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Abstract
The biological functions of proteins often de-
pend on dynamic structural ensembles. In this
work, we develop a flow-based generative mod-
eling approach for learning and sampling the
conformational landscapes of proteins. We re-
purpose highly accurate single-state predictors
such as AlphaFold and ESMFold and fine-tune
them under a custom flow matching framework
to obtain sequence-conditioned generative mod-
els of protein structure called AlphaFLOW and
ESMFLOW. When trained and evaluated on
the PDB, our method provides a superior com-
bination of precision and diversity compared to
AlphaFold with MSA subsampling. When fur-
ther trained on ensembles from all-atom MD,
our method accurately captures conformational
flexibility, positional distributions, and higher-
order ensemble observables for unseen proteins.
Moreover, our method can diversify a static
PDB structure with faster wall-clock convergence
to certain equilibrium properties than replicate
MD trajectories, demonstrating its potential as a
proxy for expensive physics-based simulations.
Code is available at https://github.com/
bjing2016/alphaflow.

1. Introduction
Proteins adopt complex three-dimensional structures, often
as members of structural ensembles with distinct states, col-
lective motions, and disordered fluctuations, to carry out
their biological functions. For example, conformational
changes are critical in the function of transporters, channels,
and enzymes, and the properties of equilibrium ensembles
help govern the strength and selectivity of molecular interac-
tions (Meller et al., 2023; Vögele et al., 2023). While deep
learning methods such as AlphaFold (Jumper et al., 2021)
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have excelled in the single-state modeling of experimental
protein structures, they fail to account for this conforma-
tional heterogeneity (Lane, 2023; Ourmazd et al., 2022).
Hence, a method which builds upon the level of accuracy of
single-structure predictors, but reveals underlying structural
ensembles, would be of great value to structural biologists.

Existing machine learning approaches for generating struc-
tural ensembles have focused on inference-time interven-
tions in AlphaFold that modify the multiple sequence
alignment (MSA) input (Del Alamo et al., 2022; Stein &
Mchaourab, 2022; Wayment-Steele et al., 2023), resulting in
a different structure prediction for each version of the MSA.
While these approaches have demonstrated some success,
they suffer from two key limitations. First, by operating on
the MSA, they cannot be generalized to structure predictors
based on protein language models (PLMs) such as ESMFold
(Lin et al., 2023) or OmegaFold (Wu et al., 2022), which
have grown in popularity due to their fast runtime and ease
of use. Secondly, these inference-time interventions do not
provide the capability to train on protein ensembles from
beyond the PDB—for example, ensembles from molecular
dynamics, which are of significant scientific interest but can
be extremely expensive to simulate (Shaw et al., 2010).

To address these limitations, in this work we combine Al-
phaFold and ESMFold with flow matching, a recent genera-
tive modeling framework (Lipman et al., 2022; Albergo &
Vanden-Eijnden, 2022), to propose a principled method for
sampling the conformational landscape of proteins. While
AlphaFold and ESMFold were originally developed and
trained as regression models that predict a single best protein
structure for a given MSA or sequence input, we develop
a strategy for repurposing them as (sequence-conditioned)
generative models of protein structure. This synthesis relies
on the key insight that iterative denoising frameworks (such
as diffusion and flow-matching) provide a general recipe
for converting regression models to generative models with
relatively little modification to the architecture and training
objective. Unlike inference-time MSA ablation, this strat-
egy applies equally well to PLM-based predictors and can
be used to train or fine-tune on arbitrary ensembles.

While flow matching has been well established for images,
its application to protein structures remains nascent (Bose
et al., 2023). Hence, we develop a custom flow matching
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Figure 1. Conceptual overview of AlphaFLOW / ESMFLOW. (A) Samples are drawn from a harmonic (polymer-like) prior. (B) The
sample is progressively refined or denoised under a flow field controlled by the structure prediction model (AlphaFold or ESMFold). (C)
At each step, the denoised structure prediction parameterizes the direction of the flow and we interpolate the current sample towards it.
(D) The final prediction is a sample from the learned distribution of structures.

framework tailored to the architecture and training practices
of AlphaFold and ESMFold. Our framework leverages the
polymer-structured prior distribution from harmonic diffu-
sion (Jing et al., 2023), but improves over it by defining
a scale-invariant noising process resilient to missing and
cropped residues. These improvements directly result from
the increased modeling flexibility offered by flow matching
and contribute to the performance of our method.

We demonstrate the performance of our flow-matching vari-
ants of AlphaFold and ESMFold—named AlphaFLOW and
ESMFLOW—in two distinct settings. First, after fine-tuning
these models only on structures from the PDB, we substan-
tially surpass the precision-diversity Pareto frontier of MSA
ablation baselines on a test set of recently deposited confor-
mationally heterogeneous proteins. Second, we showcase
the ability to learn from ensembles beyond the PDB by fur-
ther training on the ATLAS dataset (Vander Meersche et al.,
2023) of molecular dynamics simulations. When evaluated
on test proteins structurally dissimilar from the training set,
AlphaFLOW substantially surpasses the MSA baselines in
the prediction of conformational flexibility, distributional
modeling of atomic positions, and replication of higher-
order ensemble observables such as intermittent contacts
and solvent exposure. Furthermore, when a static PDB struc-
ture is provided as a template, sampling from AlphaFLOW
provides faster wall-clock convergence to many equilibrium
properties than running molecular dynamics (MD) simu-
lation starting from that structure. Thus, our method can
be used in place of expensive simulations to diversify and
obtain equilibrium ensembles of solved protein structures.

2. Background
Protein structure prediction. The modern approach for
protein structure prediction was pioneered by AlphaFold
(Jumper et al., 2021), which takes as input (1) the protein

sequence, (2) a MSA of evolutionarily related sequences,
and optionally (3) a template structure of a related protein,
and predicts the all-atom 3D coordinates of single protein
structure. AlphaFold was developed and trained in an end-
to-end fashion under a regression-like FAPE loss with struc-
tures from the PDB. Later works, such as ESMFold (Lin
et al., 2023) and OmegaFold (Wu et al., 2022), modified the
pipeline by substituting the MSA with embeddings from a
protein language model (PLM) and eschewing the template
input, but otherwise kept the same architecture and training
framework as AlphaFold.

Modeling protein ensembles. In the post-AlphaFold era,
several works have emphasized diversifying highly accurate
single-structure predictions to reflect underlying conforma-
tional heterogeneity (Lane, 2023; Chakravarty & Porter,
2022; Saldaño et al., 2022; Xie & Huang, 2023; Brotza-
kis et al., 2023; Bryant, 2023; Porter et al., 2023). Most
prominently, Del Alamo et al. (2022) demonstrated that
multiple functional states could be obtained by subsampling
the MSA input to AlphaFold. Since then, MSA subsam-
pling has become the de-facto standard methodology and
has been employed to study conformational states of ki-
nases (Faezov & Dunbrack Jr, 2023; Herrington et al., 2023;
Casadevall et al., 2023), variant effects on conformational
states (da Silva et al., 2023), and to seed molecular dynam-
ics simulations (Vani et al., 2023). Alternative approaches
have also been proposed in the form of point mutations
to the MSA (Stein & Mchaourab, 2022; 2023) and MSA
clustering (Wayment-Steele et al., 2023). .

An emerging line of work seeks to directly train sequence-
to-structure generative models of protein ensembles. Eigen-
Fold (Jing et al., 2023) and Distributional Graphormer
(Zheng et al., 2023) use harmonic diffusion and SE(3) diffu-
sion (Yim et al., 2023), respectively, to generate ensembles.
SENS (Lu et al., 2023) is a local generative model that diver-
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sifies single starting structures via local exploration of the
conformational landscape. However, these models have yet
to show convincing validations or comparisons with MSA
subsampling methods on PDB test sets.

A related but separate line of work has focused on learning
generative models of Boltzmann distributions as proxies for
expensive molecular dynamics simulation. These models
were initially conceived as normalizing flows that provided
exact likelihoods and thus a means to train with energies and
reweigh samples at inference time (Noé et al., 2019; Köhler
et al., 2021; Midgley et al., 2022; Abdin & Kim, 2023; Fe-
lardos et al., 2023). However, these normalizing flows have
proven difficult to scale beyond small molecules and toy sys-
tems. More recently, the proliferation of diffusion models
has shifted the focus of this line of work towards scalability
and generalization (Arts et al., 2023; Zheng et al., 2023)
rather than exact likelihoods. Our method, when trained
on MD ensembles, can be viewed as belonging to this new
generation of Boltzmann-targeting generative models.

