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ABSTRACT

Model-based reinforcement learning (RL) methods that leverage search are respon-
sible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC)
recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algo-
rithm which drove these breakthroughs. SMC is easier to parallelize and more
suitable to GPU acceleration. However, it also suffers from large variance and
path degeneracy which prevent it from scaling well with increased search depth,
i.e., increased sequential compute. To address these problems, we introduce Twice
Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous
environments TSMCTS outperforms the SMC baseline as well as a popular modern
version of MCTS. Through variance reduction and mitigation of path degeneracy,
TSMCTS scales favorably with sequential compute while retaining the properties
that make SMC natural to parallelize.

1 INTRODUCTION

The objective of Reinforcement Learning (RL) is to approximate optimal policies for decision
problems formulated as interactive environments. For this purpose, model-based RL algorithms that
use search (also called planning) with a model of the environment’s dynamics for policy optimization
have been tremendously successful. Examples include games (Silver et al., 2016), robotics (Hubert
et al., 2021) and algorithm discovery (Fawzi et al., 2022; Mankowitz et al., 2023). These milestone
approaches are all based in the Alpha/MuZero (A/MZ, Silver et al., 2018; Schrittwieser et al., 2020)
algorithm family and are driven by Monte Carlo Tree Search (MCTS, see Świechowski et al., 2023).

Like many search algorithms, the main bottleneck of MCTS is intensive compute and therefore
runtime cost. Due to the sequential nature of MCTS (Liu et al., 2020; Macfarlane et al., 2024), it is
challenging to address its runtime cost through parallelization and GPU acceleration (for example,
with JAX, Bradbury et al., 2018) which are staples of other modern deep RL approaches. In addition,
MCTS requires maintaining the entire search tree in memory. Modern GPU-acceleration approaches
such as JAX require static shapes for best performance which forces memory usage to scale with the
tree size and makes space complexity another possible bottleneck for GPU scalability.

To address this, alternative search algorithms have emerged (Piché et al., 2019). These algorithms
use Sequential Monte Carlo (SMC, see Chopin & Papaspiliopoulos, 2020) for policy optimization in
the Control as Inference (CAI, see Levine, 2018) probabilistic inference framework for RL. SMC is
used to approximate a distribution over trajectories generated by an improved policy at the root using
N particles in parallel. The parallel nature and lower memory cost, which scales linearly with N ,
make SMC well suited for parallelization and GPU acceleration, as demonstrated by Macfarlane et al.
(2024), which has also shown that SMC is competitive with MCTS for policy improvement.

SMC however suffers from two major problems: sharply increasing variance with search depth
and path degeneracy (Chopin & Papaspiliopoulos, 2020). The variance increase stems from the
exponential growth in the number of possible trajectories s1:T in the search depth T . Path degeneracy
is a phenomenon where due to resampling eventually all particles become associated with the same
state-action at the root of the search tree. This renders any additional search completely obsolete and
collapses the root policy into a delta distribution causing target degeneracy (de Vries et al., 2025).
These problems can cause the performance of SMC to deteriorate rather than scale with sequential
compute (search depth). In contrast, MCTS scales well with sequential compute and does not suffer
from path degeneracy.
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To address these limitations of SMC we design a novel search algorithm which we call Twice
Sequential Monte Carlo Tree Search (TSMCTS). We begin with a reformulation of SMC for RL
which generalizes beyond the framework of CAI, simplifying the analysis and surfacing connections
to MCTS. To mitigate policy target variance and degeneracy we switch the perspective of the search
from estimating trajectories to estimating the value of an improved policy at the root. This facilitates
incorporating the backpropagation mechanism of MCTS for value aggregation at the root. We call
this intermediate algorithm SMC Tree Search (SMCTS). Building on SMCTS, TSMCTS utilizes
Sequential Halving (Karnin et al., 2013) for better search resource allocation at the root. The resulting
algorithm sequentially calls SMCTS at the root on a halving number of actions with doubling
number of particles, in parallel (thus, twice sequential). This addresses the remaining effects of path
degeneracy at the root while acting as an additional variance reduction mechanism.

We evaluate TSMCTS on a range of continuous and discrete environments, where it significantly
outperforms the SMC baseline as well as a popular modern version of MCTS (GumbelMCTS,
Danihelka et al., 2022). TSMCTS scales well with additional sequential compute, unlike the SMC
baseline which deteriorates, while maintaining the same space and runtime complexity properties
that make SMC well suited for parallelization. In ablations, we verify empirically that TSMCTS
demonstrates significantly reduced estimator variance and mitigates path degeneracy.

2 BACKGROUND

In RL, the environment is represented by a Markov Decision Process (MDP, Bellman, 1957)M =
⟨S,A, ρ, R, P, γ⟩. S is a set of states,A a set of actions, ρ an initial state distribution, R : S×A → R
a bounded possibly stochastic reward function, and P is a transition distribution such that P (s′|s, a)
specifies the probability of transitioning from state s to state s′ with action a. The policy of the agent
π ∈ Π is defined as a distribution over actions a ∼ π(s) and its optimality is defined with respect to
the objective Jπ , the maximization of the expected discounted return (also called value V π):

Jπ = E[V π(s0)|s0 ∼ ρ ] = E
[H−1∑
t=0

γtR(st, at)
∣∣∣s0 ∼ ρ, st+1 ∼ P (st, at), at ∼ π(st)

]
. (1)

The discount factor 0 < γ < 1 is used in infinite-horizon MDPs, i.e. H = ∞, to guarantee that
the values remain bounded. A state-action Q-value function is defined as follows: Qπ(s, a) =
E[R(s, a) + γV π(s′)| s′ ∼ P (s, a)]. We denote the value of the optimal policy π∗ with V ∗(s) =
maxπ V

π(s),∀s ∈ S. In model-based RL (MBRL) the agent uses a model of the dynamics of the
environment (P,R) to optimize its policy, often using search algorithms such as MCTS or SMC.

Policy improvement is used to motivate the convergence of approximate policy iteration algorithms
to the optimal policy (see Danihelka et al., 2022; Oren et al., 2025b). We will prove that our
formulation of SMC for RL approximates policy improvement and can be used in a similar manner
to MCTS. We define policy improvement operators I : Π × Q → Π as any operator such that
∀s ∈ S : V I(π,Qπ)(s) ≥ V π(s) and ∃s ∈ S : V I(π,Qπ)(s) > V π(s), unless π is already an
optimal policy. We define Q generally as the set of all bounded functions on the state-action space
q ∈ Q : S × A → R, to indicate that policy improvement operators are defined for approximate
q ≈ Qπ and exact Qπ .

Greedification The policy improvement theorem (Sutton & Barto, 2018) proves that greedification
(Chan et al., 2022; Oren et al., 2025b) produces policy improvement when applied with respect to a
policy π and its value Qπ . Greedification operators I are operators over the same space, such that the
policy I(π, q)(a|s)q(s, a) is greedier than π with respect to q, defined as the follows:

∀s ∈ S :
∑
a∈A

I(π, q)(a|s)q(s, a) ≥
∑
a∈A

π(a|s)q(s, a), (2)

∃s ∈ S :
∑
a∈A

I(π, q)(a|s)q(s, a) >
∑
a∈A

π(a|s)q(s, a), (3)

unless π is already a greedy (argmax) policy with respect to q. We define strict greedification
operators I as operators that satisfy a strict > inequality 2, unless π is already a greedy policy at s. A
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popular strict greedification operator is that of regularized policy improvement (Grill et al., 2020):

IGMZ(π, q)(a|s) =
exp(βq(s, a) + log π(a|s))∑

a′∈A exp(βq(s, a′) + log π(a′|s))
∝ π(a|s) exp

(
βq(s, a)

)
(4)

which trades off with an inverse-temperature parameter β between greedification (maximizing∑
a∈A π(a|s)q(s, a) with respect to π) and regularization with respect to the prior policy π. We will

use greedification operators to drive the policy improvement produced by SMC and TSMCTS.

