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ABSTRACT

Large Vision-Language Models (LVLMs) have achieved remarkable success
across a wide range of multimodal tasks, yet their robustness to spatial variations
remains insufficiently understood. In this work, we present a systematic study
of the spatial bias of LVLMs, focusing on how models respond when identical
key visual information is placed at different locations within an image. Through
a carefully designed probing dataset, we demonstrate that current LVLMs often
produce inconsistent outputs under such spatial shifts, revealing a fundamental
limitation in their spatial-semantic understanding. Further analysis shows that
this phenomenon originates not from the vision encoder, which reliably perceives
and interprets visual content across positions, but from the unbalanced design of
position embeddings in the language model component. In particular, the widely
adopted position embedding strategies, such as RoPE, introduce imbalance dur-
ing cross-modal interaction, leading image tokens at different positions to exert
unequal influence on semantic understanding. To mitigate this issue, we introduce
Balanced Position Assignment (BaPA), a simple yet effective mechanism that
assigns identical position embeddings to all image tokens, promoting a more bal-
anced integration of visual information. Extensive experiments show that BaPA
enhances the spatial robustness of LVLMs without retraining and further boosts
their performance across diverse multimodal benchmarks when combined with
lightweight fine-tuning. Further analysis of information flow reveals that BaPA
yields balanced attention, enabling more holistic visual understanding.

1 INTRODUCTION

Large Vision-Language Models (LVLMs) have achieved remarkable success across a wide range of
multimodal tasks, including visual question answering (Alayrac et al., 2022; Xu et al., 2025), image
captioning (Li et al., 2023; Lu et al., 2025), and open-ended reasoning (Zhu et al., 2025b; Wang et al.,
2025). By combining powerful vision encoders with large language models (LLMs), these systems
are able to integrate information from both modalities and perform complex reasoning. Despite these
advances, LVLM still exhibits fundamental limitations when it comes to spatially robust semantic
understanding of visual content (Imam et al., 2025; Li et al., 2025).

Recent efforts have begun to explore the spatial bias of LVLMs, motivated by its hypothesized
connection to object hallucination. Xing et al. (2024) show that the widely used Rotary Position
Embedding (RoPE) (Su et al., 2024) introduces a long-term decay effect (Peng et al., 2024), which
impedes LVLMs from effectively capturing visual cues located linearly far from text tokens. In
contrast, Zhu et al. (2025c) argue that such findings lack generalizability across architectures and
introduce two novel attention calibration mechanisms to rectify spatially unbalanced attention with
LVLMs. While insightful, their exploration of spatial bias remains confined to the context of ob-
ject hallucination—a phenomenon that may also be influenced by other confounding factors, such
as the inherent hallucination tendencies of LLMs. Consequently, a rigorous examination of spatial
bias grounded in the fundamental aspect of semantic understanding remains largely unexplored.
Moreover, their analyses focus primarily on attention distributions, failing to delve into the under-
lying causes of spatial bias in LVLMs.

To fill this gap, this work conducts a systematic investigation into the spatial robustness of LVLMs’
semantic understanding when subjected to positional variations of critical visual information.
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Specifically, we construct a probing dataset designed for image-text matching, where the same
semantic content is placed in various spatial locations. The results show that LVLMs are highly
sensitive to these alterations, often producing inconsistent or even contradictory outputs under such
shifts. This phenomenon highlights a critical weakness in the spatial understanding capability of
current LVLMs, indicating that their integration of image features is not position-invariant but bi-
ased toward certain preferences. Meanwhile, the observed spatial position preferences of LVLMs
further demonstrate that the bias should not be attributed to the long-term decay property of RoPE.

To uncover the root cause of this vulnerability, we first investigate whether the vision encoder is
responsible for the observed spatial bias. Our eraser search (Li et al., 2016; De Cao et al., 2020)
experiments on its perceptual ability confirm that it consistently perceives visual features of key
content, regardless of the spatial position of the key image. Building on this, we then analyze
whether the encoder’s semantic understanding is affected by spatial position. The high and stable
similarity between text embeddings and visual features across different locations demonstrates that
semantic encoding is also robust to spatial variation. These observations rule out the vision encoder
as the source of spatial bias, suggesting that the issue originates in the LLM portion of the LVLM,
where the visual features are processed for multimodal reasoning.

Based on the above observations, we hypothesize that spatial bias stems from the imbalance in
cross-modal interactions, primarily introduced by position embeddings within the LLM backbone
of LVLMs. Current models typically adopt RoPE (Su et al., 2024) or related schemes, which mod-
ulate attention scores between tokens based on their relative distances in the sequence. While this
design has proven highly effective in unimodal text modeling, it becomes problematic in multimodal
contexts. Specifically, all image tokens should contribute equally during cross-modal fusion with
text tokens. The sequential distance bias inherent in RoPE disrupts this equitable interaction, leading
to distorted cross-modal interaction and ultimately undermining the spatial robustness of LVLMs.

To address this, we propose a simple yet effective Balanced Position Assignment (BaPA) mecha-
nism which assigns identical positional embeddings to all image tokens. This modification explicitly
promotes a more balanced and thorough integration of visual cues in cross-modal interactions. Em-
pirical results on our probing dataset show that applying BaPA without retraining leads to more
balanced performance and remarkably higher accuracy. We further adapt BaPA for broader down-
stream tasks. Results on five benchmark datasets show that BaPA can enhance LVLMs across diverse
multimodal benchmarks, demonstrating the effectiveness and generalizability of BaPA.

