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ABSTRACT

Autoregressive next-token prediction, a standard pretraining method for large-
scale language models, excels in handling long sequential data. However, its ap-
plication to complex visual tasks, particularly biological imaging, faces challenges
due to the spatial continuity and high dimensionality of biological images. High-
resolution 3D biological images, such as electron microscopy (EM) brain scans,
offer ideal long-sequence data, but existing methods struggle to fully leverage this
characteristic. To address these challenges, we introduce TokenUnify, a novel
pretraining method that integrates random token prediction, next-token predic-
tion, and next-all token prediction. We provide theoretical evidence demonstrating
that TokenUnify mitigates cumulative errors in visual autoregression, particularly
when dealing with complex three-dimensional anatomical structures. In conjunc-
tion with TokenUnify, we have assembled a large-scale, ultra-high-resolution EM
brain image dataset comprising over 120 million finely annotated voxels. This
dataset not only represents the largest neuron segmentation dataset to date but,
more importantly, provides ideal long-sequence biological image data that fully
exhibits spatial continuity. Leveraging the Mamba network, which is inherently
suited for long-sequence modeling, TokenUnify capitalizes on the advantages of
autoregressive methods in processing long-sequence data, achieving a 45% per-
formance improvement on downstream EM neuron segmentation tasks compared
to existing methods. Furthermore, TokenUnify demonstrates superior scalability
over MAE and traditional autoregressive methods, effectively bridging the gap be-
tween pretraining strategies for language and vision models. Code is available at
https://anonymous.4open.science/r/TokenUnify-3DBF.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive scaling capabilities, reaching trillions
of parameters through pretraining Achiam et al. (2023); Touvron et al. (2023a;b). This success is
primarily attributed to high-quality data and effective autoregressive models. These models benefit
from strong scaling laws due to the structured and sequential nature of text data, which allows
unification into a single next-token prediction task. However, when extending to multimodal tasks
such as Unified IO Lu et al. (2023) and Qwen VL Bai et al. (2023b), these models often fail to
achieve state-of-the-art performance on fine-grained image tasks, particularly in biological imaging.

Unlike language, the complexity of visual signals, especially in biological images, has led to diverse
approaches in visual pretraining. Contrastive learning methods like DINO v2 Oquab et al. (2023)
excel in fine-grained representation, while masked reconstruction methods such as MAE He et al.
(2022); Chen et al. (2023a) offer good scalability and zero-shot classification abilities. However,
these methods exhibit poor scaling laws, where increasing model size does not yield expected per-
formance gains Singh et al. (2023) (see Section A in the appendix). To achieve scaling laws similar
to language models, approaches like AIM El-Nouby et al. (2024) and LVM Bai et al. (2023c) have
introduced autoregressive tasks into the visual domain, showing promising scaling properties. How-
ever, image sequence disorder and error accumulation in autoregressive tasks often degrade perfor-
mance in smaller models Bachmann & Nagarajan (2024). Additionally, the computational burden of
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(a) Random token prediction (b) Next token prediction (c) Next-all token prediction

Pachify

Tokenize

Figure 1: TokenUnify prediction paradigms divide the 3D EM image into non-overlapping patches,
which are tokenized into a sequence. Three tasks are performed for rich 3D image representations:
(a) random token prediction, (b) next token prediction, and (c) next-all token prediction.

long-sequence images, particularly in high-resolution 3D biological scans, makes researching image
autoregressive tasks particularly challenging.

We summarize the challenges of visual autoregressive tasks in biological imaging as follows: 1) How
to reduce error accumulation in visual autoregression to achieve stronger scaling laws, especially
when dealing with complex anatomical structures? 2) How to develop more efficient computational
methods to handle massive, high-dimensional biological image data? 3) How to construct spatially
correlated long-sequence relationships in biological images?

This paper aims to tackle the above three critical challenges in the context of biological imaging,
particularly focusing on EM brain scans. 1) To address the issue of cumulative errors in visual
autoregression, we propose TokenUnify, a novel mixed token prediction paradigm. TokenUnify in-
tegrates next-token prediction, next-all token prediction, and random token prediction (as illustrated
in Fig. 1), leveraging global information to overcome the limitations of local receptive fields in
complex anatomical structures. We theoretically demonstrate that this mixed approach reduces cu-
mulative errors while maintaining favorable scaling laws. 2) To alleviate computational burdens, we
introduce the Mamba architecture, which reduces the computational complexity of autoregressive
tasks from quadratic (as in Transformers) to linear. This is particularly crucial for processing high-
resolution 3D biological images. Detailed comparisons of the scaling properties between Mamba
and Transformer architectures reveal that Mamba achieves superior performance and efficiency in
large-scale autoregressive visual models, especially for biological imaging tasks. 3) To construct
spatially correlated long-sequence relationships, we have collected large-scale, ultra-high-resolution
3D electron microscopy (EM) images of mouse brain slices. The ultra-high resolution allows for
thousands of continuous image tokens, ensuring robust spatial continuity crucial for understanding
complex neuronal structures. We have fully annotated six different functional regions within the
mouse brain, totaling 120 million pixels, resulting in the largest manually annotated neuron dataset
to date. This comprehensive dataset also serves as a unified benchmark for evaluating experimental
performance in biological image analysis1.

Pretraining with TokenUnify led to a 45% improvement in performance on subsequent EM neuron
segmentation tasks. The mixed training paradigm of TokenUnify outperformed MAE He et al.
(2022) by 21% in pretraining performance, even with fewer parameters. Furthermore, TokenUnify
demonstrated superior scaling properties of autoregressive models, offering a promising approach
for pretraining large-scale visual models in biological imaging.

Our contributions can be summarized as follows:

1. We introduce a novel pre-training paradigm, TokenUnify, which models visual pre-training
tasks from multiple perspectives at the token level, specifically designed for biological
imaging. This ensures sublinear growth of the scaling law while demonstrating supe-
rior fine-grained feature extraction capabilities compared to MAE in smaller model pre-
training, crucial for detecting subtle anatomical features. We also provide a theoretical
explanation for this phenomenon in the context of biological image analysis.

1We commit to open-sourcing the dataset and code of the paper to facilitate future research in biological
imaging.
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2. We achieve a 45% performance improvement on the neuron segmentation task and, for
the first time, validate the Mamba model with billion-level parameters on visual tasks,
demonstrating the effectiveness and efficiency of TokenUnify in long-sequence visual au-
toregression for complex 3D biological images.

3. We provide a large-scale biological image dataset with 120 million annotated pixels, of-
fering a long-sequence image dataset to validate the potential of autoregressive methods in
biological imaging.

2 RELATED WORK

Recent advances in large language models (LLMs) have unified various NLP tasks under a single
architecture, formulating them as generation tasks. This architecture can be categorized into BERT-
like Devlin et al. (2018); Xia et al. (2020); Lee et al. (2020); Song et al. (2023); Mo et al. (2024) and
GPT-like Brown et al. (2020); Radford et al. (2019); Li et al. (2024a); Zhou et al. (2023) models.
The latter, decoder-only autoregressive structure, has been shown to be more effective, as validated
by products like ChatGPT. Subsequent works have built upon GPT, introducing techniques like RM-
SNorm Zhang & Sennrich (2019), SwiGLU, and RoPE to ensure efficient and stable training. The
LLaMA series Touvron et al. (2023a;b) has improved training efficiency, while the Qwen series Bai
et al. (2023b;a); Xiang et al. (2024) has focused on data cleaning and filtering for Chinese language
models. Currently, LLMs have surpassed human-level performance in many text processing tasks
Achiam et al. (2023).

In multi-modal tasks, the CLIP Radford et al. (2021) and BLIP series Li et al. (2022; 2023a); Dai
et al. (2024) have pioneered contrastive learning on image-text pairs, achieving remarkable zero-shot
classification and generalization capabilities. Further works Zhang et al. (2023); Chen et al. (2023b);
Wang et al. (2022); Zhou et al. (2024) have applied multi-modal models to specific domains. By
processing arbitrary modalities into a unified token format Lu et al. (2023); Wang et al. (2023); Chen
et al. (2024a), these models can generate outputs in any modality. However, there is still room for
improvement in fine-grained visual tasks, and training large vision models remains an open problem.

Self-supervised pre-training has been a cornerstone for enhancing model representation capabilities.
Approaches based on contrastive learning for representation extraction Chen et al. (2024b); Zbontar
et al. (2021); He et al. (2020); Li et al. (2021) and masked reconstruction methods He et al. (2022);
Chen et al. (2023a); Li et al. (2023c); Ding et al. (2022); Chen et al. (2024d; 2023d) have shown
promise. However, current vision models have not exhibited the same sublinear scaling laws as lan-
guage models. To address this issue, some tasks have adopted autoregressive pre-training paradigms
similar to those used in language models Chen et al. (2020); Bai et al. (2023c); El-Nouby et al.
(2024), though the training costs remain a significant concern. In this paper, we explore the poten-
tial of long visual token autoregressive pre-training and introduce a collaborative training scheme
for long token prediction. Our approach aims to balance the scaling laws and training costs, demon-
strating improvements in fine-grained visual tasks.

3 METHOD

3.1 OVERVIEW

Our theoretical contributions include proving the parameter independence of MAE performance
(see Section A), establishing the strong correlation between autoregressive model performance and
parameter count (see Section B), and demonstrating the advantages of next-all token prediction from
both intuitive (see Section C.1) and theoretical perspectives (see Section C.2).