Flow matching (Lipman et al., 2022; Albergo & Vanden-
Eijnden, 2022; Albergo et al., 2023; Liu et al., 2022) is a
generative modeling paradigm that resembles and builds
upon the significant success of diffusion models (Ho et al.,
2020; Song et al., 2021) in image and molecule domains.
The fundamental object in flow matching is a conditional
probability path pt(x | x1), t ∈ [0, 1]: a family of densities
conditioned on a data point x1 ∼ pdata which interpolates
between a shared prior distribution p0(x | x1) = q(x) and
an approximate Dirac p1(x | x1) ≈ δ(x − x1). Given a
conditional vector field ut(x | x1) that generates the time
evolution of pt(x | x1), one then learns the marginal vector
field with a neural network:

v̂(x, t; θ) ≈ v(x, t) := Ex1∼pt(x1|x)[ut(x | x1)] (1)

At convergence, the learned vector field v̂(x, t; θ) is a neural
ODE that evolves the prior distribution q(x) to the data
distribution pdata(x). Score-matching in diffusion models
can be seen as a special case of flow matching; however, as
discussed in Section 3.3, flow matching circumvents certain
difficulties that would otherwise arise with diffusion.

3. Method
3.1. AlphaFold as a Denoising Model

Given a protein sequence A of amino acid tokens, our ob-
jective is to model the distribution p(x | A) over 3D coor-
dinates x ∈ R3×N which represents the structural ensem-
ble of that protein sequence. Considering the enormous
intellectual efforts that went into a deterministic sequence-
to-structure model (i.e., AlphaFold), developing a distri-
butional model of equivalent accuracy and generalization
ability would appear to pose a considerable challenge. Our

Text-to-image generative model

yorkshire terrier

Sequence-to-structure generative model
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UNet
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Figure 2. AlphaFold as a denoising model. Just as (diffusion-
based) text-to-image generative models are simply neural networks
that denoise images (with text input), a modified AlphaFold that in-
gests noisy structures and predicts clean structures (with sequence
input) immediately provides a sequence-to-structure generative
model—when trained under an appropriate framework.

solution is to leverage recent conceptual advances in gen-
erative modeling in order to simply repurpose AlphaFold—
nearly out of the box—as a generative model.

Consider, for example, the (simplified) architecture of pro-
totypical text-to-image diffusion models (Ho et al., 2020;
Rombach et al., 2022), which aim to model conditional dis-
tributions p(x | s) of images x conditioned on text prompt s.
At the heart of these models lies a denoising neural network
(e.g., a UNet) which ingests a noisy image, along with a
text prompt, to predict a clean image. Conditioned on these
inputs, such models are otherwise are trained with simple,
regression-like MSE objectives. Analogously, a protein
structure predictor trained on a regression-like loss—like
AlphaFold or ESMFold—can be converted to a denoising
model simply by supplying an additional, noisy structure in-
put (Figure 2). Not coincidentally, this is reminiscent of the
idea of template structures employed by certain AlphaFold
workflows. Thus, we develop an input embedding module
very similar to AlphaFold’s template embedding stack and
prepend it to the pairwise folding trunks of AlphaFold and
ESMFold (details in Appendix A.1). By doing so, we ob-
tain structure denoising architectures that are thin wrappers
around well-validated single-structure predictors.

With these architectural modifications, we are ready to plug
AlphaFold and ESMFold into any iterative denoising-based
generative modeling framework. Next, we will see how this
concretely applies to flow matching for protein ensembles.

3.2. Flow Matching for Protein Ensembles

Designing a flow-matching generative framework amounts
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to the choice of a conditional probability path pt(x | x1)
and its corresponding vector field ut(x | x1). Inspired by
the interpolant-based perspective on flow matching (Albergo
& Vanden-Eijnden, 2022), we define the conditional proba-
bility path by sampling noise x0 from the prior q(x0) and
interpolating linearly with the data point x1:

x | x1, t = (1− t) · x0 + t · x1, x0 ∼ q(x0) (2)

This probability path is associated with the vector field

ut(x | x1) = (x1 − x)/(1− t) (3)

which matches the CondOT path and field proposed in (for
example) Pooladian et al. (2023). Customarily, we then
learn a neural network to approximate the marginal vector
field according to Equation 1. However, if we instead define
a neural network x̂1(x, t; θ) and reparameterize via

v̂(x, t; θ) = (x̂1(x, t; θ)− x)/(1− t) (4)

then rearrangements of Equations 1 and 4 reveal that we can
equivalently learn the expectation of x1:

x̂1(x, t; θ) ≈ Ex1∼pt(x1|x)[x1] (5)

This reparameterization is identical—up to the choice of
probability path pt(x1 | x)—to that employed for image
diffusion models (Ho et al., 2020). In our setting, since x1

refers to samples from the data distribution (i.e., protein
structures), this allows the AlphaFold-based architectures
discussed previously to be immediately used as the the de-
noising model x̂1(x, t; θ), with x as the noisy input and t as
an additional time embedding.

To apply flow matching to protein structures, we describe a
structure by the 3D coordinates of its β-carbons (α-carbon
for glycine): x ∈ RN×3. (We choose β-carbons because
these are the inputs to the template embedding stack.) We
then define the prior distribution q(x) over the positions of
these β-carbons to be a harmonic prior (Jing et al., 2023):

q(x) ∝ exp

[
−α
2

N−1∑
i=1

∥xi − xi+1∥2
]

(6)

This prior ensures that samples along the conditional proba-
bility path, and hence inputs to the neural network, always
remain polymer-like, physically plausible 3D structures.

The parameterization of learning the conditional expecta-
tion of x1 (Equation 5) suggests that the neural network
should be trained with an MSE loss. However, there are
several issues with this direct approach. (1) The structure
prediction networks not only predict β-carbon coordinates,
but also all-atom coordinates and residue frames. (2) The
input to the network is SE(3)-invariant by design, which
makes training with MSE loss unsuitable without further

correction (Appendix A.2). Finally, (3) the networks ob-
tain best performance (and were orginally trained) with the
SE(3)-invariant Frame Aligned Point Error (FAPE) loss.
To reconcile these issues with the flow-matching framework,
we redefine the space of protein structures to be the quotient
space R3×N/SE(3), with the prior distribution projected to
this space. We redefine the interpolation between two points
in this space to be linear interpolation in R3 after RMSD-
alignment. Further, because the quotient space is no longer
a vector space, there is no longer a notion of “expectation”
of a distribution; instead, we aim to learn the more general
Fréchet mean of the conditional distribution p(x1 | x):

x̂1(x, t; θ) ≈ min
x̂1

Ex1∼pt(x1|x)
[
FAPE2(x1, x̂1)

]
(7)

where we leverage the property that FAPE is a valid metric
(Jumper et al., 2021) to define a Fréchet mean. To learn this
target, we use a training loss identical to the original FAPE,
except now squared. The final result for the training and
inference procedures are provided in Algorithms 1 and 2.
An important implication of this modified framework is that
while our model is faithfully supervised on all-atom coor-
dinates, it technically is learning the distribution only over
β-carbon coordinates. These procedures and their subtleties
are more fully discussed in Appendix A.2.

Algorithm 1 TRAINING

Input: Training examples of structures, sequences, and
MSAs {(Si, Ai,Mi)}
for all (Si, Ai,Mi) do

Extract x1 ← BetaCarbons(Si)
Sample x0 ∼ HarmonicPrior(length(Ai))
Align x0 ← RMSDAlign(x0,x1)
Sample t ∼ Uniform[0, 1]
Interpolate xt ← t · x1 + (1− t) · x0

Predict Ŝi ← AlphaFold(Ai,Mi,xt, t)
Optimize loss L = FAPE2(Ŝi, Si)

end for

Algorithm 2 INFERENCE

Input: Sequence and MSA (A,M)
Output: Sampled all-atom structure Ŝ
Sample x0 ∼ HarmonicPrior(length(A))
for n← 0 to N − 1 do

Let t← n/N and s← t+ 1/N
Predict Ŝ ← AlphaFold(A,M,xt, t)
if n = N − 1 then

return Ŝ
end if
Extract x̂1 ← BetaCarbons(Ŝ)
Align xt ← RMSDAlign(xt, x̂1)
Interpolate xs ← s−t

1−t · x̂1 +
1−s
1−t · xt

end for
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3.3. Comparison with Diffusion

Since our flow matching framework involves defining and
reversing a noising process, it bears a number of similarities
with harmonic diffusion for protein structures (Jing et al.,
2023), which converges to the same prior distribution. How-
ever, as a more general framework, flow matching offers
two key advantages. First, harmonic diffusion converges
to the prior distribution only in the infinite-time limit, and
at a rate that depends on the data dimensionality, i.e., pro-
tein size. This causes inference-time distributional shifts
when training only on crops of relatively small size, as
is the case with AlphaFold and ESMFold. On the other
hand, in flow matching, the prior distribution is imposed
as a boundary condition at time t = 0 for all dimensionali-
ties. Second, flow matching provides an easy means to deal
with missing (gap) residues—which are very common in
the PDB—by simply omitting them in the interpolation. In
contrast, harmonic diffusion induces dependencies across
atomic positions and hence requires data imputation for
missing residues. We discuss these aspects (with additional
theoretical results) further in Appendix A.3.

