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Abstract

Reinforcement learning has achieved significant milestones, but sample efficiency
remains a bottleneck for real-world applications. Recently, CrossQ has demon-
strated state-of-the-art sample efficiency with a low update-to-data (UTD) ratio of 1.
In this work, we explore CrossQ’s scaling behavior with higher UTD ratios. We
identify challenges in the training dynamics, which are emphasized by higher UTD
ratios. To address these, we integrate weight normalization into the CrossQ frame-
work, a solution that stabilizes training, has been shown to prevent potential loss of
plasticity and keeps the effective learning rate constant. Our proposed approach
reliably scales with increasing UTD ratios, achieving competitive performance
across 25 challenging continuous control tasks on the DeepMind Control Suite
and MyoSuite benchmarks, notably the complex dog and humanoid environments.
This work eliminates the need for drastic interventions, such as network resets, and
offers a simple yet robust pathway for improving sample efficiency and scalability
in model-free reinforcement learning.

1 Introduction

Reinforcement Learning (RL) has shown great successes in recent years, achieving breakthroughs in
diverse areas. Despite these advancements, a fundamental challenge that remains in RL is enhancing
the sample efficiency of algorithms. Indeed, in real-world applications, such as robotics, collecting
large amounts of data can be time-consuming, costly, and sometimes impractical due to physical
constraints or safety concerns. Thus, addressing this is crucial to make RL methods more accessible
and scalable.

Different approaches have been explored to address the problem of low sample efficiency in RL.
Model-based RL, on the one hand, attempts to increase sample efficiency by learning dynamic models
that reduce the need for collecting real data, a process often expensive and time-consuming [38,
21, 11, 16]. Model-free RL approaches, on the other hand, have explored increasing the number of
gradient updates on the available data, referred to as the update-to-data (UTD) ratio [32, 9], modifying
network architectures [4], or both [8, 17, 19, 31]. A central tension in these research directions is
balancing the sample efficiency of the agent against the computational complexity, i.e., wall-clock
time, of the underlying algorithm. Algorithmic adjustments such as model-based rollouts, computing
auxiliary exploration rewards and higher UTDs can all significantly increase the wall-clock time
of the algorithm. Likewise, architectural changes such as larger models [31] and more ensemble
members [8] also increase the wallclock time of the method. Ideally, we desire architectural and
algorithmic changes that balance sample efficiency and simplicity, such as CrossQ [4], which showed
that careful use of batch normalization unlocks significantly greater sampler efficiency of deep
actor-critic methods without significantly impacting the wallclock time.
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Figure 1: CrossQ + WN UTD=2 outperforms SIMBA UTD=2 and BRO UTD=2. In comparison, our
proposed CrossQ + WN is a simple algorithm that, unlike BRO, does not require extra exploration
policies or full parameter resets. We present results for 25 complex continuous control tasks from the
DMC and MyoSuite benchmarking suites. 1.0 marks the maximum score achievable on the respective
benchmarks (DMC return up to 1000 / MyoSuite up to 100% success rate). We present IQM and 90%
stratified bootstrap confidence intervals aggregated over multiple environments and 10 seeds each.

In this work, we build upon CrossQ [4], the model-free RL algorithm that showed state-of-the-art
sample efficiency on the MuJoCo [41] continuous control benchmarking tasks, and also enabled
learning omni-directional locomotion policies in 8 minutes of real-world experience [6]. Notably, the
authors achieved this by carefully utilizing batch normalization (BN, Ioffe [20]) within the actor-critic
architecture. A technique previously thought not to work in RL, as reported by Hiraoka et al. [17] and
others. The insight that Bhatt et al. [4] offered is that one needs to carefully consider the different
state-action distributions within the Bellman equation and handle them correctly to succeed. This
novelty allowed CrossQ at a low UTD of 1 to outperform the then state-of-the-art algorithms that
scaled their UTD ratios up to 20. Even though higher UTD ratios are more computationally expensive,
they allow for larger policy improvements using the same amount of data. This naturally raises
the question: How can we extend the sample efficiency benefits of CrossQ and BN to the high UTD
training regime? Which we address in this manuscript.