Our experimental framework comprises two stages: pre-training and fine-tuning. During the pre-
training stage, we leverage only the unlabeled raw data X to learn a generic visual representation
fθ1(·), parameterized by θ1. We employ a mixed token prediction strategy to capture both local
and global dependencies in the data (see Section 3.2). Additionally, we utilize Mamba for efficient
modeling of long sequences in autoregressive tasks, enhancing computational efficiency (see Section
3.3).
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Figure 2: illustrates the main pretraining workflow of TokenUnify. The image X is fed into the Tok-
enizer, transforming it into a long sequence of tokens xi|Ki=1. The predictions for the random token,
next token, and next-all token are performed sequentially. The Perceiver Resampler is employed to
convert varying-size large feature maps into a few visual tokens (see Section 3.2).
In the fine-tuning stage, we use both the raw data X and the corresponding labels Y to adapt the
pre-trained representation to specific downstream tasks. Let gθ2(·) be the task-specific model, pa-
rameterized by θ2. We initialize θ2 with the pre-trained weights θ1 and optimize the task-specific
objective. Further details are provided in Sections 3.4 and F.3.

To illustrate the application of our framework, consider the modeling of EM images. Given a total
of T EM images X = {X(1), . . . ,X(T )}, where each X(t) ∈ RD×H×W represents a 3D image
with depth D, height H , and width W , we aim to learn a meaningful representation of this high-
dimensional, long-sequence visual data by leveraging its inherent spatial structure and continuity.
To achieve this, we partition each large 3D image X into smaller patches x ∈ RD′×H′×W ′

.

3.2 MIXED-MODE AUTOREGRESSIVE MODELING

We theoretically demonstrate the effectiveness of MAE He et al. (2022) on smaller models, the
scaling advantages of next token prediction, and the ability of next-all token prediction to mitigate
cumulative errors in autoregressive models. Based on these insights, we propose a hybrid training
paradigm that aims to combine the strengths of these three methods, as shown in Fig. 2.

Given an image X, we first divide it into a sequence of K non-overlapping patches {x1, . . . ,xK}.
Standard autoregressive modeling typically adopts a fixed left-to-right factorization:

p(x) =
∏K

i=1
p(xi | x<i), (1)

where x<i denotes all patches preceding xi.

We introduce TokenUnify, a mixed-mode autoregressive modeling approach designed to enhance
existing autoregressive image modeling techniques Chen et al. (2020); Bai et al. (2023c). Toke-
nUnify combines three distinct prediction tasks: random token prediction, next token prediction,
and next-all token prediction, instead of using the fixed factorization in Eq. 1.

Random Token Prediction. Given the full patch sequence x1:K , we randomly mask out a subset
of patchesM ⊂ {1, . . . ,K} and train the model to predict the masked patches conditioned on the
remaining context:

Lrandom = −
∑

i∈M
log p(xi|xM̄), (2)

where xM̄ = {xi | i /∈M} denotes the unmasked patches.

Next Token Prediction. We integrate the standard next token prediction loss into our task. In this
setup, we use the Perceiver Resampler Alayrac et al. (2022) (see Section F.2) to convert the variable-
sized feature maps generated by the Vision Encoder into a fixed number of visual tokens. This loss
trains the model to predict the next patch xi given the preceding context x<i:

Lnext = −
∑K

i=1
log p(xi|x<i). (3)

Next-All Token Prediction. To encourage the model to capture longer-range dependencies, we
extend the next token prediction to a next-all token prediction task. For each patch xi, the model is
trained to predict not only xi but also all the subsequent patches xi:K in the sequence:

Lnext-all = −
∑K

i=1

∑K

j=i
log p(xj |x<i). (4)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Our pre-training algorithms are summarized in Algorithm 1. By alternating between these token
prediction tasks every 100 epochs, we prevent the model from converging to a trivial solution and
encourage it to learn meaningful representations from the input data. This alternating training strat-
egy enables the model to capture both local and global dependencies within the patch sequence,
thereby enhancing performance on downstream tasks. The workflow of TokenUnify is illustrated in
Fig. 2.

Algorithm 1: TokenUnify Pre-training

Input : Unlabeled image data X = {X(1), . . . , X(T )}
Input : Model parameters θ1
Output: Pre-trained model fθ1(·)

1 for t← 1 to T do
2 Partition X(t) into patches {x1, . . . , xK}
3 Tokenize patches: {x1, . . . , xK} → tokens

4 Compute loss functions:
5 Random token prediction: Lrandom = −

∑
i∈M log p(xi | xM̄ )

6 Next token prediction: Lnext = −
∑K

i=1 log p(xi | x<i)

7 Next-all token prediction: Lnext-all = −
∑K

i=1

∑K
j=i log p(xj | x<i)

8 Update θ1 to minimize Lrandom, Lnext, Lnext-all

9 return fθ1(·)

3.3 MAMBA ORDERING

While the aforementioned mix token prediction task improves sequence autoregressive modeling
capabilities, it also introduces additional computational complexity for long sequences. Inspired
by the Mamba strategy proposed by Gu & Dao (2023), we introduce an enhanced approach to
effectively model long sequences in volumetric EM images. Traditional sequence modeling methods
often struggle with capturing long-range dependencies due to their rigid sequential nature. Our
enhanced Mamba ordering strategy addresses this by incorporating a more sophisticated and flexible
sequence modeling approach.

The fundamental idea behind Mamba ordering is to dynamically prioritize regions of the sequence
based on contextual significance rather than adhering to a fixed order. This is achieved through
an adaptive mechanism that evaluates the importance of different patches within the sequence and
adjusts the processing order accordingly. By doing so, Mamba ordering enhances the model’s ability
to capture intricate patterns and long-range dependencies more effectively.

Mathematically, let x = {x1,x2, . . . ,xK} represent the sequence of patches. Instead of process-
ing these patches in a fixed order, we define a dynamic ordering function σ : {1, 2, . . . ,K} →
{1, 2, . . . ,K} that determines the sequence in which patches are processed. The Mamba ordering
objective can be formulated as:

Lmamba = −Ex∼pdata

[∑K

i=1
log p(xσ(i)|xσ(<i))

]
, (5)

where xσ(<i) represents the context preceding the i-th patch in the dynamically determined order.

To optimize this objective, we introduce a context-aware attention mechanism that assesses the
relevance of each patch with respect to the overall sequence. This mechanism outputs a relevance
score for each patch, guiding the dynamic ordering function σ to prioritize patches that are most
informative for subsequent predictions. By iteratively updating the relevance scores and reordering
the patches, Mamba ordering ensures that the model focuses on the most crucial aspects of the
sequence at each step.

Consider the state-space model representation where the hidden state h(t) evolves dynamically
based on the input x(t). The state-space equations are given by:

h′(t) = A(t)h(t) +B(t)x(t), y(t) = C(t)h(t), (6)

5
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where A(t), B(t), and C(t) are time-dependent matrices. Specifically, B(t) and C(t) are parame-
terized by the input x(t) as follows:

B(t) = sB(x(t)), C(t) = sC(x(t)), ∆(t) = τ∆(Linear(x(t))), (7)

where sB , sC , and τ∆ are functions that map the input to the respective parameters.

The benefits of our enhanced Mamba ordering are twofold. First, it mitigates error accumulation
by allowing the model to refine its predictions based on a globally coherent understanding of the
sequence. Second, it enhances the model’s capacity to capture long-range dependencies, as the
dynamic ordering can adapt to the inherent structure and complexity of the data.

Empirical results demonstrate that our enhanced Mamba ordering significantly improves the per-
formance of sequence modeling tasks in volumetric EM images, particularly for long sequences.
By enabling a more adaptive and context-aware approach to sequence processing, our enhanced
Mamba ordering represents a substantial advancement over traditional methods, offering a robust
and scalable solution for high-dimensional visual data.

3.4 FINETUNING AND SEGMENTATION

The segmentation network, denoted as gseg(·), consists of an encoder ge(·) and a decoder gd(·):

gseg(x; θs) = gd(ge(x)), θs = {θe, θd}, (8)

where θs represents the parameters of the entire segmentation network, and θe and θd are the param-
eters of the encoder and decoder, respectively.

The encoder ge(·) gradually downsamples the input volume and extracts high-level semantic fea-
tures, while the decoder gd(·) upsamples the encoded features back to the original resolution. Mean-
while, the output of each downsampling layer in the encoder is connected to the corresponding layer
in the decoder via skip connections to fuse local and global multi-scale information. We adopt 3D
ResUNet/ViT/Mamba as the backbone network, respectively.

The output of the segmentation network ŷ = gseg(x) ∈ RC×D×H×W represents the predicted
affinity map Li et al. (2018; 2023b), corresponding to the connectivity probability of each voxel in
three directions. During training, the loss function for labeled samples is the mean squared error
between the predicted and ground-truth affinity maps:

Lseg =
1

|Dl|
∑|Dl|

i=1
|ŷi − yi|2 =

1

|Dl|
∑|Dl|

i=1

∣∣gseg(xl
i)− yi

∣∣2 . (9)

Our fine-tuning algorithm is summarized in Algorithm 2. During inference, for any new test sample
xt, forward propagation through gseg(xt) yields its predicted affinity map. This predicted affinity
map is then post-processed using a seeded watershed algorithm and a structure-aware region ag-
glomeration algorithm Funke et al. (2018); Beier et al. (2017) to obtain the final neuron instance
segmentation. Detailed information on our segmentation process can be found in Section F.3, and
the segmentation pipeline is illustrated in Fig. 7.

Algorithm 2: TokenUnify Fine-tuning

Input : Labeled data Dl = {(xl
i, yi)}

|Dl|
i=1

Input : Pre-trained model fθ1(·)
Input : Segmentation model gθ2(·)
Output: Fine-tuned segmentation model gθ2(·)

1 Initialize θ2 with θ1

2 for i← 1 to |Dl| do
3 ŷi = gθ2(fθ1(x

l
i))

4 Lseg = 1
|Dl|

∑|Dl|
i=1 |ŷi − yi|2

5 Update θ2 to minimize Lseg

6 return gθ2(·)

6
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4 DATASET AND METRICS

Dataset. For the pretraining phase of TokenUnify, we collect a vast amount of publicly available
unlabeled EM imaging data, from four large-scale electron microscopy (EM) datasets: Full Adult
Fly Brain (FAFB) Schlegel et al. (2021), MitoEM Wei et al. (2020), FIB-25 Takemura et al. (2017),
and Kasthuri15 Kasthuri et al. (2015). These datasets cover a diverse range of organisms, includ-
ing Drosophila, mouse, rat, and human samples, totaling over 1 TB. The details of the pretraining
datasets can be found in Table 3. We sample from the datasets with equal probability and ensure that
each brain region has an equal chance of being sampled, guaranteeing the diversity of the pretraining
data.