4. Experiments
4.1. Training Regimen

We fine-tune all weights of AlphaFold and ESMFold on the
PDB with our flow matching framework, starting from their
publicly available pretrained weights. We use OpenFold
(Ahdritz et al., 2022) for the architecture implementation
and training pipeline and OpenProteinSet (Ahdritz et al.,
2023) for training MSAs. Adhering to the original works,
we use a training cutoff of May 1, 2018 and May 1, 2020 for
AlphaFold and ESMFold, respectively. At the conclusion
of this stage of training (1.28M and 720k examples, respec-
tively), we obtain flow-matching variants of AlphaFold and
ESMFold which we call AlphaFLOW and ESMFLOW.

Next, to demonstrate and assess the ability of our method
to learn from MD ensembles, we continue fine-tuning both
models on the ATLAS dataset of all-atom MD simulations
(Vander Meersche et al., 2023), which consists of 1390
proteins chosen for structural diversity by ECOD domain
classification (Schaeffer et al., 2017). Using training and val-
idation cutoffs of May 1, 2018 and May 1, 2019, we obtain
train/val/test splits of 1265/39/82 ensembles (2 excluded
due to length). After 43k and 27k additional training exam-
ples, respectively, we obtain MD-specialized variants of our
model which we call AlphaFLOW-MD and ESMFLOW-
MD. We also train variants of these models (+Templates)
which accept the PDB structure that initialized the simula-
tion as input using a copy of the input embedding module.

Because flow matching is an iterative generative process,
sampling a single structure requires many forward passes

of AlphaFold and ESMFold (up to 10 in our experiments),
which can be somewhat expensive. To accelerate this pro-
cess, we explore variants of all models where the generative
process is distilled into a single forward pass (details in
Appendix B.1). While distillation has been explored for
diffusion models (Salimans & Ho, 2022; Song et al., 2023;
Yin et al., 2023), this is (to our knowledge) the first demon-
stration of distillation in a protein or flow-matching setting.

4.2. PDB Ensembles

We first examine the ability of AlphaFLOW and ESMFLOW
to sample diverse conformations of proteins deposited in
the Protein Data Bank (PDB). To do, we construct a test
set of 100 proteins deposited after the AlphaFold training
cutoff (May 1, 2018) with multiple chains and evidence of
conformational heterogeneity (details in Appendix B.2). For
each protein, we sample 50 predictions with (1) unmodi-
fied AlphaFold/ESMFold (2) AlphaFold with varying de-
grees of MSA subsampling and (3) AlphaFLOW/ESMFLOW,
with varying degrees of flow truncation in order to tune the
amount of diversity (Appendix B.1). Each set of predic-
tions is evaluated on three metrics: precision—the average
lDDTCα from each prediction to the closest crystal structure;
recall—the average lDDTCα from each crystal structure to
the closest prediction; and diversity—the average dissimi-
larity (1-lDDTCα) between pairs of predicted structures.

The median results across the 100 test targets are shown
in Figure 3. AlphaFLOW, similar to MSA subsampling,
increases the prediction diversity relative to the unmodified
AlphaFold at the cost of reduced precision. However, the
variants of AlphaFLOW trace a substantially superior Pareto
frontier relative to MSA subsampling. In some cases, PCA
of the ground truth and predicted ensembles (Appendix C.1)
offers an explanation for this result: in MSA subsampling,
the ensembles drift away from the true structures as the
input signal is ablated, whereas the AlphaFLOW predictions
remain clustered around the ground truth conformations
while reaching the same or greater levels of diversity. In
terms of precision and recall, AlphaFLOW exhibits very
similar behavior to MSA subsampling. Somewhat surpris-
ingly, neither method is able to meaningfully improve ag-
gregate recall relative to baseline AlphaFold, showing that
they generally do not succeed in increasing the coverage of
experimentally determined PDB structures, or (more opti-
mistically) that the predicted conformational changes have
yet to be experimentally observed. Selected cases of confor-
mational changes successfully modeled by AlphaFLOW are
visualized in Appendix C.1; Figure 8.

Overall (as expected), ESMFold and ESMFLOW exhibit
reduced precision relative to AlphaFold-family methods.
However, ESMFLOW is able to inject substantial diversity
relative to baseline ESMFold—which, unlike AlphaFold, is
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Figure 3. Evaluation on PDB ensembles—precision-diversity (left) and precision-recall (right) curves for all benchmarked methods
(median taken over 100 test targets). The MSA subsampling curve is traced by reducing MSA depth (max 512, min 48) and joins to
AlphaFold as they share the same weights (AlphaFold by default subsamples MSAs to a maximum depth of 1024 and thus has nonzero
diveristy, unlike ESMFold). The AlphaFLOW / ESMFLOW curves are traced by truncating the initial steps of flow matching (described in
Appendix B.1). Distilled models are marked by ▲. Tabular data is shown in Appendix C.1, Table 3

completely deterministic—and increase the recall at little to
no cost in precision. Note that this test set includes some
proteins deposited before the ESMFold cutoff; results on a
later sub-split are similar (Appendix C.1; Table 3).

4.3. Molecular Dynamics Ensembles

We next evaluate the ability of AlphaFLOW and ESMFLOW
to generate proxy MD ensembles for the 82 test proteins
in the ATLAS database. These test proteins have minimal
structural overlap with the training ensembles, providing a
stringent test of generalization. For each target, we sample
250 predictions with each method and probe their similarity
to the MD ensembles via a series of assessments, grouped
under three broad categories of increasing difficulty: (1)
predicting flexibility, (2) distributional accuracy, and (3)
ensemble observables. Unless otherwise noted, we focus
on AlphaFLOW ensembles generated with MSA input alone
(i.e., no PDB templates). Main results are presented in
Table 1 and Figure 5; further results (e.g. ESMFLOW, com-
parisons with normal mode analysis, and ablations) and
ensemble visualizations can be found in Appendix C.2. We
note that our evaluations are inherently limited to phenom-
ena accessible within the ATLAS simulation timescales; we
do not assess if our model captures slower conformational
changes, which remain a key area for future work.

Q1: Is ensemble flexibility predictive of true protein
flexibility? For each ensemble, we quantify the protein
flexibility as the average Cα-RMSD between any pair of
conformations. By this metric, the AlphaFLOW ensembles
have the strongest Pearson correlation with the ground truth
and matches the aggregate level of diversity in the MD en-
sembles. In contrast, MSA subsampling is unable to reach
the same level of diversity while retaining any predictive
power. Similar results hold when considering atomic-level

flexibility in terms of root mean square fluctuation (RMSF),
both when pooled globally and pooled per-target. Remark-
ably, AlphaFLOW attains a median Pearson correlation of
0.85 between modeled and predicted RMSFs within a target,
while no level of MSA subsampling is able to meaningfully
exceed baseline AlphaFold on this metric.

Q2: Are the atomic positions distributionally accurate?
To generalize the all-atom RMSD metric to ensembles, de-
fine the root mean Wasserstein distance (RMWD) between
ensembles X ,Y as

RMWD(X ,Y) =

√√√√ 1

N

N∑
i=1

W2
2 (N [Xi],N [Yi]) (8)

where N [Xi] are 3D-Gaussians fit to the positional distribu-
tion of the ith atom in ensemble X (this reduces to RMSD
with a single structure). By this metric, AlphaFLOW ensem-
bles are more accurate than any level of MSA subsampling.
Decomposition of the RMWD into a translation contribu-
tion and variance contribution (Appendix B.3) reveals that
AlphaFLOW slightly improves on AlphaFold in predicting
the mean position of atoms, and substantially outperforms
MSA subsampling in modeling the variance.

The joint distribution of Cα positions reveals collective mo-
tions and provides a more stringent test of distributional
accuracy. We project this joint distribution onto the first two
principal components from PCA—computed from the MD
ensemble alone or from equally weighting the MD and pre-
dicted ensembles—and compute theW2-distance (in units
of Å RMSD) between the predicted and true ensembles in
this space. We also compute the (unsigned) cosine similar-
ity between the top principal components of the predicted
and true ensembles and consider the dominant motion to
be successfully modeled if this similarity > 0.5. By all of
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Table 1. Evaluation on MD ensembles. For each method, we compare the predicted ensemble with the ground truth MD ensemble
according to various metrics, detailed in the main text. For protein flexibility and RMSF, the ground truth values (from the MD ensembles)
are in parenthesis. When applicable, the median across the 82 test ensembles is reported. See Appendix C.2 for ESMFLOW results. r:
Pearson correlation; ρ: Spearman correlation; J : Jaccard similarity; W2: 2-Wasserstein distance.