Contributions. In this work, we show that the vanilla CrossQ algorithm is brittle to tune on
DeepMind Control (DMC) and MyoSuite environments and can fail to scale reliably with increased
compute. To address these limitations, we propose the addition of weight normalization (WN),

Figure 2: Comparing performance against wall clock time, measured in environment steps per second
(so larger is better) on a single RTX 4090 workstation, we observe the CrossQ + WN outperforms
SIMBAand BRO across all environments. We present results for 25 complex continuous control tasks
from the DMC and MyoSuite benchmarking suites. 1.0 marks the maximum score achievable on the
respective benchmarks (DMC return up to 1000 / MyoSuite up to 100% success rate).
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which we show to be a simple yet effective enhancement that stabilizes CrossQ. We motivate the
combined use of WN and BN on insights from the continual learning and loss of plasticity literature
and connections to the effective learning rate. Our experiments show that incorporating WN not only
improves the stability of CrossQ but also allows us to scale its UTD, thereby significantly enhancing
sample efficiency.

2 Preliminaries

This section briefly outlines the required background knowledge for this paper.

Reinforcement learning. A Markov decision process (MDP) [34] is a tuple M =
〈S,A,P, r, µ0, γ〉, with state space S ⊆ Rn, action space A ⊆ Rm, transition probability
P : S ×A → ∆(S), the reward function r : S ×A → R, initial state distribution µ0 and discount
factor γ. We define the RL problem according to Sutton and Barto [39]. A policy π : S → ∆(A) is
a behavior plan, which maps a state s to a distribution over actions a. The discounted cumulative
return is defined as Rπ(s,a) =

∑∞
t=0 γ

tr(st,at), where s0 = s, a0 = a and st+1 ∼ P( · |st,at)
and at ∼ π( · |st) otherwise. The Q-function of a policy π is the expected discounted return
Qπ(s,a) = E[Rπ(s,a)]. The goal of an RL agent is to find an optimal policy π∗ that maximizes the
expected return from the initial state distribution π∗ = argmaxπ Es∼µ0

[Qπ(s,a)] .

Soft actor-critic (SAC, Haarnoja et al. [13]) addresses this optimization problem by jointly learning
neural network representations for the Q-function and the policy. The policy network is optimized to
maximize the Q-values, while the Q-function is optimized to minimize the squared Bellmann error,
where the value target is computed by taking an expectation over the learned Q function

V (st+1) = Eat+1∼πθ(·|st+1) [Qθ̄(st+1,at+1)] . (1)

To stabilize the Q-function learning, Haarnoja et al. [13] found it necessary to use a target Q-network
in the computation of the value function instead of the regular Q-network. The target Q-network is
structurally equal to the regular Q-network, and its parameters θ̄ are obtained via Polyak Averaging
over the learned parameters θ. While this scheme ensures stability during training by explicitly
delaying value function updates, it also arguably slows down online learning [33, 22, 30].

Instead of relying on target networks, CrossQ [4] addresses training stability issues by introducing
batch normalization (BN, Ioffe [20]) in its Q-function and achieves substantial improvements in
sample and computational efficiency over SAC. A central challenge when using BN in Q networks
is distribution mismatch: during training, the Q-function is optimized with samples st,at from the
replay buffer. However, when the Q-function is evaluated to compute the target values (eq. (1)),
it receives actions sampled from the current policy at+1 ∼ πθ( · |st+1). Those samples have no
guarantee of lying within the training distribution of the Q-function. BN is known to struggle with
out-of-distribution samples, as such, training can become unstable if the distribution mismatch is not
correctly accounted for [4]. To deal with this issue, CrossQ removes the separate target Q-function
and evaluates both Q values during the critic update in a single forward pass, which causes the BN
layers to compute shared statistics over the samples from the replay buffer and the current policy. This
scheme effectively tackles distribution mismatch problems, ensuring that all inputs and intermediate
activations are effectively forced to lie within the training distribution.