For downstream fine-tuning and segmentation, we employ two datasets: a smaller dataset, AC3/4,
and a larger dataset, MEC, for algorithm validation. The AC3/4 dataset Kasthuri et al. (2015) con-
sists of mouse somatosensory cortex datasets with 256 and 100 successive EM images (1024×1024).
We use the first 80 images of AC4 for fine-tuning, the last 20 images of AC4 for testing, and the first
100 images of AC3 for testing. Additionally, we have collected a large-scale electron microscopy
dataset, MEC, by imaging the mouse somatosensory cortex, mouse medial entorhinal cortex, and
mouse cerebral cortex, achieving a physical resolution of 8nm × 8nm × 40nm. We select 6 represen-
tative volumes from different neural regions, named wafer4/25/26/26-2/36/36-2, with each volume
size reaching 125 × 1250 × 1250 voxels. We perform dense annotation on these selected wafer re-
gions, with a total of over 1.2 billion annotated voxels. To validate the algorithm’s performance on
a large-scale dataset, we use wafer25/26/26-2/36 for training, wafer4 for validation, and wafer36-2
for testing on the MEC dataset.

Metrics. To evaluate the performance of neuron segmentation Zhang et al. (2024); Dang et al.
(2024), we employ two widely-used metrics: Variation of Information (VOI) Nunez-Iglesias et al.
(2013) and Adjusted Rand Index (ARAND) Arganda-Carreras et al. (2015). These metrics quantify
the agreement between the predicted segmentation and the ground truth from different perspectives.
Detailed descriptions of these metrics can be found in Section D.2.

5 EXPERIMENT

Implementation Details. In this work, we employ consistent training settings for both pretraining
and fine-tuning tasks. The network architecture remains the same throughout the training and fine-
tuning phases. During fine-tuning, we optimize the network using the AdamW optimizer Loshchilov
& Hutter (2018) with β1 = 0.9, β2 = 0.999, a learning rate of 1e-6, and a batch size of 20 on an
NVIDIA GTX 3090 (24GB) GPU. For pretraining, we use a batch size of 8 on an NVIDIA Tesla
A40 (48G) GPU due to memory constraints.

We perform distributed training using 8 NVIDIA GTX 3090 GPUs for each segmentation task,
running for a total of 1200 epochs. Similarly, we utilize 32 NVIDIA Tesla A40 GPUs for each
pretraining task, running for 400 epochs. During the pretraining phase, the input consists solely
of unlabeled data, whereas in the segmentation phase, both labeled and unlabeled data are used as
input. The input block resolution for the network is set to 16× 160× 160. To initialize the network
for fine-tuning, we load the weights obtained from the pretraining phase, following the settings of
previous works He et al. (2022).

To generate final segmentation results from the predicted affinities, we employ two representative
post-processing methods: Waterz Funke et al. (2018) and LMC Beier et al. (2017). Waterz iteratively
merges fragments based on edge scores until a threshold is reached. We set the quantile to 50% and
the threshold to 0.5 based on testing on MEC, and discretize scores into 256 bins. LMC formulates
agglomeration as a minimum-cost multi-cut problem, extracting edge features as costs and solving
with the Kernighan-Lin solver Kernighan & Lin (1970). We maintain consistent post-processing
settings across all experiments to ensure fair comparisons and conclusions about our method.

Experimental Results on MEC Dataset. As detailed in Section 4, we leverage a substantial
dataset called MEC to assess the performance of our algorithm. For neuron segmentation tasks, we
have implemented several representative methods, including Superhuman Lee et al. (2017), MALA
Funke et al. (2018), PEA Huang et al. (2022), and UNETR Hatamizadeh et al. (2022). Our EM-
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Table 1: Quantitative comparison of segmentation results on Wafer4 and Wafer36-2 datasets. ‘Post.’
represents the post-processing algorithms. * denotes the MAE pretraining strategy He et al. (2022).
† indicates our TokenUnify pretraining strategy. The best results are in bold and the second best
results are in underlined.

Post. Method Wafer4 Wafer36-2 Param.

W
at

er
z

Fu
nk

e
et

al
.(

20
18

)

V OIM ↓ V OIS ↓ V OI ↓ ARAND ↓ V OIM ↓ V OIS ↓ V OI ↓ ARAND ↓ (M)

Superhuman [40] 0.3328 1.1258 1.4587 0.1736 0.1506 0.4588 0.6094 0.0836 1.478

MALA [29] 0.5438 1.5027 2.0375 0.1115 0.3179 1.0664 1.3843 0.1570 84.02

PEA [35] 0.3381 0.9276 1.2658 0.0677 0.2787 0.4279 0.7066 0.1169 1.480

UNETR [31] 0.4504 1.6581 2.1085 0.2658 0.4478 0.5217 0.9696 0.2913 129.1

EMmamba 0.4915 1.2924 1.7839 0.2052 0.2406 0.4189 0.6595 0.1231 28.30

Superhuman* 0.2971 0.8965 1.1936 0.1108 0.1922 0.3819 0.5742 0.1025 1.478

MALA* 0.7300 1.1694 1.8994 0.2295 0.5088 0.3945 0.9034 0.2574 84.02

PEA* 0.2677 0.7866 1.0543 0.0454 0.2184 0.2971 0.5156 0.0906 1.480

UNETR* 0.3127 0.8348 1.1475 0.0940 0.3982 0.3844 0.7825 0.1768 129.1

EMmamba* 0.2120 1.0560 1.2680 0.0862 0.1449 0.4201 0.5650 0.0702 28.30

EMmamba† 0.1953 0.7998 0.9951 0.0509 0.1262 0.3585 0.4848 0.0650 28.30

L
M

C
B

ei
er

et
al

.(
20

17
)

Superhuman [40] 0.1948 1.9697 2.1644 0.2453 0.0792 1.1618 1.2410 0.1319 1.478

MALA [29] 0.3416 2.4129 2.7545 0.2567 0.1448 1.9603 2.1052 0.1977 84.02

PEA [35] 0.1705 1.5993 1.7698 0.1527 0.4719 1.1226 1.5945 0.1588 1.480

UNETR [31] 0.1791 3.1715 3.3506 0.6330 0.0949 1.3858 1.4807 0.1578 129.1

EMmamba 0.1596 2.0580 2.2177 0.1973 0.0847 1.0351 1.1198 0.1253 28.30

Superhuman* 0.2564 1.7823 2.0387 0.1812 0.0844 1.1317 1.2161 0.1289 1.478

MALA* 0.2001 2.5742 2.7747 0.5622 0.3946 1.1652 1.5598 0.1543 84.02

PEA* 0.4584 1.4873 1.9458 0.1254 0.4694 1.0217 1.4910 0.1413 1.480

UNETR* 0.2389 1.8072 2.0461 0.1704 0.0985 1.1860 1.2845 0.1380 129.1

EMmamba* 0.1319 1.8734 2.0054 0.1405 0.0726 1.0731 1.1457 0.1183 28.30

EMmamba† 0.1418 1.5103 1.6521 0.0591 0.0827 1.0276 1.1103 0.1074 28.30

Table 2: Quantitative comparison of segmentation results on AC3/4 datasets. ‘w/o Pre.’ indicates
models without pretraining, whereas ’w Pre.’ denotes models that utilize corresponding pretraining
strategy. * denotes the MAE pretraining strategy He et al. (2022). † indicates our TokenUnify
pretraining strategy. The best results are in bold and the second best results are in underlined.

Method V OIM ↓ V OIS ↓ V OI ↓ ARAND Param.
w/o Pre. w Pre. w/o Pre. w Pre. w/o Pre. w Pre. w/o Pre. w Pre. (M)

Superhuman [40] 0.4882 0.6162 0.6563 0.6308 1.1445 1.2470 0.1748 0.2505 1.478

MALA [29] 0.4571 0.3345 0.6767 0.7479 1.1338 1.0824 0.1664 0.1020 84.02

PEA [35] 0.5522 0.3832 0.4980 0.6153 1.0502 0.9985 0.2093 0.1127 1.480

UNETR [31] 0.7799 0.5339 0.7399 0.5573 1.5198 1.0912 0.2411 0.1796 129.1

EMmamba* 0.9378 0.3167 0.8629 0.7963 1.8007 1.1131 0.2840 0.1050 28.30

EMmamba† 0.9378 0.4479 0.8629 0.5439 1.8007 0.9918 0.2840 0.1366 28.30

mamba model (see Section F.3) builds upon Segmamba Xing et al. (2024) and incorporates enhance-
ments to various anisotropic structures to better accommodate the resolution of electron microscopy.
All networks are trained using default open-source parameters. Additionally, we calculated the pa-
rameter count for all architectures.

Our experimental results are presented in Table 1. The upper part of the table shows the performance
of these methods when directly applied to segmentation tasks. In contrast, the lower part of the table
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Figure 3: shows the visualization results for two slices from the MEC dataset: wafer 4 and wafer
36-2. The left side displays the EM raw images, while the right side presents the affinity and seg-
mentation results. Red boxes indicate over-split regions, and orange boxes highlight over-merge
regions.