Monte Carlo Tree Search (MCTS) is used in RL to select actions in the environment and to produce
targets for training in the form of policy improvement and value bootstraps. MCTS uses a model
of the environment (either exact, as in AlphaZero (AZ), or learned, latent and/or approximate, as in
MuZero (MZ)) to construct a search tree where each node is associated with a state s ∈ S . The root
is set to the current state of the environment s0 := s. For convenience, we will use the subscript st
to denote states in the planner (here MCTS and later SMC), and will clarify when not clear from
context whether it refers to states in the environment or the planner. Each node st maintains: (i) a
prior-policy πθ(st). (ii) The mean reward r(st, a) for each visited action a. (iii) An estimate of the
value VM (st) which is computed as the average of all M returns passed through this node.

MCTS repeats a three-step process: search, expansion and backpropagation. The tree is traversed
following a search policy π′ until a non-expanded node st is reached. Inspired by the work of Grill
et al. (2020), modern algorithms such as GumbelMuZero (GMZ, Danihelka et al., 2022) use π′ =
IGMZ(πθ, QM ) (Equation 4) with a β parameter that increases with M , the number of visitations to
the node. Once a non-expanded node st has been reached, the node is expanded by sampling an action
at from the prior policy πθ, expanding the transition rt = E[R(st, at)], st+1∼P (st+1|st, at) (which
is traditionally deterministic) and evaluating Qπθ (st, at) ≈ rt + γV πθ (st+1). V πθ (st+1) is usually
approximated with a value DNN vϕ ≈ V πθ . The new evaluation is then backpropagated up the
search tree, through all nodes along the trajectory τt = s0, a0, . . . , st, at, st+1, updating the running
average of the value estimates: VM+1 = 1

M+1

∑M+1
i=1 νi, where νi =

∑t
j=0 γ

jrij + γt+1vϕ(s
i
t+1).

This process is repeated B times, the search budget of the algorithm.

When MCTS terminates, an action is selected at the root using an improved policy πimproved. To drive
an approximate policy iteration loop, Danihelka et al. (2022) use πimproved := IGMZ(πθ, QM )(s0),
where QM (s0, a) = r(s0, a) + γEP (s1|s0,a)[VM (s1)]. πimproved(s0) is used to train the prior policy
πθ using a cross-entropy loss. The value at the root VM (s0) is used to produce bootstraps for
TD-targets (Schrittwieser et al., 2020) or value targets directly (Oren et al., 2025a).

Sequential Halving with MCTS Due to the compute budget B being known in advance in many
cases in practice, in GumbelAlpha/MuZero (GA/MZ, Danihelka et al., 2022), the authors propose to
separate MCTS to two processes: a simple-regret minimization at the root s0 through the Sequential-
Halving (SH, Karnin et al., 2013) algorithm. At all other nodes the original MCTS process is
used. SH begins with a set |A1| = m1 of actions to search and a total search budget B. SH then
divides the search budget equally across i = 1, . . . , log2 m1 iterations. The per-iteration budget
itself is divided equally across the actions searched this iteration Ai . As its name suggests, SH
halves the number of actions that are searched each iteration by taking the top half according to a
certain statistic, arg top IGMZ(πθ, QM )(s0) in the case of GA/MZ. As a result, at each iteration
the search budget for the remaining actions doubles. After the final iteration the algorithm returns
the improved policy πimproved(s0) = IGMZ(πθ, Qlog2 m1)(s0), and the value of the root state
Vsearch(s0) =

∑
a∈A1

πimproved(a|s0)Qlog2 m1(s0, a).

Sequential Monte Carlo (SMC) methods approximate a sequence of target distributions pt(x0:t)
using proposal distributions ut(xt | x0:t−1). At each time step t ∈ {0, . . . , T}, N particles xn

t
with weights wn

t are updated via mutation, correction, and selection (Chopin, 2004). Mutation:
each trajectory xn

0:t−1 is extended by sampling xn
t ∼ ut(xt | xn

0:t−1). Correction: The weights are
updated to account for the target distribution, such that the set of weighted particles {xn

t , w
n
t }Nn=1

approximates expectations under the target:

wn
t = wn

t−1 ·
pt(x

n
t | xn

0:t−1)

ut(xn
t | xn

0:t−1)
,

∑N
n=1 w

n
t f(x

n
t )∑N

n=1 w
n
t

≈ Ept
[f(xt)], (5)
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where f(xt) is any function of interest. Selection: The particles are resampled proportionally to the
normalized weights: {xt}Nn=1 ∼ Multinomial(N, normalizedwt), {wn

t = 1}Nn=1 to prevent particle
degeneracy. We refer to Chopin & Papaspiliopoulos (2020) for more details.

SMC as a search algorithm for RL Piché et al. (2019) use SMC as a search algorithm by defining
the target distribution pt(τt) over trajectories τt = (s0, a0, . . . , st, at, st+1) = x0:t (superscripted τnt
to denote trajectory per particle). The target is conditioned on an optimality variable O1:H , such that
p(O1:H | τH) ∝ exp

(∑H
t=1 rt

)
, following the control-as-inference (CAI) framework (see Levine,

2018), up to a horizon H . The proposal distribution is defined using a prior policy πθ, while the
target distribution incorporates the soft-optimal policy µ and the soft-value function Vsoft:

ut(τt | τt−1) = P (st | st−1, at−1)πθ(at | st), (6)

pt(τt | τt−1) ∝ P (st | st−1, at−1)µ(at | st)Est+1|st,at

[
exp(Asoft(st, at, st+1))

]
, (7)

wn
t = wn

t−1

pt(τ
n
t | τnt−1)

ut(τnt | τnt−1)
∝ wn

t−1

µ(ant | snt )
πθ(ant | snt )

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
, (8)

where Asoft(st, at, st+1) = rt + Vsoft(st+1)− logEst|st−1,at−1
Vsoft(st). See (Piché et al., 2019) for

derivation. We refer to this algorithm as CAI-SMC to distinguish from other variations. In the
maximum entropy setup, µ is a uniform policy, which recovers the maximum entropy solution
(Haarnoja et al., 2018). Vsoft is learned using a deep neural network trained with a temporal-difference
loss. Piché et al. (2019) train the policy πθ using Soft Actor Critic (Haarnoja et al., 2018). The policy
returned by CAI-SMC is only used to select actions in the environment. The model used by the
planner is learned from interactions.

Macfarlane et al. (2024) showed that CAI-SMC can be used as a policy improvement operator in
a manner similar to that in which MCTS is used by AZ, in their method SPO. SPO uses the SMC
planner derived by Piché et al. (2019) (CAI-SMC) with µ = πθ which facilitates an Expectation-
Maximization framework and allows the policy to concentrate over time to the true optimal policy,
rather than the soft-optimal policy of CAI.

3 SEQUENTIAL MONTE CARLO SEARCH FOR REINFORCEMENT LEARNING

We begin by extending Piché et al. (2019)’s formulation of SMC as a search algorithm for RL beyond
the framework of CAI. This formulation is simpler, accepts general improvement operators I and
facilitates a perspective shift from reasoning over a distribution over trajectories to reasoning over
the values of actions from a mixture of improved policies at the root which we will build on in the
following sections. Similar to Piché et al. (2019), we formulate the proposal ut(τt) and target pt(τt)
distributions as distributions over trajectories τt = s0, a0, . . . , st, at, st+1. We define the proposal
distribution ut(τt) as the distribution induced by some prior policy πθ:

ut(τt) = ρ(s0)Π
t
i=0P (si+1|si, ai)πθ(ai|si) ⇒ ut(τt|τt−1) = P (st+1|st, at)πθ(at|st). (9)

We define the target distribution pt(τt) as the distribution induced by an improved policy π′ =
I(πθ, Q

π) for some policy improvement operator I:
pt(τt) = ρ(s0)Π

t
i=0P (si+1|si, ai)π′(ai|si) ⇒ pt(τt|τt−1) = P (st+1|st, at)π′(at|st). (10)

Given pt(τt) and ut(τt), the importance sampling weights wn
t for SMC derive as follows:

wn
t = wn

t−1

pt(τ
n
t |τnt−1)

ut(τnt |τnt−1)
= wn

t−1

P (snt+1|snt , ant )π′(ant |snt )
P (snt+1|snt , ant )πθ(ant |snt )

= wn
t−1

π′(ant |snt )
πθ(ant |snt )

(11)

In practice, the value Qπ(s, a) used to compute the improved policy π′ is approximated with DNNs
qϕ(s, a) or r(s, a) + γvϕ(s

′) like in CAI-SMC and A/MZ. We refer to this formulation as RL-SMC
(Algorithm 2). Equation 11 reduces to Equation 8 for the soft-advantage operator of CAI-SMC (see
Appendix A.2 for full derivation).

