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Abstract

The use of large language models (LLMs) is
growing due to their impressive performance
on a wide range of tasks. As new versions of
these models appear to achieve better results,
their size often increases, making it more chal-
lenging to maintain different versions special-
ized in specific domains. However, by employ-
ing the Low-Rank Adaptation (LoRA) method,
we can bypass this space limitation, as the fine-
tuning changes of the model are stored in a
file of just a few megabytes. In the Machine
Translation (MT) field, it is common to have
models specialized for particular domains or
language pairs. In our case, we apply these
models within Interactive Machine Translation
(IMT), where it is crucial that the model gen-
erates high-quality translations and adapts to
user modifications. We have incorporated Re-
inforcement Learning (RL) techniques to op-
timize the model using various metrics to en-
hance this adaptability further. We have per-
formed experiments with BLOOM (560M),
and our results demonstrate that these meth-
ods effectively improve the quality of trans-
lations generated by the models, although in
some cases, this comes at the cost of a slight
reduction in generalization capability.

1 Introduction

Machine Translation (MT) has undergone signif-
icant changes in recent years, mainly due to the
advent of neural models. These advances have
enabled models to perform with a level of effi-
ciency comparable to that of human translators
across a broad range of machine translation tasks
(Toral, 2020). Despite this progress, there are still
many instances where models struggle to produce
high-quality translations. In such cases, human
involvement is required for post-editing to ensure
flawless translations, as experts review and cor-
rect these. Various Computer-Assisted Translation
(CAT) tools have been developed to minimize the

effort these human experts require, including Inter-
active Machine Translation (IMT) (Federico et al.,
2014; Sanchis-Trilles et al., 2014; Herbig et al.,
2020).

IMT systems aim to reduce the effort required by
users by creating a collaborative framework where
the expert user and the translation model work iter-
atively to produce perfect translations. Instead of
correcting all the errors found, the user only needs
to correct the first error and provide this feedback
to the system, which then generates an improved
translation. This process is repeated until the user
approves the translation. Various protocols can be
implemented to facilitate this interaction (Foster
et al., 1997; Alabau et al., 2010; Domingo et al.,
2017), but in our case, we will use the prefix-based
protocol, as it aligns more closely with the genera-
tion process of MT models.

One technique employed alongside IMT systems
involves providing each user with a personalized
translation model, slightly adjusted to favor the
user’s preferred word choices. This model adjust-
ment can be achieved through online or active learn-
ing techniques (Peris and Casacuberta, 2018, 2019),
allowing the model to adapt as the system is be-
ing used in real-time. However, this approach is
becoming increasingly obsolete with the advent
of Large Language Model (LLM) such as GPT
(Achiam et al., 2023), BLOOM (Scao et al., 2022),
Gemini (Team et al., 2023), and Llama2 (Touvron
et al., 2023), which are growing in size, making
it impractical for each user to maintain a personal
copy.

By applying the Low-Rank Adaptation (LoRA)
technique (Hu et al., 2021) to LLM trained for
multiple tasks, we can fine-tune the model for a
specific domain without creating a new copy of the
model for each case. This technique allows us to
save the changes required for the model to function
in the targeted domain in only a few megabytes of
file. Thus, instead of maintaining separate copies



of the model for each task, we only need to keep
the original model and the lightweight LoRA files,
which are then added to the base model to use
them. Given the minimal storage requirements and
that LoRA has demonstrated comparable results
to conventional fine-tuning, the possibility of each
user having their customized model or maintaining
multiple models for specific tasks becomes feasible
once again.

In this article, we aim to evaluate the efficiency
of LoRA fine-tuned models within the IMT do-
main. It has been demonstrated that fine-tuning
large language models for specific translation tasks
improves the quality of the generated translations.
However, in the field of IMT, we require more
than just high-quality initial translations; we need
models that can adapt to user feedback, effectively
generalizing to produce alternative translations that
better align with the translator’s expectations. Addi-
tionally, we explore how different training methods
for LoRA models impact human effort metrics like
WSR, KSR, or MAR. To this end, we have also
implemented a Reinforcement Learning (RL) algo-
rithm to fine-tune the models, optimizing metrics
such as Accuracy, TER, and BLEU.

2 Related Work

In this article, we focus on four primary areas of
research:

Large Language Models A significant number
of Large Language Models (LLMs) have emerged
recently. Among them, we have chosen to use
BLOOM (Scao et al., 2022) primarily because it
is an open-source model, trained across multiple
languages, and available in various sizes. While
the list of prominent LLMs is constantly evolving,
some of the most well-known currently include
GPT-4 (Achiam et al., 2023), LLaMA2 (Touvron
et al., 2023), Gemini (Team et al., 2023), FALCON
(Almazrouei et al., 2023), and Mistral (Jiang et al.,
2023).