AlphaFLOW-MD MSA subsampling AFMD+Templates

Full Distilled 32 48 64 256 AlphaFold Full Distilled

Predicting
flexibility

Pairwise RMSD (= 2.90) 2.89 1.94 4.40 2.34 1.67 0.72 0.58 2.18 1.73
Pairwise RMSD r ↑ 0.48 0.48 0.03 0.12 0.22 0.15 0.10 0.94 0.92
All-atom RMSF (=1.70) 1.68 1.28 5.38 2.29 1.17 0.49 0.31 1.31 1.00
Global RMSF r 0.60 0.54 0.13 0.23 0.29 0.26 0.21 0.91 0.89
Per-target RMSF r 0.85 0.81 0.51 0.52 0.51 0.55 0.52 0.90 0.88

Distributional
accuracy

Root mean W2-dist. ↓ 2.61 3.70 6.15 5.32 4.28 3.62 3.58 1.95 2.18
↪→ Translation contrib. ↓ 2.28 3.10 5.22 3.92 3.33 2.87 2.86 1.64 1.74
↪→ Variance contrib. ↓ 1.30 1.52 3.55 2.49 2.24 2.24 2.27 1.01 1.25
MD PCA W2-dist. ↓ 1.52 1.73 2.44 2.30 2.23 1.88 1.99 1.25 1.41
Joint PCA W2-dist. ↓ 2.25 3.05 5.51 4.51 3.57 3.02 2.86 1.58 1.68
% PC-sim > 0.5 ↑ 44 34 15 18 21 21 23 44 43

Ensemble
observables

Weak contacts J ↑ 0.62 0.52 0.40 0.40 0.37 0.30 0.27 0.62 0.51
Transient contacts J ↑ 0.41 0.28 0.23 0.26 0.27 0.27 0.28 0.47 0.42
Exposed residue J ↑ 0.50 0.48 0.34 0.37 0.37 0.33 0.32 0.50 0.47
Exposed MI matrix ρ ↑ 0.25 0.14 0.14 0.11 0.10 0.06 0.02 0.25 0.18

these metrics, AlphaFLOW markedly improves over MSA
subsampling, and in particular nearly doubles the success
rate for obtaining > 0.5 cosine similarity.

Q3: Are complex ensemble observables faithfully repro-
duced? MD ensembles are often intended for downstream
analysis of observables such as intermittent contacts and
solvent exposure, often associated with thermal fluctuations
around the low-energy crystal structure (Vögele et al., 2022).
To probe if we model these properties accurately, for each
ensemble we identify the set of weak contacts and transient
contacts, defined as those Cα pairs which are in contact (re-
spectively, not in contact) in the crystal structure but which
dissociate (respectively, associate) in > 10% of ensemble
structures, with a 8 Å threshold. We then compute the
the Jaccard similarity of the sets produced by each method
with the ground truth sets. We repeat the same analysis
with the set of cryptically exposed residues—those whose
sidechains are buried in the crystal structure but exposed to
solvent in > 10% of ensemble structures—which are a key
feature in the identification of cryptic pockets in drug dis-
covery (Meller et al., 2023). Going further, for each pair of
residues we compute the mutual information (MI) between
their (binary) exposure states, yielding a MI matrix for each
ensemble. Such matrices are an important in the so-called
exposon analysis of protein dynamics, e.g., for collective
motions and allostery (Porter et al., 2019). We then com-
pute the Spearman correlation between the values of MI
matrices from the MD and generated ensembles. Impres-
sively, for all of these analyses, AlphaFLOW substantially
outperforms MSA subsampling; we emphasize that these
are complex properties to emulate involving sidechains and
different parts of the protein (Figure 5 and Appendix C.2).
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2.75
RMWD

0.01 0.1 1 10
GPU-hrs

1.4

1.6

1.8

MD PCA 2-dist

0.01 0.1 1 10
GPU-hrs

20

30

40

PC sim > 0.5 %

Figure 4. Efficiency of AlphaFLOW vs replicate MD simula-
tions. AlphaFLOW+Templates with varying number of samples
with distillation (green) and without distillation (orange); MD with
varying trajectory lengths in blue. See Appendix B.3 for further
experimental details and Appendix C.2 for further results.

Diversifying solved structures. Although we have so far
focused on generating protein ensembles without the use
of experimental structures, there is substantial scientific in-
terest in obtaining ensembles for specific solved structures,
often via molecular dynamics simulation (Hollingsworth &
Dror, 2018). To investigate the utility of our method in this
application setting, we repeat all experiments by providing
the structure which initialized the ATLAS simulations to the
+Templates version of AlphaFLOW-MD. As expected, the
resulting ensembles improve—sometimes substantially—in
their similarity to the ground truth MD ensemble, vastly
surpasssing the performance of MSA subsampling. How-
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Figure 5. MD evaluations visualized. (A) Ensembles of PDB ID 6uof A (transcriptional regulator from Streptococcus pneumoniae)
from MD, AlphaFLOW, and MSA subsampling (depth 48), with Cα RMSF by residue index shown in insets. (B) 1 − CDF of the
distribution of (unsigned) cosine similarities between the top principal components of the predicted ensemble versus the MD ensemble. (C)
Solvent exposure mutual information matrices computed from the ground truth MD ensemble and AlphaFLOW ensemble for target PDB
ID 7bwf B (antitoxin from Staphylococcus aureus). (D, E, F) Deviations from the crystal structure in the MD simulation, corresponding
to ensemble observables, which are correctly sampled by AlphaFLOW. The probability of occurence in each ensembles is shown. (D)
solvent exposure of a buried residue in PDB ID 6oz1 A (carboxylate reductase from M. chelonae). (E) association of a transient residue
contact in PDB ID 6q9c A (NADH-quinone oxidoreductase subunit E from Aquifex aeolicus). (F) dissociation of a weak residue contact
in PDB ID 6d7y B (immune protein from Enterobacter cloacae). Additional examples in Appendix C.2 r: Pearson correlation; ρ:
Spearman correlation.

ever, in these settings, the appropriate baseline is replicate
simulations (provided in ATLAS) starting from the same
structure rather than MSA subsampling. Since MD is taken
to be the ground truth but is expensive to run to convergence,
we investigate if AlphaFLOW provides better results for an
equivalent limited computational budget, e.g., in terms of
GPU-hrs. To emulate these budgets, we reduce the number
of samples drawn from AlphaFLOW (from 250 to as few as
4) and the length of the MD trajectory (100 ns–160 ps). As
shown in Figure 4, the AlphaFLOW ensembles retain much
of their quality with up to a 10x reduction in samples, while
the MD trajectories require much longer to converge to or
surpass the same quality. The distilled AlphaFLOW model,
despite converging to a lower level of performance, provides
an even greater improvement for short timescales by provid-
ing 10x as many samples for the same runtime. Thus, as
measured by these metrics, AlphaFLOW provides a more
efficient means to study the thermodynamic fluctuations of
existing solved structures than short MD simulations and
holds promise for large-scale diversification of the PDB.

5. Conclusion
We have presented AlphaFLOW and ESMFLOW, which com-
bine AlphaFold and ESMFold with flow-matching towards
the goal of sampling protein ensembles. Compared to exist-
ing approaches for obtaining multiple structure predictions,
our method goes beyond inference-time input modifications
and develops a more principled training-time approach to
modeling structural diversity. Comprehensive experimen-
tal results demonstrate the utility and performance of our
method in predicting precise and diverse PDB structures and
replicating distributions and properties of MD ensembles,
both with and without initial experimental structures. We
anticipate these capabilities to have broad and exciting ap-
plications for structure biology. Further, with the increasing
availability of high-resolution cryo-EM data (Kühlbrandt,
2014) and algorithms for resolving their structural hetero-
geneity (Zhong et al., 2021), we anticipate the paradigm
of generative training of AlphaFold and ESMFold to have
further applications beyond the settings considered here.
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A. Method Details
A.1. Input Embedding Module

Algorithm 3 outlines the architecture of the input embedding module which we attach to AlphaFold and ESMFold to form
AlphaFLOW and ESMFLOW, respectively. The output of the module is added to the input to the Evoformer or folding trunk.
The various subroutines are as defined in AlphaFold (Jumper et al., 2021), whereas the Gaussian Fourier time embeddings
are as previously used in Song et al. (2021); Tancik et al. (2020). For brevity, we have omitted droupout layers.