Normalization techniques in RL. Normalization techniques are widely recognized for improving
the training of neural networks, as they generally accelerate training and improve generalization [18].
There are many ways of introducing different types of normalizations into the RL framework. Most
commonly, authors have used layer normalization (LN) within the network architectures to stabilize
training [17, 29, 26]. Recently, CrossQ has been the first algorithm to successfully use BN layers in
RL [4]. The addition of BN leads to substantial gains in sample efficiency. In contrast to LN, however,
one needs to carefully consider the different state-action distributions within the critic loss when
integrating BN. In a different line of work, Hussing et al. [19] proposed the integration of unit ball
normalization and projected the output features of the penultimate layer onto the unit ball in order to
reduce Q-function overestimation.

Increasing update-to-data ratios. Although scaling up the UTD ratio is an intuitive approach to
increase the sample efficiency, in practice, it comes with several challenges. Nikishin et al. [32]
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Figure 3: Growing parameter norms hinder learning. The performance benefits of CrossQ fail
to scale to more complex, higher dimensional tasks such as humanoid locomotion and muscular
manipulation. Investigating this, we find that the critic parameter norms increase significantly with
increasing UTD ratios. As a result, the effective learning rate (ELR) drops and the number of dead
neurons increases. Regularizing the critic parameters with weight norm (WN), we successfully
mitigate the parameter norm growth and therefore maintain a more consistent ELR, leading to better
performance on these more complex tasks. Uncertainty quantification depicts the 90% stratified
bootstrap confidence intervals.

demonstrated that overfitting on early training data can inhibit the agent from learning anything later
in the training. The authors dub this phenomenon the primacy bias. To address the primacy bias, they
suggest to periodically reset the network parameters while retraining the replay buffer. Many works
that followed have adapted this intervention [9, 31]. While often effective, regularly resetting is a very
drastic intervention and by design induces regular drops in performance. Since the agent has to start
learning from scratch repeatedly, it is also not very computing efficient. Finally, the exact reasons
why parameter resets work well in practice are not yet well understood [27]. Instead of resetting
there have also been other types of regularization that allowed practitioners to train stably with high
UTD ratios. Janner et al. [21] generate additional modeled data, by virtually increasing the UTD. In
REDQ, Chen et al. [8] leverage ensembles of Q-functions, while Hiraoka et al. [17] use dropout and
LN to effectively scale to higher UTD ratios.

3 Batch normalization alone fails to scale with respect to task complexity

Bhatt et al. [4] demonstrated CrossQ’s state-of-the-art sample efficiency on the MuJoCo task suite [41],
while at the same time also being very computationally efficient. However, on the more extensive
DMC and MyoSuite task suites, we find that CrossQ requires tuning. We further find that it works on
some, but not all, environments stably and reliably.

Figure 3 shows CrossQ training performance on the DMC dog and humanoid and the Myo Hard
tasks aggregated by environment suite. We plot the IQM and 90% confidence intervals for each metric
across 10 seeds. The figure compares a CrossQ with UTDs 1 and 5, where the hyperparameters were
identified through a grid search over learning rates and network sizes, as detailed in Table 1. The first
shows the agent’s training performance, while the other columns show network parameter norms,
gradient norms, the effective learning rate [43], and the fraction of dead neurons. Here, we identify
three different training behaviors. We notice that CrossQ does not benefit from higher UTD ratios,
but performance remains similar on the provided tasks. Overall, for all CrossQ runs we notice large
confidence intervals.

Growing network parameter norms. The second column of Figure 3 displays the sum over the L2
norms of the dense layers in the critic network. This includes three dense layers, each with a hidden
dimension of 512. On both task suites, CrossQ exhibits growing network weights over the course of
training. We find that the effect is particularly pronounced for CrossQ with increasing UTD ratios.
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Growing network weights have been linked to a loss of plasticity, a phenomenon where networks
become increasingly resistant to parameter update, which can lead to premature convergence [10].
Additionally, the growing magnitudes pose a challenge for optimization, connected to the issue of
growing activations, which has recently been analyzed by Hussing et al. [19]. Further, growing
network weights decrease the effective learning rate when the networks contain normalization
layers [42, 29].