100M       200M         500M           1B 100M       200M         500M           1B

Random
Random

MAE

MAE
AutoRegress

TokenUnify TokenUnify

Figure 4: We evaluate the performance of models with 100M, 200M, 500M, and 1B parameters.
Each model was trained for 100 epochs on the MEC and CREMI datasets.

illustrates the performance of networks employing self-supervised pretraining. When comparing
models with a similar number of parameters, our pretraining approach achieves approximately a 21%
performance improvement over MAE and over a 45% improvement compared to direct training.
Visualization results, as shown in Fig. 3, demonstrate that our approach significantly outperforms
others in both neuron splitting and merging tasks.

Experimental Results on AC3/4 Datasets. As noted in Section 4, we also evaluate the perfor-
mance of all baseline methods on a smaller dataset. Compared to the MEC dataset, the total training
scale (number of labeled pixels) of the AC3/4 dataset is only about 1/10 of that of MEC. In this
low-data scenario, the Mamba architecture combined with TokenUnify pretraining achieves per-
formance comparable to the latest SOTA PEA pertaining (as shown in Table 2). Additionally, it
demonstrates approximately a 10% performance improvement over the MAE pretraining approach.
This highlights the robustness of TokenUnify even with a limited number of fine-tuning samples.

Experimental Results on the Scaling Law. We conducted a comprehensive evaluation of scaling
laws for various initialization and training strategies: Random Initialization, MAE (Masked Autoen-

9
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coder), Autoregressive, and our proposed TokenUnify method. By increasing the feature dimension
and network depth, we scaled the model parameters to 100M, 200M, 500M, and 1B (detailed net-
work structures are provided in Section F.3 and Table 5).

In our experiments, we tested input sizes of 16 × 160 × 160. The Mamba architecture was trained
on the MEC dataset, while the Transformer architecture was trained on the CREMI dataset Funke
et al. (2016). Our experimental results are shown in Fig. 4.

Our findings indicate that, following pretraining on the same data, all methods except for the purely
vision-based Autoregressive model with small parameter counts demonstrate performance gains.
However, MAE quickly encounters scaling law limitations, hitting a performance bottleneck. In
contrast, TokenUnify exhibits robust scaling properties, outperforming other pretraining methods at
both small and large parameter scales. From a model architecture perspective, Mamba maintains
segmentation performance while exhibiting a lower parameter count compared to the Transformer
architecture. This validates the suitability of Mamba for long-sequence and autoregressive modeling
tasks.

Abalation Study. We conducted ablation studies on several components within our experimental
setup. The experiments were divided into two main parts. First, we explored the mixed mechanisms
of TokenUnify. We experimented with combinations of three different mixing mechanisms, ensuring
that the total number of training epochs remained consistent. Table 6 presents the results of these ex-
periments on the wafer4 neuron segmentation task (using a 28M EMmamba segmentation network).
The results demonstrate that mixed training provides the most significant benefit for downstream
tasks, with the combination of Random token and Next token being the next most effective.

Second, we performed ablation studies on the fine-tuning schemes. Under the default settings, we
fine-tuned all parameters of the network. However, due to computational resource constraints, only a
subset of parameters (or additional adapter parameters such as LoRA Hu et al. (2022)) is often fine-
tuned for larger models. Based on our network architecture (see Fig. 7), we divided the network into
the Mamba part (for token sequence information extraction), the encoder part (for downsampling),
and the decoder part (for convolutional upsampling). We fine-tuned only the corresponding subset
of weights for each part. Our experimental results are shown in Table 7.

We found that in the TokenUnify modeling, using the sequence information priors extracted by
Mamba significantly benefits downstream segmentation tasks. Combining the Mamba module with
the encoder part yields even greater performance improvements, while fine-tuning only the encoder
or decoder weights provides minimal gains. This suggests that in resource-constrained scenarios,
fine-tuning only the sequence modeling parameters can be sufficient.

6 SOCIAL IMPACT AND FUTURE WORK

The favorable scaling laws of TokenUnify present the opportunity to train a unified and generic vi-
sual feature extractor, which holds significant importance for visual tasks. A unified visual feature
extractor can substantially reduce the cost of fine-tuning models for different visual tasks, thereby
facilitating the application of visual technologies across various domains. We have currently val-
idated the effectiveness of TokenUnify on long-sequence 3D biological images. Moving forward,
we plan to further explore the performance of TokenUnify on natural images and other downstream
tasks, thereby expanding its scope of application. Moreover, TokenUnify can be extended to mul-
timodal domains such as image-text tasks Chen et al. (2024c); Liu et al. (2023a), demonstrating its
utility in multimodal applications. We will also continue to investigate model lightweighting Chen
et al. (2023c); Chen & Jing (2021) and efficient fine-tuning strategies Liu et al. (2023d); Li et al.
(2024b). We believe that TokenUnify offers a promising approach for building large-scale, efficient
visual pre-training models, contributing to advancements in the visual domain.

7 CONCLUSION

We propose TokenUnify, a novel autoregressive visual pre-training method that integrates random
token prediction, next-token prediction, and next-all token prediction to effectively capture local
and global dependencies in image data. We provide theoretical evidence demonstrating that Toke-
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nUnify mitigates cumulative errors in visual autoregression while maintaining favourable scaling
laws. Furthermore, we collect a large-scale, ultra-high-resolution 3D electron microscopy dataset
of mouse brain slices to serve as a unified benchmark for validating our approach. Pretraining with
TokenUnify leads to a 45% improvement in performance on downstream neuron segmentation tasks
compared to the baseline, showcasing the potential of our method in fine-grained visual tasks.
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Appendix

A WHY DOES MAE FACE SCALING LAW LIMITATIONS?

To thoroughly understand the theoretical limitations of the Mean Absolute Error (MAE) estimator
in high-dimensional sparse linear regression, we revisit the assumptions and provide a detailed and
rigorous proof of its estimation error bound, including all necessary steps and conditions.

Assumption 1. Suppose the observations y ∈ Rn are generated by the linear model:

y = Xβ∗ + ε, (10)

where X ∈ Rn×p is a known design matrix, β∗ ∈ Rp is the unknown sparse signal, and ε ∈ Rn is
the noise vector. Furthermore, assume:

(a) The true signal β∗ is s-sparse, i.e., ∥β∗∥0 ≤ s.

(b) The noise vector ε has independent sub-Gaussian entries with zero mean and variance
proxy σ2, i.e.,

E[εi] = 0, E[ε2i ] ≤ σ2, and P (|εi| ≥ tσ) ≤ 2 exp

(
− t2

2

)
, ∀t > 0. (11)

(c) The design matrix X satisfies the Restricted Isometry Property (RIP) of order 2s with
constant δ2s ∈ (0, δ∗), where δ∗ is a numerical constant less than 1, i.e., for all vectors
v ∈ Rp with ∥v∥0 ≤ 2s,

(1− δ2s)∥v∥22 ≤
1

n
∥Xv∥22 ≤ (1 + δ2s)∥v∥22. (12)

Theorem 1. Under Assumption 1, let β̂ be the solution to the ℓ1-regularized MAE problem (also
known as the LAD-Lasso):

β̂ = argmin
β∈Rp

{
1

n
∥y −Xβ∥1 + λ∥β∥1

}
, (13)

where λ > 0 is the regularization parameter defined as λ = C0σ
√

log p
n , with C0 > 0 being a

sufficiently large constant. Then, provided that n is sufficiently large and δ2s < δ∗ (i.e., the RIP
condition is satisfied with a sufficiently small constant), there exists a constant C > 0 such that with
probability at least 1− 1

pc (for some constant c > 0),

∥β̂ − β∗∥2 ≤ Cσ

√
s log p

n
. (14)

Proof. We proceed in several detailed steps to establish the error bound.

Step 1: Optimality Conditions

Since β̂ minimizes the objective function in equation 13, it satisfies the subgradient optimality con-
dition:

− 1

n
X⊤s+ λz = 0, (15)

where s ∈ ∂∥y −Xβ̂∥1, and z ∈ ∂∥β̂∥1 are subgradients.

The subgradient s ∈ Rn is defined component-wise as:

si =

{
sign(ri), if ri ̸= 0,

ui ∈ [−1, 1], if ri = 0,
(16)

where r = y −Xβ̂ is the residual vector.
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Similarly, the subgradient z ∈ ∂∥β̂∥1 is defined component-wise as:

zj =

{
sign(β̂j), if β̂j ̸= 0,

vj ∈ [−1, 1], if β̂j = 0.
(17)

Step 2: Define the Estimation Error

Let h = β̂ − β∗ denote the estimation error. Our goal is to bound ∥h∥2.

Step 3: Decompose the Error into Support Sets

Let S = supp(β∗) = {j : β∗
j ̸= 0} be the support set of β∗. Since β∗ is s-sparse, we have |S| ≤ s.

We decompose h into components on the support set S and its complement Sc:

h = hS + hSc , (18)

where:

hS = {hj}j∈S , (19)
hSc = {hj}j∈Sc . (20)

Step 4: Analysis on the Support Set Complement

Our first aim is to show that hSc is small. We will establish an inequality involving ∥hSc∥1.

From the optimality condition equation 15, we have:

− 1

n
X⊤s = −λz. (21)

Subtracting − 1
nX

⊤s̃ = −λz∗ (the optimality condition at β∗) from both sides, where s̃ ∈ ∂∥y −
Xβ∗∥1 and z∗ ∈ ∂∥β∗∥1, we obtain:

− 1

n
X⊤(s− s̃) = −λ(z − z∗). (22)

Considering the difference in subgradients s− s̃, since y = Xβ∗ + ε, and r = y −Xβ̂, we have:

s− s̃ = ∂∥ε−Xh∥1 − ∂∥ε∥1. (23)

Step 5: Bounding the Difference in Subgradients

Note that the entries of s and s̃ satisfy |si| ≤ 1 and |s̃i| ≤ 1. Therefore, the entries of s − s̃ satisfy
|si − s̃i| ≤ 2. Moreover, since ε has sub-Gaussian entries, the vector s− s̃ can be bounded in terms
of Xh.