Algorithm 3 INPUTEMBEDDING

Input: Beta carbon coordinates x ∈ RN×3, time t ∈ [0, 1]
Output: Input pair embedding z ∈ RN×N×64

zij ← ∥xi − xj∥
zij ← Bin(zij ,min = 3.25 Å,max = 50.75 Å, Nbins = 39)
zij ← Linear(OneHot(zij))
for l← 1 to Nblocks = 4 do
{z}ij += TriangleAttentionStartingNode(zij , c = 64, Nhead = 4)
{z}ij += TriangleAttentionEndingNode(zij , c = 64, Nhead = 4))
{z}ij += TriangleMultiplicationOutgoing(zij , c = 64)
{z}ij += TriangleMultiplicationIncoming(zij , c = 64)
{z}ij += PairTransition(zij , n = 2)

end for
zij += Linear(GaussianFourierEmbedding(t, d = 256))

A.2. Flow Matching on Protein Ensembles

In this subsection, we describe how the final training and inferences Algorithms 1 and 2 are obtained, starting from the
Euclidean flow matching procedure from a harmonic prior provided in Section 3.2, Equations 2–6. We note that other
diffusion or flow matching formulations are also possible and leave further exploration of this design space to future work.

Unsuitability of MSE Loss In standard flow matching over R3N , the denoising network x̂(x, t; θ) is designed to
approximate x̂1(x, t; θ) ≈ Ex1∼pt(x1|x)[x1], which gives rise to the MSE training objective

Lt(θ) = Ex1∼pdata,x∼pt(x|x1)

[
∥x̂1(x, t; θ)− x1∥2

]
= Ex1∼pdata,x0∼q

[
∥x̂1(x, t; θ)− x1∥2

] (9)

where x = (1− t) · x0 + t · x1, for each time t ∈ [0, 1]. The harmomic prior density q and the data distribution pdata are
SE(3)-invariant (technically SO(3)-invariant after centering; see for example Yim et al. (2023)). This means that, for each
training pair (x0,x1), there is a corresponding uniform density over R ∈ SO(3) supplying examples (R.x0, R.x1):

Lt(θ) = Ex1∼pdata,x0∼q

[∫
SO(3)

∥x̂1(R.x, t; θ)−R.x1∥2 dR

]
(10)

However, because the input embedding takes only a distogram of x, the denoising model x̂1, i.e., AlphaFold or ESMFold, is
SE(3)-invariant, meaning that

x̂1(x, t; θ) = x̂1(R.x, t; θ) (11)

for any R ∈ SO(3) ⊂ SE(3). Hence, the denoising network is tasked with predicting R.x1 despite having no access to
R. This is impossible and would lead to the network to degenerately predict x̂1 = 0, showing that the MSE loss (or more
broadly any non-SE(3)-invariant) loss is unsuitable with a SE(3)-invariant denoising network.

Flow Matching on the Quotient Space To resolve the issue that AlphaFold and ESMFold are insensitive to SE(3)
transformations of the input, we consider flow matching over the quotient space R3N/SE(3), such that inputs related by
SE(3) transformations are now defined to be identical. This quotient space, when defined with suitable care (Diepeveen
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et al., 2023), gives a non-Euclidean, Riemannian manifold. The harmonic prior and data distribution can be straightforwardly
projected to this space by taking the SE(3) equivalency classes of each data point. The theory of flow matching over
Riemmanian manifolds was developed by Chen & Lipman (2023) and closely follows standard flow matching, except the
conditional vector fields and the learned marginal vector fields are elements of the tangent space:

ut(x | x1) ∈ TxM, v̂(x, t; θ) := Ex1∼pt(x1|x)[ut(x | x1)] ∈ TxM (12)

As in the Euclidean case, to develop a flow matching process, we require a conditional probability path and a corresponding
conditional vector field. Chen & Lipman (2023) propose to generalize the CondOT probability path by defining the
interpolant ψt(x0 | x1) to be the geodesic from x0 to x1, and then specifying pt(x | x0) via

x | x1 = ψt(x0 | x1), x0 ∼ q(x0) (13)

and the associated conditional vector field as

ut(x | x1) =
d

dt
ψt(x0 | x1) (14)

Once the marginal vector field is learned, inference is performed by integrating the corresponding ODE over the manifold.
To use this framework with protein structures and AlphaFold or ESMFold as the flow model, we make the following tweaks:

(1) We construct the interpolation between two elements in the quotient space R3N/SE(3) to be given by RMSD alignment
in the ambient space R3N , followed by linear interpolation in ambient space. Thus, as employed in Algorithm 1, the
conditional probability path is sampled via

x0 ∼ q(x0)

x0 ← RMSDAlign(x0,x1)

x | x1 = (1− t) · x0 + t · x1

(15)

(2) Similar to the Euclidean case, we consider a reparameterization (cf. Equation 4) which allows a denoising model
x̂1(x, t; θ) such as AlphaFold or ESMFold to give the direction of the learned marginal flow:

v̂(x, t; θ) =
logx x̂1(x, t; θ)

1− t
(16)

where the logarithmic map gives the direction of the interpolation connecting x to x̂1(x, t; θ) (discussed next). Unlike the
Euclidean case, however, this expression does not provide a simple training objective for x1 in terms of a denoising loss.
This is because flow matching requires minimizing error in the tangent space, which may not be easily related to distances
on the manifold. Nevertheless, we posit that a model which minimizes denoising error can do a good job of implicitly
learning the vector field. Thus, for some choice of distance metric d over the manifold, we aim to learn the so-called Fréchet
mean of the clean data distribution conditioned on noisy data:

x̂1(x, t; θ) ≈ arg min
x̂∈M

Ex1∼pt(x1|x)
[
d2(x1, x̂1)

]
(17)

As a sanity check, note that when M is a Euclidean space and d is Euclidean distance, d2 reduces to the usual MSE
denoising loss whose minimizer is the conditional expectation of pt(x1 | x), in agreement with Equation 5.

(3) At inference time, in lieu of repeatedly evaluating the logarithmic map and integrating the vector field with the exponential
map, we observe that such a procedure amounts to moving along the interpolant connecting x to x̂1:

expx [v̂(x, t; θ) dt] = expx

[
dt

1− t
logx x̂1(x, t; θ)

]
(18)

i.e., a fraction dt/(1− t) towards x̂1. Hence, we take an integration step at inference-time via RMSD alignment followed
by linear interpolation in ambient space, as executed in Algorithm 2.
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FAPE and All-Atom Structure As defined in Section 3.2, our flow matching framework operates over residue-level
structures; specifically, over Cβ coordinates x ∈ R3N . However, the FAPE loss is defined over structures also containing (1)
all-atom positions and (2) residue frames, and indeed we continue to supervise these outputs to ensure that AlphaFLOW
and ESMFLOW produce meaningful all-atom structures. To reconcile these views, let S denote an all-atom structure, let
[ · ]Cβ be the operator that extracts the Cβ coordinates, and denote the denoising model as Ŝ(x, t; θ). Most of training and
inference proceeds as if all structures were passed through the [ · ]Cβ operator: training points are sampled via x1 = [S]Cβ
before noisy interpolation; and inference proceeds by parameterizing the Cβ denoising model as

x̂1(x, t; θ) =
[
Ŝ(x, t; θ)

]
Cβ

(19)

However, this extraction is not applied to compute the denoising loss—neither to the sampled data nor the prediction.
Instead, the denoising model is trained to approximate (cf. Equation 17):

Ŝ(x, t; θ) ≈ argmin
Ŝ

ES|x

[
FAPE2(S, Ŝ)

]
(20)

and thus the reparameterized Cβ denoising model becomes

x̂1(x, t; θ) ≈
[
argmin

Ŝ
ES|x

[
FAPE2(S, Ŝ)

]]
Cβ

(21)

Colloquially, this means that the denoised Cβ structure (towards which we interpolate at inference time) is the Cβ part of
the best all-atom prediction, rather than the best Cβ prediction. In the final inference step, rather than extracting x̂1 from Ŝ
and interpolating the rest of the way towards it, we simply return the all-atom structure Ŝ . However, the model is predicting
the denoised all-atom structure from the Cβ structure alone, and there is no iterative refinement of the non Cβ components.
Hence, our model is best thought of as a generative model over Cβ positions only, which additionally fills in the all-atom
information to minimize the FAPE loss conditioned on the input Cβ positions.

A.3. Comparison with Harmonic Diffusion

In harmonic diffusion, as in flow matching, a conditional probability path p(xt | x0) represents a noising process for the
data point x0 (t = 0 for the data by diffusion convention). Unlike flow matching, the path is given by the transition (or
perturbation) kernel of a (Markovian) diffusion process rather than interpolation with the noise. The stationary distribution of
the diffusion is the noisy prior by construction; however, the probability path converges to this prior only in the infinite-time
limit. Instead, the maximum time is chosen such that the KL-divergence between the pt|0 and the stationary distribution is
acceptably low. Unfortunately, in harmonic diffusion:

DKL(pt|0||p∞) =

3n∑
i=1

[
e−λit

(
Ei −

1

2

)
− 1

2
log

(
1− e−λit

)]
(22)

where Ei is the (roughly constant) amount of energy in the ith mode (Equation 3 in Jing et al. (2023)). That is, the rate of
convergence not only depends on the number of dimensions, but—more problematically—the smallest eigenvalue λi of
the diffusion drift matrix, which becomes smaller for larger proteins. Hence, it becomes tricky to train a time-conditioned
denoising model for proteins of arbitrary size. In the case of AlphaFLOW and ESMFLOW trained on crops of 256, the model
would not be able to denoise longer proteins from an intermediate state at which the crops have converged to noise, but the
entire protein has not—such states have never been seen during training. Our flow matching framework instead imposes the
noisy prior as a boundary condition at the same t = 0 for all protein lengths and crops, avoiding this issue.