To summarize, our contributions are threefold. First, we provide a systematic investigation of spa-
tial robustness in LVLMs’s semantic understanding, empirically demonstrating through novel probes
that LVLMs’ predictions vary significantly with the spatial location of identical visual content. Sec-
ond, we pinpoint the root cause of this bias to the LLM’s position-sensitive cross-modal interactions,
rather than to deficiencies in the vision encoder. Third, we introduce Balanced Position Assignment
(BaPA), a lightweight and generalizable method that improves spatial robustness without sacrificing
downstream performance, validated through both probing tasks and five multimodal benchmarks.

2 RELATED WORK

Large Vision-Language Models. LVLMs combine both visual and textual inputs, providing a
more comprehensive understanding of visual spatial relationships, objects, and scenes (Bordes et al.,
2024). Existing LVLMs typically comprise a visual encoder (Dosovitskiy et al., 2021; Radford et al.,
2021), a projector (Alayrac et al., 2022), and a pre-trained LLM (Touvron et al., 2023). Through pre-
training with image-text pairs and fine-tuning with preference or instruction, current LVLMs, like
LLaVA (Liu et al., 2023a) and Qwen2.5-VL (Bai et al., 2025), have been successful in dialogue (Zhu
et al., 2025a), question answering (Zhu et al., 2023), and complex reasoning (Zhu et al., 2025b).
Nonetheless, LVLMs still exhibit numerous biases (Ruggeri et al., 2023; Wang et al., 2024a; Zhang
et al., 2025b), which diminish the trustworthiness of their response. In this paper, we systematically
investigate the under-explored issue of spatial bias of LVLMs and introduce a mitigation strategy
from the perspective of positional balance.

Position Encoding in Transformers. Since Transformers (Vaswani et al., 2017) lack a natural un-
derstanding of sequence order, numerous studies have proposed various position encoding methods.
Early works adopt sinusoidal absolute position encoding (Vaswani et al., 2017) and learnable em-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Qwen2.5-VL (b) Gemma3 (c) LLaVA-v1.6 (d) LLaVA-NeXT

Figure 1: Results on our probe dataset, where each cell reports the model’s accuracy when the key
image Im is placed at a specific grid location n in the 3× 3 composite image Im,n.

beddings (Dosovitskiy et al., 2021), while later approaches focus on learnable and relative position
encodings (Shaw et al., 2018; Huang et al., 2020; He et al., 2021; Ke et al., 2021), which offer
more flexibility in capturing temporal dependencies. Among them, Rotary Position Embedding
(RoPE) (Su et al., 2024) encodes relative positions through rotation matrices and has shown strong
effectiveness in LLMs and LVLMs. Meanwhile, work on extensions to RoPE is emerging, such as
LongRoPE (Ding et al., 2024), Unified RoPE (Wu et al., 2025), and CARoPE (Veisi et al., 2025).
Despite this, current work find that the impact of RoPE leads to position bias in LLMs (Zhang et al.,
2024; Chen et al., 2023), resulting in a phenomenon known as “lost-in-middle” (Liu et al., 2023b).
Recently, Xing et al. (2024) investigate how RoPE affects object hallucination in LVLMs and pro-
pose a novel position alignment method to mitigate the long-term decay in RoPE. In contrast, we
thoroughly explore the spatial bias grounded in the fundamental semantic understanding task and
observe that the underlying issue lies not in long-term decay but in unbalanced position assignment
of LVLMs. Although our approach also involves modifying the position encoding, it is motivated
by a different rationale, and it is empirically more effective than Xing et al. (2024) on multiple
benchmarks and even achieves balanced results without retraining.

3 PROBING TASK FOR SPATIAL ROBUSTNESS

In this section, we introduce the proposed probing task designed to systematically examine the
spatial robustness of LVLM’s semantic understanding ability. Specifically, we assess whether model
predictions remain consistent when key information appears in different regions of an image. We
first introduce the design of our probing task, and then present experimental results to reveal the
vulnerabilities of LVLMs on spatial-semantic understanding.

3.1 TASK DESIGN

To systematically evaluate the spatial robustness of LVLMs, we construct a probe dataset based on
image–text matching. Specifically, we randomly sample 10,000 image–caption pairs (Im, Cm) from
the LAION dataset (Schuhmann et al., 2022). As shown in Figure 6, for each key image Im, we
first randomly retrieve 8 distractor images from LAION. We then arrange Im and the 8 distractors
in a 3 × 3 grid to form a composite image Im,0, which is presented to the LVLM together with
the caption Cm. The model is asked a yes-or-no question Qm to determine whether any sub-image
within the composite matches the given caption Cm. To probe sensitivity to spatial variation, we
further construct augmented composites {Im,1, Im,2, . . . , Im,8}, where the original image Im is
placed at different grid locations. In each case, the same question Qm is posed to the model. The
final dataset contains 90,000 samples {Im,n, Cm, Qm|m ∈ {0, 1, . . . , 9, 999}, n ∈ {0, 1, . . . , 8}}
in total. By comparing outputs across these variants, we can directly assess whether LVLMs yield
consistent predictions in response to positional changes of key information, while all other visual
and textual factors remain unchanged. More details are available in Appendix B.

