
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TWICE SEQUENTIAL MONTE CARLO TREE SEARCH

Anonymous authors
Paper under double-blind review

ABSTRACT

Model-based reinforcement learning (RL) methods that leverage search are respon-
sible for many milestone breakthroughs in RL. Sequential Monte Carlo (SMC)
recently emerged as an alternative to the Monte Carlo Tree Search (MCTS) algo-
rithm which drove these breakthroughs. SMC is easier to parallelize and more
suitable to GPU acceleration. However, it also suffers from large variance and
path degeneracy which prevent it from scaling well with increased search depth,
i.e., increased sequential compute. To address these problems, we introduce Twice
Sequential Monte Carlo Tree Search (TSMCTS). Across discrete and continuous
environments TSMCTS outperforms the SMC baseline as well as a popular modern
version of MCTS. Through variance reduction and mitigation of path degeneracy,
TSMCTS scales favorably with sequential compute while retaining the properties
that make SMC natural to parallelize.

1 INTRODUCTION

The objective of Reinforcement Learning (RL) is to approximate optimal policies for decision
problems formulated as interactive environments. For this purpose, model-based RL algorithms that
use search (also called planning) with a model of the environment’s dynamics for policy optimization
have been tremendously successful. Examples include games (Silver et al., 2016), robotics (Hubert
et al., 2021) and algorithm discovery (Fawzi et al., 2022; Mankowitz et al., 2023). These milestone
approaches are all based in the Alpha/MuZero (A/MZ, Silver et al., 2018; Schrittwieser et al., 2020)
algorithm family and are driven by Monte Carlo Tree Search (MCTS, see Świechowski et al., 2023).

Like many search algorithms, the main bottleneck of MCTS is intensive compute and therefore
runtime cost. Due to the sequential nature of MCTS (Liu et al., 2020; Macfarlane et al., 2024), it is
challenging to address its runtime cost through parallelization and GPU acceleration (for example,
with JAX, Bradbury et al., 2018) which are staples of other modern deep RL approaches. In addition,
MCTS requires maintaining the entire search tree in memory. Modern GPU-acceleration approaches
such as JAX require static shapes for best performance which forces memory usage to scale with the
tree size and makes space complexity another possible bottleneck for GPU scalability.

To address this, alternative search algorithms have emerged (Piché et al., 2019). These algorithms
use Sequential Monte Carlo (SMC, see Chopin & Papaspiliopoulos, 2020) for policy optimization in
the Control as Inference (CAI, see Levine, 2018) probabilistic inference framework for RL. SMC is
used to approximate a distribution over trajectories generated by an improved policy at the root using
N particles in parallel. The parallel nature and lower memory cost, which scales linearly with N ,
make SMC well suited for parallelization and GPU acceleration, as demonstrated by Macfarlane et al.
(2024), which has also shown that SMC is competitive with MCTS for policy improvement.

SMC however suffers from two major problems: sharply increasing variance with search depth
and path degeneracy (Chopin & Papaspiliopoulos, 2020). The variance increase stems from the
exponential growth in the number of possible trajectories s1:T in the search depth T . Path degeneracy
is a phenomenon where due to resampling eventually all particles become associated with the same
state-action at the root of the search tree. This renders any additional search completely obsolete and
collapses the root policy into a delta distribution causing target degeneracy (de Vries et al., 2025).
These problems can cause the performance of SMC to deteriorate rather than scale with sequential
compute (search depth). In contrast, MCTS scales well with sequential compute and does not suffer
from path degeneracy.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To address these limitations of SMC we design a novel search algorithm which we call Twice
Sequential Monte Carlo Tree Search (TSMCTS). We begin with a reformulation of SMC for RL
which generalizes beyond the framework of CAI, simplifying the analysis and surfacing connections
to MCTS. To mitigate policy target variance and degeneracy we switch the perspective of the search
from estimating trajectories to estimating the value of an improved policy at the root. This facilitates
incorporating the backpropagation mechanism of MCTS for value aggregation at the root. We call
this intermediate algorithm SMC Tree Search (SMCTS). Building on SMCTS, TSMCTS utilizes
Sequential Halving (Karnin et al., 2013) for better search resource allocation at the root. The resulting
algorithm sequentially calls SMCTS at the root on a halving number of actions with doubling
number of particles, in parallel (thus, twice sequential). This addresses the remaining effects of path
degeneracy at the root while acting as an additional variance reduction mechanism.

We evaluate TSMCTS on a range of continuous and discrete environments, where it significantly
outperforms the SMC baseline as well as a popular modern version of MCTS (GumbelMCTS,
Danihelka et al., 2022). TSMCTS scales well with additional sequential compute, unlike the SMC
baseline which deteriorates, while maintaining the same space and runtime complexity properties
that make SMC well suited for parallelization. In ablations, we verify empirically that TSMCTS
demonstrates significantly reduced estimator variance and mitigates path degeneracy.

2 BACKGROUND

In RL, the environment is represented by a Markov Decision Process (MDP, Bellman, 1957)M =
⟨S,A, ρ, R, P, γ⟩. S is a set of states,A a set of actions, ρ an initial state distribution, R : S×A → R
a bounded possibly stochastic reward function, and P is a transition distribution such that P (s′|s, a)
specifies the probability of transitioning from state s to state s′ with action a. The policy of the agent
π ∈ Π is defined as a distribution over actions a ∼ π(s) and its optimality is defined with respect to
the objective Jπ , the maximization of the expected discounted return (also called value V π):

Jπ = E[V π(s0)|s0 ∼ ρ] = E
[H−1∑
t=0

γtR(st, at)
∣∣∣s0 ∼ ρ, st+1 ∼ P (st, at), at ∼ π(st)

]
. (1)

The discount factor 0 < γ < 1 is used in infinite-horizon MDPs, i.e. H = ∞, to guarantee that
the values remain bounded. A state-action Q-value function is defined as follows: Qπ(s, a) =
E[R(s, a) + γV π(s′)| s′ ∼ P (s, a)]. We denote the value of the optimal policy π∗ with V ∗(s) =
maxπ V

π(s),∀s ∈ S. In model-based RL (MBRL) the agent uses a model of the dynamics of the
environment (P,R) to optimize its policy, often using search algorithms such as MCTS or SMC.

Policy improvement is used to motivate the convergence of approximate policy iteration algorithms
to the optimal policy (see Danihelka et al., 2022; Oren et al., 2025b). We will prove that our
formulation of SMC for RL approximates policy improvement and can be used in a similar manner
to MCTS. We define policy improvement operators I : Π × Q → Π as any operator such that
∀s ∈ S : V I(π,Qπ)(s) ≥ V π(s) and ∃s ∈ S : V I(π,Qπ)(s) > V π(s), unless π is already an
optimal policy. We define Q generally as the set of all bounded functions on the state-action space
q ∈ Q : S × A → R, to indicate that policy improvement operators are defined for approximate
q ≈ Qπ and exact Qπ .

Greedification The policy improvement theorem (Sutton & Barto, 2018) proves that greedification
(Chan et al., 2022; Oren et al., 2025b) produces policy improvement when applied with respect to a
policy π and its value Qπ . Greedification operators I are operators over the same space, such that the
policy I(π, q)(a|s)q(s, a) is greedier than π with respect to q, defined as the follows:

∀s ∈ S :
∑
a∈A

I(π, q)(a|s)q(s, a) ≥
∑
a∈A

π(a|s)q(s, a), (2)

∃s ∈ S :
∑
a∈A

I(π, q)(a|s)q(s, a) >
∑
a∈A

π(a|s)q(s, a), (3)

unless π is already a greedy (argmax) policy with respect to q. We define strict greedification
operators I as operators that satisfy a strict > inequality 2, unless π is already a greedy policy at s. A

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

popular strict greedification operator is that of regularized policy improvement (Grill et al., 2020):

IGMZ(π, q)(a|s) =
exp(βq(s, a) + log π(a|s))∑

a′∈A exp(βq(s, a′) + log π(a′|s))
∝ π(a|s) exp

(
βq(s, a)

)
(4)

which trades off with an inverse-temperature parameter β between greedification (maximizing∑
a∈A π(a|s)q(s, a) with respect to π) and regularization with respect to the prior policy π. We will

use greedification operators to drive the policy improvement produced by SMC and TSMCTS.

Monte Carlo Tree Search (MCTS) is used in RL to select actions in the environment and to produce
targets for training in the form of policy improvement and value bootstraps. MCTS uses a model
of the environment (either exact, as in AlphaZero (AZ), or learned, latent and/or approximate, as in
MuZero (MZ)) to construct a search tree where each node is associated with a state s ∈ S . The root
is set to the current state of the environment s0 := s. For convenience, we will use the subscript st
to denote states in the planner (here MCTS and later SMC), and will clarify when not clear from
context whether it refers to states in the environment or the planner. Each node st maintains: (i) a
prior-policy πθ(st). (ii) The mean reward r(st, a) for each visited action a. (iii) An estimate of the
value VM (st) which is computed as the average of all M returns passed through this node.

MCTS repeats a three-step process: search, expansion and backpropagation. The tree is traversed
following a search policy π′ until a non-expanded node st is reached. Inspired by the work of Grill
et al. (2020), modern algorithms such as GumbelMuZero (GMZ, Danihelka et al., 2022) use π′ =
IGMZ(πθ, QM) (Equation 4) with a β parameter that increases with M , the number of visitations to
the node. Once a non-expanded node st has been reached, the node is expanded by sampling an action
at from the prior policy πθ, expanding the transition rt = E[R(st, at)], st+1∼P (st+1|st, at) (which
is traditionally deterministic) and evaluating Qπθ (st, at) ≈ rt + γV πθ (st+1). V πθ (st+1) is usually
approximated with a value DNN vϕ ≈ V πθ . The new evaluation is then backpropagated up the
search tree, through all nodes along the trajectory τt = s0, a0, . . . , st, at, st+1, updating the running
average of the value estimates: VM+1 = 1

M+1

∑M+1
i=1 νi, where νi =

∑t
j=0 γ

jrij + γt+1vϕ(s
i
t+1).

