1.11 1911.06 1447.67 2.31 1434.86 1138.85 0.52
Trunk 648.62 518.60 0.62 383.36 254.23 0.59 437.23 325.36 1.19 621.43 450.15 0.85 419.16 308.37 1.40
Primary 445.80 289.56 0.79 350.00 225.66 0.87 317.23 213.21 0.64 645.37 364.53 1.09 410.79 309.95 0.66
Secondary 316.89 189.02 0.79 242.88 136.25 1.06 242.48 155.18 1.03 331.34 213.89 1.06 263.02 191.14 0.81
Tertiary 130.45 59.13 1.05 109.23 56.77 1.02 89.44 43.67 1.17 126.98 62.45 1.33 93.01 59.06 0.88
Residential 36.69 10.61 0.91 29.43 10.53 0.96 23.68 8.27 0.90 84.74 20.10 2.64 22.54 9.40 0.85
Service 35.58 9.04 1.23 27.99 8.16 1.13 18.60 6.72 1.01 68.93 12.36 1.92 22.31 7.67 0.96

Average 125.83 27.35 1.02 110.34 25.14 1.03 100.77 20.95 0.98 167.79 39.91 2.26 100.84 27.88 0.90

Segment-wise NN

Austin (training) San Antonio (training) Dallas (training) Houston Fort Worth

Road Functional Class RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE RMSE (vehicles/day) MAE (vehicles/day) MAPE

Motorway 695.67 560.35 1.97 973.44 791.40 0.48 889.08 697.26 1.09 1635.17 1310.08 1.98 951.68 754.49 0.42
Trunk 296.02 220.92 0.34 196.73 128.93 0.32 233.50 171.20 0.62 493.93 392.98 0.70 324.08 239.37 1.72
Primary 177.29 130.49 0.65 210.13 145.45 0.61 186.14 140.88 0.45 486.57 375.73 0.73 310.39 233.69 0.54
Secondary 167.40 119.75 0.56 124.20 84.26 0.68 156.95 108.55 0.65 312.04 242.44 0.93 234.91 175.39 0.82
Tertiary 68.31 44.11 0.84 70.23 44.75 0.82 57.71 33.68 0.74 92.33 63.50 0.97 84.48 54.54 0.84
Residential 19.93 8.79 0.92 17.00 8.55 0.84 13.05 6.45 0.70 19.86 11.11 0.94 17.52 8.46 0.90
Service 16.94 6.94 0.75 15.29 6.23 0.75 13.11 5.63 0.72 18.21 7.90 0.68 16.55 6.70 0.62

Average 54.62 17.47 0.77 59.21 17.10 0.74 54.47 14.90 0.68 120.95 34.60 0.79 79.62 24.13 0.73
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