3.2 RESULTS AND FINDINGS.

We evaluate five representative LVLMs on our probing dataset, including Qwen2.5-VL-7B(Bai
et al., 2025), Gemma3-12B (Team et al., 2025), LLaVA-v1.6-Mistral-7B (LLaVA-v1.6) (Liu et al.,
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(b) LLaVA-NeXT

Figure 2: Results on perception ability across each Position n of key image. Darker regions indicate
higher importance scores, where logits change more significantly before and after masking. More
results of Qwen2.5-VL and LLaVA-v1.6 are available in Figure 7.

2024), and Llama3-LLaVA-NeXT-8B (LLaVA-NeXT). All models are evaluated in a zero-shot set-
ting, without any task-specific fine-tuning.

Main Results. As shown in Figure 1, all LVLMs exhibit sensitivity to the spatial variation of the key
image. LLaVA-v1.6, and particularly LLaVA-NeXT exhibit strong sensitivity to spatial variations,
with large fluctuations in accuracy across positions. Among all models, Qwen2.5-VL achieves the
most consistent performance, likely benefiting from its improved MRoPE (Bai et al., 2025), although
slight spatial bias can still be observed. Moreover, we observe that the performance is not well
correlated with token distance, suggesting that spatial bias might not stem from the long-term decay
property of RoPE (Su et al., 2024).

Impact of Model Scale. We further examine the correlation between model scale and spatial bias
by evaluating the Qwen2.5-VL model series on our probe dataset. As shown in Table 1, Qwen2.5-
VL-7B exhibits greater accuracy fluctuations across different grid positions (∆ = 1.74), reflecting
higher spatial sensitivity and stronger bias. With increasing model size, Qwen2.5-VL-32B generally
achieves lower variance, which is consistent with previous observations (Zhu et al., 2024) that larger
models tend to make more consistent decisions. Interestingly, the average accuracy of Qwen2.5-
VL-32B declines slightly compared to Qwen2.5-VL-7B, the reason can be that larger models might
be more susceptible to overfitting or inefficiencies in processing specific data types.

4 ANALYZING THE ORIGIN OF SPATIAL BIAS

To pinpoint the origin of the spatial bias in LVLMs, this section systematically examines the role of
the vision encoder. Our analysis focuses on two critical aspects of the encoder: its low-level visual
perception and high-level visual understanding capabilities, aiming to ascertain if the bias stems
from this component.

4.1 IS VISION ENCODER PERCEPTION SPATIALLY ROBUST?

Task Design. Inspired by the work on model interpretability (Si et al., 2024; Zhang et al., 2025a),
we design a set of experiments using eraser search (Li et al., 2016; De Cao et al., 2020) based on our
probe dataset, where each region of the input image are occluded sequentially and we observe the
resulting changes in the model’s response. This allows us to examine how the model’s behavior is
affected by different spatial locations of key image Im in the composite input Im,n. In specific, for
each position n, we first randomly select 20 key images, with a total of 180 samples. As shown in
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(a) Qwen2.5-VL (b) Gemma3 (c) LLaVA-v1.6 (d) LLaVA-NeXT

0.73 0.73 0.73

0.73 0.73 0.73

0.730.73 0.73

0.79 0.79 0.79

0.79 0.79 0.79

0.790.79 0.79

0.55 0.55 0.55

0.55 0.55 0.55

0.550.55 0.55

0.52 0.52 0.52

0.52 0.52 0.52

0.520.52 0.52

Figure 3: Results on understanding abilities across each Position n. Each cell reports the similarity
between visual features and text embeddings input to the LLMs when the key image Im is placed at
a specific grid location n in the 3× 3 composite image Im,n.

Figure 8(a), each composite image is divided into 400 non-overlapping regions, and we mask each
region one at a time by perturbing its pixels to the background color (white in our experiment). Then,
we calculate the difference between the logits of generated token based on the original composite
image and the masked version for each LVLM and take it as the importance score of the region with
respect to the response. Finally, we aggregate these importance scores into a heatmap to visualize
how information from different positions within the input image influences the model’s decision.

Results and Findings. Figure 2 presents the results of our masking experiments on Gemma3 and
LLaVA-NeXT. In both models, the vision encoder is consistently able to identify the critical regions
corresponding to the key image, irrespective of its location in the composite input. In addition, the
overall patterns remain semantically aligned with the key image and do not shift when its position
changes, demonstrating that the vision encoder’s perception is robust to spatial variation. These
results rule it out as the source of the spatial bias. More results are presented in Figure 7.

4.2 IS VISION ENCODER UNDERSTANDING SPATIALLY ROBUST?

Task Design. Inspired by Radford et al. (2021), we determine whether the vision encoder can main-
tain consistent semantic understanding when key image locations change by analyzing the similarity
between the visual features input to the LLMs and the embeddings of the corresponding caption.
Specifically, we first randomly select 1,000 key image-caption pairs (I ′m, C ′

m) from LAION dataset.
As illustrated in Figure 8(b), each image I ′m is then pasted onto a white background at every position
n, serving as synthetic image inputs I′

m,n for the LVLMs. We measure the semantic understanding
capability of the vision encoder by evaluating the cosine similarity between the embedding repre-
sentations of caption C ′

m and visual features of I′
m,n input to LLM.