This process is repeated B times, the search budget of the algorithm.

When MCTS terminates, an action is selected at the root using an improved policy πimproved. To drive
an approximate policy iteration loop, Danihelka et al. (2022) use πimproved := IGMZ(πθ, QM)(s0),
where QM (s0, a) = r(s0, a) + γEP (s1|s0,a)[VM (s1)]. πimproved(s0) is used to train the prior policy
πθ using a cross-entropy loss. The value at the root VM (s0) is used to produce bootstraps for
TD-targets (Schrittwieser et al., 2020) or value targets directly (Oren et al., 2025a).

Sequential Halving with MCTS Due to the compute budget B being known in advance in many
cases in practice, in GumbelAlpha/MuZero (GA/MZ, Danihelka et al., 2022), the authors propose to
separate MCTS to two processes: a simple-regret minimization at the root s0 through the Sequential-
Halving (SH, Karnin et al., 2013) algorithm. At all other nodes the original MCTS process is
used. SH begins with a set |A1| = m1 of actions to search and a total search budget B. SH then
divides the search budget equally across i = 1, . . . , log2 m1 iterations. The per-iteration budget
itself is divided equally across the actions searched this iteration Ai . As its name suggests, SH
halves the number of actions that are searched each iteration by taking the top half according to a
certain statistic, arg top IGMZ(πθ, QM)(s0) in the case of GA/MZ. As a result, at each iteration
the search budget for the remaining actions doubles. After the final iteration the algorithm returns
the improved policy πimproved(s0) = IGMZ(πθ, Qlog2 m1)(s0), and the value of the root state
Vsearch(s0) =

∑
a∈A1

πimproved(a|s0)Qlog2 m1(s0, a).

Sequential Monte Carlo (SMC) methods approximate a sequence of target distributions pt(x0:t)
using proposal distributions ut(xt | x0:t−1). At each time step t ∈ {0, . . . , T}, N particles xn

t
with weights wn

t are updated via mutation, correction, and selection (Chopin, 2004). Mutation:
each trajectory xn

0:t−1 is extended by sampling xn
t ∼ ut(xt | xn

0:t−1). Correction: The weights are
updated to account for the target distribution, such that the set of weighted particles {xn

t , w
n
t }Nn=1

approximates expectations under the target:

wn
t = wn

t−1 ·
pt(x

n
t | xn

0:t−1)

ut(xn
t | xn

0:t−1)
,

∑N
n=1 w

n
t f(x

n
t)∑N

n=1 w
n
t

≈ Ept
[f(xt)], (5)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

where f(xt) is any function of interest. Selection: The particles are resampled proportionally to the
normalized weights: {xt}Nn=1 ∼ Multinomial(N, normalizedwt), {wn

t = 1}Nn=1 to prevent particle
degeneracy. We refer to Chopin & Papaspiliopoulos (2020) for more details.

SMC as a search algorithm for RL Piché et al. (2019) use SMC as a search algorithm by defining
the target distribution pt(τt) over trajectories τt = (s0, a0, . . . , st, at, st+1) = x0:t (superscripted τnt
to denote trajectory per particle). The target is conditioned on an optimality variable O1:H , such that
p(O1:H | τH) ∝ exp

(∑H
t=1 rt

)
, following the control-as-inference (CAI) framework (see Levine,

2018), up to a horizon H . The proposal distribution is defined using a prior policy πθ, while the
target distribution incorporates the soft-optimal policy µ and the soft-value function Vsoft:

ut(τt | τt−1) = P (st | st−1, at−1)πθ(at | st), (6)

pt(τt | τt−1) ∝ P (st | st−1, at−1)µ(at | st)Est+1|st,at

[
exp(Asoft(st, at, st+1))

]
, (7)

wn
t = wn

t−1

pt(τ
n
t | τnt−1)

ut(τnt | τnt−1)
∝ wn

t−1

µ(ant | snt)
πθ(ant | snt)

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
, (8)

where Asoft(st, at, st+1) = rt + Vsoft(st+1)− logEst|st−1,at−1
Vsoft(st). See (Piché et al., 2019) for

derivation. We refer to this algorithm as CAI-SMC to distinguish from other variations. In the
maximum entropy setup, µ is a uniform policy, which recovers the maximum entropy solution
(Haarnoja et al., 2018). Vsoft is learned using a deep neural network trained with a temporal-difference
loss. Piché et al. (2019) train the policy πθ using Soft Actor Critic (Haarnoja et al., 2018). The policy
returned by CAI-SMC is only used to select actions in the environment. The model used by the
planner is learned from interactions.

Macfarlane et al. (2024) showed that CAI-SMC can be used as a policy improvement operator in
a manner similar to that in which MCTS is used by AZ, in their method SPO. SPO uses the SMC
planner derived by Piché et al. (2019) (CAI-SMC) with µ = πθ which facilitates an Expectation-
Maximization framework and allows the policy to concentrate over time to the true optimal policy,
rather than the soft-optimal policy of CAI.

3 SEQUENTIAL MONTE CARLO SEARCH FOR REINFORCEMENT LEARNING

We begin by extending Piché et al. (2019)’s formulation of SMC as a search algorithm for RL beyond
the framework of CAI. This formulation is simpler, accepts general improvement operators I and
facilitates a perspective shift from reasoning over a distribution over trajectories to reasoning over
the values of actions from a mixture of improved policies at the root which we will build on in the
following sections. Similar to Piché et al. (2019), we formulate the proposal ut(τt) and target pt(τt)
distributions as distributions over trajectories τt = s0, a0, . . . , st, at, st+1. We define the proposal
distribution ut(τt) as the distribution induced by some prior policy πθ:

ut(τt) = ρ(s0)Π
t
i=0P (si+1|si, ai)πθ(ai|si) ⇒ ut(τt|τt−1) = P (st+1|st, at)πθ(at|st). (9)

We define the target distribution pt(τt) as the distribution induced by an improved policy π′ =
I(πθ, Q

π) for some policy improvement operator I:
pt(τt) = ρ(s0)Π

t
i=0P (si+1|si, ai)π′(ai|si) ⇒ pt(τt|τt−1) = P (st+1|st, at)π′(at|st). (10)

Given pt(τt) and ut(τt), the importance sampling weights wn
t for SMC derive as follows:

wn
t = wn

t−1

pt(τ
n
t |τnt−1)

ut(τnt |τnt−1)
= wn

t−1

P (snt+1|snt , ant)π′(ant |snt)
P (snt+1|snt , ant)πθ(ant |snt)

= wn
t−1

π′(ant |snt)
πθ(ant |snt)

(11)

In practice, the value Qπ(s, a) used to compute the improved policy π′ is approximated with DNNs
qϕ(s, a) or r(s, a) + γvϕ(s

′) like in CAI-SMC and A/MZ. We refer to this formulation as RL-SMC
(Algorithm 2). Equation 11 reduces to Equation 8 for the soft-advantage operator of CAI-SMC (see
Appendix A.2 for full derivation).

Policy improvement at the root Like CAI-SMC, RL-SMC produces a policy π̂T
SMC at the root s0

after T steps with empirical occupancy counts using the particles:

π̂T
SMC(a|s0) :=

1

N

N∑
n=1

1τn
T (a0)=a ≈ P

(
τT (a0) = a

)
=: πT

SMC(a|s0), (12)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where τT (a0) denotes the first action in the trajectory. We verify that RL-SMC approximates policy
improvement so that it can drive an approximate policy iteration loop in a similar manner to MCTS:

Theorem 1. For any improvement operator I, search horizon T , prior policy πθ, true dynamics
model (P,R) and true evaluation Qπθ RL-SMC with infinite particles is a policy improvement
operator.

Intuition RL-SMC produces a distribution over trajectories pT (τT) from a policy that is improved
with respect to the prior policy πθ at states {s0, . . . , sT }. Since this policy is improved with respect
to the future {s0, . . . , sT+1}, it is of course also improved at s0, the current state in the environment.
See Appendix A.1 for a complete proof.

The proof of Theorem 1 points to one of the advantages of using search for policy improvement
compared to model-free approaches. By unrolling with the model, RL-SMC produces a policy that is
improved for T consecutive time steps, in contrast to the single step of model free methods:

Corollary 1. For any strict improvement operator I , search horizon T , prior policy πθ, true dynamics
model (P,R) and true evaluation Qπθ the policy produced by RL-SMC satisfies:

V πT
SMC (s0) > V πT−1

SMC (s0) > · · · > V π1
SMC (s0) > V πθ (s0) (13)

as long as πθ is not already an argmax policy with respect to Qπθ at all states s0, . . . , sT .

The proof follows directly from applying strict improvement operators (improvement operators that
satisfy a strict > inequality 2 at all states unless the policy is already an argmax policy).

However, the root estimator π̂T
SMC(s0) suffers from two major problems: variance that grows sharply

in T and path degeneracy (see Chopin, 2004; Chopin & Papaspiliopoulos, 2020).

Large variance The variance of SMC can scale up to polynomially with depth t, in order O(tΩ),
where Ω is the dimension of the domain of the target distribution, pt(τt) (Chopin, 2004). In RL/CAI-
SMC however the dimension of the domain τt itself grows linearly with t: Ωt = ds,at, where ds,a is
the joint dimension of the state-action space S,A (for example if s ∈ R5, a ∈ R2 then ds,a = 7). As
a result, the variance of the estimator can increase up to super-exponentially in t: O(ttds,a).