Policy improvement at the root Like CAI-SMC, RL-SMC produces a policy π̂T
SMC at the root s0

after T steps with empirical occupancy counts using the particles:

π̂T
SMC(a|s0) :=

1

N

N∑
n=1

1τn
T (a0)=a ≈ P

(
τT (a0) = a

)
=: πT

SMC(a|s0), (12)
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where τT (a0) denotes the first action in the trajectory. We verify that RL-SMC approximates policy
improvement so that it can drive an approximate policy iteration loop in a similar manner to MCTS:

Theorem 1. For any improvement operator I, search horizon T , prior policy πθ, true dynamics
model (P,R) and true evaluation Qπθ RL-SMC with infinite particles is a policy improvement
operator.

Intuition RL-SMC produces a distribution over trajectories pT (τT ) from a policy that is improved
with respect to the prior policy πθ at states {s0, . . . , sT }. Since this policy is improved with respect
to the future {s0, . . . , sT+1}, it is of course also improved at s0, the current state in the environment.
See Appendix A.1 for a complete proof.

The proof of Theorem 1 points to one of the advantages of using search for policy improvement
compared to model-free approaches. By unrolling with the model, RL-SMC produces a policy that is
improved for T consecutive time steps, in contrast to the single step of model free methods:

Corollary 1. For any strict improvement operator I , search horizon T , prior policy πθ, true dynamics
model (P,R) and true evaluation Qπθ the policy produced by RL-SMC satisfies:

V πT
SMC (s0) > V πT−1

SMC (s0) > · · · > V π1
SMC (s0) > V πθ (s0) (13)

as long as πθ is not already an argmax policy with respect to Qπθ at all states s0, . . . , sT .

The proof follows directly from applying strict improvement operators (improvement operators that
satisfy a strict > inequality 2 at all states unless the policy is already an argmax policy).

However, the root estimator π̂T
SMC(s0) suffers from two major problems: variance that grows sharply

in T and path degeneracy (see Chopin, 2004; Chopin & Papaspiliopoulos, 2020).

Large variance The variance of SMC can scale up to polynomially with depth t, in order O(tΩ),
where Ω is the dimension of the domain of the target distribution, pt(τt) (Chopin, 2004). In RL/CAI-
SMC however the dimension of the domain τt itself grows linearly with t: Ωt = ds,at, where ds,a is
the joint dimension of the state-action space S,A (for example if s ∈ R5, a ∈ R2 then ds,a = 7). As
a result, the variance of the estimator can increase up to super-exponentially in t: O(ttds,a).

Path degeneracy Consecutive selection steps t are likely to concentrate all particles i to trajectories
that are associated with one root action ai0. Once all particles are associated with the same root action
ai0, say at a step h, the estimator π̂t

SMC(a
i
0|s0) = 1 and zero for all other root actions a0 ̸= ai0.

From that point on, the estimator will not change for all depth t > h. This is problematic for two
reasons: (i) The search has no effect from t > h, and the algorithm cannot scale with additional
sequential compute (increasing T ). This is because particles will not be resampled out of trajectories
starting in action ai0 and therefore, π̂t

SMC(a
i
0|s0) will not change for t > h. (ii) It results in a delta

distribution policy target at the root s0 that is a crude approximation for any underlying improved
policy πimproved(s0) but an argmax.

Unlike RL-SMC, MCTS treats the search problem as the problem of identifying the best action at the
root using value estimates QM (s0, ·) ≈ Qπimproved(s0, ·), rather than a distribution over trajectories
pt(τt). By averaging the returns of all trajectories observed during search MCTS reduces the variance
of the root estimator QM . Additionally, by maintaining a value estimate for each visited action at the
root MCTS prevents the effects of path degeneracy: QM updates with each search step, and the policy
cannot collapse to a delta distribution, resulting in richer policy targets. This observation motivates
the next step in the design of the algorithm: a value-based perspective on RL-SMC’s search.

4 VALUE-BASED SEQUENTIAL MONTE CARLO

Maintaining estimates Qπt
SMC (s0, a) in addition to a distribution over trajectories from the root can

address both of the problems caused by path degeneracy as discussed earlier: (i) The estimate Qπt
SMC

does not stop updating when all particles are associated with one action at t = h and thus search
for t > h is not obsolete, allowing SMC to benefit from increased search depth. (ii) Information
is not lost about actions that have no remaining particles, and thus, target degeneracy is prevented.
This is similar to the idea recently proposed by de Vries et al. (2025), albeit in the guise of policy
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log-probabilities in the framework of CAI. The value at the root Qπt
SMC (s0, ·) can be approximated

using the particles:

Qπt
SMC (s0, a0) = Eπt

SMC

[ t∑
i=0

γiri + γt+1V πθ (st+1)
∣∣ s0, a0] (14)

≈
N∑

n=1

wn
t 1an

0 =a0

t∑
i=0

γirni + γt+1V πθ (snt+1) := Qt(s0, a0) (15)

The estimator Qt(s0, a0) by itself however is potentially just as high variance as πt
SMC . Instead, we

can keep track of the average return observed during search, with a backpropagation step similar to
MCTS: Q̄t(s0, a0) =

1
t

∑t
i=1 Qi(s0, a0). Whenever there are no particles associated with action a0,

the value Q̄t(s0, a0) is not updated. By mixing predictions for different steps Q1, . . . , Qt, any errors
that can average out now average out (see Appendix A.4 for more detail). On the other hand, although
Qt is an unbiased estimate of Qπt

SMC , Q̄t is not. Instead, Q̄t estimates the value of a mixture of more
and more improved policies π1

SMC , . . . , π
t
SMC . Since every policy πi

SMC in the mixture is already
an improved policy, this is not a problem, it merely results in a value estimate of a less-improved (but
still improved) policy than πT

SMC .

This value-based extension to RL-SMC can be thought of as iterating: (i) Search: compute importance
sampling weights to align with the improved policy π′(st). (ii) Backpropagation: evaluate the returns
for each particle at states st+1, average the return across all particles associated with the same
action a0 at the root and incorporate it into the running mean Q̄t. (iii) Expansion: sample from the
prior-policy πθ(st+1). Due to the similarity between this three-step process and MCTS’, we refer to
this algorithm as Sequential-Monte-Carlo Tree Search (SMCTS, summarized in Algorithm 3).

Policy improvement at the root To extract policy improvement at the root πimproved(s0) using
the value estimates Q̄T (s0, ·), any policy improvement operator I can be chosen. SMCTS returns:

πimproved(s0) = I(πθ, Q̄)(s0), Vsearch(s0) =
∑
a∈A0

Q̄T (s0, a)πimproved(a|s0). (16)

One effect of path degeneracy remains however: all particles can still collapse to search only one root
ancestor. In addition, SMCTS does not fully leverage the insight that the search objective is policy
improvement specifically at the root. We address these next.

5 TWICE-SEQUENTIAL MONTE CARLO TREE SEARCH

One of the key observations of Danihelka et al. (2022) is that at the root of the search tree s0, the
search budget of the algorithm is known in advance. This motivates using known-budget-optimization
algorithms such as SH (see Section 2) at the root of the search tree. By combining SH (Karnin et al.,
2013) with SMCTS, we are able to further reduce estimator variance and mitigate remaining effects
of path degeneracy at the root.