Similarity = cos(g(fv(I
′
m,n)), E(C ′

m)), (1)

where g(·) and fv(·) denote the projection module and vision encoder of the LVLM, respectively.
E(C ′

m) is the embeddings of input caption C ′
m.

Results and Findings. As shown in Figure 3, the similarity scores remain highly stable regardless
of the spatial placement of the key image across all five models. This consistency indicates that the
vision encoder reliably extracts semantically aligned representations of the key image, independent
of its spatial location in the composite. Moreover, combining the results in Figure 1, we find a
trend that LVLMs achieving higher similarity scores (e.g., Gemma3 and Qwen2.5-VL) also exhibit
stronger and more stable performance on our probing tasks, whereas models with lower similarity
scores (e.g., LLaVA-v1.6 and LLaVA-NeXT) perform worse and show greater sensitivity to po-
sitional changes. This correlation further validates that robust semantic alignment between visual
features and textual embeddings is a key factor behind reliable multimodal understanding.

5 BALANCED POSITION ASSIGNMENT (BAPA)

Based on the above observation, we assume that the root of spatial bias may be traced to the imbal-
ance inherent in the position embeddings within the LLM component of LVLMs.
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Figure 4: Overall view of inference in LVLMs with traditional position assignment and the proposed
balanced position assignment.

5.1 THE BASELINE ROTARY POSITION EMBEDDING

Currently, most LVLMs employ Rotary Position Embedding (RoPE) (Su et al., 2024) as the po-
sition encoding method for the LLM component. Unlike absolute position embeddings that add
a fixed vector to each token representation, RoPE encodes relative positional information di-
rectly into the attention mechanism through rotation in a complex plane. Specifically, for a to-
ken embedding xp at position p, RoPE applies a rotary matrix Rd

Θ,p with pre-defined parame-
ters Θ = {θi = 10000−2(i−1)/d, i ∈ [1, 2, . . . , d/2]}. Thus, during the self-attention computa-
tion (Vaswani et al., 2017), the dot product between query and key at position p and q becomes

qTp kq = (Rd
Θ,pWqxp)

T(Rd
Θ,qWkxq) = xT

pWqR
d
Θ,q−pWkxq (2)

where Rd
Θ,q−p = (Rd

Θ,p)
TRd

Θ,q and q − p represents the relative position between qp and kq . Ac-
cording to Equation 2, RoPE naturally introduces imbalance, where the result of the inner product,
i.e., interaction strength, is influenced by the relative distance between tokens. While this imbal-
ance is well-suited for capturing autoregressive dependencies in text, we posit that it is ill-suited for
facilitating effective cross-modal interactions below.

5.2 THE PROPOSED METHOD

In traditional LVLMs, visual features extracted from the vision encoder are typically arranged into a
1-D sequential order following a raster-scan strategy as shown in Figure 4(a). Due to the imbalance
property of RoPE (Peng et al., 2024), image tokens at different positions in the sequence have
unequal influence on the same text token during cross-modal interaction. However, intuitively, since
the vision encoder has already modeled local pixel relationships and global spatial structures, image
tokens should be treated as semantically equivalent from the LLM’s perspective.

To overcome this imbalance, we propose Balanced Position Assignment (BaPA), a simple yet
effective modification to the position assignment of image tokens. In particular, as shown in Fig-
ure 4(b), for a a multimodal sequence Z = {s1, . . . , si, ṽ1, . . . , ṽj , x1, . . . , xk}, where {ṽ1, . . . , ṽj}
denotes the image tokens derived from vision encoder and projector, {s1, . . . , si} and {x1, . . . , xk}
denotes the embeddings of system prompt and user prompt, respectively, instead of endowing each
image token ṽk with distinct position assignment pṽk , BaPA enforces

pṽ1 = pṽ2 = · · · = pṽj = pimg = i (3)
where i and j are the number of the system prompt tokens and image tokens, respectively. Here,
in order to ensure the continuity of the overall position assignment, we set pimg to the value of the
original pṽ1 , i.e., i. Therefore, the final position assignment for the entire input of the LLM backbone
is as follows:

Position ids = {0, 1, . . . , i− 1︸ ︷︷ ︸
system prompt

, i, i, . . . , i︸ ︷︷ ︸
image tokens

, i+ 1, i+ 2, . . . , i+ k − 1︸ ︷︷ ︸
user prompt

} (4)
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Table 1: Results on our probe dataset where 0-8 denotes the different grid positions of key image
in the composite images, Avg and ∆ denote the average accuracy and variance across all positions,
respectively. The results with an increase after BaPA are bolded. Noted that the results of BaPA are
obtained without training the baseline LVLMs.