In summary, the scaling results for vanilla CrossQ are mixed. While increasing UTD ratios is known
to yield increased sample efficiency, if careful regularization is used [21, 8, 32], CrossQ alone with
BN cannot benefit from it. We notice that with increasing UTD ratios, CrossQ’s weight layer norms
grow significantly faster and overall larger. This observation motivates us to further study the weight
norms in CrossQ to increase UTD ratios.

4 Combining batch normalization and weight normalization enables scaling

Inspired by the combined insights of Van Hasselt et al. [42] and Lyle et al. [29], we propose to integrate
CrossQ with weight normalization (Salimans and Kingma [35], WN) as a means of counteracting
the rapid growth of weight norms we observe with increasing update-to-data (UTD) ratios. A weight
normalized parameter w̃ is constrained to have an L2 norm of c, an additional hyperparameter,

w̃ = cw / ||w||2. (2)

Our approach is based on the following reasoning: Due to the use of BN in CrossQ, the critic network
exhibits scale invariance, as previously noted by Van Laarhoven [43].

Theorem 1 (Van Laarhoven [43]) Let f(X;w, b, γ, β) be a function, with inputs X and param-
eters w and b and γ and β batch normalization parameters. When f is normalized with batch
normalization, f becomes scale-invariant with respect to its parameters, i.e.,

f(X; cw, cb, γ, β) = f(X;w, b, γ, β), (3)

with scaling factor c > 0.

The proof is provided in Appendix A.

This property allows us to introduce WN as a mechanism to regulate the growth of weight norms in
CrossQ without affecting the critics outputs. Further, it can be shown, that for such a scale invariant
function, the gradient scales inversely proportionally to the scaling factor c > 0.

Theorem 2 (Van Laarhoven [43]) Let f(X;w, b, γ, β) be a scale-invariant function. Its gradient

∇f(X; cw, cb, γ, β) = ∇f(X;w, b, γ, β)/c, (4)

scales inversely proportional to the scaling factor c ∈ R of its parameters w.

The proof is provided in Appendix B.

Recently, Lyle et al. [29] demonstrated that the combination of LN and WN can help mitigate loss
of plasticity. Since the gradient scale is inversely proportional to c, keeping norms constant helps
to maintain a stable effective learning rate (ELR,Van Hasselt et al. [42]), further enhancing training
stability. We conjecture that maintaining a stable ELR could also be beneficial when increasing
the UTD ratios in continuous control RL. As the UTD ratio increases, the networks are updated
more frequently with each environment interaction. Empirically, we find that the network norms
tend to grow quicker with increased UTD ratios (Figure 3), which in turn decreases the ELR even
quicker and could be the case for instabilities and low training performance. From this observation,
we hypothesize that the training phenomena that affect plasticity also appear when attempting
sample-efficient learning with higher UTDs. This hypothesis suggests that regularization techniques
for plasticity could also be used to achieve more sample-efficient RL. As a result, we empirically
investigate the effectiveness of combining CrossQ with WN with increasing UTD ratios.

Implementation details. We apply WN to the first two linear layers, ensuring that their weights
remain unit norm after each gradient step by projecting them onto the unit ball, similar to Lyle et al.
[29]. While we could employ a learning rate schedule [29] we did not investigate this here as this
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would add additional complexity. Additionally, we impose weight decay on all parameters that remain
unbounded—specifically, the final dense output layer. In practice, we use AdamW [28] with a decay
of 0 (which falls back to vanilla Adam [23]) for the normalized intermediate dense layers and 1e−2
otherwise.

Target networks. CrossQ removes the target networks from the actor-critic framework and showed
that using BN training remains stable even without them [4]. While we find this to be true in many
cases, we find that especially in DMC, the re-integration of target networks can help stabilize training
overall (see Section 5.4). However, not surprisingly, we find that the integration of target networks
with BN requires careful consideration of the different state-action distributions between the s,a and
s′,a′ ∼ π(s′) exactly as proposed by Bhatt et al. [4]. To satisfy this, we keep the joined forward
pass through both the critic network as well as the target critic network. We evaluate both networks
in training mode, i.e., they calculate the joined state-action batch statistics on the current batches. As
is common, we use Polyak-averaging with a τ = 0.005 from the critic network to the target network.