Finetuning with Adapters While we are em-
ploying LoRA, there are other methods that fall
under the umbrella of Parameter-Efficient Fine-
Tuning (PEFT). Several of these methods also uti-
lize adapters for fine-tuning the model, such as
Low-Rank Hadamard Product (LoHA) (Hyeon-
Woo et al., 2021) and Orthogonal Fine-Tuning
(OFT) (Qiu et al., 2023). Other PEFT methods,
categorized as Soft Prompts, aim to identify the
optimal input tensor for a given task rather than

altering the model’s weights. Among these are
techniques like prompt tuning (Lester et al., 2021),
prefix tuning (Li and Liang, 2021), and P-tuning
(Liu et al., 2023).

Interactive Machine Translation In the field
of IMT, various protocols can be followed depend-
ing on how the user performs the corrections. In
our case, we are working at the prefix level (Foster
et al., 1997), requiring the user to make corrections
from left to right. Alternatively, segment-level pro-
tocols (Domingo et al., 2017) allow users more
flexibility as they can correct wherever words they
find, though it supposes a more significant chal-
lenge for the translation model. Other methods to
reduce human effort include using confidence mea-
sures (Specia et al., 2013), touch-only interactions
(Wang et al., 2020), or auto-completing written pre-
dictions (Barrachina et al., 2009). These tools are
often integrated into workbenchs like CasMaCat
(Alabau et al., 2013) or TranSmart (Huang et al.,
2021) to minimize human effort as much as possi-
ble.

Reinforcement Learning There are various ap-
proaches to incorporating RL into the training of
translation models. However, most approaches be-
gin with a pre-trained model due to the typically
large action space involved. We are using the Pol-
icy Gradient (PG) algorithm (Sutton et al., 2000)
to improve the model’s performance on Accuracy,
BLEU, and TER metrics. Additionally, other re-
search efforts focus on aligning the evaluation met-
ric with the training objective (Bahdanau et al.,
2016), leveraging bandit feedback in reinforcement
learning (Kreutzer et al., 2018), or simplifying the
input provided during the IMT session at the cost
of requiring an RL model that adapts and learns
from the input (Lam et al., 2019).

3 System Framework

In this article, we explore two distinct areas of re-
search. The first focuses on training LLM using
the LoRA method to minimize their storage foot-
print. We integrated a RL algorithm, specifically
PG (Sutton et al., 2000), into this training approach
to optimize models for metrics pertinent to MT and
IMT, including translation accuracy, BLEU, and
TER scores. Additionally, we tested these models
within an IMT system to evaluate their performance
and determine whether the training applied to the
base model enhances its effectiveness. In the con-
text of IMT, it is crucial not only to generate a



high-quality initial translation and adapt effectively
to user modifications.

3.1 Reinforcement Learning Training

Since we planned to use the models trained with
LoRA in an IMT system, we wanted to evaluate
the performance of models trained using the stan-
dard approach and observe how models optimized
for different metrics behave within this environ-
ment. For instance, BLEU is commonly used to
assess the quality of generated translations, while
TER is more closely associated with the amount
of post-editing required. To explore these aspects,
we decided to incorporate a RL algorithm into the
training process of the LoORA models.

The first step in implementing the RL algorithm
is to define our objective. In our case, we aim
to maximize the expected reward of following the
model’s policy. This can be represented as:

maximize EngNﬂe(ng)[r(zh, o)) (D)

where 7y(+) is the policy that we are following,
which is represented by our LLM, g, is the word
chosen by the model at time ¢ and (91, ..., J7) is
the reward associated with the sequence g1, ..., §r.

When training using Teacher Forcing (Bengio
et al., 2015), a ground truth sequence is provided,
and words are selected based on the current pol-
icy. Upon generating an end-of-sequence (EOS)
token, the reward is calculated by comparing the
generated sequence with the ground truth. This
training process aims to find the model parame-
ters that maximize this expected reward. This loss
is defined as the negative expected reward of the
generated sequence:

Lo=—Eyr rygnlr(@n), 9] @)

If we use only a single sample from the action
distribution from the model to approximate the ex-
pectation, the derivative of the previous function
can be expressed as:

VoL = —Eyr ., [Vologme(97 )r(91)]  (3)

By applying the chain rule and differentiating
with respect to the final softmax layer of the model,
we can define this gradient as follows (Williams,

1992; Zaremba and Sutskever, 2015):
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where oy is the input of the softmax function, 1(g;)
is the one-hot vector representation of the ground-
truth and ry, is a baseline reward and can be any
value, provided it is independent of the parameters
of model.