While the fixed convergence time is a desirable quality, our flow matching framework—at least as defined in Equations 2–
6—satisfies an even stronger property, which we call crop invariance (Proposition A.1). Colloquially, this means that the
marginal distribution of a crop of length M at time t is the same as if it were noised independently as an intact sequence of
length M . This property ensures the noisy distributions over isolated crops seen at training time are exactly the same as
those seen at inference time, when those crops are embedded in full-size proteins.

Proposition A.1. Let x1 ∈ RN and x1[i:i+M] ∈ RM be a crop of x1 of length M ≤ N and define p(M)
t , p

(N)
t to be the

conditional probability paths in dimensionalities N,M . Then for any t, x̃ ∈ RM , p(N)
t (x[i:i+M] = x̃ | x1) is equal to

p
(M)
t (x = x̃ | x1[i:i+M]).
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Proof. Our key claim is that for time t = 0, i.e. in the noise distribution, the density q(N)(x[i:i+M] = x̃) is equivalent to
q(M)(x = x̃). The former amounts to marginalizing the density q(N)(x) over the non-crop variables. For simplicity, we
proceed with i = 0; the more general case is very similar:

q(N)
(
x[0,M) = x̃

)
=

∫
q(N)

(
x[0,M) = x̃,x[M,N)

)
dx[M,N)

∝
∫

exp

−α
2

M−2∑
j=0

∥x̃j − x̃j+1∥2 + ∥x̃M−1 − xM∥2 +
N−2∑
j=M

∥xj − xj+1∥2
 dx[M,N)

= exp

−α
2

M−2∑
j=0

∥x̃j − x̃j+1∥2
∫

exp

−α
2

∥x̃M−1 − xM∥2 +
N−2∑
j=M

∥xj − xj+1∥2
 dx[M,N)︸ ︷︷ ︸

constant

∝ q(M)(x = x̃)

where the constant is an offset Gaussian integral. This equivalence means that—up to some global translation—sampling
noise of dimension N and then cropping to length M is equivalent to sampling noise of dimension M . Then, notice that
linear interpolation of full structures implies linear interpolations of crops:

x = (1− t) · x0 + t · x1 =⇒ x[i:i+M] = (1− t) · x0[i:i+M]+ t · x1[i:i+M]

Thus, the sampling procedure for p(N)
t (x[i:i+M] = x̃ | x1)—which is to interpolate N -dimensional noise and data and

then crop to M dimensions—is the same as the sampling procedure for p(M)
t (x = x̃ | x1[i:i+M])—which is to first crop

the data and noise to M dimensions and then interpolate.

We note that crop invariance no longer holds in the final form of flow matching that we use in Algorithms 1 and 2 and
describe in Appendix A.2 due to the RMSD alignment step. Nevertheless, we posit that initial preservation of distributional
alignment helps with generalization to proteins of unseen large sizes at inference time.

The second advantage of our flow matching framework over harmonic diffusion is in the treatment of missing residues. In
harmonic diffusion, the perturbation kernel p(xt | x0) is a Gaussian whose mean is given by µ = e−tH/2x0, where H is
the drift matrix. This matrix exponential is far from diagonal, meaning that each entry of µ is dependent on all initial entries
of x0. Hence, if there are missing coordinates in x0, they must be imputed in order to sample p(xt | x0). In contrast, in our
flow matching framework, each coordinate in x at time t is a linear combination of only the same-index coordinates in x0

and x1. Hence, we can simply omit the missing residues in the RMSD alignment and the subsequent interpolation.

B. Experimental Details
B.1. Training and Inference

Training We use OpenFold (Ahdritz et al., 2022) to train AlphaFLOW and ESMFLOW, as it closely follows the training
best practices described in AlphaFold (Jumper et al., 2021). However, because the OpenFold weights for AlphaFold were
trained with a much later cutoff date, we instead initialize with the original CASP14 weights from DeepMind (version 1).
For PDB training data, we use a January 2023 snapshot of the PDB and apply 40% clustering with MMSeqs2 (Steinegger &
Söding, 2017). We train with crops of size 256, batch size of 64, no recycling, and no templates. AlphaFLOW is trained on
the full set of auxiliary losses, except the structural violation loss and with the FAPE loss squared. ESMFLOW is trained
on the FAPE, pLDDT, distogram, and supervised χ losses. To maintain precision in the initial prediction, we set t = 0
and omit the noisy input in 20% of training examples. Training progress is monitored via the precision and diversity on a
validation set of 183 CAMEO targets deposited Aug–Oct 2022, following Jing et al. (2023). To fine-tune on MD ensembles,
we resume from the selected checkpoints from the PDB training. All the training settings remain unchanged, except the
targets are sampled uniformly at random (with a random conformation), the batch size is set to 8, and t = 0 is set 10% of
the time. Training progress is monitored via the loss on the validation split.

Training Cost All training is done on a machine with 8x NVIDIA A100 GPUs and 2x Intel Xeon(R) Gold 6258R
processors, with the total training cost shown in Table 2.
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Table 2. AlphaFLOW and ESMFLOW training cost

Total
hours

Train
examples

Secs per
training pass

AlphaFLOW

PDB 267 1.28M 5.8
PDB distillation 105 160k 17.4
MD 11 43k 6.2
MD distillation 28 38k 17.4
MD+Templates 9 38k 6.3
MD+Templates distillation 39 51k 18.0

ESMFLOW

PDB 104 720k 4.2
PDB distillation 37 64k 11.9
MD 5 27k 4.6
MD distillation 34 51k 12.0
MD+Templates 9 51k 4.7
MD+Templates distillation 23 38k 12.5

Inference We run AlphaFLOW and ESMFLOW with 10 steps by default, evenly spaced from t = 0 to t = 1, where the
first prediction is performed with no noisy input. However, by merging the first K > 1 steps, we can reduce the variance of
the sampled distribution and increase precision, analogous to increasing MSA depth. This is because—after the initial large
step to t = 0.1K—we are effectively starting the flow from a modified intermediate marginal pt(x) which differs from the
pt(x) that would arise from properly following the flow:

x = (1− t) · x0 + t · x1, x0 ∼ q(x0),x1 ∼ pdata(x1) (original) (23)
x = (1− t) · x0 + t · Epdata [x1], x0 ∼ q(x0) (modified) (24)

i.e., by stepping directly to intermediate time t, we interpolate towards the initial x̂1 prediction, which is a single point
estimate of the unconditional expectation, rather than the full distribution pdata(x1). We omit recycling for all methods
following Del Alamo et al. (2022). Note that, by default, AlphaFold accepts a maximum MSA depth equivalent to
subsampling with depth 1024, and exhibits a small level of diversity; on the other hand, ESMFold is completely deterministic.
For AlphaFLOW PDB experiments, we resample the MSA (with depth 1024) for each new sample, but not for each inference
step. At inference time, MSAs for all sequences are computed with the ColabFold MMSeqs pipeline (Porter et al., 2023).

Self-conditioning Although we do not use recycling per se for either our methods or the baselines, we employ self-
conditioning (Chen et al., 2022; Stärk et al., 2023) in the PDB experiments to increase the precision of AlphaFLOW. In
particular, at training time, 50% of supervised forward passes are provided the (gradient-detached) outputs from an initial
forward pass of the model; we reuse the recycling embedder of AlphaFold to embed these outputs. At inference time,
every forward pass after the first is provided the outputs of the previous forward pass. Note that unlike Stärk et al. (2023),
we self-condition with the full set of model output states, i.e., including pair embeddings, rather than just the output x̂1

prediction. Self-conditioning is omitted for distillation training and for MD training and inference. Finally, although we also
trained ESMFLOW with self-conditioning, we did not observe any improvements and report results without it.