At each SH iteration i, SH resets the search back to the root. This results in repeated re-searching
of actions at the root. By aggregating the value predictions Q̄i

T of SMCTS across iterations i, SH
induces further lower variance estimates of the value at the root. This is similar to existing methods
to addressing variance in SMC such as Ancestor Sampling (Lindsten et al., 2014). Further, at each
iteration i SH reduces the number of searched actions while increasing the search budget per action.
As a result, SH minimizes the variance of the estimator for the value-maximizing actions: the actions
that are the most important for action selection and policy improvement. Finally, SH searches each
action at the root independently in parallel, which mitigates the remaining effect of path degeneracy
at the root. We formulate this Sequential-Halving Sequential-Monte-Carlo Tree Search algorithm, or
Twice Sequential Monte Carlo Tree Search (TSMCTS), below.

TSMCTS requires a number of particles N , depth budget T , and a number of starting actions to
search at the root m1. The total search budget (number of model expansions) B = NT is then the
particle budget multiplied by the depth budget. The total number of iterations of SH is log2 m1.
SH assigns a compute budget Bi per action at the root per iteration i = 1, . . . , log2 m1. Bi can
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be computed as follows: Bi =
NT

mi log2 m1
, where mi+1 = mi/2, i ≥ 1. In order to preserve the

parallelizability properties of SMC we assign N/mi particles per-action per-iteration (we assume for
simplicity that mi divides N and otherwise round for a total particle budget of N at each iteration).
This results in the number of particles per-action per-iteration doubling every iteration: Ni+1 = 2Ni.
To maintain the same total compute cost B = NT as SMC, at each iteration i SH searches up to
depth TSH < T :

TSH =
Bi

N/mi
=

NT

mi log2 m1

mi

N
=

T

log2 m1
< T. (17)

Instead of searching to the full depth T , TSMCTS searches repeatedly to a lesser depth TSH , and thus
each individual estimator Q̄i

TSH
is a lower variance estimator. This results in additional reduction in

estimator variance in T , traded off against reduction in the search horizon which becomes TSH .

At the first iteration i = 1, the set A1 of m1 actions to search are chosen as the top m1 actions
according to probabilities πθ(s0). To approximate sampling without replacement from the policy, in
discrete action spaces we use the Gumbel-top-k trick (Kool et al., 2019), which adds noise from the
Gumbel distribution (g ∈ R|A|) ∼ Gumbel(0), π(s0) ∝ exp(log πθ(s0) + g).

At each iteration i ≥ 1 TSMCTS executes SMCTS as a subroutine independently in parallel for each
a ∈ Ai, the top mi (i > 1 : mi =

mi−1

2 ) actions at the root according to the current improved policy:

i = 1 : A1 = arg top(π(s0),m1), i > 1 : Ai = arg top(I(π,Qi−1
SH )(s0),mi). (18)

SMCTS returns the value of the improved policy at the next state for this iteration, V i
SMCTS(s1). The

value for each action at the root a ∈ Ai is computed: Qi
SMCTS(s0, a) = r(s0, a) + γV i

SMCTS(s1).
As noted above, because the search budget per action doubles each iteration, Qi

SMCTS is a lower-
variance estimator than Qi−1

SMCTS for all actions visited this iteration. To account for that we extend
the computation of the value average across iterations i to a weighted average. The average is
weighted by the "visitations" - the number of particles - to this action this iteration:

∀a ∈ Ai : Qi
SH(s0, a) =

1∑i
j=1 Nj(a)

i∑
j=1

Nj(a)Q
j
SMCTS(s0, a), (19)

where Ni(a) ≥ 0 is the number of particles assigned to root action a at iteration i and
Qi

SMCTS(s0, a) := 0 for root actions a that were not searched at iteration i (the term Qi
SMCTS(s0, a)

will be multiplied by Ni(a) = 0 for these actions and thus the actual value does not matter). In
practice, we maintain two vectors of size m1 of running sums:

N i(a) :=

i∑
j=1

Nj(a), Qi
sum(s0, a) =

i∑
j=1

Nj(a)Q
j
SMCTS(s0, a). (20)

TSMCTS returns: (i) The improved policy at the root computed using the last iteration’s Q-
value: πimproved = I(π,Qlog2 m1

SH ). (ii) An estimate of the value of the policy Vsearch(s0) =∑
a∈A1

πimproved(a|s0)Qlog2 m1

SH (s0, a). These outputs are used to train the value and policy net-
works in the same manner as SPO and A/MZ. That is, the improved policy πimproved is used to train
the policy πθ using cross-entropy loss. The value estimate Vsearch(s0) is used to bootstrap value
targets to train the critic vϕ, as in (de Vries et al., 2025). Action selection is done by sampling from the
improved policy during learning a ∼ πimproved(s0) and deterministically taking the argmax action
during evaluation a = argmaxb∈A1

πimproved(b|s0). We refer to Appendix B for more details.

A more detailed derivation of Equation 19 and discussion of the variance reduction mechanisms are
provided in Appendices A.3 and A.4 respectively. TSMCTS maintains the same space and runtime
complexity of the RL-SMC baseline (see Appendix A.5). We summarize TSMCTS in Algorithm 4.

Choice of operator The operator IGMZ was used by Danihelka et al. (2022) for search and policy
improvement at the root in MCTS. IGMZ intentionally balances between maximizing with respect to
Q while minimizing the divergence from πθ, making it a natural choice for TSMCTS as well.
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6 RELATED WORK

SMC has been used in RL and more generally MDP solving for a variety of purposes (see (Lazaric
et al., 2007; Hoffman et al., 2007; Le et al., 2018) for examples). Our focus in this section is on related
work in the area of SMC for search in RL. Multiple works build upon Piché et al. (2019)’s derivation
of CAI-SMC for search. Lioutas et al. (2023) extend the proposal distribution with a Q critic, to direct
the mutation step towards more promising trajectories. Macfarlane et al. (2024)’s approach of using
CAI-SMC for policy improvement and benefiting from SMC’s capacity to parallelize effectively
across particles. de Vries et al. (2025) extends the SMC search further with trust-region optimization
methods and additionally address terminal states with revived resampling. These advancements
are orthogonal and natural to incorporate into RL-SMC and TSMCTS (see Figure 1 in Section 7).
de Vries et al. (2025) also propose to address path degeneracy by essentially maintaining the last
return observed for each action at the root, thus preventing the collapse of the improved policy at the
root to a delta distribution. In contrast, SMCTS aggregates all returns observed for each root action
during search. This addresses path degeneracy in the same manner but acts as a reduced variance
estimator (as demonstrated in Figure 4, center, in the next section).

Modifications to MCTS’s classic backpropagation step, such as TD-λ (Sutton, 1988) variations, have
been explored (Khandelwal et al., 2016). Such modifications are natural to incorporate into TSMCTS
as well, especially with the aim to further reduce estimator variance. However, these have yet to
popularize for MCTS, suggesting that they are not critical to the algorithm’s performance and we
leave their exploration in TSMCTS for future work. We include a brief summary of previous work on
parallelizing MCTS and related challenges in Appendix A.5.