We employed Eq. (4) to train the models using
three different metrics. The first and most straight-
forward metric is translation accuracy. While ac-
curacy is not typically used in the field of MT, our
goal is to minimize the number of corrections re-
quired by the user in an IMT environment. Given
this objective, it seemed logical to experiment with
a more direct metric that provides insight into the
number of correct words generated and, conse-
quently, the number of corrections still needed.

The second metric we employed is BiLingual
Evaluation Understudy (Bleu), the most commonly
used metric for evaluating the quality of transla-
tions generated by MT models. Additionally, exist-
ing studies have utilized Bleu for training with RL,
demonstrating a slight improvement in translation
quality compared to standard training methods.

Finally, we employed the Translation Error Rate
(TER) metric, which is particularly relevant in the
context of IMT, as it provides insight into the num-
ber of operations —insertions, substitutions, dele-
tions, and swaps—required to correct a translation
in a post-editing environment.

3.2 IMT Implementation

The Neural Machine Translation (NMT) frame-
work operates as follows. Given a source language
sentence x{ = x1,...,x, the goal is to generate
the most probable translation g){ = U1,.--,¥; In
the target language Y. The fundamental equation
of the statistical approach to NMT is then expressed
as:

g1 = arg max Pr(y( | z{) =

Tyl
T ©)
~ =1 J
~ arg max [[ moye | 4~ 7)
Tyl =1

where Pr(y!|z{) and mp(yi|yt ', z{), are the

probability distribution and the probability that as-



Europarl HPLT NLLB
Es-En Fr-En Eu-En Sw-En Ln-En Yo-En
|S| 2.0M 2.0M 606K 1.7M 2.9M 1.5M
Train |7 51.6M/49.2M 60.5M/54.5M 65.7M/62.6M  140.1M/121.6M 141.5M/128.8M 111.6M/84.9M
|[V| 422.6K/309.0K 160.0K/131.2K 725.1K/456.7K  918.7K/825.4K  483.9K/748.7K 1.2M/619.3K
|S| 3003 3000 2000 2000 2000 2000
Val. [T 69.5K/63.8K 73.7K/64.8K  220.3K/211.4K  167.3K/144.5K 96.5K/88.1K 159.5K/119.1K
V| 16.5K/14.3K 11.5K/9.7K 13.8K/11.3K 7.7K/7.4K 6.4K/5.7K 9.7K/7.8K
|S| 3000 1500 2000 2000 2000 2000
Test |7 62.0K/56.1K 29.9K/27.2K  213.7K/204.2K  161.4K/139.2K 99.9K/91.9K 155K/115.1K
V| 15.2K/13.3K 6.3K/5.6K 13.7K/11.1K 7.3K/7.1K 6.7K/5.9K 9.9K/7.7K

Table 1: Corpora statistics. K denotes thousands and M millions. |S| stands for number of sentences,

7| for

number of tokens and |V| for size of the vocabulary. Fr denotes French; Es, Spanish; Eu, Basque; Sw, Swahili;

Ln, Lingala; Yo, Yoruba; and En, English;

signs the policy to the next target word given the
source sentence and the previous words so far.

We have developed a prefix-based IMT system
integrated with the NMT framework. Upon receiv-
ing a translation from the system, the user provides
feedback by correcting the first detected error f,.
The system then leverages this feedback to gen-
erate the subsequent translation with the highest
probability, ensuring it maintains the same prefix
and incorporates the user-provided correction. This
iterative process continues until the user fully vali-
dates the sentence. The translation procedure can
be formally described by incorporating the feed-
back and the last generated hypothesis into 5 as
follows:

T
Z)? /A arg max HWQ(yt | yi_lfr{?g,ifv ff)
Tyi =1
subject to (6)
1<t<p ft=y=1ut
fp = Yp 7& Yp

where 4] = 71, ..., Jr is the previous hypothesis,
/7 is the feedback provided, and p is the length of
the feedback. Although the user only performs one
word correction per interaction, the feedback f7 is
the prefix of the hypothesis until the position p — 1
and the word correction.

4 Experimental Framework

4.1 Evaluation metrics

We utilized a range of evaluation metrics to assess
the quality of translations produced by our mod-
els after fine-tuning them using a specific training

method and language pair. This approach allows us
to compare the improvement of each model across
different techniques and establish their baseline
performance for experiments related to IMT.