Path degeneracy Consecutive selection steps t are likely to concentrate all particles i to trajectories
that are associated with one root action ai0. Once all particles are associated with the same root action
ai0, say at a step h, the estimator π̂t

SMC(a
i
0|s0) = 1 and zero for all other root actions a0 ̸= ai0.

From that point on, the estimator will not change for all depth t > h. This is problematic for two
reasons: (i) The search has no effect from t > h, and the algorithm cannot scale with additional
sequential compute (increasing T). This is because particles will not be resampled out of trajectories
starting in action ai0 and therefore, π̂t

SMC(a
i
0|s0) will not change for t > h. (ii) It results in a delta

distribution policy target at the root s0 that is a crude approximation for any underlying improved
policy πimproved(s0) but an argmax.

Unlike RL-SMC, MCTS treats the search problem as the problem of identifying the best action at the
root using value estimates QM (s0, ·) ≈ Qπimproved(s0, ·), rather than a distribution over trajectories
pt(τt). By averaging the returns of all trajectories observed during search MCTS reduces the variance
of the root estimator QM . Additionally, by maintaining a value estimate for each visited action at the
root MCTS prevents the effects of path degeneracy: QM updates with each search step, and the policy
cannot collapse to a delta distribution, resulting in richer policy targets. This observation motivates
the next step in the design of the algorithm: a value-based perspective on RL-SMC’s search.

4 VALUE-BASED SEQUENTIAL MONTE CARLO

Maintaining estimates Qπt
SMC (s0, a) in addition to a distribution over trajectories from the root can

address both of the problems caused by path degeneracy as discussed earlier: (i) The estimate Qπt
SMC

does not stop updating when all particles are associated with one action at t = h and thus search
for t > h is not obsolete, allowing SMC to benefit from increased search depth. (ii) Information
is not lost about actions that have no remaining particles, and thus, target degeneracy is prevented.
This is similar to the idea recently proposed by de Vries et al. (2025), albeit in the guise of policy

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

log-probabilities in the framework of CAI. The value at the root Qπt
SMC (s0, ·) can be approximated

using the particles:

Qπt
SMC (s0, a0) = Eπt

SMC

[t∑
i=0

γiri + γt+1V πθ (st+1)
∣∣ s0, a0] (14)

≈
N∑

n=1

wn
t 1an

0 =a0

t∑
i=0

γirni + γt+1V πθ (snt+1) := Qt(s0, a0) (15)

The estimator Qt(s0, a0) by itself however is potentially just as high variance as πt
SMC . Instead, we

can keep track of the average return observed during search, with a backpropagation step similar to
MCTS: Q̄t(s0, a0) =

1
t

∑t
i=1 Qi(s0, a0). Whenever there are no particles associated with action a0,

the value Q̄t(s0, a0) is not updated. By mixing predictions for different steps Q1, . . . , Qt, any errors
that can average out now average out (see Appendix A.4 for more detail). On the other hand, although
Qt is an unbiased estimate of Qπt

SMC , Q̄t is not. Instead, Q̄t estimates the value of a mixture of more
and more improved policies π1

SMC , . . . , π
t
SMC . Since every policy πi

SMC in the mixture is already
an improved policy, this is not a problem, it merely results in a value estimate of a less-improved (but
still improved) policy than πT

SMC .

This value-based extension to RL-SMC can be thought of as iterating: (i) Search: compute importance
sampling weights to align with the improved policy π′(st). (ii) Backpropagation: evaluate the returns
for each particle at states st+1, average the return across all particles associated with the same
action a0 at the root and incorporate it into the running mean Q̄t. (iii) Expansion: sample from the
prior-policy πθ(st+1). Due to the similarity between this three-step process and MCTS’, we refer to
this algorithm as Sequential-Monte-Carlo Tree Search (SMCTS, summarized in Algorithm 3).

Policy improvement at the root To extract policy improvement at the root πimproved(s0) using
the value estimates Q̄T (s0, ·), any policy improvement operator I can be chosen. SMCTS returns:

πimproved(s0) = I(πθ, Q̄)(s0), Vsearch(s0) =
∑
a∈A0

Q̄T (s0, a)πimproved(a|s0). (16)

One effect of path degeneracy remains however: all particles can still collapse to search only one root
ancestor. In addition, SMCTS does not fully leverage the insight that the search objective is policy
improvement specifically at the root. We address these next.

5 TWICE-SEQUENTIAL MONTE CARLO TREE SEARCH

One of the key observations of Danihelka et al. (2022) is that at the root of the search tree s0, the
search budget of the algorithm is known in advance. This motivates using known-budget-optimization
algorithms such as SH (see Section 2) at the root of the search tree. By combining SH (Karnin et al.,
2013) with SMCTS, we are able to further reduce estimator variance and mitigate remaining effects
of path degeneracy at the root.

At each SH iteration i, SH resets the search back to the root. This results in repeated re-searching
of actions at the root. By aggregating the value predictions Q̄i

T of SMCTS across iterations i, SH
induces further lower variance estimates of the value at the root. This is similar to existing methods
to addressing variance in SMC such as Ancestor Sampling (Lindsten et al., 2014). Further, at each
iteration i SH reduces the number of searched actions while increasing the search budget per action.
As a result, SH minimizes the variance of the estimator for the value-maximizing actions: the actions
that are the most important for action selection and policy improvement. Finally, SH searches each
action at the root independently in parallel, which mitigates the remaining effect of path degeneracy
at the root. We formulate this Sequential-Halving Sequential-Monte-Carlo Tree Search algorithm, or
Twice Sequential Monte Carlo Tree Search (TSMCTS), below.

TSMCTS requires a number of particles N , depth budget T , and a number of starting actions to
search at the root m1. The total search budget (number of model expansions) B = NT is then the
particle budget multiplied by the depth budget. The total number of iterations of SH is log2 m1.
SH assigns a compute budget Bi per action at the root per iteration i = 1, . . . , log2 m1. Bi can

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

be computed as follows: Bi =
NT

mi log2 m1
, where mi+1 = mi/2, i ≥ 1. In order to preserve the

parallelizability properties of SMC we assign N/mi particles per-action per-iteration (we assume for
simplicity that mi divides N and otherwise round for a total particle budget of N at each iteration).
This results in the number of particles per-action per-iteration doubling every iteration: Ni+1 = 2Ni.
To maintain the same total compute cost B = NT as SMC, at each iteration i SH searches up to
depth TSH < T :

TSH =
Bi

N/mi
=

NT

mi log2 m1

mi

N
=

T

log2 m1
< T. (17)

Instead of searching to the full depth T , TSMCTS searches repeatedly to a lesser depth TSH , and thus
each individual estimator Q̄i

TSH
is a lower variance estimator. This results in additional reduction in

estimator variance in T , traded off against reduction in the search horizon which becomes TSH .

At the first iteration i = 1, the set A1 of m1 actions to search are chosen as the top m1 actions
according to probabilities πθ(s0). To approximate sampling without replacement from the policy, in
discrete action spaces we use the Gumbel-top-k trick (Kool et al., 2019), which adds noise from the
Gumbel distribution (g ∈ R|A|) ∼ Gumbel(0), π(s0) ∝ exp(log πθ(s0) + g).

At each iteration i ≥ 1 TSMCTS executes SMCTS as a subroutine independently in parallel for each
a ∈ Ai, the top mi (i > 1 : mi =

mi−1

2) actions at the root according to the current improved policy:

i = 1 : A1 = arg top(π(s0),m1), i > 1 : Ai = arg top(I(π,Qi−1
SH)(s0),mi). (18)

SMCTS returns the value of the improved policy at the next state for this iteration, V i
SMCTS(s1). The

value for each action at the root a ∈ Ai is computed: Qi
SMCTS(s0, a) = r(s0, a) + γV i

SMCTS(s1).
As noted above, because the search budget per action doubles each iteration, Qi

SMCTS is a lower-
variance estimator than Qi−1

SMCTS for all actions visited this iteration. To account for that we extend
the computation of the value average across iterations i to a weighted average. The average is
weighted by the "visitations" - the number of particles - to this action this iteration:

∀a ∈ Ai : Qi
SH(s0, a) =

1∑i
j=1 Nj(a)

i∑
j=1

Nj(a)Q
j
SMCTS(s0, a), (19)

where Ni(a) ≥ 0 is the number of particles assigned to root action a at iteration i and
Qi

SMCTS(s0, a) := 0 for root actions a that were not searched at iteration i (the term Qi
SMCTS(s0, a)

will be multiplied by Ni(a) = 0 for these actions and thus the actual value does not matter). In
practice, we maintain two vectors of size m1 of running sums:

N i(a) :=

i∑
j=1

Nj(a), Qi
sum(s0, a) =

i∑
j=1

Nj(a)Q
j
SMCTS(s0, a). (20)

TSMCTS returns: (i) The improved policy at the root computed using the last iteration’s Q-
value: πimproved = I(π,Qlog2 m1

SH). (ii) An estimate of the value of the policy Vsearch(s0) =∑
a∈A1

πimproved(a|s0)Qlog2 m1

SH (s0, a). These outputs are used to train the value and policy net-
works in the same manner as SPO and A/MZ. That is, the improved policy πimproved is used to train
the policy πθ using cross-entropy loss. The value estimate Vsearch(s0) is used to bootstrap value
targets to train the critic vϕ, as in (de Vries et al., 2025). Action selection is done by sampling from the
improved policy during learning a ∼ πimproved(s0) and deterministically taking the argmax action
during evaluation a = argmaxb∈A1

πimproved(b|s0). We refer to Appendix B for more details.