7 EXPERIMENTS

The objective of this work is to improve SMC as a search algorithm for policy improvement in RL with
our novel method TSMCTS. To evaluate empirically that TSMCTS is a better policy improvement
operator than SMC we use the experimental setup established by Macfarlane et al. (2024) and
iterated upon by de Vries et al. (2025). This setup contains a mix of discrete and continuous control
environments from Jumanji (Bonnet et al., 2024) and Brax (Freeman et al., 2021). de Vries et al.
(2025) reduced the transition counts in evaluation to the standard in literature, and replaced one of
the sparse-reward, single-goal environments (Boxoban) to a multi-reward environment (Snake), to
increase the diversity of the environments covered in this experimental suite. We begin by comparing
a model-based agent which uses TSMCTS for policy improvement (Algorithm 1) to other popular
baselines which use search for policy improvement: SPO (Macfarlane et al., 2024), TRT-SMC
(de Vries et al., 2025) and GumbelAZ, an AZ agent using a modern version of MCTS (Danihelka
et al., 2022). All agents use the true dynamics model for search in the AZ manner. The SMC-based
baselines (SPO, TRT SMC, TSMCTS) are agnostic to continuous / discrete action spaces. GumbelAZ
has been extended to continuous environments in the manner of SampledMZ (Hubert et al., 2021).
We include PPO (Schulman et al., 2017) for reference performance of a popular model-free baseline.
Our implementation of all agents relies on that of de Vries et al. (2025), with the exception of SPO,
which uses the original implementation (Toledo, 2024) in the environments for which it had been
made public. As mentioned in Section 6, the contributions of de Vries et al. (2025) are for the most
part orthogonal to ours. To demonstrate that this is the case, we include a TSMCTS + TRT agent
which incorporates these contributions of de Vries et al. (2025) to the backbone of TSMCTS. See
Appendices B and D for additional implementation details. The results are presented in Figure 1. In
all environments the TSMCTS-based agents outperform or match all baselines.
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Figure 1: Averaged returns vs. environment interactions. 95% Gaussian CIs across 20 seeds.
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We proceed to evaluate TSMCTS as a policy improvement operator directly. In Figure 2 we compare
identical model based agents using the exact same implementation of Algorithm 1, differing only in
the search procedure used for policy improvement: TSMCTS, the SMC baseline used by Macfarlane
et al. (2024) and GumbelMCTS. We omit TRT SMC from this comparison as its modification to
SMC have been shown to be orthogonal to TSMCTS’s in Figure 1. This comparison also strengthens
the connections between popular algorithmic setups of model based RL: the only difference between
the GumbelMCTS agent, which is an AZ agent (GumbelAZ in Figure 1) and the SMC baseline, which
is a simplified SPO agent (modified value targets, static temperature, etc.) is the search algorithm
used for policy improvement. To emphasize the this connection we use the same colors for the related
agents across figures. TSMCTS is overall the dominant search operator for policy improvement
compared to both the SMC baseline and GumbelMCTS in these experiments.
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Figure 2: Averaged returns vs. environment interactions. 95% Gaussian CIs across 20 seeds.

In Figure 3 we include a reference runtime comparison between the three search algorithms. Runtime
was estimated by multiplying training step with average runtime-per-step. TSMCTS induces a modest
runtime increase over SMC for the same compute resources and compares very well to MCTS which
has roughly twice the runtime cost as the SMC-based variants.
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Figure 3: Averaged returns vs. runtime (seconds). Mean and 95% Gaussian CI across 20 seeds.

Next, we demonstrate empirically that TSMCTS addresses the limitations of SMC discussed in this
work. In Figure 4 we plot: (i) Scaling with sequential compute (increasing depth T , left). (ii) Variance
of the root estimator (center). (iii) Policy collapse at the root (target degeneracy) as a measure for
path degeneracy (right).
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Figure 4: Left: Performance scaling with depth (higher is better), averaged across environments and
particle budgets of 4, 8, 16. 10 seeds and 90% two-sided BCa-bootstrap intervals. Center: Variance
of the root estimator vs. depth (lower is better). Right: The number of actions active in the policy
target (constant - no target degeneracy - better). Center and right are averaged across states and
particle budgets 4, 8, 16 and 5 seeds in Snake. Mean and 95% Gaussian CI.
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We compare baseline SMC, the intermediary SMCTS and the final algorithm TSMCTS. In the variance
and path degeneracy experiments we include an SMC variant which uses the mechanism proposed
by de Vries et al. (2025) for mitigating path degeneracy (e.g. TRT SMC). This, to demonstrate
that while this mechanism mitigates path degeneracy in the same manner as SMCTS it does not
address estimator variance as well. Performance is summarized as area-under-the-curve (AUC) for
the evaluation returns during training normalized across environments. The normalization is with
respect to minimum and maximum AUCs observed over all agents and seeds per environment. The
variance measured is over the prediction of the root estimator for each planner V [Vsearch(s)] =
V [

∑
a∈A πimproved(a|s)Qsearch(s, a)] (where A is the set of actions searched by the respective

search algorithm). The variance is computed across L = 128 independent calls to each planner per
seed at every state in an evaluation episode after training has completed in the Snake environment,
averaged across states and seeds. Target degeneracy is measured as the number of active actions in
the policy target. The number of active actions at the root is averaged across the L calls to the search
algorithm.

TSMCTS is the only SMC variant to successfully scale with sequential compute (Figure 4 left).
TSMCTS and SMCTS have significantly reduced estimator variance compared to the other SMC
variants and TSMCTS’s is significantly reduced compared to SMCTS’s (Figure 4 center). All variants
other than baseline address policy collapse at the root. TRT SMC and SMCTS however are limited
by the entropy of the policy: the policy has high probability for only two actions in most states
despite the size of the action space being 4 in this environment and thus only two actions are searched.
TSMCTS on the other hand searches a constant m1 = 4 actions, irrespective of the prior policy.

We investigate the effect of the hyperparameter m1 of TSMCTS on the performance of the agent in
Figures 5 in Appendix C. The effect appears overall marginal for sufficiently large m1 ≥ 4.

8 CONCLUSIONS

We presented Twice Sequential Monte Carlo Tree Search (TSMCTS), a search algorithm based
in Sequential Monte Carlo (SMC) for action selection and policy optimization in Reinforcement
Learning (RL). TSMCTS builds upon our formulation of SMC for search in RL which extends
prior work (Piché et al., 2019) beyond the framework of Control As Inference (see Levine, 2018).
TSMCTS harnesses mechanisms from Monte Carlo Tree Search (Świechowski et al., 2023) and
Sequential Halving (Karnin et al., 2013) to mitigate the high estimator variance and path degeneracy
problems of SMC, while maintaining SMC’s beneficial runtime and space complexity properties. In
experiments across discrete and continuous environments TSMCTS outperforms the SMC baseline
as well as a popular modern version of MCTS (GumbelMCTS, Danihelka et al., 2022). In contrast
to the SMC baseline, TSMCTS demonstrates lower estimator variance, mitigates the effects of path
degeneracy at the root and scales favorably with sequential compute.

REPRODUCIBILITY STATEMENT

Special care was taken to support reproducibility. Proofs and more detailed discussion of theo-
retical results are provided in Appendix A. Implementation details are described in Appendix B.
Hyperparameters are listed in Appendix D. The codebase will be made public upon acceptance.

LLM USAGE

LLMs were used in a minor role, to improve a small number of text paragraphs and for additional,
supplementary, retrieval and discovery of related work.
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Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte Carlo Tree
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A THEORETICAL RESULTS

A.1 RL-SMC IS A POLICY IMPROVEMENT OPERATOR

Proof. Given exact evaluation Qπ, true environment model P, r, a starting state s0 and infinitely
many particles N →∞, the SMC target policy at final step T produces the following distribution
over trajectories:

p(τT ) = p(s0, a0, . . . , sT , aT , sT+1) = ΠT
i=0P (si+1|si, ai)π′(ai|si) (21)

The distribution p(τT ) is equivalent to the distribution induced by following the policy π′ for all
states s0,...,T , and for all other states following π, by definition. We call this policy πSMC . We have:

V π(s0) ≤ Eπ′ [Qπ(s0, a0)] (22)
= Eπ′,P [r0 + γV π(s1)] (23)
≤ Eπ′,P [r0 + γQπ(s1, a1)] (24)

≤ Eπ′,P [r0 + γr1 + γ2Qπ(s2, a2)] (25)
≤ . . . (26)

≤ Eπ′,P [r0 + · · ·+ γT−1rT−1 + γTQπ(sT , aT )] (27)
= V πSMC (s0) (28)
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Equation 22 holds by definition of π′ produced from an improvement operator. Note that actions
a0, a1, a2, . . . are all sampled from π′(s1), . . . respectively, as the expectation is with respect to π′ at
all steps. Equation 24 holds because Eπ′Qπ(s2, a) ≥ V (s2), by definition of π′. Equation 25 is the
two-step expansion following the same argumentation, and respectively Equation 27 is the multi-step
expansion, which is the definition of the value of the policy πSMC .