To assess the quality of the translations, we have
computed the following metrics by using the im-
plementation from sacreBLEU ! (Post, 2018):

BiLingual Evaluation Understudy (Papineni
et al., 2002): computes the geometric mean of
the modified n-gram precision, adjusted by a
brevity penalty to account for short sentences.
This adjustment ensures the consistency of
BLEU scores across different translation
outputs.

Translation Error Rate (Snover et al., 20006):
calculates the number of word-level edit
operations—insertions, substitutions, dele-
tions, and swaps—normalized by the total
word count in the final translation. This metric
is a simplified approximation of the user effort
required to correct a translation hypothesis in
a traditional post-editing scenario.

Given that these models are intended for use within
the field of IMT, it is crucial to assess the human
effort required to correct the translations they pro-
duce using a prefix-based IMT environment. We
have simulated this process, and its methodology
is detailed in Section 4.4.

To assess the human effort performed to correct
the translations, we have computed the following
metrics:

Word Stroke Ratio (Tomas and Casacuberta,
2006): quantifies the number of words which

"https://github.com/mjpost/sacrebleu



SOURCE:
TARGET:

ITER-0

Hartu edalontzia mahaira hutsik.
Take your glass back to the table empty .

Translation hypothesis

Leave the door open .

ITER-1

Feedback
Translation hypothesis

Take
Take your glass again to the table empty

ITER-2

Feedback
Translation hypothesis

Take your glass back
Take your glass back to the table .

ITER-3

Feedback
Translation hypothesis

Take your glass back to the table empty
Take your glass back to the table empty .

END

Final translation

Take your glass back to the table empty .

Figure 1: Prefix-based IMT session for translating a sentence from Basque to English, the process begins with the

system providing an initial hypothesis.

must be changed, normalized by the total
word count in the final translation.

Key Stroke Ratio (Tomds and Casacuberta,
2006): quantifies the number of characters
wich must be changed, normalized by the
number of character in the final translation.

Mouse Action Ratio (Barrachina et al., 2009):
quantifies the number of mouse actions per-
formed, normalized by the number of charac-
ters in the final translation.

When comparing results, we should prioritize re-
ducing the keyboard effort, as some systems have
implemented automated mouse interactions or the
use of alternative devices for system navigation,
which directly reduces the number of mouse ac-
tions by other means.

4.2 Corpora

In our experiments, we utilized language pairs that
are included in the extensive BLOOM language
model. We selected languages with varying levels
of representation within the dataset used to train
this model. The languages chosen for our experi-
ments are Spanish (es), French (fr), Basque (eu),
Swahili (sw), Lingala (In), and Yoruba (yo), with
translations occurring between these languages
and English (en). Among these, Spanish, French,
and English have the highest representation in the
dataset used in BLOOM, followed by Basque and
Swahili. Lingala and Yoruba have the most minia-
ture representations.

For Spanish and French, we used the Europarl
corpus (Koehn, 2005), a compilation of proceed-
ings from the European Parliament. We employed
the High Performance Language Technologies
(HPLT) corpus (De Gibert et al., 2024) for Basque
and Swahili, which was extracted from the in-
ternet using web crawlers and subsequently post-

processed. Lastly, we utilized the No Language
Left Behing (NLLB) corpus (Costa-jussa et al.,
2022) for Lingala and Yoruba, designed to include
as many languages as possible while maintaining
high data quality.

Table 1 shows the main features of the corpus.

4.3 Systems

We started with the open-source LLM BLOOM
(Scao et al., 2022) to train our models. BLOOM
is a decoder-only transformer model (Vaswani
et al., 2017) that has been trained on a dataset
comprising 46 spoken languages and 13 program-
ming languages. The base LLM model consists
of 176 billion parameters, which poses a chal-
lenge due to the capacity of our GPUs. There-
fore, we specifically used the checkpoint available
at ‘https://huggingface.co/bigscience/bloom-560m’
from the Hugging Face library (Wolf et al., 2020)
which consists of 560 million parameters. This
checkpoint was chosen primarily due to GPU mem-
ory constraints and because it yielded high-quality
translation results in our fine-tuned models.

For fine-tuning each of the models trained in this
study, we employed the LoRA technique (Hu et al.,
2021). This approach significantly preserves stor-
age space: instead of maintaining a full copy of the
original model with modified values for each fine-
tuned model, LoRA allows us to store a lightweight
file containing only a few parameters per model.
These parameters are used to calculate weights
added to the ones from the original model, thereby
saving substantial storage space compared with the
other method.