Position 0 1 2 3 4 5 6 7 8 Avg ↑ ∆ ↓

Gemma3 83.77 83.05 78.11 85.11 84.43 78.98 84.41 82.87 77.60 0.82 8.75
Gemma3-BaPA 93.03 93.10 91.05 92.66 92.97 90.01 92.49 92.94 90.48 92.08 1.49
LLaVA-NeXT 68.91 77.62 70.89 58.54 69.82 62.52 55.20 63.89 57.15 64.95 54.90
LLaVA-NeXT-BaPA 96.44 96.35 96.52 96.31 96.12 96.47 96.42 96.46 96.63 96.41 0.02
LLaVA-v1.6-BaPA 75.71 77.75 71.67 70.98 65.87 68.35 65.87 72.40 68.81 70.82 16.79
LLaVA-v1.6-BaPA 94.89 84.47 93.63 94.18 93.79 92.71 94.05 93.77 92.55 93.78 9.97
Qwen2.5-VL-7B 81.86 80.00 81.67 83.81 81.71 83.58 84.15 82.62 83.05 82.49 1.74
Qwen2.5-VL-7B-BaPA 80.95 78.71 79.92 81.95 80.43 82.23 83.41 81.54 82.38 81.28 2.06
Qwen2.5-VL-32B 82.25 81.82 82.58 82.39 81.47 81.66 82.52 81.92 81.00 81.96 0.28
Qwen2.5-VL-32B-BaPA 82.31 81.69 82.31 82.72 81.66 81.53 84.18 83.57 82.34 82.48 0.80

This modification removes the artificial positional imbalance introduced by RoPE or similar encod-
ings, ensuring that each image token has equal importance when interacting with textual tokens.

5.3 EXPERIMENTS ON PROBE DATASET

Experimental Settings. We first evaluate the effectiveness of the proposed BaPA on our probe
dataset. Since the training data of mainstream LVLMs is not publicly available, retraining these
models with a modified position embedding is infeasible. Thus, we directly apply BaPA to the
inference stage of existing LVLMs without any retraining, making our approach lightweight and
broadly applicable. We test the same five representative LVLMs under a zero-shot setting.

Results and Findings. Table 1 reports the performance of each LVLM and their BaPA-enhanced
variants on our probe dataset, where the key image is placed at different grid positions (0–8). For
each model, we further report the average accuracy (Avg) and variance (∆) across all positions. The
results highlight three major findings.

• For average accuracy, applying BaPA leads to a substantial improvement across almost all
models, with particularly remarkable gains observed for previous underperforming models like
LLaVA-NeXT and LLaVA-v1.6. This suggests that the baseline’s unbalanced position embed-
dings hinder the full utilization of visual information, and rectifying this imbalance enables
LVLMs to exploit visual features more effectively for cross-modal interaction.

• For spatial robustness, BaPA effectively reduces the accuracy variance across different positions.
Notably, LLaVA-NeXT, which originally suffered from severe instability (∆ = 54.90), achieves
near-uniform performance (∆ = 0.02) after applying BaPA. This confirms that the root of spa-
tial bias lies in the unbalanced position assignment within LLMs, and that equalizing positional
importance directly mitigates this inconsistency.

• For model scale, as the model parameters increase from 7B to 32B, BaPA delivers a more
pronounced overall accuracy improvement for Qwen2.5-VL, rising from 81.28 to 82.48. This
suggests that the proposed method is effective in enhancing the performance of larger models.
Moreover, owing to its improved MRoPE (Bai et al., 2025), the spatial bias inherent in Qwen2.5-
VL is less significant, hence our BaPA provides no improvement on variance.

5.4 EXPERIMENTS ON DOWNSTREAM TASKS

Experimental Settings. To further validate the effectiveness of BaPA beyond the probing task, we
evaluate its performance on general downstream multimodal tasks with three representative LVLMs,
including Gemma3-8B (Team et al., 2025), LLaVA-v1.6-Mistral-7B (Liu et al., 2024), Qwen2.5-
VL-7B (Bai et al., 2025). Considering that downstream tasks involve more complex image–text
interactions than our probe dataset, we perform lightweight LoRA (Hu et al., 2022) fine-tuning
with 10K instruct-tuning data from LLaVA to adapt these models to the new position encoding
scheme. We additionally train LLaVA-v1.5 (Liu et al., 2024) with BaPA from scratch to compare
with CCA, which is a positional alignment strategy proposed by Xing et al. (2024) to address the
object hallucination of LVLMs. Following (Liu et al., 2024), we only retained samples that contain
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Table 2: Results on downstream tasks. The results with an increase after BaPA are bolded.

Models
MMMU-Prodirect ScienceQAimage CRPErelation HallusionBench

4-option 10-option
Gemma3 0.4357 0.2536 0.8156 0.7002 0.6393
Gemma3-BaPA 0.4162 0.2944 0.8180 0.6819 0.6015
Qwen2.5-VL 0.4763 0.3427 0.7898 0.7658 0.7066
Qwen2.5-VL-BaPA 0.4915 0.3735 0.8909 0.7690 0.6909
LLaVA-v1.6 0.3390 0.2015 0.7288 0.6884 0.5363
LLaVA-v1.6-BaPA 0.3365 0.1927 0.7288 0.6905 0.5489
LLaVA-v1.5 0.3522 0.1908 0.6951 0.6671 0.4825
LLaVA-v1.5-CCA 0.3340 0.1864 0.6966 0.6581 0.4921
LLaVA-v1.5-BaPA 0.3440 0.1952 0.7010 0.6760 0.5205

exactly one image in the input for each dataset during evaluation. More details are available in
Appendix C.3.