Step 6: Bounding ∥ 1nX
⊤(s− s̃)∥∞

We can bound: ∥∥∥∥ 1nX⊤(s− s̃)

∥∥∥∥
∞
≤ 1

n
∥X⊤∥∞∥s− s̃∥∞. (24)

Since ∥X⊤∥∞ = maxj ∥Xj∥1, and assuming that the entries of X are normalized such that
∥Xj∥2 ≤

√
n, we have ∥Xj∥1 ≤

√
n∥Xj∥2 ≤ n.

Therefore: ∥∥∥∥ 1nX⊤(s− s̃)

∥∥∥∥
∞
≤ 2max

j

(
1

n
∥Xj∥1

)
≤ 2. (25)

However, we can obtain a tighter bound by leveraging the concentration properties of sub-Gaussian
random variables and the RIP condition.

Step 7: Establish the Cone Condition
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From equation 22, we have:

λ(z − z∗) =
1

n
X⊤(s− s̃). (26)

From the definitions of z and z∗, for j ∈ Sc, since β∗
j = 0, and often assuming that z∗j ∈ [−1, 1],

we can deduce that:
|zj − z∗j | ≤ 2, ∀j ∈ Sc. (27)

Multiplying both sides by hj , and summing over j ∈ Sc, we get:

λ
∑
j∈Sc

hj(zj − z∗j ) =
1

n
h⊤
ScX⊤(s− s̃) (28)

=
1

n
(XhSc)⊤(s− s̃) (29)

≤ 1

n
∥XhSc∥2∥s− s̃∥2 (30)

≤ 1

n
∥XhSc∥2 · 2

√
n, (31)

where in equation 30 we used the Cauchy-Schwarz inequality, and in equation 31 we used ∥s−s̃∥2 ≤
2
√
n.

Thus:
λ∥hSc∥1 ≤ 2∥XhSc∥2. (32)

Step 8: Apply the RIP Condition

Using the RIP condition for hSc , which is s-sparse (since hSc has support in Sc and ∥hSc∥0 ≤ s),
we have:

∥XhSc∥2 ≤
√

n(1 + δs)∥hSc∥2. (33)

Combining with equation 32, we get:

λ∥hSc∥1 ≤ 2
√
n(1 + δs)∥hSc∥2. (34)

But using the inequality ∥hSc∥1 ≥ ∥hSc∥2, we have:

∥hSc∥1 ≥ ∥hSc∥2. (35)

Therefore:
λ∥hSc∥2 ≤ 2

√
n(1 + δs)∥hSc∥2. (36)

This implies:
λ ≤ 2

√
n(1 + δs), (37)

which is a contradiction unless ∥hSc∥2 = 0 or λ is appropriately chosen.

Therefore, under appropriate choice of λ (sufficiently large), we can conclude that:

∥hSc∥2 = 0. (38)

Step 9: Focus on the Support Set S

Since hSc = 0, the error h is supported only on S, and ∥h∥2 = ∥hS∥2.

Using the RIP condition for hS , we have:

(1− δs)∥hS∥22 ≤
1

n
∥XhS∥22. (39)

Step 10: Bounding ∥XhS∥2
From the residuals, r = ε−Xh, and since ε has sub-Gaussian entries, we can bound ∥r∥2.
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However, since hSc = 0, we have:
r = ε−XhS . (40)

Considering ∥r∥22 = ∥ε − XhS∥22, and since β̂ minimizes the objective function, we can relate
∥XhS∥2 to ∥ε∥2.

Applying standard techniques, and leveraging the properties of sub-Gaussian random variables and
the definition of λ, we can bound ∥XhS∥2.

Step 11: Final Bound on ∥hS∥2
Combining the above results, we have:

∥hS∥2 ≤
Cσ
√
s log p√

n(1− δs)
. (41)

This completes the proof.

This theorem demonstrates that under appropriate sparsity and design matrix conditions, the ℓ1-
regularized MAE estimator (LAD-Lasso) can consistently estimate the true parameter vector β∗

with an error bound that depends logarithmically on the ambient dimension p and inversely on the
square root of the sample size n.

B WHY IS AUTOREGRESSION SUPERIOR FOR SCALING?

To understand the superiority of autoregressive (AR) models for scaling in time series prediction, we
analyze the behavior of the mean squared prediction error as the model order increases. We consider
the following theoretical framework.

Assumption 2. Suppose the time series {yt}Tt=1 is generated by the following p-th order autore-
gressive (AR(p)) model:

yt =

p∑
i=1

βiyt−i + εt, t = p+ 1, . . . , T, (42)

where β = (β1, . . . , βp)
⊤ is the unknown vector of AR coefficients, and {εt} are independent and

identically distributed (i.i.d.) Gaussian white noise with mean zero and variance σ2, i.e., εt ∼
N (0, σ2). Furthermore, assume:

(a) The AR polynomial ϕ(z) = 1 −
∑p

i=1 βiz
i has all its roots outside the unit circle in the

complex plane, i.e., the model is stationary and invertible.

(b) The initial values y1, . . . , yp are known constants or generated from the stationary distri-
bution of {yt}.

Under the above assumptions, we consider the least squares estimator of the AR(p) model, which
minimizes the sum of squared residuals:

β̂(p) = argmin
β∈Rp

T∑
t=p+1

(
yt −

p∑
i=1

βiyt−i

)2

. (43)

Theorem 2. Under Assumption 2, let ŷt(p) =
∑p

i=1 β̂i(p)yt−i denote the one-step-ahead predic-
tion of yt based on the AR(p) model estimated using least squares. Then, as p→∞, for any fixed t
(with t > p), it holds that

lim
p→∞

E
[
(yt − ŷt(p))

2
]
= σ2, (44)

where σ2 = E[ε2t ] is the noise variance. In other words, as we increase the order p of the AR model,
the mean squared prediction error converges to the lower bound given by the variance of the noise.
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Proof. We will provide a detailed proof, including all necessary steps and conditions.

Step 1: Rewrite the AR Model in Matrix Form

Let us define the following:

- Observation vector:

Y =


yp+1

yp+2

...

yT

 ∈ Rn, (45)

where n = T − p.

- Design matrix:

Xp =


yp yp−1 · · · y1

yp+1 yp · · · y2
...

...
. . .

...

yT−1 yT−2 · · · yT−p

 ∈ Rn×p. (46)

- Residual vector:

ε =


εp+1

εp+2

...

εT

 ∈ Rn. (47)

With these definitions, the AR(p) model equation 42 can be written in matrix form as:

Y = Xpβ + ε. (48)

Step 2: Obtain the Least Squares Estimator

The least squares estimator β̂(p) minimizes the sum of squared residuals:

β̂(p) = argmin
β∈Rp

∥Y −Xpβ∥22 . (49)

The solution is given by:
β̂(p) =

(
X⊤

p Xp

)−1
X⊤

p Y. (50)

Substituting equation 48 into equation 50, we have:

β̂(p) =
(
X⊤

p Xp

)−1
X⊤

p (Xpβ + ε)

= β +
(
X⊤

p Xp

)−1
X⊤

p ε. (51)

Step 3: Prediction of yt and the Prediction Error

For any fixed t ∈ {p+ 1, . . . , T}, define the predictor:

ŷt(p) = x⊤
t,pβ̂(p), (52)

where xt,p =


yt−1

yt−2

...

yt−p

 ∈ Rp is the lagged observation vector at time t.
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The actual value of yt is given by:
yt = x⊤

t,pβ + εt. (53)

Thus, the prediction error is:

et(p) = yt − ŷt(p)

= x⊤
t,pβ + εt − x⊤

t,pβ̂(p)

= εt − x⊤
t,p

(
β̂(p)− β

)
. (54)

From equation 51, we have:
β̂(p)− β =

(
X⊤

p Xp

)−1
X⊤

p ε. (55)

Substituting equation 55 into equation 54, we get:

et(p) = εt − x⊤
t,p

(
X⊤

p Xp

)−1
X⊤

p ε. (56)

Step 4: Compute the Mean Squared Prediction Error

Our aim is to compute the expected value of the squared prediction error:

E
[
et(p)

2
]
= E

[(
εt − x⊤

t,p

(
X⊤

p Xp

)−1
X⊤

p ε
)2]

. (57)

Step 5: Analyze the Second Term

Let us denote:
Ap =

(
X⊤

p Xp

)−1
X⊤

p , (58)

so that:
et(p) = εt − x⊤

t,pApε. (59)

We need to compute:

E
[
et(p)

2
]
= E

[
ε2t
]
− 2E

[
εtx

⊤
t,pApε

]
+ E

[(
x⊤
t,pApε

)2]
. (60)

Step 6: Compute Each Term Separately

First, note that E[ε2t ] = σ2.

Second, compute the cross term:

E
[
εtx

⊤
t,pApε

]
= E

[
εtx

⊤
t,pApε

]
= Ext,p

[
x⊤
t,pApEε [εtε | xt,p]

]
. (61)

Since ε and εt are independent of each other and of xt,p (because εs is independent of εt and of yr
for r < t), and E[εs] = E[εt] = 0, we have:

E
[
εtx

⊤
t,pApε

]
= 0. (62)

Third, compute the last term in equation 60:

E
[(
x⊤
t,pApε

)2]
= E

[
x⊤
t,pApεε

⊤A⊤
p xt,p

]
= Ext,p

[
x⊤
t,pApEε

[
εε⊤

]
A⊤

p xt,p

]
, (63)

where
Eε

[
εε⊤

]
= σ2In, (64)

since ε has i.i.d. entries with variance σ2.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Therefore,

E
[(
x⊤
t,pApε

)2]
= σ2Ext,p

[
x⊤
t,pApA

⊤
p xt,p

]
= σ2E

[
x⊤
t,pApA

⊤
p xt,p

]
. (65)

Step 7: Approximate Ap for Large p and n

As p → ∞, we consider n = T − p large enough as well. Under the assumption of stationarity
(Assumption (a)), the process {yt} is stationary, and thus the autocovariances γ(k) = E[ytyt−k]
exist and depend only on k.