A more detailed derivation of Equation 19 and discussion of the variance reduction mechanisms are
provided in Appendices A.3 and A.4 respectively. TSMCTS maintains the same space and runtime
complexity of the RL-SMC baseline (see Appendix A.5). We summarize TSMCTS in Algorithm 4.

Choice of operator The operator IGMZ was used by Danihelka et al. (2022) for search and policy
improvement at the root in MCTS. IGMZ intentionally balances between maximizing with respect to
Q while minimizing the divergence from πθ, making it a natural choice for TSMCTS as well.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

6 RELATED WORK

SMC has been used in RL and more generally MDP solving for a variety of purposes (see (Lazaric
et al., 2007; Hoffman et al., 2007; Le et al., 2018) for examples). Our focus in this section is on related
work in the area of SMC for search in RL. Multiple works build upon Piché et al. (2019)’s derivation
of CAI-SMC for search. Lioutas et al. (2023) extend the proposal distribution with a Q critic, to direct
the mutation step towards more promising trajectories. Macfarlane et al. (2024)’s approach of using
CAI-SMC for policy improvement and benefiting from SMC’s capacity to parallelize effectively
across particles. de Vries et al. (2025) extends the SMC search further with trust-region optimization
methods and additionally address terminal states with revived resampling. These advancements
are orthogonal and natural to incorporate into RL-SMC and TSMCTS (see Figure 1 in Section 7).
de Vries et al. (2025) also propose to address path degeneracy by essentially maintaining the last
return observed for each action at the root, thus preventing the collapse of the improved policy at the
root to a delta distribution. In contrast, SMCTS aggregates all returns observed for each root action
during search. This addresses path degeneracy in the same manner but acts as a reduced variance
estimator (as demonstrated in Figure 4, center, in the next section).

Modifications to MCTS’s classic backpropagation step, such as TD-λ (Sutton, 1988) variations, have
been explored (Khandelwal et al., 2016). Such modifications are natural to incorporate into TSMCTS
as well, especially with the aim to further reduce estimator variance. However, these have yet to
popularize for MCTS, suggesting that they are not critical to the algorithm’s performance and we
leave their exploration in TSMCTS for future work. We include a brief summary of previous work on
parallelizing MCTS and related challenges in Appendix A.5.

7 EXPERIMENTS

The objective of this work is to improve SMC as a search algorithm for policy improvement in RL with
our novel method TSMCTS. To evaluate empirically that TSMCTS is a better policy improvement
operator than SMC we use the experimental setup established by Macfarlane et al. (2024) and
iterated upon by de Vries et al. (2025). This setup contains a mix of discrete and continuous control
environments from Jumanji (Bonnet et al., 2024) and Brax (Freeman et al., 2021). de Vries et al.
(2025) reduced the transition counts in evaluation to the standard in literature, and replaced one of
the sparse-reward, single-goal environments (Boxoban) to a multi-reward environment (Snake), to
increase the diversity of the environments covered in this experimental suite. We begin by comparing
a model-based agent which uses TSMCTS for policy improvement (Algorithm 1) to other popular
baselines which use search for policy improvement: SPO (Macfarlane et al., 2024), TRT-SMC
(de Vries et al., 2025) and GumbelAZ, an AZ agent using a modern version of MCTS (Danihelka
et al., 2022). All agents use the true dynamics model for search in the AZ manner. The SMC-based
baselines (SPO, TRT SMC, TSMCTS) are agnostic to continuous / discrete action spaces. GumbelAZ
has been extended to continuous environments in the manner of SampledMZ (Hubert et al., 2021).
We include PPO (Schulman et al., 2017) for reference performance of a popular model-free baseline.
Our implementation of all agents relies on that of de Vries et al. (2025), with the exception of SPO,
which uses the original implementation (Toledo, 2024) in the environments for which it had been
made public. As mentioned in Section 6, the contributions of de Vries et al. (2025) are for the most
part orthogonal to ours. To demonstrate that this is the case, we include a TSMCTS + TRT agent
which incorporates these contributions of de Vries et al. (2025) to the backbone of TSMCTS. See
Appendices B and D for additional implementation details. The results are presented in Figure 1. In
all environments the TSMCTS-based agents outperform or match all baselines.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100
Snake

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Rubikscube

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

Ant

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

5000

6000

Halfcheetah

0 1 2 3 4 5
1e6

1000

2000

3000

4000

Humanoid
TSMCTS
TSMCTS+TRT
TRT SMC
SPO
PPO
GumbelAZ

Environment interactions

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

Figure 1: Averaged returns vs. environment interactions. 95% Gaussian CIs across 20 seeds.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We proceed to evaluate TSMCTS as a policy improvement operator directly. In Figure 2 we compare
identical model based agents using the exact same implementation of Algorithm 1, differing only in
the search procedure used for policy improvement: TSMCTS, the SMC baseline used by Macfarlane
et al. (2024) and GumbelMCTS. We omit TRT SMC from this comparison as its modification to
SMC have been shown to be orthogonal to TSMCTS’s in Figure 1. This comparison also strengthens
the connections between popular algorithmic setups of model based RL: the only difference between
the GumbelMCTS agent, which is an AZ agent (GumbelAZ in Figure 1) and the SMC baseline, which
is a simplified SPO agent (modified value targets, static temperature, etc.) is the search algorithm
used for policy improvement. To emphasize the this connection we use the same colors for the related
agents across figures. TSMCTS is overall the dominant search operator for policy improvement
compared to both the SMC baseline and GumbelMCTS in these experiments.

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0

20

40

60

80

100
Snake

SMC baseline
TSMCTS (ours)
GumbelMCTS

0.0 0.2 0.4 0.6 0.8 1.0
1e7

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Rubikscube

0 1 2 3 4 5
1e6

0

2000

4000

6000

8000

Ant

0 1 2 3 4 5
1e6

0

1000

2000

3000

4000

Halfcheetah

0 1 2 3 4 5
1e6

1000

2000

3000

4000

Humanoid

Environment interactions

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

Figure 2: Averaged returns vs. environment interactions. 95% Gaussian CIs across 20 seeds.

In Figure 3 we include a reference runtime comparison between the three search algorithms. Runtime
was estimated by multiplying training step with average runtime-per-step. TSMCTS induces a modest
runtime increase over SMC for the same compute resources and compares very well to MCTS which
has roughly twice the runtime cost as the SMC-based variants.

0 500 1000 1500
0

20

40

60

80

100
Snake

SMC baseline
TSMCTS (ours)
GumbelMCTS

0 200 400 600
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Rubikscube

0 1000 2000 3000 4000

0

2000

4000

6000

8000

Ant

0 2000 4000 6000 8000
0

1000

2000

3000

4000

Halfcheetah

0 2000 4000

1000

2000

3000

4000

Humanoid

Wallclock time

Av
er

ag
e

Ep
iso

de
 R

et
ur

n

Figure 3: Averaged returns vs. runtime (seconds). Mean and 95% Gaussian CI across 20 seeds.

Next, we demonstrate empirically that TSMCTS addresses the limitations of SMC discussed in this
work. In Figure 4 we plot: (i) Scaling with sequential compute (increasing depth T , left). (ii) Variance
of the root estimator (center). (iii) Policy collapse at the root (target degeneracy) as a measure for
path degeneracy (right).

2 4 6 12 16 24
0.0

0.2

0.4

0.6

0.8

1.0

AU
C

of
 N

or
m

al
ize

d
Re

tu
rn

s Performance scaling with depth
TSMCTS (ours)
SMCTS (ours)
SMC baseline

2 4 6 12 16 24
0

2

4

6

8

10

Va
ria

nc
e

Variance of Root Estimator
TSMCTS (ours)
SMCTS (ours)
SMC baseline
TRT SMC

2 4 6 12 16 24
1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ac
tiv

e
Ac

tio
ns

 in
 Ta

rg
et

Path Degeneracy at the Root

Search Depth
Figure 4: Left: Performance scaling with depth (higher is better), averaged across environments and
particle budgets of 4, 8, 16. 10 seeds and 90% two-sided BCa-bootstrap intervals. Center: Variance
of the root estimator vs. depth (lower is better). Right: The number of actions active in the policy
target (constant - no target degeneracy - better). Center and right are averaged across states and
particle budgets 4, 8, 16 and 5 seeds in Snake. Mean and 95% Gaussian CI.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

We compare baseline SMC, the intermediary SMCTS and the final algorithm TSMCTS. In the variance
and path degeneracy experiments we include an SMC variant which uses the mechanism proposed
by de Vries et al. (2025) for mitigating path degeneracy (e.g. TRT SMC). This, to demonstrate
that while this mechanism mitigates path degeneracy in the same manner as SMCTS it does not
address estimator variance as well. Performance is summarized as area-under-the-curve (AUC) for
the evaluation returns during training normalized across environments. The normalization is with
respect to minimum and maximum AUCs observed over all agents and seeds per environment. The
variance measured is over the prediction of the root estimator for each planner V [Vsearch(s)] =
V [

∑
a∈A πimproved(a|s)Qsearch(s, a)] (where A is the set of actions searched by the respective

search algorithm). The variance is computed across L = 128 independent calls to each planner per
seed at every state in an evaluation episode after training has completed in the Snake environment,
averaged across states and seeds. Target degeneracy is measured as the number of active actions in
the policy target. The number of active actions at the root is averaged across the L calls to the search
algorithm.