MMMU-Pro. We first evaluate the proposed method on MMMU-Pro (Yue et al., 2025), which is an
enhanced multimodal benchmark designed to rigorously assess the true understanding capabilities
of LVLMs. As shown in Table 2, BaPA yields mixed effects on such complex reasoning tasks, while
CCA typically reduces the performance of LVLMs. BaPA provides a slight decrease for Gemma3
in the 4-option setting, yet it confers a significant advantage (from 0.2536 to 0.2775) in the more
challenging 10-option setting. For Qwen2.5-VL, BaPA consistently enhances performance in both
settings, especially for 10-option with 3% accuracy improvement. This suggests that the benefits of
BaPA are most pronounced in tasks that require richer contextual reasoning from multimodal inputs.

ScienceQA. We then evaluate our method on the ScienceQA dataset (Lu et al., 2022), which is
collected from elementary and high school science curricula. The results in Table 2 show that BaPA
can consistently improve or maintain LVLMs’ performance on science-related tasks. The most
notable gain is observed in Qwen2.5-VL with a substantial improvement of 10%. This suggests that
BaPA effectively reduces positional imbalance, leading to better integration of visual and textual
information for precise knowledge-based reasoning.

Hallucination Benchmark. We also evaluate BaPA on two comprehensive multimodal hallucina-
tion benchmarks, i.e., CRPE (Wang et al., 2024b) and HallusionBench (Guan et al., 2024). Ac-
cording to Table 2, we find that BaPA generally reduces hallucination tendencies and improves the
prediction reliability of LVLMs. For instance, BaPA improves the performance of LLaVA-v1.6 on
HallusionBench from 0.5363 to 0.5489, while Qwen2.5-VL achieves a small gain on CRPE. Al-
though some models, such as Gemma3, exhibit minor drops, the overall trend suggests that BaPA
helps alleviate the negative effects of spatial bias, leading to more stable and trustworthy predictions.

Table 3: Results on MME benchmark. The results with an
increase after BaPA are bolded.

Model
Object-level Attribute-level

Total
existence count position color

Gemma3 190.00 165.00 98.33 158.33 611.66
Gemma3-BaPA 200.00 151.67 111.67 153.33 616.67
Qwen2.5-VL 200.00 155.00 160.00 195.00 710.00
Qwen2.5-VL-BaPA 200.00 163.33 175.00 195.00 733.33
LLaVA-v1.6 200.00 155.00 133.33 185.00 673.33
LLaVA-v1.6-BaPA 200.00 153.33 145.00 175.00 673.33
LLaVA-v1.5 175.67 124.67 114.00 151.00 565.33
LLaVA-v1.5-UAC 190.00 155.00 128.33 165.00 638.33
LLaVA-v1.5-CCA 190.00 148.33 128.33 175.00 641.66
LLaVA-v1.5-BaPA 190.00 153.33 135.00 170.00 648.33

MME. The MME benchmark (Fu
et al., 2023) is a comprehensive
evaluation benchmark for LVLMs.
Following Xing et al. (2024), we
evaluate our method on four per-
ception subtasks that assess object-
level and attribute-level hallucina-
tions. Here we also compare the re-
sults of UAC (Zhu et al., 2025c)1,
a training-free attention calibration
method for object hallucination. Due
to the differing training strategies
of the two baselines, we employ a
compromise approach for compari-
son, i.e., fine-tuning LLaVA-v1.5 us-
ing the BaPA with LoRA on 10K
samples as other models. The results in Table 3 show that BaPA consistently preserves or improves

1Here we compare with UAC rather than DAC proposed by Zhu et al. (2025c), as DAC is specifically fine-
tuned on the 5.4k data that is constructed with ground truth object labels, making a direct comparison unfair.
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model performance on the MME benchmark, especially at the attribute level, where position imbal-
ance has the strongest negative effect. Compared with CCA and UAC, our BaPA achieves better
results on most tasks and total scores despite being a much simpler positional adjustment. Overall,
these findings indicate that equalizing image-token position embeddings is a compact, effective way
to strengthen LVLMs’ grounding and reduce hallucination without heavy re-training or complex
architectural changes.

5.5 ANALYSIS OF INFORMATION FLOW

To analyze the effect of BaPA on cross-modal interactions, we visualize the information flow in
LLaVA-v1.6 and the BaPA-finetuned version across three well-performing downstream datasets, in-
cluding ScienceQA, CRPE, and HallusionBench. For each dataset, we compute the average attention
score from text tokens to image tokens across all layers and attention heads, thereby highlighting the
contribution of each image token during multimodal reasoning.

ScienceQA CRPE HallusionBench

LLaVA-v1.6-BaPA

(a) Information flow across downstream datasets

Question:  According to the image, in 2019, did Asian families have 
the highest real median household income in the United States, with 
White, Hispanic, and Black households following respectively?

Prediction:  LLaVA-v1.6: Yes        LLaVA-v1.6-BaPA: No

Input Image LLaVA-v1.6

(b) An example in HallusionBench

LLaVA-v1.6

LLaVA-v1.6-BaPA

Figure 5: The visualization of information flow from image token ṽi to text token xj .

Overall Trend. The visualization of information flow across downstream datasets shown in Fig-
ure 5(a) reveals clear differences between LLaVA-v1.6 and the BaPA-finetuned version. The base-
line model tends to concentrate attention on only a few image tokens, often overlooking other se-
mantically relevant regions. This behavior indicates that its cross-modal interaction relies heavily
on localized cues, which can increase the risk of biased or insufficient interactions. In contrast,
BaPA encourages a more even spread of attention across image tokens, ensuring that a broader set
of important visual features contributes to the cross-modal interaction. These results demonstrate
that BaPA effectively stabilizes attention patterns, allowing LVLMs to capture richer and more com-
prehensive visual information during cross-modal interaction.