5 Experimental results

To evaluate the effectiveness of our proposed CrossQ + WN method, we conduct a comprehensive set
of experiments on the DeepMind Control Suite [40] and MyoSuite [7] benchmarks. For DMC we
report individual results for the hard (dog and humanoid), as well as Medium+Easy (cheetah-run,
walker-run, hopper-stand, finger-turn-hard, quadruped-run, fish-swim, hopper-hop,
pendulum-swingup) due to their varying difficulties. Equally, we split MyoSuite hard and easy
environments. Our primary goal is to investigate the scalability of CrossQ + WN with increasing UTD
ratios and to assess the stabilizing effects of combining CrossQ with WN. We compare our approach
to several baselines, including the recent BRO [31], CrossQ [4], TD-MPC2 [15], and SIMBA [26], a
concurrent approach utilizing layer norm. Figure 6 in the appendix further provides a SR-SAC [9]
baseline, a version of SAC [13] with high UTD ratios and network resets.

5.1 Experimental setup

Our implementation is based on the SAC implementation of jaxrl codebase [24]. We implement
CrossQ following the author’s original codebase and add the architectural modifications introduced
by [4], incorporating batch normalization in the actor and critic networks. We extend this approach
by introducing WN to regulate the growth of weight norms and prevent loss of plasticity and add
target networks. We perform a grid search to focus on learning rate selection and layer width.

We evaluate 25 diverse continuous control tasks, 15 from DMC and 10 from MyoSuite. These tasks
vary significantly in complexity, requiring different levels of fine motor control and policy adaptation
with high-dimensional state spaces up to R223. Each experiment is run for 1 million environment
steps and across 10 random seeds to ensure statistical robustness. We evaluate agents every 25, 000
environment steps for 5 trajectories. For the DMC Medium&Easy and Myo Easy we plot the first
200k steps, as all methods learn much faster than the 1 million steps. As proposed by Agarwal et al.
[1], we report the interquartile mean (IQM) and 90% stratified bootstrap confidence intervals (CIs) of
the return (or success rate, respectively), if not otherwise stated. For the BRO and SIMBA baseline
results, for computational reasons, we take the official evaluation data that the authors provide. The
official BRO codebase is also based on jaxrl, and the authors followed the same evaluation protocol.
All experiments were run on a compute cluster with RTX 3090 and A5000 GPUs, where all 10 seeds
run in parallel on a single GPU via jax.vmap.

5.2 Weight normalization allows CrossQ to scale to harder tasks effectively

We provide empirical evidence for our hypothesis that controlling the weight norm and, thereby, the
ELR can stabilize training (Figure 3). We show that through the addition of WN, CrossQ + WN shows
stable training and can stably scale with increasing UTD ratios.

Figure 7 shows per environment results of our experiments encompassing all 25 tasks evaluated
across 10 seeds each. Based on that, Figure 1 shows aggregated performance over all environments
from Figure 7 per task suite, with a separate aggregation for the most complex dog and humanoid
environments.
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Figure 4: CrossQ WN UTD scaling behavior. We plot the IQM return and 90% confidence intervals
for different UTD ratios. Results are aggregated over 15 DMC environments and 10 random seeds
each according to Agarwal et al. [1]. The sample efficiency scales reliably with increasing UTD ratios
and remains stable even when there are no more performance gains, which is a crucial property.

Scaling results in Figure 4 show that CrossQ + WN is competitive to the BRO and SIMBA baselines
on both DMC and MyoSuite, especially on the more complex dog and humanoid tasks already on
lower UTD ratios. Notably, CrossQ + WN UTD=5 uses only half the UTD of BRO and does not require
any parameter resets and no additional exploration policy. Further, it uses ∼ 90% fewer network
parameters—BRO reports ∼ 5M , while our proposed CrossQ + WN uses only ∼ 600k (these numbers
vary slightly per environment, depending on the state and action dimensionalities).