TSMCTS is the only SMC variant to successfully scale with sequential compute (Figure 4 left).
TSMCTS and SMCTS have significantly reduced estimator variance compared to the other SMC
variants and TSMCTS’s is significantly reduced compared to SMCTS’s (Figure 4 center). All variants
other than baseline address policy collapse at the root. TRT SMC and SMCTS however are limited
by the entropy of the policy: the policy has high probability for only two actions in most states
despite the size of the action space being 4 in this environment and thus only two actions are searched.
TSMCTS on the other hand searches a constant m1 = 4 actions, irrespective of the prior policy.

We investigate the effect of the hyperparameter m1 of TSMCTS on the performance of the agent in
Figures 5 in Appendix C. The effect appears overall marginal for sufficiently large m1 ≥ 4.

8 CONCLUSIONS

We presented Twice Sequential Monte Carlo Tree Search (TSMCTS), a search algorithm based
in Sequential Monte Carlo (SMC) for action selection and policy optimization in Reinforcement
Learning (RL). TSMCTS builds upon our formulation of SMC for search in RL which extends
prior work (Piché et al., 2019) beyond the framework of Control As Inference (see Levine, 2018).
TSMCTS harnesses mechanisms from Monte Carlo Tree Search (Świechowski et al., 2023) and
Sequential Halving (Karnin et al., 2013) to mitigate the high estimator variance and path degeneracy
problems of SMC, while maintaining SMC’s beneficial runtime and space complexity properties. In
experiments across discrete and continuous environments TSMCTS outperforms the SMC baseline
as well as a popular modern version of MCTS (GumbelMCTS, Danihelka et al., 2022). In contrast
to the SMC baseline, TSMCTS demonstrates lower estimator variance, mitigates the effects of path
degeneracy at the root and scales favorably with sequential compute.

REPRODUCIBILITY STATEMENT

Special care was taken to support reproducibility. Proofs and more detailed discussion of theo-
retical results are provided in Appendix A. Implementation details are described in Appendix B.
Hyperparameters are listed in Appendix D. The codebase will be made public upon acceptance.

LLM USAGE

LLMs were used in a minor role, to improve a small number of text paragraphs and for additional,
supplementary, retrieval and discovery of related work.

REFERENCES

Richard Bellman. A Markovian Decision Process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957.

Clément Bonnet, Daniel Luo, Donal John Byrne, Shikha Surana, Sasha Abramowitz, Paul Duckworth,
Vincent Coyette, Laurence Illing Midgley, Elshadai Tegegn, Tristan Kalloniatis, Omayma Mahjoub,

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthew Macfarlane, Andries Petrus Smit, Nathan Grinsztajn, Raphael Boige, Cemlyn Neil Waters,
Mohamed Ali Ali Mimouni, Ulrich Armel Mbou Sob, Ruan John de Kock, Siddarth Singh, Daniel
Furelos-Blanco, Victor Le, Arnu Pretorius, and Alexandre Laterre. Jumanji: a diverse suite of
scalable reinforcement learning environments in JAX. In The Twelfth International Conference on
Learning Representations, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

Alan Chan, Hugo Silva, Sungsu Lim, Tadashi Kozuno, A. Rupam Mahmood, and Martha White.
Greedification Operators for Policy Optimization: Investigating Forward and Reverse KL Diver-
gences. Journal of Machine Learning Research, 23(253):1–79, 2022.

Guillaume Chaslot, Mark H. M. Winands, and H. Jaap van den Herik. Parallel Monte-Carlo Tree
Search. In Computers and Games, CG 2008, volume 5131 of Lecture Notes in Computer Science,
pp. 60–71. Springer, Berlin, Heidelberg, 2008. doi: 10.1007/978-3-540-87608-3_6.

Nicolas Chopin. Central Limit Theorem for Sequential Monte Carlo Methods and its Ap-
plication to Bayesian Inference. The Annals of Statistics, 32(6):2385–2411, 2004. doi:
10.1214/009053604000000698.

Nicolas Chopin and Omiros Papaspiliopoulos. An Introduction to Sequential Monte Carlo. Springer
Series in Statistics. Springer, Cham, 1st edition, 2020. doi: 10.1007/978-3-030-47845-2.

Ivo Danihelka, Arthur Guez, Julian Schrittwieser, and David Silver. Policy improvement by planning
with Gumbel. In The Tenth International Conference on Learning Representations, 2022.

Joery A. de Vries, Jinke He, Yaniv Oren, and Matthijs T. J. Spaan. Trust-Region Twisted Policy
Improvement. In Forty-second International Conference on Machine Learning, 2025.

DeepMind, Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter
Buchlovsky, David Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Antoine Dedieu, Clau-
dio Fantacci, Jonathan Godwin, Chris Jones, Ross Hemsley, Tom Hennigan, Matteo Hessel,
Shaobo Hou, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King, Markus Kunesch,
Lena Martens, Hamza Merzic, Vladimir Mikulik, Tamara Norman, George Papamakarios, John
Quan, Roman Ring, Francisco Ruiz, Alvaro Sanchez, Laurent Sartran, Rosalia Schneider,
Eren Sezener, Stephen Spencer, Srivatsan Srinivasan, Miloš Stanojević, Wojciech Stokowiec,
Luyu Wang, Guangyao Zhou, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
https://github.com/google-deepmind.

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mo-
hammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grze-
gorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix
multiplication algorithms with reinforcement learning. Nature, 610(7930):47–53, 2022. doi:
10.1038/s41586-022-05172-4.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - A Differentiable Physics Engine for Large Scale Rigid Body Simulation. In Thirty-fifth
Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1),
2021.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural Networks and the Bias/Variance Dilemma.
Neural Computation, 4(1):1–58, 1992. doi: 10.1162/neco.1992.4.1.1.

Jean-Bastien Grill, Florent Altché, Yunhao Tang, Thomas Hubert, Michal Valko, Ioannis Antonoglou,
and Remi Munos. Monte-Carlo Tree Search as Regularized Policy Optimization. In Proceedings
of the 37th International Conference on Machine Learning, volume 119, pp. 3769–3778. PMLR,
2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft Actor-Critic: Off-Policy
Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. In Proceedings of the
35th International Conference on Machine Learning, volume 80, pp. 1861–1870. PMLR, 2018.

11

http://github.com/jax-ml/jax
https://github.com/google-deepmind

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Matt Hoffman, Arnaud Doucet, Nando De Freitas, and Ajay Jasra. On solving general state-space
sequential decision problems using inference algorithms. Technical report, Technical Report
TR-2007-04, University of British Columbia, Computer Science, 2007.

Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Mohammadamin Barekatain, Simon
Schmitt, and David Silver. Learning and Planning in Complex Action Spaces. In Proceedings
of the 38th International Conference on Machine Learning, volume 139, pp. 4476–4486. PMLR,
2021.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost Optimal Exploration in Multi-Armed
Bandits. In Proceedings of the 30th International Conference on Machine Learning, volume 28,
pp. 1238–1246. PMLR, 2013.

Piyush Khandelwal, Elad Liebman, Scott Niekum, and Peter Stone. On the Analysis of Com-
plex Backup Strategies in Monte Carlo Tree Search. In Proceedings of The 33rd International
Conference on Machine Learning, volume 48, pp. 1319–1328. PMLR, 2016.

Wouter Kool, Herke Van Hoof, and Max Welling. Stochastic Beams and Where To Find Them: The
Gumbel-Top-k Trick for Sampling Sequences Without Replacement. In Proceedings of the 36th
International Conference on Machine Learning, volume 97, pp. 3499–3508. PMLR, 2019.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Reinforcement Learning in continuous
action spaces through Sequential Monte Carlo methods. In John C. Platt, Daphne Koller, Yoram
Singer, and Sam T. Roweis (eds.), Advances in Neural Information Processing Systems 20, 2007.

Tuan Anh Le, Maximilian Igl, Tom Rainforth, Tom Jin, and Frank Wood. Auto-encoding sequential
monte carlo. The Sixth International Conference on Learning Representations, 2018.

Sergey Levine. Reinforcement Learning and Control as Probabilistic Inference: Tutorial and Review.
arXiv:1805.00909, 2018.

Fredrik Lindsten, Michael I Jordan, and Thomas B Schön. Particle Gibbs with ancestor sampling.
The Journal of Machine Learning Research, 15(1):2145–2184, 2014.

Vasileios Lioutas, Jonathan Wilder Lavington, Justice Sefas, Matthew Niedoba, Yunpeng Liu, Berend
Zwartsenberg, Setareh Dabiri, Frank Wood, and Adam Scibior. Critic Sequential Monte Carlo. In
International Conference on Learning Representations, 2023.

Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, and Ji Liu. Watch the Unobserved: A
Simple Approach to Parallelizing Monte Carlo Tree Search. In The Eighth International Conference
on Learning Representations, 2020.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In The Seventh
International Conference on Learning Representations, 2019.

Matthew Macfarlane, Edan Toledo, Donal John Byrne, Paul Duckworth, and Alexandre Laterre. SPO:
Sequential Monte Carlo Policy Optimisation. In The Thirty-eighth Annual Conference on Neural
Information Processing Systems, 2024.

Daniel J. Mankowitz, Andrea Michi, Anton Zhernov, Marco Gelmi, Marco Selvi, Cosmin Paduraru,
Edouard Leurent, Shariq Iqbal, Jean-Baptiste Lespiau, Alex Ahern, Thomas Koppe, Kevin Millikin,
Stephen Gaffney, Sophie Elster, Jackson Broshear, Chris Gamble, Kieran Milan, Robert Tung,
Minjae Hwang, Taylan Cemgil, Mohammadamin Barekatain, Yujia Li, Amol Mandhane, Thomas
Hubert, Julian Schrittwieser, Demis Hassabis, Pushmeet Kohli, Martin Riedmiller, Oriol Vinyals,
and David Silver. Faster sorting algorithms discovered using deep reinforcement learning. Nature,
618(7964):257–263, 2023. doi: 10.1038/s41586-023-06004-9.