□

A.2 DERIVING CAI-SMC IN RL-SMC

The importance sampling weights of CAI-SMC derive as follows (see the work of Piché et al. (2019)):

ut(τt | τt−1) = P (st | st−1, at−1)πθ(at | st), (29)

pt(τt | τt−1) ∝ P (st | st−1, at−1)µ(at | st)Est+1|st,at

[
exp(Asoft(st, at))

]
, (30)

wn
t = wn

t−1

pt(τ
n
t | τnt−1)

ut(τnt | τnt−1)
∝ wn

t−1

µ(ant | snt )
πθ(ant | snt )

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
, (31)

Denote:

π′(ant | snt ) = µ(ant | snt )Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
(32)

Where π′ here is the posterior probability of CAI’s graphical model, or the optimal soft-policy (Piché
et al., 2019):

π′(ant | snt ) = µ(ant | snt )Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
(33)

= µ(at|st) exp[ln p(Ot:T |st, at)− ln p(Ot:T |st)] (34)
= p(at|st)p(Ot:T |st, at)/p(Ot:T |st) (35)
= p(at|st, Ot:T ) (36)

We have:

wn
t =∝ wn

t−1

µ(ant | snt )
πθ(ant | snt )

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
= wn

t−1

π′(ant | snt )
πθ(ant | snt )

(37)

Which recovers RL-SMC.

A.3 DERIVING THE VALUE UPDATE IN TSMCTS

In MCTS, the value VN (st) at each node st equals the average of all returns 1
N

∑N
i=1

∑T−1
k=0 γkrit+k+

γT vϕ(s
i
t+T ) observed through this node. This is because the variance of the estimator is expected to

reduce with 1/N , the number of visitations. This also holds in SMC, where for large N , the error
behaves approximately Gaussian with variance proportional to 1/N (Chopin, 2004). For this reason,
we rely on the same idea in TSMCTS.

At each iteration i of TSMCTS the value estimate Qi
SMCTS(s0, a) was computed using N(i, a)

particles per action, and thus, the contribution of this value estimate to the total average should be
N(i, a).

Equation 19 (provided below again for readability) formulates exactly this weighted average: it sums
across the total number of iterations log2 m1. For each iteration, it multiplies Qi

SMCTS(s0, a) by the
weight N(i, a). Finally, it normalizes the sum by

∑log2 m1

i=1 N(i, a):

∀a ∈M1 : Qi
SH(s, a) =

1∑log2 m1

i=1 N(i, a)

log2 m1∑
i=1

N(i, a)Qi
SMCTS(s, a)

A.4 VARIANCE REDUCTION

Throughout this work, we describe different mechanisms that reduce variance in TSMCTS compared
to the SMC framework TSMCTS is built upon. In this section we will describe and motivate each
mechanism in more detail. We begin with an overall motivation for variance minimization.
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Variance minimization is a fundamental objective in statistical estimation, as the quality of an
estimator is typically assessed through its mean squared error (MSE) (Geman et al., 1992). The MSE
admits a standard decomposition into the squared bias and the variance,

MSE = Bias2 +Var.

While bias captures systematic deviation from the true quantity, variance reflects the sensitivity of
the estimator to fluctuations in the data. Minimizing variance - without changing the bias - therefor
reduces to minimizing estimation error. We proceed to describe each variance-reducing mechanism
in chronological order.

Backpropagation in SMCTS The running means Q̄t(s0, a0) maintained through backpropagation
in SMCTS decompose into:

Q̄t(s0, a0) =
1

t

t∑
i=t

Qi(s0, a0) =

N∑
i=1

wi
t1a

(i)
0 =a0

t∑
j=0

γjrij + γt+1V πθ (sit+1). (38)

Q̄t(s0, a0) is a reduced variance estimator compared to Qt for two reasons.

(i) Consider the bootstrapped return:

Qt(s0, a0) =

t∑
j=0

γjrij + γt+1V πθ (sit+1). (39)

For any h < t, the estimator Qh(s0, a0) terminates earlier and bootstraps from V πθ sooner. Since
extending the horizon from h to t replaces a single (deterministic) bootstrap term with additional
random rewards and transitions, it introduces extra stochasticity. Consequently, Var(Qh(s0, a0)) <
Var(Qt(s0, a0)), reflecting the classical result that Monte Carlo returns (large t) have higher variance
than temporally shorter, bootstrapped estimates (small h) (Sutton & Barto, 2018).

(ii) Let us assume for a moment the policy, transition dynamics and reward are all deterministic.
Any errors in the value prediction vϕ that are I.I.D. will average out in the empirical average
1
N

∑N
t=1

∑t
i=0 γ

iri + vϕ(si+1) where si = P (si−1, π(si−1)). For that reason mixing different
length bootstrapped returns can result in reduced variance estimates compared to any individual
bootstrapped return even when the dynamics and rewards are deterministic.

Repeatedly searching the same actions from the root in TSMCTS At each iteration i, TSMCTS
searches a set of actions Ai ⊂ Ai−1. Since the actions are searched independently again from the
root, we have Var(Qi

SH) < Var(Qi
SMCTS). That is, the average across the value estimates of

independent iterations is a lower variance estimate of the true value compared to each individual
estimate, for the same reasoning as above.

Increasing particle budget per searched action at the root in TSMCTS Under standard as-
sumptions, increasing the number of particles in SMC algorithms reduces variance because the
particle system provides an empirical average, and the variance of such Monte Carlo estimates
decreases proportionally to the number of particles 1/N , where N is the number of particles (Chopin
& Papaspiliopoulos, 2020).

Searching for a shorter horizon TSMCTS trades off the depth of the search TSH < T for repeated
search from the root. Reducing the depth of the search has two main effects: (i) It reduces the number
of consecutive improvement (or search) steps. In a manner of speaking, the resulting policy is "less
improved". (ii) It results in a lower variance estimator, as the variance grows in t and TSH < T .

A.5 COMPLEXITY ANALYSIS

We include a brief runtime and space complexity analysis for MCTS and RL-SMC.

MCTS complexity For a search budget B, MCTS conducts B iterations. At each iteration i, MCTS
conducts di ≤ B search steps, one expansion step, and then di ≤ B backpropagation steps along the
nodes in the trajectory. di denotes the depth of the leaf at step i. We can therefor bound the runtime
complexity by O(B(B + B + 1)) = O(B2) operations. In regards to space complexity, MCTS
construct a tree of size B, so the space required is of complexity O(B).
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RL-SMC complexity For N particles and a depth T , the search budget of RL-SMC totals NT = B.
Assuming that N particles operate in parallel the (sequential) runtime complexity isO(T ) ≤ O(B) <
O(B2) operations. In terms of space, RL-SMC maintains only statistics about each particle, resulting
in space complexity of O(N) ≤ O(B). Since RL-SMC is merely a generalization of Piché et al.
(2019)’s CAI-SMC, we conclude that CAI-SMC has the same space and runtime complexity.

SMCTS complexity For N particles and a depth T , the search budget of SMCTS totals NT = B.
At each step i, SMCTS conducts a constant number of additional operation: one running sum is
maintained for each particle, and one running sum is maintained for each searched action at the
root. As a result, SMCTS maintains the same (sequential) runtime complexity of RL-SMC of
O(T ) < O(B2). SMCTS maintains statistics about N particles, and also statistics about M ≤ N
searched actions at the root. This results in space complexity of O(2N) = O(N) ≤ O(B), the same
space complexity as RL-SMC.

TSMCTS complexity For N particles and a depth T , the search budget of SMCTS totals NT =
B. TSMCTS divides this budget across log2 m1 iterations. At each iteration, TSMCTS executes
T/ log2 m1 steps, resulting in runtime complexity of O(log2 m1

T
log2 m1

) = O(T ) < O(B2), the
same as SMCTS and RL-SMC. In terms of space complexity, TSMCTS maintains statistics over
N particles, and m1 ≤ N searched actions at the root, resulting in the same space complexity as
RL-SMC and SMCTS, O(2N) = O(N) ≤ O(B).