In contrast, vanilla CrossQ UTD=1 exhibits much slower learning on most tasks and, in some
environments, fails to learn performant policies. Moreover, the instability of vanilla CrossQ at
UTD=5 is particularly notable, as it does not reliably converge across environments (Figure 7).

These findings highlight the necessity of incorporating additional normalization techniques to sustain
effective training at higher UTD ratios. This leads us to conclude that CrossQ benefits from the
addition of WN, which results in stable training and scales well with higher UTD ratios. The resulting
algorithm can match or outperform state-of-the-art baselines on the continuous control DMC and
MyoSuite benchmarks while being much simpler algorithmically.

5.3 Stable scaling of CrossQ + WN with UTD ratios

To visualize the stable scaling behavior of CrossQ + WN we ablate across UTD ratios. Figure 4 shows
training performances aggregated over multiple environments for 10 seeds each at 1M steps and 200k
steps respectively. We confirm that CrossQ + WN shows reliable scaling behavior. With increasing
compute, the performance increases or stays constant which is desirable. We see, that for the same
UTD ratio, CrossQ + WN nearly always beats both the BRO and SIMBA baselines.

5.4 Hyperparameter ablation studies

We also ablate the different hyperparameters of CrossQ + WN, by changing each one at a time.
Figure 5 shows aggregated results of the final performances of each ablation. We will briefly discuss
each ablation individually.

Removing weight normalization. Not performing weight normalization results in the biggest
drop in performance across all our ablations. This loss is most drastic on the MyoSuite tasks and
often results in no meaningful learning. Showing that, as hypothesized, the inclusion of WN into the
CrossQ framework yields great improvements in terms of sample efficiency and training stability,
especially for larger UTD ratios. In general, lower UTD ratios are already reasonably competitive in
overall performance.

Target networks. Ablating the target networks shows that on MyoSuite, there is a small but
significant difference between using a target network and or no target network. Results on DMC
show a large drop in performance. There, removing target networks leads to a significant drop in
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Figure 5: An ablation study comparing CrossQ + WN against a soft L2 penality on the weights, as
well as other design decisions such as target networks. The results show that the hard constraint
outperforms the soft approach across a range of regularization scales and tasks. Uncertainty quantifi-
cation depicts the 90% stratified bootstrap confidence intervals.

performance, nearly as large as removing weight normalization. This finding is interesting, as it
suggests that CrossQ + WN without target networks is not inherently unstable. But there are situations
where the inclusion of target networks is required. Further investigating the role and necessity of
target networks in RL is an interesting direction for future research.

L2 regularization. Figure 5 investigates the performance of a soft L2 penalty on the weights
compared to the weight normalization proposed in this paper. Across all tasks, and sweeping across
soft regularization scalings, weight normalization outperforms the soft L2 penalty. Our hypothesis is
that, in principle, soft L2 regularization could work in a similar way to the proposed WN; however, it
would require per-task tuning and potentially even scheduling to result in a stable ELR. In comparison,
the hard constraint via WN guarantees a stable weight norm by design and as such is easier to employ.

Parameter resets. Our experiments show that CrossQ + WN is able to scale without requiring
drastic interventions such as parameter resets. However, it is still interesting to investigate whether
CrossQ + WN’s performance could benefit from parameter resets. CrossQ + WN UTD= 5 + Reset
in Figure 5 investigates this question. We see, that there is a slight improvement on the 7 dog and
humanoid tasks, on all other 18 tasks, performance remains the same. The main takeaway is, that
CrossQ + WN scales stably without requiring parameter resets.

6 Related work

RL has demonstrated remarkable success across various domains, yet sample efficiency remains
a significant challenge, especially in real-world applications where data collection is expensive or
impractical. Various approaches have been explored to address this issue, including model-based RL,
UTD ratio scaling, and architectural modifications.