Yaniv Oren, Viliam Vadocz, Matthijs T. J. Spaan, and Wendelin Boehmer. Epistemic Monte Carlo
Tree Search. In The Thirteenth International Conference on Learning Representations, 2025a.

Yaniv Oren, Moritz A Zanger, Pascal R Van der Vaart, Mustafa Mert Çelikok, Matthijs TJ Spaan,
and Wendelin Boehmer. Value Improved Actor Critic Algorithms. In The Thirty-ninth Annual
Conference on Neural Information Processing Systems, 2025b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Alexandre Piché, Valentin Thomas, Cyril Ibrahim, Yoshua Bengio, and Chris Pal. Probabilistic
Planning with Sequential Monte Carlo methods. In International Conference on Learning Repre-
sentations, 2019.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, Timothy Lillicrap, and
David Silver. Mastering Atari, Go, chess and shogi by planning with a learned model. Nature, 588
(7839):604–609, 2020. doi: 10.1038/s41586-020-03051-4.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal Policy
Optimization Algorithms. arXiv:1707.06347, 2017.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go
with deep neural networks and tree search. Nature, 529(7587):484–489, 2016. doi: 10.1038/
nature16961.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, Timothy Lillicrap, Karen
Simonyan, and Demis Hassabis. A general reinforcement learning algorithm that masters chess,
shogi, and Go through self-play. Science, 362(6419):1140–1144, 2018. doi: 10.1126/science.
aar6404.

Richard S. Sutton. Learning to predict by the methods of temporal differences. Machine Learning, 3
(1):9–44, 1988. doi: 10.1007/BF00115009.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A Bradford
Book, 2nd edition, 2018.

Edan Toledo. Stoix: Distributed single-agent reinforcement learning end-to-end in jax, April 2024.
URL https://github.com/EdanToledo/Stoix.

Maciej Świechowski, Konrad Godlewski, Bartosz Sawicki, and Jacek Mańdziuk. Monte Carlo Tree
Search: a review of recent modifications and applications. Artificial Intelligence Review, 56(3):
2497–2562, 2023. doi: 10.1007/s10462-022-10228-y.

A THEORETICAL RESULTS

A.1 RL-SMC IS A POLICY IMPROVEMENT OPERATOR

Proof. Given exact evaluation Qπ, true environment model P, r, a starting state s0 and infinitely
many particles N →∞, the SMC target policy at final step T produces the following distribution
over trajectories:

p(τT) = p(s0, a0, . . . , sT , aT , sT+1) = ΠT
i=0P (si+1|si, ai)π′(ai|si) (21)

The distribution p(τT) is equivalent to the distribution induced by following the policy π′ for all
states s0,...,T , and for all other states following π, by definition. We call this policy πSMC . We have:

V π(s0) ≤ Eπ′ [Qπ(s0, a0)] (22)
= Eπ′,P [r0 + γV π(s1)] (23)
≤ Eπ′,P [r0 + γQπ(s1, a1)] (24)

≤ Eπ′,P [r0 + γr1 + γ2Qπ(s2, a2)] (25)
≤ . . . (26)

≤ Eπ′,P [r0 + · · ·+ γT−1rT−1 + γTQπ(sT , aT)] (27)
= V πSMC (s0) (28)

13

https://github.com/EdanToledo/Stoix

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Equation 22 holds by definition of π′ produced from an improvement operator. Note that actions
a0, a1, a2, . . . are all sampled from π′(s1), . . . respectively, as the expectation is with respect to π′ at
all steps. Equation 24 holds because Eπ′Qπ(s2, a) ≥ V (s2), by definition of π′. Equation 25 is the
two-step expansion following the same argumentation, and respectively Equation 27 is the multi-step
expansion, which is the definition of the value of the policy πSMC .

□

A.2 DERIVING CAI-SMC IN RL-SMC

The importance sampling weights of CAI-SMC derive as follows (see the work of Piché et al. (2019)):

ut(τt | τt−1) = P (st | st−1, at−1)πθ(at | st), (29)

pt(τt | τt−1) ∝ P (st | st−1, at−1)µ(at | st)Est+1|st,at

[
exp(Asoft(st, at))

]
, (30)

wn
t = wn

t−1

pt(τ
n
t | τnt−1)

ut(τnt | τnt−1)
∝ wn

t−1

µ(ant | snt)
πθ(ant | snt)

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
, (31)

Denote:

π′(ant | snt) = µ(ant | snt)Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
(32)

Where π′ here is the posterior probability of CAI’s graphical model, or the optimal soft-policy (Piché
et al., 2019):

π′(ant | snt) = µ(ant | snt)Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
(33)

= µ(at|st) exp[ln p(Ot:T |st, at)− ln p(Ot:T |st)] (34)
= p(at|st)p(Ot:T |st, at)/p(Ot:T |st) (35)
= p(at|st, Ot:T) (36)

We have:

wn
t =∝ wn

t−1

µ(ant | snt)
πθ(ant | snt)

Esnt+1|snt ,an
t

[
exp(Asoft(s

n
t , a

n
t , s

n
t+1))

]
= wn

t−1

π′(ant | snt)
πθ(ant | snt)

(37)

Which recovers RL-SMC.

A.3 DERIVING THE VALUE UPDATE IN TSMCTS

In MCTS, the value VN (st) at each node st equals the average of all returns 1
N

∑N
i=1

∑T−1
k=0 γkrit+k+

γT vϕ(s
i
t+T) observed through this node. This is because the variance of the estimator is expected to

reduce with 1/N , the number of visitations. This also holds in SMC, where for large N , the error
behaves approximately Gaussian with variance proportional to 1/N (Chopin, 2004). For this reason,
we rely on the same idea in TSMCTS.

At each iteration i of TSMCTS the value estimate Qi
SMCTS(s0, a) was computed using N(i, a)

particles per action, and thus, the contribution of this value estimate to the total average should be
N(i, a).

Equation 19 (provided below again for readability) formulates exactly this weighted average: it sums
across the total number of iterations log2 m1. For each iteration, it multiplies Qi

SMCTS(s0, a) by the
weight N(i, a). Finally, it normalizes the sum by

∑log2 m1

i=1 N(i, a):

∀a ∈M1 : Qi
SH(s, a) =

1∑log2 m1

i=1 N(i, a)

log2 m1∑
i=1

N(i, a)Qi
SMCTS(s, a)

A.4 VARIANCE REDUCTION

Throughout this work, we describe different mechanisms that reduce variance in TSMCTS compared
to the SMC framework TSMCTS is built upon. In this section we will describe and motivate each
mechanism in more detail. We begin with an overall motivation for variance minimization.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Variance minimization is a fundamental objective in statistical estimation, as the quality of an
estimator is typically assessed through its mean squared error (MSE) (Geman et al., 1992). The MSE
admits a standard decomposition into the squared bias and the variance,

MSE = Bias2 +Var.

While bias captures systematic deviation from the true quantity, variance reflects the sensitivity of
the estimator to fluctuations in the data. Minimizing variance - without changing the bias - therefor
reduces to minimizing estimation error. We proceed to describe each variance-reducing mechanism
in chronological order.

Backpropagation in SMCTS The running means Q̄t(s0, a0) maintained through backpropagation
in SMCTS decompose into:

Q̄t(s0, a0) =
1

t

t∑
i=t

Qi(s0, a0) =

N∑
i=1

wi
t1a

(i)
0 =a0

t∑
j=0

γjrij + γt+1V πθ (sit+1). (38)

Q̄t(s0, a0) is a reduced variance estimator compared to Qt for two reasons.

(i) Consider the bootstrapped return:

Qt(s0, a0) =

t∑
j=0

γjrij + γt+1V πθ (sit+1). (39)

For any h < t, the estimator Qh(s0, a0) terminates earlier and bootstraps from V πθ sooner. Since
extending the horizon from h to t replaces a single (deterministic) bootstrap term with additional
random rewards and transitions, it introduces extra stochasticity. Consequently, Var(Qh(s0, a0)) <
Var(Qt(s0, a0)), reflecting the classical result that Monte Carlo returns (large t) have higher variance
than temporally shorter, bootstrapped estimates (small h) (Sutton & Barto, 2018).

(ii) Let us assume for a moment the policy, transition dynamics and reward are all deterministic.
Any errors in the value prediction vϕ that are I.I.D. will average out in the empirical average
1
N

∑N
t=1

∑t
i=0 γ

iri + vϕ(si+1) where si = P (si−1, π(si−1)). For that reason mixing different
length bootstrapped returns can result in reduced variance estimates compared to any individual
bootstrapped return even when the dynamics and rewards are deterministic.

Repeatedly searching the same actions from the root in TSMCTS At each iteration i, TSMCTS
searches a set of actions Ai ⊂ Ai−1. Since the actions are searched independently again from the
root, we have Var(Qi

SH) < Var(Qi
SMCTS). That is, the average across the value estimates of

independent iterations is a lower variance estimate of the true value compared to each individual
estimate, for the same reasoning as above.

Increasing particle budget per searched action at the root in TSMCTS Under standard as-
sumptions, increasing the number of particles in SMC algorithms reduces variance because the
particle system provides an empirical average, and the variance of such Monte Carlo estimates
decreases proportionally to the number of particles 1/N , where N is the number of particles (Chopin
& Papaspiliopoulos, 2020).