Parallelizing MCTS Approaches to parallelize MCTS exist (Chaslot et al., 2008). These range
from running leaf parallelization which performs multiple independent rollouts from the same newly
expanded leaf node, improving evaluation accuracy but not accelerating tree growth. This of course
is not applicable with modern MCTS methods which use a value DNN to expand leaves. Search
parallelization runs MCTS in parallel across multiple states in multiple environments in parallel.
This is the current norm for JAX based implementations, such as by DeepMind et al. (2020). Root
parallelization launches multiple independent MCTS instances — each constructing its own search
tree — and aggregates root-level statistics. This is in in direct competition over resources with search
parallelization. Since it runs multiple trees for the same state, it reduces the number of independent
states that can be searched in parallel, and thus slows down data gathering (number of environment
interactions per search steps). Tree parallelization is the most akin to the parallelization of SMC: it
shares a single MCTS tree among multiple workers, requiring synchronization mechanisms—such as
local mutexes and virtual loss—to maintain consistency and avoid redundant exploration. Overall,
this contrasts very clearly with the ease at which SMC parallelizes. In SMC one can simply increase
the number of particles N .

A note on complexity in practice It is unlikely that all operations will have the same compute cost
in practice. In search algorithms that use DNNs, it is often useful to think of two separate operation
costs: model interactions, and DNN forward passes. Either of the two can often be the compute
bottleneck, depending on the choice of model, DNN architecture, hardware etc. This motivates an
equating for compute estimated in number of model expansions / DNN forward passes which is B
for MCTS and NT for SMC, which is why we as well as previous work opted to compare MCTS
and SMC variants with budgets B = NT .

B IMPLEMENTATION DETAILS

Targets and losses Our implementation for all search-based agents uses a vϕ critic and a prior
policy πθ. The value and policy are trained with the following losses:

L(θ) = E(st,at,πt)∼D(n)
[−Ea∼πt

lnπθ(a|st)− centH[πθ(a|st)]] , (40)

L(ϕ) = E(st,at,vt)∼D(n)

[
(vt − vϕ(st))

2
]
. (41)

πt is the policy target for state st which is the policy πimproved returned by the planner (be it SMC,
SMCTS, TSMCTS or MCTS). vt is the value target for state st which is computed using TD-λ with
bootstraps Vsearch returned by the planner. H[πθ] = −Eπθ

lnπθ is an entropy penalty for the policy.
D(n) is the replay buffer for iteration n.
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The training loop The RL training setup follows the popular approach in JAX, which gathers
interaction trajectories of length unroll length L for a batch size B in parallel, resulting in a total
replay buffer of size LB per episode. The agent is then trained for K SGD update steps with SGD
minibatch size (see hyperparameters in Table 1) and the above losses. Following that, the agent
proceeds to gather a additional data of size LB. The AdamW optimizer (Loshchilov & Hutter, 2019)
was used with an l2 penalty of 10−6 and a learning rate of 3 · 10−3. Gradients were clipped using a
max absolute value of 10 and a global norm limit of 10.

Discrete vs. continuous action spaces The same losses are used to train the value and policy
networks, irrespective of the type of action space. In continuous environments, the policy is a
Gaussian policy, predicting mean and variance. In discrete environments, the policy is trained to
predict the log-probabilities for each action in the action space, as is standard, using the empirical
cross entropy loss L(θ).
MCTS was originally designed for discrete action environments, and is slightly less agnostic to
continuous actions. We follow the popular approach of SampledMZ (Hubert et al., 2021), which
showed that one can simply sample K actions from the prior policy at each node in the search tree,
and treat {a1, . . . , aK} is a discrete action space, turning MCTS into a continuous-action-space
algorithm.

Pseudocode for the different algorithms is provided below.

Algorithm 1 Outer-Loop with Modular Search
Require: Search algorithm (planner) P , neural networks πθ1 , Vϕ1

, replay buffer D(1) = ∅, environ-
ment’s dynamics modelM = (P,R) and budget parameters B.

1: for episode n = 1 to N do
2: Sample starting state s1 ∼ ρ.
3: for step t = 0 to termination or timeout do
4: πimproved(st), Vsearch(st)← P(πθn , vϕn

,M, B)(st).
5: at ∼ πimproved(st).
6: st+1 ∼ P (·|st, at), rt ∼ R(st, at).
7: Append (st, at, rt, st+1, πimproved(st), Vsearch(st)) to buffer D(n).
8: end for
9: Update policy params θn+1 with SGD and CE loss on targets πimproved from D(n).

10: Update value params ϕn+1 with SGD and MSE loss on TD-λ targets using Vsearch from D(n).
11: Set Dn+1 = Dn.
12: end for

Algorithm 2 RL-SMC
Require: Number of particles N , depth T , model P , prior-policy πθ, policy improvement operator

I , value function Qπθ and current state in the environment sroot.
1: Initialize particles n ∈ N , with wn

0 = 1, sn1 = sroot, and ancestor identifier {jn1 = n}Nn=1

(which identifies per particle which action at the root it is associated with).
2: for t = 1 to T do
3: Mutation: {ant ∼ πθ(at|snt )}Nn=1, {snt+1 ∼ P (·|snt , ant )}Nn=1.

4: Correction: {wn
t = wn

t−1
π′(an

t |s
n
t )

πθ(an
t |snt )

, π′(snt ) = I(Qπθ , πθ)(s
n
t )}Nn=1.

5: Selection: {(jnt , ant , snt+1)}Nn=1 ∼ Multinomial(N, normalizedwt), {wn
t = 1}Nn=1.

6: end for
7: Return {jnT , wn

T }Nn=1
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Algorithm 3 SMCTS
Require: Number of particles N , depth T , current state in the environment sroot, model M =

(P,R), prior-policy πθ, value network vϕ, improvement operators for search Isearch and root

Iroot.
1: Initialize particles n ∈ N , with wn

0 = 1, sn1 = sroot non-bootstrapped returns Rn
0 = 0, and

ancestor identifier {jn1 = n}Nn=1.

2: for t = 1 to T across n particles in parallel do

3: Mutation: ant ∼ πθ(s
n
t ), r

n
t ∼ R(snt , a

n
t ), s

n
t+1 ∼ P (snt+1|snt , ant ).

4: If t = 1, maintain the set of N root actions: A1 ← {an1}Nn=1.

5: Approximate state-action value: Q(snt , a
n
t )← rnt + γvϕ(s

n
t+1).

6: Compute the search policy: π′(snt )← Isearch(πθ, Q)(snt ).

7: Correction: Compute importance sampling weights (Equation 11): wn
t = wn

t−1
π′(snt )
πθ(snt )

.

8: Update the non-bootstrapped returns: Rn
t = Rn

t−1 + γtrnt .

9: Normalize importance sampling weights per action at the root using their identifiers jnt :

ynt =
wn

t∑N
k=1 w

j
t1jnt =jkt

.

10: Estimate Qt(sroot, ·) for initial actions an1 ∈ A1 using Rn
t and vϕ(st+1):

Qt(sroot, a
n
1 ) =

N∑
i

yit(R
i
t + γt+1vϕ(s

i
t+1))1jn1 =jit

11: Update the running average Q̄t(sroot, ·) where Qt(sroot, ·) is defined:

Q̄t(sroot, a
n
1 ) =

(1− t)Q̄t−1(sroot, a
n
1 ) +Qt(sroot, a

n
1 )

t

12: Selection: Resample particles proportional to wt, and reset wt ← 1, as in Algorithm 2.

13: end for

14: Compute improved policy πimproved(sroot)← Iroot(πθ, Q̄T )(sroot).

15: Compute the value of the improved policy across the set of root actions A1:

Vsearch(sroot)←
∑

an
1 ∈A1

QT (sroot, a
n
1 )πimproved(a

n
1 |sroot).

16: Return πimproved(sroot), Vsearch(sroot).
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Algorithm 4 TSMCTS
Require: Number of particles N , planning depth T , current state in the environment sroot, number

of actions to search at the root m1, modelM = (P,R), policy network πθ, value network vϕ,

Gumbel noise vector g.