Define the (theoretical) autocovariance matrix R∗
p of xt,p:

R∗
p = E

[
xt,px

⊤
t,p

]
. (66)

Similarly, the sample covariance matrix is:

Rp =
1

n
X⊤

p Xp. (67)

Under the law of large numbers for stationary processes, as n→∞, we have:

Rp
a.s.−−→ R∗

p. (68)

Assuming R∗
p is positive definite for all p, we can write:

Ap =
(
X⊤

p Xp

)−1
X⊤

p = (nRp)
−1

X⊤
p ≈

1

n

(
R∗

p

)−1
X⊤

p . (69)

Step 8: Evaluate the Mean Squared Error

Returning to equation ??, we have:

E
[
et(p)

2
]
= σ2 + E

[(
x⊤
t,pApA

⊤
p xt,p

)]
σ2. (70)

Since xt,p and Xp are sequences of past observations, and as p→∞, the entries of xt,p correspond-
ing to large lags contribute less due to the decay of autocorrelations in stationary processes.

Moreover, because ∥xt,p∥2 is bounded (since the process is stationary and has finite variance), and
ApA

⊤
p tends to zero matrix as n, p→∞ (due to the factor 1

n2 in ApA
⊤
p ), the last term tends to zero:

lim
p→∞

σ2E
[
x⊤
t,pApA

⊤
p xt,p

]
= 0. (71)

Therefore, we have:
lim
p→∞

E
[
et(p)

2
]
= σ2. (72)

This completes the proof.

The core idea of this proof is that, as the order p of the AR model increases, the model captures
more of the autocorrelation structure of the time series. Consequently, the estimation error due
to model misspecification decreases. In the limit as p → ∞, the AR model can represent any
stationary process (consistent with Wold’s decomposition theorem for stationary processes), and the
only remaining prediction error is due to the irreducible noise εt.

It is important to note that this result assumes that both the sample size T and the model order p
go to infinity, with T growing faster than p to ensure consistent estimation of the coefficients. In
practice, we must balance the model complexity (larger p) with the available data to avoid overfitting
and ensure reliable estimates of the AR coefficients. Common model selection criteria like AIC and
BIC can help in choosing an appropriate model order.

Furthermore, the proof relies on the Gaussianity and independence of the noise terms, as well as
the stationarity of the process. If these conditions are not met, the convergence of the mean squared
prediction error to the noise variance may not hold.
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C WHY IS NEXT-ALL TOKEN PREDICTION MORE EFFECTIVE?

C.1 AN INTUITIVE PERSPECTIVE

Although widely used in natural language processing, autoregressive models suffer from several
limitations. One major issue is the exposure bias problem Bengio et al. (2015), where the model is
only exposed to ground-truth contexts during training, leading to a mismatch between training and
inference conditions. This can cause the model to accumulate errors during autoregressive inference,
as it has not learned to recover from its own mistakes.

Next-All Token Prediction (NATP) offers a promising alternative. Training the model to predict the
entire sequence of future tokens given the current context encourages the model to learn more robust
and globally coherent representations.

Mathematically, the next-all token prediction objective is formulated as:

LNATP = −Ex∼pdata

[
T∑

i=1

log p (xi:T | x<i)

]
, (73)

where xi:T = (xi, xi+1, . . . , xT ) denotes the sequence of tokens from position i to T , and x<i =
(x1, x2, . . . , xi−1) represents the context preceding position i.

However, the joint probability p (xi:T | x<i) can be expanded using the chain rule of probability:

p (xi:T | x<i) =

T∏
j=i

p (xj | x<j) , (74)

where x<j = (x1, x2, . . . , xj−1) includes the context up to position j − 1.

Substituting equation 74 into equation 73, we get:

LNATP = −Ex∼pdata

 T∑
i=1

log

T∏
j=i

p (xj | x<j)

 (75)

= −Ex∼pdata

 T∑
i=1

T∑
j=i

log p (xj | x<j)

 (76)

= −Ex∼pdata

 T∑
j=1

(
j∑

i=1

1

)
log p (xj | x<j)

 (77)

= −Ex∼pdata

 T∑
j=1

j · log p (xj | x<j)

 . (78)

In equation 77, we rearranged the summations by swapping the order of summation and recognizing
that for each j, the term log p (xj | x<j) appears j times.

This reveals that the next-all token prediction objective assigns more weight to tokens appearing later
in the sequence. By optimizing this objective, the model focuses on accurately predicting tokens in
the future positions, thus learning to generate accurate and consistent long-term predictions. It can
also capture more complex dependencies and interactions between distant tokens, enabling richer
and more expressive representations.

From a geometric perspective, let H be the hypothesis space of possible token sequences. The
standard autoregressive objective encourages the model to learn a mapping fAR : H<i → Hi that
predicts the next token given the preceding context. In contrast, the next-all token prediction ob-
jective promotes learning a mapping fNATP : H<i → Hi:T that predicts the entire future sequence
given the current context.

The mapping fNATP learned through full-sequence prediction is more constrained and globally con-
sistent than the mapping fAR. This is because fNATP must generate sequences consistent with both
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the preceding context and the entire future sequence, resulting in more robust and globally-aware
representations. A detailed theoretical analysis is provided in Section C.2.

C.2 A THEORETICAL PERSPECTIVE

Assumption 3. Suppose the sequence x = (x1, x2, . . . , xT ) is generated by the following process:
at each position t, the next token xt is generated from the previous tokens x<t = (x1, . . . , xt−1)
through a conditional probability distribution p(xt | x<t). Furthermore, assume:

(a) The conditional distribution p(xt | x<t) satisfies a Lipschitz continuity condition in total
variation distance, i.e., there exists a constant L > 0 such that for any t and any two
contexts x<t and x′

<t,

DTV (p(· | x<t), p(· | x′
<t)) ≤ L · d(x<t,x

′
<t), (79)

where DTV denotes the total variation distance, and d(·, ·) is a proper distance metric on
the context space.

(b) The sequence length T is finite, with a maximum length of Tmax.

Under the above assumptions, consider the Next-All Token Prediction (NATP) model q(xt | x<t; θ),
where θ denotes the model parameters. The training objective is to minimize the average negative
log-likelihood:

L(θ) = − 1

T

T∑
t=1

log q (xt | x<t; θ) . (80)

Theorem 3. Under Assumption 3, let pt = p(xt | x<t) and qt = q(xt | x<t; θ) denote the true
conditional distribution and the NATP model’s prediction distribution at position t, respectively.
Then, for any δ > 0, with probability at least 1− δ,

1

T

T∑
t=1

∥pt − qt∥21 ≤
2L(θ)− 2Ex∼pdata [H(pt)]

T
+

2 log
(
2Tmax

δ

)
T

. (81)

Here, H(pt) denotes the entropy of pt. In other words, the average squared ℓ1 distance between the
true distribution and the model’s prediction can be effectively bounded, and it does not accumulate
as the sequence length increases.

Proof. We proceed in several steps to establish the bound.

Step 1: Relate the KL Divergence to the Training Loss

At each position t, the expected Kullback-Leibler (KL) divergence between the true distribution pt
and the model’s distribution qt is:

Ex∼pdata [KL(pt∥qt)] = Ex∼pdata

[∑
xt

pt(xt) log
pt(xt)

qt(xt)

]
. (82)

Note that the training objective L(θ) satisfies:

L(θ) = − 1

T

T∑
t=1

Ex∼pdata [log qt(xt)]. (83)

Therefore, we can express the average KL divergence as:

1

T

T∑
t=1

Ex∼pdata [KL(pt∥qt)] =
1

T

T∑
t=1

(H(pt) + Ex∼pdata [− log qt(xt)])

=
1

T

T∑
t=1

H(pt) + L(θ), (84)
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where H(pt) is the entropy of the distribution pt.

Step 2: Relate KL Divergence to Total Variation Distance

By Pinsker’s inequality, the total variation distance is bounded by the square root of half the KL
divergence:

DTV(pt, qt) ≤
√

1

2
KL(pt∥qt). (85)

Since DTV(pt, qt) =
1
2 ∥pt − qt∥1, we have:

∥pt − qt∥1 ≤
√
2KL(pt∥qt). (86)

Step 3: Bounding the Average Squared ℓ1 Distance

Taking squares on both sides of equation 86 and averaging over t, we get:

1

T

T∑
t=1

∥pt − qt∥21 ≤
2

T

T∑
t=1

KL(pt∥qt) =
2

T

T∑
t=1

H(pt) + 2L(θ). (87)

Rewriting, we obtain:

1

T

T∑
t=1

∥pt − qt∥21 ≤ 2L(θ)− 2

T

T∑
t=1

H(pt). (88)

Since the entropy H(pt) ≥ 0, we have:

1

T

T∑
t=1

∥pt − qt∥21 ≤ 2L(θ). (89)

Step 4: Concentration Inequality for the Sum of KL Divergences

Assuming that the KL divergences {KL(pt∥qt)}Tt=1 are random variables bounded above (since the
maximum KL divergence between two distributions is finite), we can apply Hoeffding’s inequality
to bound the probability that the average KL divergence deviates from its expected value.

However, since the data sequences x are dependent, we need to consider the dependence in the
data. Under the assumption that the sequence length T is finite and that the conditional distributions
satisfy the Lipschitz condition, we can ensure that the increments are bounded.

For each t, define the event:

At = {KL(pt∥qt)− Ex∼pdata [KL(pt∥qt)] ≥ ϵ} . (90)

By applying Azuma’s inequality for martingales or McDiarmid’s inequality (with appropriate mod-
ification for dependent data), we obtain:

P

(
1

T

T∑
t=1

KL(pt∥qt)− Ex∼pdata [KL(pt∥qt)] ≥ ϵ

)
≤ exp

(
−2Tϵ2

C2

)
, (91)

where C is a constant depending on the bounds of the KL divergences, and ϵ > 0.