Searching for a shorter horizon TSMCTS trades off the depth of the search TSH < T for repeated
search from the root. Reducing the depth of the search has two main effects: (i) It reduces the number
of consecutive improvement (or search) steps. In a manner of speaking, the resulting policy is "less
improved". (ii) It results in a lower variance estimator, as the variance grows in t and TSH < T .

A.5 COMPLEXITY ANALYSIS

We include a brief runtime and space complexity analysis for MCTS and RL-SMC.

MCTS complexity For a search budget B, MCTS conducts B iterations. At each iteration i, MCTS
conducts di ≤ B search steps, one expansion step, and then di ≤ B backpropagation steps along the
nodes in the trajectory. di denotes the depth of the leaf at step i. We can therefor bound the runtime
complexity by O(B(B + B + 1)) = O(B2) operations. In regards to space complexity, MCTS
construct a tree of size B, so the space required is of complexity O(B).

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

RL-SMC complexity For N particles and a depth T , the search budget of RL-SMC totals NT = B.
Assuming that N particles operate in parallel the (sequential) runtime complexity isO(T) ≤ O(B) <
O(B2) operations. In terms of space, RL-SMC maintains only statistics about each particle, resulting
in space complexity of O(N) ≤ O(B). Since RL-SMC is merely a generalization of Piché et al.
(2019)’s CAI-SMC, we conclude that CAI-SMC has the same space and runtime complexity.

SMCTS complexity For N particles and a depth T , the search budget of SMCTS totals NT = B.
At each step i, SMCTS conducts a constant number of additional operation: one running sum is
maintained for each particle, and one running sum is maintained for each searched action at the
root. As a result, SMCTS maintains the same (sequential) runtime complexity of RL-SMC of
O(T) < O(B2). SMCTS maintains statistics about N particles, and also statistics about M ≤ N
searched actions at the root. This results in space complexity of O(2N) = O(N) ≤ O(B), the same
space complexity as RL-SMC.

TSMCTS complexity For N particles and a depth T , the search budget of SMCTS totals NT =
B. TSMCTS divides this budget across log2 m1 iterations. At each iteration, TSMCTS executes
T/ log2 m1 steps, resulting in runtime complexity of O(log2 m1

T
log2 m1

) = O(T) < O(B2), the
same as SMCTS and RL-SMC. In terms of space complexity, TSMCTS maintains statistics over
N particles, and m1 ≤ N searched actions at the root, resulting in the same space complexity as
RL-SMC and SMCTS, O(2N) = O(N) ≤ O(B).

Parallelizing MCTS Approaches to parallelize MCTS exist (Chaslot et al., 2008). These range
from running leaf parallelization which performs multiple independent rollouts from the same newly
expanded leaf node, improving evaluation accuracy but not accelerating tree growth. This of course
is not applicable with modern MCTS methods which use a value DNN to expand leaves. Search
parallelization runs MCTS in parallel across multiple states in multiple environments in parallel.
This is the current norm for JAX based implementations, such as by DeepMind et al. (2020). Root
parallelization launches multiple independent MCTS instances — each constructing its own search
tree — and aggregates root-level statistics. This is in in direct competition over resources with search
parallelization. Since it runs multiple trees for the same state, it reduces the number of independent
states that can be searched in parallel, and thus slows down data gathering (number of environment
interactions per search steps). Tree parallelization is the most akin to the parallelization of SMC: it
shares a single MCTS tree among multiple workers, requiring synchronization mechanisms—such as
local mutexes and virtual loss—to maintain consistency and avoid redundant exploration. Overall,
this contrasts very clearly with the ease at which SMC parallelizes. In SMC one can simply increase
the number of particles N .

A note on complexity in practice It is unlikely that all operations will have the same compute cost
in practice. In search algorithms that use DNNs, it is often useful to think of two separate operation
costs: model interactions, and DNN forward passes. Either of the two can often be the compute
bottleneck, depending on the choice of model, DNN architecture, hardware etc. This motivates an
equating for compute estimated in number of model expansions / DNN forward passes which is B
for MCTS and NT for SMC, which is why we as well as previous work opted to compare MCTS
and SMC variants with budgets B = NT .

B IMPLEMENTATION DETAILS

Targets and losses Our implementation for all search-based agents uses a vϕ critic and a prior
policy πθ. The value and policy are trained with the following losses:

L(θ) = E(st,at,πt)∼D(n)
[−Ea∼πt

lnπθ(a|st)− centH[πθ(a|st)]] , (40)

L(ϕ) = E(st,at,vt)∼D(n)

[
(vt − vϕ(st))

2
]
. (41)

πt is the policy target for state st which is the policy πimproved returned by the planner (be it SMC,
SMCTS, TSMCTS or MCTS). vt is the value target for state st which is computed using TD-λ with
bootstraps Vsearch returned by the planner. H[πθ] = −Eπθ

lnπθ is an entropy penalty for the policy.
D(n) is the replay buffer for iteration n.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The training loop The RL training setup follows the popular approach in JAX, which gathers
interaction trajectories of length unroll length L for a batch size B in parallel, resulting in a total
replay buffer of size LB per episode. The agent is then trained for K SGD update steps with SGD
minibatch size (see hyperparameters in Table 1) and the above losses. Following that, the agent
proceeds to gather a additional data of size LB. The AdamW optimizer (Loshchilov & Hutter, 2019)
was used with an l2 penalty of 10−6 and a learning rate of 3 · 10−3. Gradients were clipped using a
max absolute value of 10 and a global norm limit of 10.

Discrete vs. continuous action spaces The same losses are used to train the value and policy
networks, irrespective of the type of action space. In continuous environments, the policy is a
Gaussian policy, predicting mean and variance. In discrete environments, the policy is trained to
predict the log-probabilities for each action in the action space, as is standard, using the empirical
cross entropy loss L(θ).
MCTS was originally designed for discrete action environments, and is slightly less agnostic to
continuous actions. We follow the popular approach of SampledMZ (Hubert et al., 2021), which
showed that one can simply sample K actions from the prior policy at each node in the search tree,
and treat {a1, . . . , aK} is a discrete action space, turning MCTS into a continuous-action-space
algorithm.

Pseudocode for the different algorithms is provided below.

Algorithm 1 Outer-Loop with Modular Search
Require: Search algorithm (planner) P , neural networks πθ1 , Vϕ1

, replay buffer D(1) = ∅, environ-
ment’s dynamics modelM = (P,R) and budget parameters B.

1: for episode n = 1 to N do
2: Sample starting state s1 ∼ ρ.
3: for step t = 0 to termination or timeout do
4: πimproved(st), Vsearch(st)← P(πθn , vϕn

,M, B)(st).
5: at ∼ πimproved(st).
6: st+1 ∼ P (·|st, at), rt ∼ R(st, at).
7: Append (st, at, rt, st+1, πimproved(st), Vsearch(st)) to buffer D(n).
8: end for
9: Update policy params θn+1 with SGD and CE loss on targets πimproved from D(n).

10: Update value params ϕn+1 with SGD and MSE loss on TD-λ targets using Vsearch from D(n).
11: Set Dn+1 = Dn.
12: end for

Algorithm 2 RL-SMC
Require: Number of particles N , depth T , model P , prior-policy πθ, policy improvement operator

I , value function Qπθ and current state in the environment sroot.
1: Initialize particles n ∈ N , with wn

0 = 1, sn1 = sroot, and ancestor identifier {jn1 = n}Nn=1

(which identifies per particle which action at the root it is associated with).
2: for t = 1 to T do
3: Mutation: {ant ∼ πθ(at|snt)}Nn=1, {snt+1 ∼ P (·|snt , ant)}Nn=1.

4: Correction: {wn
t = wn

t−1
π′(an

t |s
n
t)

πθ(an
t |snt)

, π′(snt) = I(Qπθ , πθ)(s
n
t)}Nn=1.

5: Selection: {(jnt , ant , snt+1)}Nn=1 ∼ Multinomial(N, normalizedwt), {wn
t = 1}Nn=1.

6: end for
7: Return {jnT , wn

T }Nn=1

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Algorithm 3 SMCTS
Require: Number of particles N , depth T , current state in the environment sroot, model M =

(P,R), prior-policy πθ, value network vϕ, improvement operators for search Isearch and root

Iroot.
1: Initialize particles n ∈ N , with wn

0 = 1, sn1 = sroot non-bootstrapped returns Rn
0 = 0, and

ancestor identifier {jn1 = n}Nn=1.

2: for t = 1 to T across n particles in parallel do

3: Mutation: ant ∼ πθ(s
n
t), r

n
t ∼ R(snt , a

n
t), s

n
t+1 ∼ P (snt+1|snt , ant).

4: If t = 1, maintain the set of N root actions: A1 ← {an1}Nn=1.

5: Approximate state-action value: Q(snt , a
n
t)← rnt + γvϕ(s

n
t+1).

6: Compute the search policy: π′(snt)← Isearch(πθ, Q)(snt).

7: Correction: Compute importance sampling weights (Equation 11): wn
t = wn

t−1
π′(snt)
πθ(snt)

.

8: Update the non-bootstrapped returns: Rn
t = Rn

t−1 + γtrnt .

9: Normalize importance sampling weights per action at the root using their identifiers jnt :

ynt =
wn

t∑N
k=1 w

j
t1jnt =jkt

.

10: Estimate Qt(sroot, ·) for initial actions an1 ∈ A1 using Rn
t and vϕ(st+1):

Qt(sroot, a
n
1) =

N∑
i

yit(R
i
t + γt+1vϕ(s

i
t+1))1jn1 =jit

11: Update the running average Q̄t(sroot, ·) where Qt(sroot, ·) is defined:

Q̄t(sroot, a
n
1) =

(1− t)Q̄t−1(sroot, a
n
1) +Qt(sroot, a

n
1)

t

12: Selection: Resample particles proportional to wt, and reset wt ← 1, as in Algorithm 2.