1: Compute the per-iteration depth (Equation 17): TSH ← T/ log2 m1.

2: Get m1 starting actions (Equation 18, left): A1 = {a1, . . . , am1
} ← arg top(πθ(sroot)+g,m1).

3: Initialize running sum of particles per action N0(a) ← 0 and running value sum per action

Q0
sum(sroot, a)← 0, for all actions at the root a ∈ A1.

4: Compute starting number of particles per action: N1 ← floor(N/m1).

5: for i = 1 to log2 m1 do

6: for each action a ∈ Ai in parallel do

7: Sample s1 ∼ P (·|sroot, a), r1 ∼ R(sroot, a).

8: Search using SMCTS:

_, V i
SMCTS(s1)← SMCTS(Ni, Tsh, s1,M, πθ, vϕ, IGMZ , IGMZ).

9: Approximate the value of action a:

Qi
SMCTS(sroot, a) = r + γVSMCTS(s1).

10: Update the running sums of particles and values of a (Equation 20):

N i(a)← N i−1(a) +Ni, Qi
sum(sroot, a)← Qi−1

sum(sroot, a) +NiQ
i
SMCTS(sroot, a).

11: end for

12: Compute the current iteration’s value estimate at the root (Equation 19):

∀a ∈ Ai : Qi
SH(sroot, a)←

1∑i
j=1 N(j, a)

i∑
j=1

N(i, a)Qj
SMCTS(sroot, a) =

Qi
sum(sroot, a)

N i(a)
.

13: Update the number of actions to search: mi+1 = mi/2.

14: Update the actions to search (Equation 18, right): Ai+1 ← arg top(Qi
SH(sroot, ·),mi+1)

15: Update the running number of particles per action: Ni+1 ← 2Ni.

16: end for

17: Compute the final Q-estimate (Equation 19):

∀a ∈ A1 : QSH(sroot, a)←
Q

log2 m1
sum (sroot, a)

N log2 m1(a)
.

18: Compute the improved policy πimproved using IGMZ :

∀a ∈ A1 : πimproved(a|sroot)←
exp(βQsh(sroot, a) + log πθ(a|sroot) + g(a))∑

b∈A1
exp(βQsh(sroot, b) + log πθ(b|sroot) + g(b))

∀a /∈ A1 : πimproved(a|sroot)← 0

19: And its value: Vsearch(sroot) =
∑

a∈M1
πimproved(a|sroot)Qsh(sroot, a).

20: Return πimproved(sroot), Vsearch(sroot).
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C ADDITIONAL EXPERIMENTS

Investigating the effect of the m1 parameter We investigate the effect of the m1 parameter, the
number of actions that are searched at the root of TSMCTS in Figure 5. Performance is summarized as
area-under-the-curve (AUC) for the evaluation returns during training normalized across environments
with respect to minimum and maximum AUCs observed across agents and seeds. Clearly, limiting
the search to only the top two actions is strongly detrimental. On the other hand the confidence
bounds for m1 = 4, 16 almost entirely overlap, which suggest that for a sufficiently large m1 the
effect across environments is modest.
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Figure 5: Performance scaling with depth (higher is better, increasing is better). Averaged across
environments and particle budgets of 4, 8, 16 and normalized across environments. Mean and 90%
two-sided BCa-bootstrap intervals across 10 seeds.

D EXPERIMENTS DETAILS

For the experiments, we build on the setup proposed by de Vries et al. (2025), which we describe in
more detail below.

Environments We have used Jumanji’s (Bonnet et al., 2024) Snake-v1 and Rubikscube-partly-
scrambled-v0, as well as Brax’s (Freeman et al., 2021) Ant, Halfcheetah and Humanoid.

Compute All experiments were run on the [anonymized for review] cluster with a mix of
[anonymized for review] GPU cards. Each individual run (seed) used 2 CPU cores and ≤ 6 GB of
VRAM.

Wall-clock Training Time Estimation To estimate the training runtime in seconds (Figure 3), we
used an estimator of the the runtime-per-step (total runtime divided by steps) and multiplied this
by the current training step to obtain a cumulative estimate. This estimator should more robustly
deal with the variations in hardware, the compute clusters’ background load and XLA dependent
compilation. Of course, estimating runtime is strongly limited to hardware and implementation and
the results presented in Figure 3 should only be taken with that in mind.

Variance and Path Degeneracy Estimation In Figure 4 center we plot the variance of the root
estimator V (s0) =

∑
a∈M πimproved(a|s)Qsearch(s, a) at the end of training as a function of depth

for each method. M is the number of actions over which the estimator maintains information
(susceptible to path degeneracy).

Following de Vries et al. (2025), for TRT-SMC and the SMC baseline we compute Qsearch as
the TD-λ estimator for each particle at the root for the last depth t = T . If multiple particles are
associated with the same action at the root, the particle estimates are averaged. To address path

20
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degeneracy when all particles for a root action are dropped TRT-SMC saves the last TD-λ estimate
for each root action. For T/SMCTS we use VT/SMCTS respectively. In Figure 4 right we plot the
number of actions at the root with which information is associated at the end of training, M , vs.
depth.

Neural Network Architectures As specified by de Vries et al. (2025), which are themselves
adapted from Bonnet et al. (2024) and Macfarlane et al. (2024) (e.g. MLPs in all environments except
Snake where a CNN followed by an MLP is used).

Hyperparameters We’ve used the hyperparameters used by Macfarlane et al. (2024) and de Vries
et al. (2025) for these tasks (when conflicting, we’ve used the parameters used by the more recent
work (de Vries et al., 2025)). Except for the two new hyperparameters introduced by T/SMCTS no
hyperparameter optimization took place. These new hyperparameters are (i) m1, for which results are
presented in Figure 5. (ii) The βroot inverse-temperature hyperparameter of IGMZ used by T/SMCTS
to compute the improved policy at the root (Iroot). For βroot we conducted a grid search with a small
number of seeds across environments and values of 0.1−1, 0.05−1, 0.01−1, 0.005−1. β = 0.01−1

was overall the best performer. The βsearch hyperparameter is actually the same parameter as the
target temperature used by the SMC baseline (see de Vries et al., 2025). We have not observed
differences in performance across a range of parameters βsearch for TSMCTS and opted to use the
same value as SMC.

Hyperpameters are summarized in Tables 1, 2, 3, 4, 5 and 6.

Name Value Jumanji Value Brax
SGD Minibatch size 256 256
SGD update steps 100 64
Unroll length (nr. steps in environment) 64 64
Batch-Size (nr. parallel environments) 128 64
(outer-loop) Discount 0.997 0.99
Entropy Loss Scale (cent) 0.1 0.0003

Table 1: Shared experiment hyperparameters.

Name Value Jumanji Value Brax
Policy-Ratio clipping 0.3 0.3
Value Loss Scale 1.0 0.5
Policy Loss Scale 1.0 1.0
Entropy Loss Scale 0.1 0.0003

Table 2: PPO hyperparameters.

Name Value Jumanji Value Brax
Replay Buffer max-age 64 64
Nr. bootstrap atoms 30 30
Max depth 16 16
Max breadth 16 16

Table 3: GumbelMCTS hyperparameters.

Name Value Jumanji Value Brax
Replay Buffer max-age 64 64
Selection (Resampling) period 4 4
Target temperature 0.1 0.1
Nr. bootstrap atoms 30 30

Table 4: Shared SMC hyperparameters.
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Name Value Jumanji Value Brax
(inner-loop) Retrace λ 0.95 0.9
(inner-loop) Discount 0.997 0.99
(outer-loop) Value mixing 0.5 0.5
Estimation πimproved Message-Passing Message-Passing

Table 5: TRT-SMC variance ablation hyperparameters.

Name Value
Root policy improvement operator (Iroot) IGMZ

Search policy improvement (Isearch) IGMZ

Root inverse temperature βroot 0.01−1

Search inverse temperature βsearch 0.1−1

Number of actions to search at the root m1 4 (Figures 1,2,3), 16 (Figure 4)

Table 6: SMCTS and TSMCTS hyperparameters.
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