Distillation Because the inference process is deterministic except for the initial noisy sample, it defines a map from the
noisy distribution to the data distribution. We can aim to learn this map via a model that ingests the noisy sample and
predicts the corresponding fully-denoised output in a single forward pass. To train such a model, for each training example
(still a crop of 256), we run the full inference pipeline with the original flow model and set the result as the training target.
All other training settings are kept the same and training performance is monitored the same way, except the batch size is
always set to 8, and the concepts of sampling t, interpolating, and self-conditioning no longer apply. For AlphaFLOW and
ESMFLOW on the PDB, we train for 160k and 64k training examples, respectively. For distilling the MD models, we start
from the weights of the original AlphaFLOW-MD and ESMFLOW-MD and fine tune for 38k and 51k training examples,
respectively.
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B.2. Datasets

PDB Test Set To construct the test set of structurally heterogeneous recent proteins from the PDB, we follow Ellaway et al.
(2023) and identify chains as representing the same protein if they map to the same segment in the same UniProt reference
sequence. We use the SIFTS annotations database (Dana et al., 2019) and its residue-level mappings from PDB chains to
UniProt reference sequences to associate each deposited chain with a segment. Then, we cluster all segments with a Jaccard
similarity threshold of 0.75 and complete linkage, with each resulting cluster regarded as a distinct protein, yielding 75k
proteins. We collect all proteins which (1) are represented by 2–30 chains deposited after the AlphaFold training cutoff and
no chains before the cutoff, (2) have lengths between 256–768 residues, (3) have at least two structural clusters when the
chains are clustered with a threshold of 0.85 symmetrized lDDT-Cα and complete linkage. From the resulting 563 proteins
(represented by 2843 chains), we subsample 100 proteins (represented by 500 chains) to form the test set. At inference
time, we run all models using the sequence given by the UniProt segment. The distribution of sequences lengths is shown in
Figure 6.

MD Dataset The ATLAS dataset (Vander Meersche et al., 2023) consists of all-atom, explicit solvent MD simulations for
1390 non-membrane proteins, chosen as representatives for all eligible ECOD structural classes (Schaeffer et al., 2017). For
each protein, 3 replicate simulations of length 100 ns are provided, each with 10k frames. To train and validate on these
trajectories, we first generate MSAs for all 1390 ATLAS entries using the provided sequence and the ColabFold MMSeqs2
pipeline (Porter et al., 2023). Then, for the train and validation sets, we extract 300 conformations to be randomly sampled
in the training pipeline. The test split consists of all 84 targets whose corresponding PDB entries were deposited after May
1, 2019, minus the two targets with sequence length greater than 1024. The resulting distribution of sequences lengths is
shown in Figure 6.
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Figure 6. Histogram of sequence lengths in the PDB test set (left) and the ATLAS test set (right).

B.3. Evaluation Procedures

Symmetrized lDDT In the PDB experiments, we often need to compute the similarity (or dissimilarity) between two
structures which may not share identical sequences, and which may differ significantly in length—for example, between two
PDB chains or between a PDB chain and a structure predicted from the UniProt reference sequence. To do so, we define the
symmetrized lDDT as a variant of lDDT-Cα which is (as the name suggests) symmetric and robust to these discrepancies.
We perform a pairwise alignment of the two sequences, and tabulate the Cα pairs (identified by residue index only) which
are within 15 Å of each other in either structure. Then, we score the fraction of these selected pairwise distances that are
consistent within 0.5 Å, 1 Å, 2 Å, and 4 Å in the two structures. The symmetrized lDDT-Cα is the mean of these four scores.

MD Evaluations To compare a generated ensemble with the ground-truth MD ensemble, we first align both ensembles to
the static all-atom structure that initialized the simulation (provided in the ATLAS download). We then perform all analyses
using the Euclidean atomic coordinates in MDTraj (McGibbon et al., 2015). For most procedures, we subsample 1000
random MD frames to reduce the analysis runtime. To compute the RMWD, the Wasserstein distance between two 3D
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Gaussians is given by

W2
2 (N (µ1,Σ1),N (µ2,Σ2)) = ∥µ1 − µ2∥2 +Tr

(
Σ1 +Σ2 − 2(Σ1Σ2)

1/2
)

(25)

which reduces to Euclidean distance in the case of point masses. This squared distance decomposes into a translation term
and a variance term; so the aggregate RMWD (Equation 8) also decomposes as

RMWD2(X1,X2) =
1

N

N∑
i=1

∥µ1,i − µ2,i∥2︸ ︷︷ ︸
(translation contribution)2

+
1

N

N∑
i=1

Tr
(
Σ1,i +Σ2,i − 2(Σ1,iΣ2,i)

1/2
)

︸ ︷︷ ︸
(variance contribution)2

(26)

We report the translation contribution (which resembles RMSD) and variance contribution in Table 1. In the calculation
of jointW2 distance, we first project to the PCA subspace because thermal fluctuations dominate in the full dimensional
space and make theW2 metric unsuitable without an extremely large number of samples. While it is common to perform
PCA using the MD reference ensemble alone, we note that doing so can obscure deviations of the predicted ensemble along
the orthogonal degrees of freedom. Thus, we repeat the analysis using with the MD ensemble and the equally-weighted
pooling of the MD and predicted ensembles. Finally, in the residue exposure analysis, we compute the solvent-accessible
surface area (SASA) of each sidechain using the Shrake-Rupley algorithm and a probe radius of 2.8 Å. Following Porter
et al. (2019), we use a SASA threshold of 2.0 Å2 to distinguish buried and exposed residues.

Comparison with Replicate MD To compare the performance of our method with replicate MD simulations, we leverage
the fact that ATLAS trajectories are provided in three replicates (100 ns and 10k frames each). In the main experiments,
these three replicates are pooled to collectively represent the MD ensemble; however, such pooling would not be appropriate
if one of these replicates is taken for comparison. Instead, we select the first replicate for comparison and pool the latter two
to represent the ground truth MD ensemble. We emulate different computational budgets by truncating the first trajectory to
its first 4096, 2048, 1024, 512, 256, 128, 64, 32, and 16 frames before analysis, respectively representing simulation lengths
of 40.96 ns, 20.48 ns, 10.24 ns, 5.12 ns, 2.56 ns, 1.28 ns, 640 ps, 320 ps, and 160 ps. When necessary, we subsample or
replicate by the appropriate power of 2 to ensure all analyses operate on 256 frames (important for finite-sample Wasserstein
distances). The computational cost in GPU-hrs is estimated by running 1 minute of MD for each protein on a single NVIDIA
A100 GPU and noting the average performance in hrs/ns. (The average GPU utilization is 62%, indicating efficient usage of
resources.) For the AlphaFLOW and ESMFLOW ensembles, we first generate 250 samples as usual and also subsample 128,
64, 32, 16, 8, and 4 samples for analyses, duplicating by the appropriate power 2 to reach 256 (≈ 250) samples. The runtime
is provided as an average over all test proteins on a single NVIDIA A100 GPU.

Comparison with Normal Mode Analysis We also compare the performance of our method with normal mode analysis
of the PDB protein structures using ProDy (Bakan et al., 2011). We construct Gaussian Network Models (GNM) (Bahar
et al., 1997) and Anisotropic Network Models (ANM) (Atilgan et al., 2001) using the Cα coordinates and draw 250 samples
from each model, keeping all nondegenerate eigenvectors. We use Γ = 0.15 (adjusted from default to match the average
MD RMSF) and default 10 Å and 15 Å cutoffs for GNM and ANM, respectively.
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C. Additional Results
C.1. PDB Ensembles

Table 3 provides precision, recall, and diversity results for the experiments on PDB ensembles, with a median taken over the
100 test set targets. For ESMFold and ESMFLOW, the second set of results corresponds to the subset of targets released after
the training cutoff of May 1, 2020 (n = 56). Runtime measurements (per sample) are performed on a single A100 GPU and
reported as a median over 100 targets. Figure 7 shows PCA of the true and generated ensembles for several selected targets
to illustrate the degradation of the MSA subsampling ensembles. Figure 8 highlights conformational changes observed in
the PDB ensembles and correctly sampled by AlphaFLOW. In both figures, the PCA is performed by first aligning all PDB
sequences with the UniProt reference with ClustalW (Larkin et al., 2007) and taking the Cα positions of the common subset
of aligned residues. The structures are then RMSD aligned to a randomly selected PDB structure and the PCA is performed
on the resulting Euclidean coordinates. Sample weights are chosen so that the PDB structures account for half the loading,
regardless of their number. Coordinates are converted to Å RMSD units.