13: end for

14: Compute improved policy πimproved(sroot)← Iroot(πθ, Q̄T)(sroot).

15: Compute the value of the improved policy across the set of root actions A1:

Vsearch(sroot)←
∑

an
1 ∈A1

QT (sroot, a
n
1)πimproved(a

n
1 |sroot).

16: Return πimproved(sroot), Vsearch(sroot).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Algorithm 4 TSMCTS
Require: Number of particles N , planning depth T , current state in the environment sroot, number

of actions to search at the root m1, modelM = (P,R), policy network πθ, value network vϕ,

Gumbel noise vector g.

1: Compute the per-iteration depth (Equation 17): TSH ← T/ log2 m1.

2: Get m1 starting actions (Equation 18, left): A1 = {a1, . . . , am1
} ← arg top(πθ(sroot)+g,m1).

3: Initialize running sum of particles per action N0(a) ← 0 and running value sum per action

Q0
sum(sroot, a)← 0, for all actions at the root a ∈ A1.

4: Compute starting number of particles per action: N1 ← floor(N/m1).

5: for i = 1 to log2 m1 do

6: for each action a ∈ Ai in parallel do

7: Sample s1 ∼ P (·|sroot, a), r1 ∼ R(sroot, a).

8: Search using SMCTS:

_, V i
SMCTS(s1)← SMCTS(Ni, Tsh, s1,M, πθ, vϕ, IGMZ , IGMZ).

9: Approximate the value of action a:

Qi
SMCTS(sroot, a) = r + γVSMCTS(s1).

10: Update the running sums of particles and values of a (Equation 20):

N i(a)← N i−1(a) +Ni, Qi
sum(sroot, a)← Qi−1

sum(sroot, a) +NiQ
i
SMCTS(sroot, a).

11: end for

12: Compute the current iteration’s value estimate at the root (Equation 19):

∀a ∈ Ai : Qi
SH(sroot, a)←

1∑i
j=1 N(j, a)

i∑
j=1

N(i, a)Qj
SMCTS(sroot, a) =

Qi
sum(sroot, a)

N i(a)
.

13: Update the number of actions to search: mi+1 = mi/2.

14: Update the actions to search (Equation 18, right): Ai+1 ← arg top(Qi
SH(sroot, ·),mi+1)

15: Update the running number of particles per action: Ni+1 ← 2Ni.

16: end for

17: Compute the final Q-estimate (Equation 19):

∀a ∈ A1 : QSH(sroot, a)←
Q

log2 m1
sum (sroot, a)

N log2 m1(a)
.

18: Compute the improved policy πimproved using IGMZ :

∀a ∈ A1 : πimproved(a|sroot)←
exp(βQsh(sroot, a) + log πθ(a|sroot) + g(a))∑

b∈A1
exp(βQsh(sroot, b) + log πθ(b|sroot) + g(b))

∀a /∈ A1 : πimproved(a|sroot)← 0

19: And its value: Vsearch(sroot) =
∑

a∈M1
πimproved(a|sroot)Qsh(sroot, a).

20: Return πimproved(sroot), Vsearch(sroot).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

C ADDITIONAL EXPERIMENTS

Investigating the effect of the m1 parameter We investigate the effect of the m1 parameter, the
number of actions that are searched at the root of TSMCTS in Figure 5. Performance is summarized as
area-under-the-curve (AUC) for the evaluation returns during training normalized across environments
with respect to minimum and maximum AUCs observed across agents and seeds. Clearly, limiting
the search to only the top two actions is strongly detrimental. On the other hand the confidence
bounds for m1 = 4, 16 almost entirely overlap, which suggest that for a sufficiently large m1 the
effect across environments is modest.

2 4 6 12 16 24
Depth budget

0.0

0.2

0.4

0.6

0.8

1.0

AU
C

of
 N

or
m

al
ize

d
Av

er
ag

e
Re

tu
rn

s

TSMCTS m1 = 16
TSMCTS m1 = 4
TSMCTS m1 = 2

Figure 5: Performance scaling with depth (higher is better, increasing is better). Averaged across
environments and particle budgets of 4, 8, 16 and normalized across environments. Mean and 90%
two-sided BCa-bootstrap intervals across 10 seeds.

D EXPERIMENTS DETAILS

For the experiments, we build on the setup proposed by de Vries et al. (2025), which we describe in
more detail below.

Environments We have used Jumanji’s (Bonnet et al., 2024) Snake-v1 and Rubikscube-partly-
scrambled-v0, as well as Brax’s (Freeman et al., 2021) Ant, Halfcheetah and Humanoid.

Compute All experiments were run on the [anonymized for review] cluster with a mix of
[anonymized for review] GPU cards. Each individual run (seed) used 2 CPU cores and ≤ 6 GB of
VRAM.

Wall-clock Training Time Estimation To estimate the training runtime in seconds (Figure 3), we
used an estimator of the the runtime-per-step (total runtime divided by steps) and multiplied this
by the current training step to obtain a cumulative estimate. This estimator should more robustly
deal with the variations in hardware, the compute clusters’ background load and XLA dependent
compilation. Of course, estimating runtime is strongly limited to hardware and implementation and
the results presented in Figure 3 should only be taken with that in mind.

Variance and Path Degeneracy Estimation In Figure 4 center we plot the variance of the root
estimator V (s0) =

∑
a∈M πimproved(a|s)Qsearch(s, a) at the end of training as a function of depth

for each method. M is the number of actions over which the estimator maintains information
(susceptible to path degeneracy).

Following de Vries et al. (2025), for TRT-SMC and the SMC baseline we compute Qsearch as
the TD-λ estimator for each particle at the root for the last depth t = T . If multiple particles are
associated with the same action at the root, the particle estimates are averaged. To address path

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

degeneracy when all particles for a root action are dropped TRT-SMC saves the last TD-λ estimate
for each root action. For T/SMCTS we use VT/SMCTS respectively. In Figure 4 right we plot the
number of actions at the root with which information is associated at the end of training, M , vs.
depth.

Neural Network Architectures As specified by de Vries et al. (2025), which are themselves
adapted from Bonnet et al. (2024) and Macfarlane et al. (2024) (e.g. MLPs in all environments except
Snake where a CNN followed by an MLP is used).

Hyperparameters We’ve used the hyperparameters used by Macfarlane et al. (2024) and de Vries
et al. (2025) for these tasks (when conflicting, we’ve used the parameters used by the more recent
work (de Vries et al., 2025)). Except for the two new hyperparameters introduced by T/SMCTS no
hyperparameter optimization took place. These new hyperparameters are (i) m1, for which results are
presented in Figure 5. (ii) The βroot inverse-temperature hyperparameter of IGMZ used by T/SMCTS
to compute the improved policy at the root (Iroot). For βroot we conducted a grid search with a small
number of seeds across environments and values of 0.1−1, 0.05−1, 0.01−1, 0.005−1. β = 0.01−1

was overall the best performer. The βsearch hyperparameter is actually the same parameter as the
target temperature used by the SMC baseline (see de Vries et al., 2025). We have not observed
differences in performance across a range of parameters βsearch for TSMCTS and opted to use the
same value as SMC.

Hyperpameters are summarized in Tables 1, 2, 3, 4, 5 and 6.

Name Value Jumanji Value Brax
SGD Minibatch size 256 256
SGD update steps 100 64
Unroll length (nr. steps in environment) 64 64
Batch-Size (nr. parallel environments) 128 64
(outer-loop) Discount 0.997 0.99
Entropy Loss Scale (cent) 0.1 0.0003

Table 1: Shared experiment hyperparameters.

Name Value Jumanji Value Brax
Policy-Ratio clipping 0.3 0.3
Value Loss Scale 1.0 0.5
Policy Loss Scale 1.0 1.0
Entropy Loss Scale 0.1 0.0003

Table 2: PPO hyperparameters.

Name Value Jumanji Value Brax
Replay Buffer max-age 64 64
Nr. bootstrap atoms 30 30
Max depth 16 16
Max breadth 16 16

Table 3: GumbelMCTS hyperparameters.

Name Value Jumanji Value Brax
Replay Buffer max-age 64 64
Selection (Resampling) period 4 4
Target temperature 0.1 0.1
Nr. bootstrap atoms 30 30

Table 4: Shared SMC hyperparameters.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Name Value Jumanji Value Brax
(inner-loop) Retrace λ 0.95 0.9
(inner-loop) Discount 0.997 0.99
(outer-loop) Value mixing 0.5 0.5
Estimation πimproved Message-Passing Message-Passing

Table 5: TRT-SMC variance ablation hyperparameters.

Name Value
Root policy improvement operator (Iroot) IGMZ

Search policy improvement (Isearch) IGMZ

Root inverse temperature βroot 0.01−1

Search inverse temperature βsearch 0.1−1

Number of actions to search at the root m1 4 (Figures 1,2,3), 16 (Figure 4)

Table 6: SMCTS and TSMCTS hyperparameters.

22

	Introduction
	Background
	Sequential Monte Carlo Search for Reinforcement Learning
	Value-Based Sequential Monte Carlo
	Twice-Sequential Monte Carlo Tree Search
	Related Work
	Experiments
	Conclusions
	Theoretical Results
	RL-SMC is a policy improvement operator
	Deriving CAI-SMC in RL-SMC
	Deriving the value update in TSMCTS
	Variance reduction
	Complexity Analysis

	Implementation Details
	Additional Experiments
	Experiments Details