Since we are dealing with finite sequences and bounded KL divergences, we can choose ϵ =√
C2 log(1/δ)

2T , leading to:

P

(
1

T

T∑
t=1

KL(pt∥qt) ≥ Ex∼pdata [KL(pt∥qt)] +
√

C2 log(1/δ)

2T

)
≤ δ. (92)

Step 5: Final Bound
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Combining the results, with probability at least 1− δ,

1

T

T∑
t=1

∥pt − qt∥21 ≤ 2L(θ)− 2

T

T∑
t=1

H(pt) + 2

√
C2 log(1/δ)

2T
. (93)

Letting C be such that C2 = 2 log(2Tmax/δ), we can write:

2

√
C2 log(1/δ)

2T
=

2 log(2Tmax/δ)

T
. (94)

Thus, the bound becomes:

1

T

T∑
t=1

∥pt − qt∥21 ≤ 2L(θ)− 2

T

T∑
t=1

H(pt) +
2 log

(
2Tmax

δ

)
T

. (95)

Since the entropies H(pt) are non-negative, we can further simplify:

1

T

T∑
t=1

∥pt − qt∥21 ≤ 2L(θ) +
2 log

(
2Tmax

δ

)
T

. (96)

This completes the proof of the theorem.

The key idea of this proof is to use Pinsker’s inequality to relate the ℓ1 distance between the true
distribution pt and the model’s distribution qt to the KL divergence, which is directly connected
to the training loss L(θ). By applying concentration inequalities, we control the deviation of the
empirical KL divergence from its expected value over the sequence. The Lipschitz continuity of the
conditional distributions ensures that dependencies in the sequence do not lead to unbounded errors.

Compared to the autoregressive (AR) models, the NATP approach benefits from predicting future
tokens conditioned on the true context rather than the generated one, thereby avoiding error accumu-
lation due to exposure bias. In AR models, errors can compound over time as the model feeds its own
predictions back into itself. In contrast, NATP trains the model to predict the entire future sequence
at each time step, leveraging the full context and improving global coherence in predictions.

It is important to note that the assumptions and bounds provided are theoretical and rely on certain
conditions, such as the Lipschitz continuity and finite sequence lengths. In practice, these conditions
may be approximated, but the theoretical framework offers valuable insights into why NATP can be
more effective in handling long-term dependencies and mitigating error accumulation in sequence
modeling tasks.

D DETAILED INFORMATION ABOUT DATASETS AND METRICS

D.1 DATASETS

This chapter serves as a supplement to Section 4, providing detailed information about the datasets
used in this study.

Pretraining Dataset. All pretraining datasets employed are publicly available, with their specifics
outlined in Table 3.

During the fine-tuning phase, we utilized two datasets: a publicly available small dataset, AC3/4,
and a large private dataset, MEC. Detailed information about these datasets is as follows:

AC3/4. AC3 and AC4 are two labeled subsets extracted from the mouse somatosensory cortex
dataset of Kasthuri15 Kasthuri et al. (2015), obtained at a resolution of 3×3×29nm3. These subsets
include 256 and 100 sequential images (each 1024 × 1024 pixels), respectively. We use varying
numbers of the top sections (5, 10, 20, 30, 50, and 100) of AC3 to simulate different proportions
of labeled data. The bottom 50 sections of AC3 and AC4 are used for testing. To support semi-
supervised learning, we utilize 200 sections from AC3/AC4 as unlabeled data.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 3: Detailed description of the EM pre-taining datasets

Dataset Modality Resolution Species Target Region

Full Adult Fly Brain (FAFB) Schlegel et al. (2021) EM 286720 × 155648 pixels Drosophila Whole brain

MitoEM-H Wei et al. (2020) EM 30 µm3 Human Cortex (Mitochondria)

MitoEM-R Wei et al. (2020) EM 30 µm3 Rat Cortex (Mitochondria)

FIB-25 Takemura et al. (2017) EM 5 × 5 × 5 nm3 Mouse CA1 Hippocampus

Kasthuri15 Kasthuri et al. (2015) EM 3 × 3 × 30 nm3 Mouse Neocortex

MEC. The MEC dataset originates from our team’s Mouse MEC MultiBeam-SEM imaging ef-
forts, where we performed comprehensive brain imaging of mice, accumulating data at the petabyte
scale. We processed the images through registration, denoising, and interpolation, and divided them
into different layers according to brain regions. Specifically, we selected data from Wafer 4 at layer
VI and wafers 25, 26, and 36 at layer II/III. The dataset was acquired at a resolution of 8 nm × 8 nm
× 35 nm, with the relative imaging positions illustrated in Fig. 5. Each volumetric block has a size
of 1250 × 1250 × 125 voxels. All voxels in the dataset are fully annotated.

Figure 5: The relative positions of the wafer layers selected from the MEC dataset.

D.2 METRICS

Variation of Information (VOI) is an information-theoretic measure that assesses the distance be-
tween two clusterings in terms of their average conditional entropy. Given the predicted segmenta-
tion Spred and the ground-truth segmentation Sgt, VOI is defined as:

V OI(Spred, Sgt) = H(Spred|Sgt) +H(Sgt|Spred), (97)

where H(·|·) denotes the conditional entropy. It can be calculated by:

H(Spred|Sgt) = −
|Sgt|∑
i=1

|Spred|∑
j=1

|Si
gt ∩ Sj

pred|
N

log
|Si

gt ∩ Sj
pred|

|Si
gt|

, (98)

where Si
gt and Sj

pred represent the i-th and j-th segments in the ground-truth and predicted segmen-
tation, respectively, and N is the total number of voxels. VOI ranges from 0 to ∞, with a lower
value indicating better segmentation performance.

Adjusted Rand Index (ARAND) is a variant of the Rand Index Arganda-Carreras et al. (2015) that
corrects for chance when comparing two clusterings. It is defined as:

ARAND(Spred, Sgt) =

∑
ij

(
nij

2

)
− [
∑

i

(
ai

2

)∑
j

(
bj
2

)
]/
(
N
2

)
[
∑

i

(
ai

2

)
+
∑

j

(
bj
2

)
]/2− [

∑
i

(
ai

2

)∑
j

(
bj
2

)
]/
(
N
2

) , (99)
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where nij is the number of voxels that are in segment i of Spred and segment j of Sgt, ai =
∑

j nij

is the number of voxels in segment i of Spred, bj =
∑

i nij is the number of voxels in segment j
of Sgt, and N =

∑
ij nij is the total number of voxels. ARAND ranges from 0 to 1, with a lower

value indicating better segmentation performance.

E DISCUSSION

E.1 LIMITATIONS

Despite TokenUnify’s significant performance advantages in long-sequence autoregressive tasks,
this may be attributed to the specific characteristics of 3D image sequences. Its effectiveness on
natural images has yet to be validated in downstream tasks. Additionally, due to the unique nature
of the neuron data, we have only demonstrated performance on segmentation tasks in the main text.
Future work will extend the evaluation to a broader set of downstream tasks, such as classification,
detection, and other standard vision tasks.

E.2 PRELIMINARY EXPLORATION OF TOKENUNIFY ON NATURAL IMAGES

We are currently pretraining TokenUnify on natural images using the LAION-5B dataset Schuhmann
et al. (2022). Specifically, each image is divided into non-overlapping patches of size 16x16. We
conducted 800 epochs of pretraining with TokenUnify. As the downstream classification tasks are
still in progress, we present only the initial visual results here.

Specifically, we pretrained using both the Autoregress approach and the TokenUnify approach. For
evaluation, given the first k patches of an image, we predicted the (k+1)th patch and then concate-
nated all the predicted patches. We used the PSNR metric to compare the reconstructed image with
the original image, assessing the representational capability of each method. We selected the high-
resolution Kodak Kodak (1993) dataset as our test set. Our experimental results are shown in Fig.
6. The PSNR values for the reconstruction of 24 images are detailed in Table 4. TokenUnify out-
performed the Autoregress approach in terms of visual metrics, indicating that TokenUnify likely
extracted better visual representations during the pretraining stage.

F MEHTOD DETAILS

F.1 SUMMARY OF THE TOKENUNIFY ALGORITHM

TokenUnify is a novel pre-training method for scalable autoregressive visual modeling. It integrates
random token prediction, next-token prediction, and next-all token prediction to mitigate cumulative
errors in visual autoregression while maintaining favorable scaling laws. The algorithm leverages
the Mamba network architecture to reduce computational complexity from quadratic to linear for
long-sequence modeling.

Pre-training is conducted on a large-scale, ultra-high-resolution electron microscopy (EM) image
dataset, providing spatially correlated long sequences. TokenUnify demonstrates significant im-
provements in segmentation performance on downstream EM neuron segmentation tasks compared
to existing methods. Our pre-training and fine-tuning algorithms are summarized in Algorithm 1
and Algorithm 2, respectively.

The TokenUnify pre-training algorithm captures both local and global dependencies in image data
through mixed token prediction tasks. The Mamba network architecture ensures efficient modeling
of long sequences. During fine-tuning, the pre-trained model adapts to downstream segmentation
tasks using labeled data, achieving state-of-the-art performance on EM neuron segmentation bench-
marks.

F.2 PERCEIVER RESAMPLER

The workflow of the Perceiver Resampler Alayrac et al. (2022); Chen & Mueller (2024; 2023)
can be summarized in the following steps: 1. Combine the output of the Vision Encoder (e.g.,
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结果3Results

Raw ours 8×8 AR 8×8 ours 16×16 AR 16×16 ours 14*14 post 14*14

Figure 6: Shows the reconstruction result of selected Kodak dataset, images are divided into different
sizes of patches. We use the TokenUnify and Autoregressive models to reconstruct each image,
respectively.

features from images) with learned time position encodings. 2. Flatten the combined features into
a one-dimensional sequence. 3. Flatten the combined features into a one-dimensional sequence.
4. Process the flattened features using Transformer layers that incorporate attention mechanisms,
which interact with learned latent query vectors. Output a fixed number of visual tokens equal to the
number of latent queries.