Update-to-data ratio scaling. Model-free RL methods, including those utilizing higher UTD ratios,
focus on increasing the number of gradient updates per collected sample to maximize learning
from available data. High UTD training introduces several challenges, such as overfitting to early
training data, a phenomenon known as primacy bias [32]. This can be counteracted by periodically
resetting the network parameters [32, 9]. However, network resets introduce abrupt performance
drops. Nauman et al. [31] demonstrated that full parameter resets of the critic can effectively preserve
learning capacity using a UTD ratio up to 10. However, such resets inevitably impact the wall-clock
time due to relearning function approximation several times during learning. Alternative approaches
use an ensemble of Q-functions to reduce overestimation bias that occurs under high UTD ratio
training regimes [8]. Due to the decreased computational efficiency of using a large number of
Q-functions, Hiraoka et al. [17] propose to replace the ensemble of critics with dropout and layer
normalization. Both methods utilize a UTD ratio of 20, which is highly inefficient.
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Normalization techniques in RL. Normalization techniques have long been recognized for their
impact on neural network training. LN [3] and other architectural modifications have been used to
stabilize learning in RL [17, 31]. Yet BN has only recently been successfully applied in this context [4],
challenging previous findings, where BN in critics caused training to fail [17]. WN has been shown to
keep ELRs stable and prevent loss of plasticity [29], when combined with LN, making it a promising
candidate for integration into existing RL frameworks.

Normalization techniques have long been recognized for their impact on neural network training.
Bjorck et al. [5] show that using spectral normalization (SN) enables training with large scale neural
networks in deep RL. SN divides a layers weight matrix by its largest singular value, regularizing the
Lipschitz continuity of the function approximation and therefore stabilizing the gradients. BN has
been used by Bhatt et al. [4], where it achieves impressive results, but requires slight adjustments
when the UTD ratio is scaled. Concurrent work [26] injected ‘simplicity bias’ into their actor
and critic architecture, encouraging the model to favor ‘simpler’ features for its predictions. Simba
incorporates a residual feedforward block and layer normalization in both the actor and critic networks
and achieved state of the art results. WN has been shown to keep ELRs stable and prevent loss of
plasticity [29], when combined with LN, making it a promising candidate for integration into existing
RL frameworks.

Hafner et al. [14] designed a vision-based MBRL algorithm Dreamer that leverages world models
to master a wide range of diverse tasks, and also relies on several normalization techniques. They
utilize root mean square layer normalization (RMSNORM) [45] before the activation function and
normalize the returns.

To successfully scale deep RL on the Atari 100k benchmark and achieve human-level sample efficiency,
Schwarzer et al. [36] rely on regularization techniques. Rather than use normalization methods, they
use the shrink-and-perturb method [2] in shallow layers and full parameter resets in deeper layers
to preserve network plasticity. To scale to higher UTDs, they introduce AdamW [28] and gradually
decrease the number of steps for the computation of the TD error for faster convergence. Lee et al. [25]
argue that the loss of plasticity observed in deep RL when the UTD ratio is increased can be mitigated
by using LN, sharpness-aware minimization (SAM, Foret et al. [12]), incorporating parameter resets
in the last layers and replacing the ReLU activation function with a ‘concetenated ReLU’ function
[37]. Voelcker et al. [44] demonstrated that parameter resets are not strictly necessary when the UTD
ratio is increased to improve sample efficiency. They identify the generalization ability of the critic
as the main source of training instabilities under high UTD regimes. They demonstrate empirically
that architectural regularization can mitigate overestimation and divergence, but it does not guarantee
proper generalization. On the other hand, leveraging synthetic data generated by a learned world
model can help mitigate the effects of distribution shift, thereby enhancing generalization.

7 Conclusion, limitations & future work

In this work, we have addressed the instability and scalability limitations of CrossQ in RL by
integrating weight normalization. Our empirical results demonstrate that WN effectively stabilizes
training and allows CrossQ to scale reliably with higher UTD ratios. The proposed CrossQ + WN
approach achieves competitive or superior performance compared to state-of-the-art baselines across
a diverse set of 25 complex continuous control tasks from the DMC and MyoSuite benchmarks.
These tasks include complex and high-dimensional humanoid and dog environments. This extension
preserves simplicity while enhancing robustness and scalability by eliminating the need for drastic
interventions such as network resets.