Case study. To better illustrate the impact of BaPA, we present a case study from HallusionBench
in Figure 5(b). The baseline LLaVA-v1.6 confines its attention to a few isolated image regions,
while most visual tokens receive little to no attention. This uneven distribution reflects the position
imbalance introduced by standard position assignment, leading the model to overemphasize spurious
cues while neglecting relevant evidence. By contrast, LLaVA-v1.6-BaPA exhibits a more balanced
allocation of attention across image tokens, particularly in regions strongly associated with correct
decision—making (i.e., tokens corresponding to the curve and words). This balanced allocation
facilitates the integration of visual information from broader areas, mitigates spatial bias, and thereby
enhances the robustness of cross-modal understanding. More cases are available in Appendix D.

6 CONCLUSION

This work presents a systematic investigation of spatial bias in LVLMs, showing that inconsistent
predictions under spatial shifts originate from unbalanced position encodings in the LLM. To address
this issue, we propose Balanced Position Assignment (BaPA), which assigns identical position em-
beddings to all image tokens. Experiments demonstrate that BaPA improves spatial robustness with-
out retraining and further enhances performance across multimodal benchmarks with lightweight
fine-tuning. Further analysis demonstrates that BaPA effectively balances attention distributions,
enabling more comprehensive visual understanding.
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ETHICS STATEMENT

All datasets used in this work are publicly available and widely adopted in the research community.
We have manually inspected the data to ensure compliance with the ICLR Code of Ethics. No
offensive, harmful, or privacy-sensitive content is involved in our study.

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we have released the code and part of the data at https://
anonymous.4open.science/r/BaPA-1124/. Meanwhile, the implementation details of
each experiments are provided in Section 3.1, Section 4.1, Section 4.2, Section 5.3, Section 5.4 and
Section 5.5, as well as in Appendix C.3. The complete probing dataset and checkpoints of each
LVLM will be made publicly available on HuggingFace upon acceptance.
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A LIMITATIONS

This paper presents a systematic investigation of spatial bias in LVLMs. Although providing new
insights and solutions, our work suffers from two limitations. First, our probing experiments focus
primarily on a 3 × 3 spatial grid, which may not fully capture more fine-grained or irregular spa-
tial variations. Second, due to computational constraints, we limit our evaluation to medium-scale
LVLMs and do not include very large models such as Qwen2.5-VL-72B. Investigating whether the
identified spatial bias persists or evolves in larger-scale models remains an important direction for
future work.

B DETAILS OF PROBE TASK

For each key image Im and caption Cm randomly selected from LAION, we first generate 9 corre-
sponding composite images {Im,n}8n=0 according to the workflow depicted in Figure 6. Then we
fed each composite image Im,n alongside the question Qm format as following into the LVLMs to
test their spatial robustness.

Question Qm

Determine if there is a sub-image in the given image that matches the text following.
Text: {Cm}
The answer should only contain ‘Yes’ or ‘No’, without reasoning process.

𝐶𝑚: a man squatting 
next to a pile of trash

𝐼𝑚

LAION

Key Image-Caption

Distractors

Retrieval

Arrangement & Composite

𝑰𝑚,0 𝑰𝑚,1 𝑰𝑚,2

𝑰𝑚,3 𝑰𝑚,4 𝑰𝑚,5

𝑰𝑚,6 𝑰𝑚,7 𝑰𝑚,8

Figure 6: Workflow illustration on how we synthesize composite images in probe dataset, where the
key image features red borders not present in our experiments.

C EXPERIMENTS ON DOWNSTREAM TASKS

C.1 DATASETS

MMMU-Pro MMMU-Pro (Yue et al., 2025) is an enhanced multimodal benchmark designed to
challenge and evaluate multimodal models with tasks demanding college-level subject knowledge
and complex reasoning. It contains 1.73K meticulously collected multimodal questions from college
exams, quizzes, and textbooks, covering six core disciplines: Art & Design, Business, Science,
Health & Medicine, Humanities & Social Science, and Tech & Engineering. To facilitate statistical
analysis, we evaluate each LVLM under 4-option and 10-option settings, respectively, and ask them
to answer questions directly.

ScienceQA ScienceQA (Lu et al., 2022) is a large-scale multi-choice dataset collected from ele-
mentary and high school science curricula, and contains 21,208 multimodal science questions with
explanations and features rich domain diversity. We assess each LVLM on the test set of ScienceQA
with 4,241 samples.

CRPE CRPE is a benchmark designed to quantitatively evaluate the object recognition and re-
lation comprehension ability of LVLMs. The evaluation is formulated as single-choice questions.
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(b) LLaVA-v1.6

Figure 7: More results on perception ability across each Position n of key image. Darker regions
indicate higher importance scores, where logits change more significantly before and after masking.

Determine if there is a sub-image in the given 
image that matches the text following.
Text: a man squatting next to a pile of trash
The answer should only contain ‘Yes’ or ‘No’, 
without reasoning process.