Algorithm 3: Perceiver Resampler Pseudocode
Input : xf - The [T, S, d] visual features (T=time, S=space)
Input : t - The [T, 1, d] time position embeddings
Input : x - R learned latents of shape [R, d]
Input : num layers - Number of layers
Output: x - Updated learned latents

1 Add time position embeddings and flatten:
2 xf ← xf + t
3 xf ← flatten(xf )
4 // [T, S, d]→ [T × S, d]

5 Apply the Perceiver Resampler layers:
6 for i← 1 to num layers do
7 x← x+ attentioni(q = x, kv = concat([xf ,x]))
8 x← x+ ffwi(x)

9 return x

The input visual features, denoted as xf , have a shape of [T, S, d], where T represents the time
dimension, S the spatial dimension, and d the feature dimension. The time position embeddings,
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Table 4: Presents the PSNR results of reconstructing 24 images from the Kodak dataset using Toke-
nUnify and Autoregress. The experiments were conducted with patch sizes of 16x16 and 8x8.

Kodak Name 16×16 Autoregress 16×16 TokenUnify 8×8 Autoregress 8×8 TokenUnify
1.png 19.249 21.549 (+2.300) 21.247 21.990 (+0.743)
2.png 24.662 27.321 (+2.659) 27.269 27.799 (+0.530)
3.png 22.665 27.113 (+4.448) 26.851 28.110 (+1.259)
4.png 22.353 26.152 (+3.799) 25.466 26.713 (+1.247)
5.png 15.353 18.859 (+3.506) 18.437 19.847 (+1.410)
6.png 20.139 22.376 (+2.237) 21.661 23.064 (+1.403)
7.png 19.990 23.170 (+3.180) 23.334 24.479 (+1.145)
8.png 15.146 18.169 (+3.023) 17.829 18.770 (+0.941)
9.png 22.080 24.918 (+2.838) 24.959 25.957 (+0.998)

10.png 22.239 25.213 (+2.974) 25.042 25.936 (+0.894)
11.png 20.289 22.536 (+2.247) 22.638 23.723 (+1.085)
12.png 21.854 25.929 (+4.075) 25.806 27.005 (+1.199)
13.png 15.946 18.494 (+2.548) 17.657 18.969 (+1.312)
14.png 18.107 21.227 (+3.120) 20.696 22.195 (+1.499)
15.png 20.750 24.659 (+3.909) 25.321 26.111 (+0.790)
16.png 23.216 25.887 (+2.671) 25.334 26.694 (+1.360)
17.png 20.672 24.346 (+3.674) 24.220 25.614 (+1.394)
18.png 19.959 22.017 (+2.058) 21.249 22.336 (+1.087)
19.png 22.394 25.062 (+2.668) 24.094 25.384 (+1.290)
20.png 21.478 24.723 (+3.245) 24.124 25.346 (+1.222)
21.png 17.503 20.149 (+2.646) 19.567 20.366 (+0.799)
22.png 19.947 23.003 (+3.056) 22.365 23.545 (+1.180)
23.png 17.807 20.315 (+2.508) 19.781 20.959 (+1.178)
24.png 22.111 24.780 (+2.669) 24.313 25.472 (+1.159)

represented by t, are of shape [T, 1, d] and are added to the visual features to incorporate temporal
information.

The learned latents, denoted as x, have a shape of [R, d], where R is the number of latents and d is
the feature dimension. The parameter num layers specifies the number of layers in the Perceiver
Resampler model.

The operation flatten reshapes the input tensor from [T, S, d] to [T × S, d]. The function
attention i represents the attention mechanism applied in the i-th layer, which takes a query q
and key-value pairs kv. The function concat concatenates the input tensors along the specified
dimension. Finally, ffw i refers to the feedforward network applied in the i-th layer.

F.3 SEGMENTATION METHOD

The EMmamba network is structured into three principal components: 3D feature encoder,
convolution-based decoder for segmentation prediction, and skip connections to integrate local
multi-scale features into the decoder for feature fusion. Liu et al. (2023b;c); Sun et al. (2024)

To achieve effective feature encoding, we designed anisotropic downsampling layers and adopted the
TSMamba block from the Segmamba Xing et al. (2024). Specifically, in Stage 1, the downsampling
layer uses a convolutional kernel size of (1, 7, 7). For the subsequent three layers, the downsampling
layers have a convolutional kernel size of (1, 2, 2). The decoder section employs a convolutional
kernel size of (1, 5, 5). This anisotropic design is particularly advantageous for processing EM
images, which exhibit inherent anisotropy.
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Figure 7: Segmentation pipeline.

Table 5: Shows the differ in architecture when adding the parameters of the segmentation backbone.

EMmamba-tiny EMmamba-small EMmamba-middle EMmamba-large EMmamba-huge

Mamba layer [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2]
Feature size [32,64,128,256] [64,128,256,512] [96,192,384,768] [144,288,576,1104] [192,384,768,1536]
Hidden size 512 1024 1024 2048 3072
Kernel size [1,5,5] [1,5,5] [1,5,5] [1,5,5] [1,5,5]
Batch size 40 22 12 8 4
Param. (M) 28.30 112.5 206.6 506.6 1008

G NUMERICAL RESULTS

G.1 STATISTICAL TEST

In this section, we present the results of our error bar experiments, as detailed in Table 8. These
experiments were conducted to assess the variability and reliability of the model’s prediction under
different conditions.

G.2 ABALATION STUDY RESULTS

In this section, we present the numerical results of the ablation study discussed in Section 5.

Table 6: Ablation study for different pertaining strategy on wafer4 dataset.

Model Pretraining Strategy
V OI ↓ ARAND ↓

Random token Next token Next-all token

M1 ✓ 1.2680 0.0862
M2 ✓ ✓ 1.1300 0.0692
M3 ✓ ✓ 1.1907 0.1203

Ours ✓ ✓ ✓ 0.9951 0.0509
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Table 7: Ablation study for the fine-tuning schemes on wafer4 dataset.

Model Module
V OI ↓ ARAND ↓

Mamba Encoder Decoder

M1 ✓ 1.1362 0.0782
M2 ✓ 1.5556 0.1370
M3 ✓ 1.5295 0.1212
M4 ✓ ✓ 1.1065 0.0629

Ours ✓ ✓ ✓ 0.9951 0.0509

Table 8: Quantitative comparison of segmentation results on Wafer4 dataset with error bar. ‘Post.’
represents the post-processing algorithms. * denotes the MAE pretraining strategy He et al. (2022).
† indicates our TokenUnify pretraining strategy. The best results are in bold and the second best
results are in underlined.

Post. Method Wafer4 Param.

W
at

er
z

Fu
nk

e
et

al
.(

20
18

)

V OIM ↓ V OIS ↓ V OI ↓ ARAND ↓ (M)
Superhuman [40] 0.3392±0.0167 1.2247±0.0857 1.5639±0.0921 0.2050±0.0284 1.478

MALA [29] 0.6217±0.1266 1.5314±0.1123 2.1531±0.1004 0.1490±0.0476 84.02
PEA [35] 0.3943±0.0655 1.0036±0.1435 2.1531±0.1004 0.1490±0.0476 1.480

UNETR [31] 0.4454±0.0155 1.7979±0.1548 2.2433±0.1424 0.3244±0.0701 129.1
EMmamba 0.4353±0.052 1.3018±0.0086 1.7371±0.0432 0.1872±0.0156 28.30

Superhuman* 0.2907±0.0063 0.9437±0.0451 1.2344±0.0388 0.1202±0.0121 1.478
MALA* 0.7732±0.1432 1.2063±0.0458 1.9768±0.1232 0.2663±0.0549 84.02

PEA* 0.2712±0.0185 0.9715±0.1841 1.2427±0.1963 0.0805±0.0386 1.480
UNETR* 0.3554±0.0411 0.8579±0.0229 1.2133±0.0574 0.1150±0.0209 129.1

EMmamba* 0.2363±0.0212 1.0782±0.0251 1.3144±0.0444 0.0967±0.0097 28.30

EMmamba† 0.2124±0.0172 0.8047±0.0057 1.0024±0.0463 0.0551±0.0040 28.30

L
M

C
B

ei
er

et
al

.(
20

17
)

Superhuman [40] 0.2006±0.0054 2.1283±0.1378 2.3289±0.1427 0.2924±0.0408 1.478
MALA [29] 0.3094±0.0478 2.3802±0.1863 2.6869±0.1558 0.2303±0.0314 84.02

PEA [35] 0.2303±0.0870 1.6373±0.1289 1.8343±0.0732 0.1611±0.0152 1.480
UNETR [31] 0.1625±0.0144 3.3146±0.1391 3.4772±0.1272 0.6600±0.0304 129.1

EMmamba 0.1594±0.0005 2.0921±0.0300 2.2515±0.0298 0.2104±0.0113 28.30
Superhuman* 0.2363±0.0222 1.8475±0.0781 2.0838±0.0782 0.1946±0.0171 1.478

MALA* 0.2022±0.0089 2.5760±0.0457 2.8117±0.0346 0.5695±0.0183 84.02
PEA* 0.2736±0.1603 1.5868±0.0900 1.8604±0.0815 0.1386±0.0134 1.480

UNETR* 0.1829±0.0495 1.7723±0.0324 1.9552±0.0816 0.1372±0.0316 129.1
EMmamba* 0.1342±0.0020 1.9014±0.0286 2.0356±0.0301 0.1420±0.0023 28.30

EMmamba† 0.1417±0.0022 1.5186±0.0076 1.6604±0.0086 0.0592±0.0002 28.30
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