Table 3. Evaluation on PDB ensembles.
Precison Recall Diversity Runtime

AlphaFLOW

Full 0.810 0.801 0.185 69.6
5 steps 0.821 0.801 0.151 42.1
2 steps 0.839 0.811 0.082 21.3
Distilled 0.831 0.810 0.128 7.4

MSA
subsampling

512 0.849 0.823 0.026 5.5
256 0.844 0.818 0.044 4.2
128 0.835 0.806 0.053 3.9
64 0.795 0.784 0.088 3.6
48 0.757 0.760 0.125 3.5

AlphaFold 0.850 0.823 0.026 7.7

ESMFLOW

Full 0.777 / 0.777 0.777 / 0.765 0.210 / 0.213 30.4
5 steps 0.787 / 0.788 0.772 / 0.767 0.166 / 0.174 18.3
2 steps 0.795 / 0.797 0.774 / 0.760 0.100 / 0.102 9.2
Distilled 0.775 / 0.774 0.752 / 0.745 0.152 / 0.152 3.1

ESMFold 0.806 / 0.809 0.764 / 0.761 0.000 3.2
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Figure 7. PCA of PDB and predicted ensembles from AlphaFLOW (blue) and MSA subsampling (depth 64) (orange), with PDB
structures marked by ▲. The MSA subsampling ensembles have similar diversity as the AlphaFLOW ensembles but drift away from the
true structures.
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C.2. MD Ensembles

Table 4 provides the evaluation of ESMFLOW on MD ensembles. In Table 5, we report the performance of AlphaFLOW-MD
with ablated training procedures, and the comparison of AlphaFLOW with normal mode analysis conducted on the PDB
structure. In Figures 9–12, we provide additional visualizations for the RMSF, transient contacts, weak contacts, and solvent
exposure analyses of AlphaFLOW-MD ensembles. Finally, In Figure 13, we provide additional convergence results for
AlphaFLOW-MD+Templates vs replicate MD simulations.

Table 4. Evaluation of ESMFLOW on MD ensembles
ESMFLOW-MD EFMD+Templates

Full Distilled ESMFold Full Distilled

Predicting
flexibility

Pairwise RMSD (=2.90) 3.25 2.76 0.00 2.00 1.42
Pairwise RMSD r ↑ 0.19 0.19 — 0.85 0.80
All-atom RMSF (=1.70) 2.16 2.12 0.00 1.07 0.80
Global RMSF r ↑ 0.31 0.33 — 0.84 0.79
Per-target RMSF r ↑ 0.76 0.74 — 0.90 0.87

Distributional
accuracy

Root mean W2-dist. ↓ 3.60 4.23 4.60 2.17 2.27
↪→ Translation contrib. ↓ 3.13 3.75 3.65 1.66 1.70
↪→ Variance contrib. ↓ 1.74 1.90 2.50 1.07 1.35
MD PCA W2-dist. ↓ 1.51 1.87 1.69 1.44 1.48
Joint PCA W2-dist. ↓ 3.19 3.79 3.87 1.70 1.81
% PC-sim > 0.5 ↑ 26 33 — 49 40

Ensemble
observables

Weak contacts J ↑ 0.55 0.48 0.22 0.59 0.48
Transient contacts J ↑ 0.34 0.30 0.15 0.47 0.41
Exposed residue J ↑ 0.49 0.43 0.28 0.50 0.44
Exposure MI matrix ρ ↑ 0.20 0.16 — 0.22 0.16

Table 5. Ablations and normal mode analysis on MD ensembles. The ablations verify the importance of the two-step training procedure
for AlphaFLOW+MD. Normal mode analysis (NMA) often fails to outperform baseline AlphaFLOW+MD despite having access to the
ground truth PDB structure, and significantly underperforms AlphaFLOW+MD+Templates when it is provided the same PDB template
structure. ⋆Note that NMA results for RMSF and RMWD are Cα-only rather than all-atom, which likely overestimates the performance.
GNM: Gaussian Network Model; ANM: Anisotropic Network Model.

Ablations NMA

Baseline No ATLAS
finetuning

No PDB
pretraining

AFMD
+Templates GNM ANM

Predicting
flexibility

Pairwise RMSD (=2.90) 2.89 2.41 3.04 2.18 1.85 2.36
Pairwise RMSD r ↑ 0.48 0.34 0.29 0.94 0.71 0.65
All-atom RMSF (=1.70) 1.68 1.25 1.81 1.31 1.22⋆ 1.35⋆

Global RMSF r ↑ 0.60 0.48 0.45 0.91 0.64⋆ 0.55⋆

Per-target RMSF r ↑ 0.85 0.82 0.83 0.90 0.72⋆ 0.76⋆

Distributional
accuracy

Root mean W2-dist. ↓ 2.61 2.96 3.11 1.95 2.47⋆ 2.54⋆

↪→ Translation contrib. ↓ 2.28 2.52 2.71 1.64 2.07⋆ 2.09⋆

↪→ Variance contrib. ↓ 1.30 1.36 1.44 1.01 1.33⋆ 1.27⋆

MD PCA W2-dist. ↓ 1.52 1.64 1.59 1.25 1.84 1.73
Joint PCA W2-dist. ↓ 2.25 2.60 2.67 1.58 2.44 2.35
% PC-sim > 0.5 ↑ 44 35 38 44 13 23

Ensemble
observables

Weak contacts J ↑ 0.62 0.48 0.60 0.62 0.45 0.40
Transient contacts J ↑ 0.41 0.36 0.39 0.47 0.25 0.25
Exposed residue J ↑ 0.50 0.40 0.50 0.50 — —
Exposure MI matrix ρ ↑ 0.25 0.18 0.25 0.25 — —
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Figure 9. Visualization of ensembles and their RMSF plots. For each PDB ID, 10 samples from the MD, AlphaFLOW, and MSA
subsampling (depth 48) ensembles are shown, with RMSF by residue index in insets. For the latter two, the Pearson correlation coefficient
(r) with the MD RMSF is reported.
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27% 16%MD AlphaFlow Crystal MD AlphaFlow
6d7y_A Toxic C-Terminal Tip of CdiA from Pseudomonas aeruginosa

13% 49%MD AlphaFlow Crystal MD AlphaFlow
6in7_A Sigma factor AlgU negative regulatory protein

19% 12%MD AlphaFlow Crystal MD AlphaFlow
6q9c_A NADH-quinone oxidoreductase subunit E

21% 44%MD AlphaFlow Crystal MD AlphaFlow
6y2x_A E3 ubiquitin-protein ligase DTX2

Figure 10. Visualization of transient contacts. For each PDB ID, the contact maps from MD simulation and AlphaFLOW are shown,
with normal contacts in gray, weak contacts in blue, and transient contacts in red. Among the the transient contacts correctly identified
by AlphaFLOW, one is selected for visualization: the two residues are highlighted in the crystal structure (left), a frame from the MD
simulation (middle) where they are in contact, and an AlphaFLOW sample where they are in contact. The probability of occurence in each
ensemble is shown.
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89% 85%MD AlphaFlow Crystal MD AlphaFlow
6sms_A Vegetative Insecticidal Protein 1Ac from Bacillus Thuringiensis

92% 75%MD AlphaFlow Crystal MD AlphaFlow
6xb3_H AcNPV poxvirus immune nuclease

77% 94%MD AlphaFlow Crystal MD AlphaFlow
7ead_A beta-sheet cytochrome c prime from Thermus thermophilus

59% 65%MD AlphaFlow Crystal MD AlphaFlow
6d7y_B immune protein from Enterobacter cloacae

Figure 11. Visualization of weak contacts. For each PDB ID, the contact maps from MD simulation and AlphaFLOW are shown, with
normal contacts in gray, weak contacts in blue, and transient contacts in red. Among the the weak contacts correctly identified by
AlphaFLOW, one is selected for visualization: the two residues are highlighted in the crystal structure (left), a frame from the MD
simulation (middle) where they are not in contact, and an AlphaFLOW sample where they are not in contact. The probability of occurence
in each ensemble is shown.
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19% 81% 56% 44%MD AlphaFlow
6nl2_A NIS Synthetase DesD from Streptomyces coelicolor

69% 31% 9% 91%MD AlphaFlow
6uof_A transcriptional regulator from Streptococcus pneumoniae

38% 62% 32% 68%MD AlphaFlow
6xrx_A mosquito protein AEG12

11% 89% 62% 38%MD AlphaFlow
7aqx_A surface glycoprotein from Trypanosoma brucei

Figure 12. Visualization of cryptic exposed residues. For each PDB ID, in the left pair of structures, the set of true cryptic exposed
residues (from MD) is colored red; in the right pair the set identified from AlphaFLOW ensembles is colored blue. A common identified
residue is selected and highlighted in green. For each pair, the left structures shows the residues buried in the crystal structure whereas the
right structure shows a frame (or sample) where the highlighted residue is exposed to the solvent. The probability of occurence in each
ensemble is shown.
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Figure 13. Efficiency of AlphaFLOW vs replicate MD simulations. AlphaFLOW (with templates) with varying number of samples in
orange; AlphaFLOW distilled into a single forward pass in green; MD with varying trajectory lengths in blue. For Pairwise RMSD and
RMSF, the values from the reference MD (i.e., pooling the remaining two replicates) are shown as horizontal dashed lines. The x-axis
reports runtime in GPU-hrs averaged over targets. For MD, the average runtime is 6.3 mins / ns; for AlphaFLOW, the average runtime per
sample is 38 s without distillation and 3.8 s with distillation. See Appendix B.3 for further benchmarking details.
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