Prompt

Composite Image 𝑰𝒎,𝟎 Masked Composite Image 𝑰𝒎,𝟎
𝑴𝒂𝒔𝒌 

Large Vision-
Language Model

Large Vision-
Language Model

(0.041, 0.001, 261.34, …, 0.002)
Original Logits

(0.341, 3.207, 250.26, …, 1.002)
Perturbed Logits

R1

Importance Score or R1 R1 : Mask for Region 1

𝐶𝑚: a man squatting 
next to a pile of trash

Synthetic Image 𝑰′𝑚,0

Caption

Vision 
Encoder

Projector ……

visual 
features

LLM Embedding ……

Text 
embeddings

Cosine 
Similarity

(a) Workflow illustration of the experiments on perception ability of vision encoder (b) Workflow illustration of the experiments on understanding ability of vision encoder 

(white in our experiments)

Figure 8: Workflow illustration on our analysis experiments.

Following previous work (Bai et al., 2025), we evaluate LVLMs on relation comprehension ability
instead of recognition with CRPE.

HallusionBench HallusionBench is a comprehensive benchmark designed for the evaluation of
image-context reasoning, which comprises 346 images paired with 1129 questions, all meticulously
crafted by human experts.

C.2 BASELINES

CCA Concentric Causal Attention (CCA) (Xing et al., 2024) is a simple yet effective positional
alignment strategy designed for mitigating object hallucination in LVLMs. The core novelty of CCA
lies in naturally reducing relative distance between visual and instruction tokens, thereby mitigating
the long-term decay effects of RoPE in LVLMs. CCA trains LLaVA from scratch through two stages
to adapt the new position embedding, including 1) a pre-training over CC-558K dataset with global
batch size of 256 and 2) a instruction tuning with a 665k multi-turn conversation dataset with global
batch size of 128. During the experiment, we directly use the checkpoints provided by Xing et al.
(2024) for evaluation2.

UAC Uniform Attention Calibration (UAC) (Zhu et al., 2025c) is a training-free method that re-
moves spatial perception bias estimated from a meaningless input by calibrating biased attention,

2https://huggingface.co/xing0047/cca-llava-1.5-7b
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Table 4: Hyperparameters for LoRA finetuning.

Model Lora rank Lora alpha Global Batch Size Learning rate Epoch
Gemma3 8 16 32 1.0e-04 2
LLaVA-v1.6 8 16 32 1.0e-04 1
Qwen2.5-VL 8 16 32 1.0e-04 1
LLaVA-v1.5 128 256 128 2.0e-04 1

Table 5: Hyperparameters for training LLaVA-v1.5 from scratch.

Stage Global Batch Size Learning rate Epochs Max length Weight decay
Pre-training 256 1.0e-03 1 2048 0
Instruct-tuning 128 2.0e-05 1 2048 0

offering a simple yet effective solution with competitive performance. Due to the unavailability of
the relevant code and models, we did not compare our method with UAC on general downstream
tasks. Instead, we only report its results on the MME benchmark provided by Zhu et al. (2025c).

C.3 IMPLEMENTATION DETAILS

For each LVLM, we randomly select 10,000 samples from the LLaVA-v1.5 instruction-tuning data3

and fine-tune the models with LoRA (Hu et al., 2022) using the LLaMA-Factory library4. The
hyperparameters used for training are shown in Table 4. To better adapt LLaVAv1.5 to BaPA, we
retrain it from scratch using the same two stages as (Xing et al., 2024), and the hyperparameters are
presented in Table 5 All the experiments are finished on 4 A100 GPUs with 80GB memory.

D CASE STUDY

We further randomly select one example each from HallusionBench, ScienceQA and CRPE for
demonstration. The results are shown in Figures 9, 10 and 11.

Question:  According to the text given in the image, is this ice-cream 
a vanilla-chocolate flavor ice cream?

Prediction:  LLaVA-v1.6: Yes        LLaVA-v1.6-BaPA: No

Input Image LLaVA-v1.6 LLaVA-v1.6-BaPA

Figure 9: An example in HallusionBench, where the input image is resized as processed in LLaVA-
v1.6.

3https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/
main/llava_v1_5_mix665k.json

4https://github.com/hiyouga/LLaMA-Factory
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Context: Use the data to answer the question below.
Is the following statement about our solar system true or false?
Neptune's volume is more than 50 times as great as that of Earth.
A. true       B. false

Prediction:  LLaVA-v1.6: B        LLaVA-v1.6-BaPA: A

Input Image LLaVA-v1.6 LLaVA-v1.6-BaPA

Figure 10: An example in ScienceQA, where the input image is resized as processed in LLaVA-v1.6.

Question: What is the relation between the person and the book?
A. The person is beside the book. B. The person is sitting on the book.
C. The person is exiting the book. D. The person is standing on the book.

Prediction:  LLaVA-v1.6: B        LLaVA-v1.6-BaPA: A

Input Image LLaVA-v1.6 LLaVA-v1.6-BaPA

Figure 11: An example in CRPE, where the input image is resized as processed in LLaVA-v1.6.

E THE USE OF LARGE LANGUAGE MODELS

During the preparation of the manuscript, we employed large language models (LLMs) to correct
grammatical errors and typos to improve the fluency and readability of the text. All research ideas,
experimental designs, analyses, and conclusions are solely developed by the authors.
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