In this work, we only consider continuous state-action benchmarking tasks. While our proposed
CrossQ + WN performs competitively on these tasks, its performance on discrete state-action spaces
or vision-based tasks remains unexplored. We plan to investigate this in future work. Moreover, the
theoretical basis of our work does not directly connect to the convergence rates or sample efficiency
of the underlying RL algorithm, but rather to mitigate observed empirical phenomena regarding the
function approximation alone.
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A Proof Scale Invariance

Proof of Theorem 1.

f(X; cw, cb, γ, β) =
g(cXw + cb)− µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β (5)

=
cg(Xw + b)− cµ(g(Xw + b))

|c|σ(g(Xw + b))
γ + β (6)

=
g(Xw + b)− µ(g(Xw + b))

σ(g(Xw + b))
γ + β = f(X;w, b, γ, β) (7)
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B Proof Inverse Proportional Gradients

To show that the gradients scale inversely proportional to the parameter norm, we can first write

f(X; cw, cb, γ, β) =
g(cXw + cb)− µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β (8)

=
g(cXw + cb)

σ(g(cXw + cb))
γ − µ(g(cXw + cb))

σ(g(cXw + cb))
γ + β. (9)

(10)

As the gradient of the weights is not backpropagated through the mean and standard deviation, we
have

∇wf(X; cw, cb, γ, β) =
g′(cXw + cb)X

|c|σ(g(Xw + b))
γ. (11)

(12)

The gradient of the bias can be computed analogously

∇bf(X; cw, cb, γ, β) =
g′(cXw + cb)

|c|σ(g(Xw + b))
γ. (13)

(14)

C Hyperparameters

Table 1 gives an overview of the hyperparameters that were used for each algorithm that was
considered in this work.

Table 1: Hyperparameters

Hyperparameter CrossQ CrossQ + WN Simba SRSAC BRO
Critic learning rate 0.0003 0.0003 0.0001 0.0003 0.0003
Critic hidden dim 512 512 512 256 512
Actor learning rate 0.0003 0.0003 0.0001 0.0003 0.0003
Actor hidden dim 256 256 128 256 256
Initial temperature 1.0 1.0 0.01 1.0 1.0
Temperature learning rate 0.0001 0.0001 0.0001 0.0003 0.0003
Target entropy |A| /2 |A| /2 |A| /2 |A| |A|
Target network momentum 0.005 0.005 0.005 0.005 0.005
UTD 1,2,5,10,20 1,5 2,8 32 2,10
Number of critics 2 2 1 2 1
Action repeat 2 2 2 2 1

Discount 0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.95 (Myo)

0.99 (DMC)
0.99 (Myo)

Optimizer Adam AdamW AdamW Adam AdamW
Optimizer momentum (β1, β2) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999) (0.9, 0.999)
Policy delay 3 3 1 1 1
Warmup transitions 5000 5000 5000 10000 10000
AdamW weight decay critic 0.0 0.01 0.01 0.0 0.0001
AdamW weight decay actor 0.0 0.01 0.01 0.0 0.0001
AdamW weight decay temperature 0.0 0.0 0.0 0.0 0.0
Batch Normalization momentum 0.99 0.99 N/A N/A N/A

Reset Interval of networks N/A N/A N/A every 80k steps at 15k, 50k, 250k,
500k and 750k steps

Batch Size 256 256 256 256 128
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D Aggregated learning curves

Figure 6: CrossQ WN UTD scaling behavior. We plot the IQM return and 90% stratified bootstrapped
confidence intervals for different UTD ratios. The results are aggregated over 15 DMC environments
and 10 random seeds each according to Agarwal et al. [1]. The sample efficiency scales reliably with
increasing UTD ratios.

14



E Per environment learning curves

Figure 7: CrossQ WN + UTD=5 against baselines. We compare our proposed CrossQ + WN UTD=5
against two baselines, BRO [31] and SR-SAC UTD=32. Results are reported on all 15 DMC and
10 MyoSuite tasks. We plot the IQM and 90% stratified bootstrapped confidence intervals over 10
random random seeds. Our proposed approach proves competitive to BRO and outperforms the
CrossQ baseline. We want to note that our approach achieves this performance without requiring any
parameter resetting or additional exploration policies.
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