For the LoORA method, we reduced the matrix
dimensionality to » = 8 and applied the method to
the transformer’s query, key, and value layers from
the attention blocks. The models were fine-tuned
over 100, 000 steps, using a batch size of 8 and a



| ES-EN | 5-shot LoRA RLAcc RLBlen RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-ES |
BLEU | 18.10 2671 2664  26.66 259 | 1605 27.01 2681 2650 2626 | BLEU
TER | 8056 6641 6639  66.20 67.1 | 8224 6556 6600 6583 6641 TER

| FR-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-FR |
BLEU | 2233 2734 2771 2668 2580 | 1622 29.08 3002 2883 2973 | BLEU
TER | 7297 6590 6441 6633 6798 | 7936 7101 69.37 6947 6841 | TER

| EU-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-EU |
BLEU | 0212 2578 2491 2371 2382 | 0175 1711 1620 1571 1664 | BLEU
TER | 2693 7118 7266 7627 7627 | 2758 9270 9795 9596 9147 | TER

| SW-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-SW |
BLEU | 0856 4721 4815 4487 4299 | 1511 4326 4504 4060  41.15 | BLEU
TER | 1727 5514 5421 5837 6059 | 1294 6726 6139 7110 7143 | TER

| LN-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-LN |
BLEU | 00.75 0561 0497 0548 0494 | 0057 02838 03.09 0290 0200 | BLEU
TER | 1193 1475 1517 1363 1465 | 1119 2388 2288 2127 2658 | TER

| YO-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-YO |
BLEU | 0024 0272 0295 0162 0291 | 0001 00.80 0068 0074 0063 | BLEU
TER | 137.6 1902 1783  217.1 1594 | 4114 390.0 4530 4182 4295 | TER

Table 2: Quality results of the translations generated by

the base model. All values are reported as percentages.

our trained models compared to performing 5-shot on
Best results are denoted in bold. Fr denotes French; Es,

Spanish; Eu, Basque; Sw, Swahili; Ln, Lingala; Yo, Yoruba; and En, English;

learning rate of 2e — 3.

In total, we trained four different models for
each language pair. The first model, referred to as
LoRA, was trained using the LoRA method with
the configuration outlined previously. The other
three models were trained using the Reinforcement
Learning algorithm described in Section 3.1. These
include a model trained to maximize translation ac-
curacy (RL Acc), another optimized for the BLEU
metric (RL Bleu), and finally, a model where the
goal was to maximize the TER metric (RL TER).

4.4 Simulation

We used simulated users to conduct experiments
and evaluate the models to address the significant
time and financial costs associated with human
evaluation during the development phase. This
choice allowed us to establish a more controlled
experimental environment by minimizing poten-
tial external errors and removing the human factor.
These simulated users were responsible for gener-
ating accurate translations from a given reference
and providing feedback to the IMT system.

To conduct these evaluations, we employed
the prefix-based protocol outlined by Foster et al.
(1997), where the user identifies and corrects the
leftmost incorrect word, validating all preceding
words in the prefix up to the point of correction.
Thus, the validated prefix includes all words pre-
ceding and including the corrected term.

We have opted for the prefix-based protocol as
it aligns more effectively with the generation pro-
cedure of LLLMs, which generate words from left
to right. This approach allows us to incorporate all
the validated words from the prefix into the prompt
provided to the LLM, ensuring that the translation
continues seamlessly. The prompt used while fine-
tuning the model and using it tells which languages
appear, the source sentence, and asks for the target.
It has the following form:

{Source Lang} {Target Lang}
SOURCE :

{Source Sentence}

TARGET :

At the start of the simulation, the system gen-
erates an initial translation hypothesis, which the
simulated user then reviews. The user identifies
the first error by comparing the hypothesis with
the reference, examining both the words and their
positions. Upon detecting an error, the user con-
sults the reference to confirm the correct term and
provides this correction as feedback to the system.
Corrections are inputted via a keyboard stroke, and
if the error is not immediately adjacent to the pre-
vious correction, a mouse action is also required.
This process continues until the simulated user has
accurately translated the entire sentence. A final
mouse action is performed to validate the transla-
tion, signifying that the entire sentence has been



| ES-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-ES |
WSR | 5138 5419 5386  50.84 6755 | 5718 7092 6160 7408 7973 | WSR
KSR | 5418 5657 5611 5311 6920 | 59.67 7362 6474 7635 8145 | KSR
MAR | 23.12 1966 1997 2095 1564 | 2081 1385 1661  12.88 1113 | MAR
FR-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-FR
WSR | 51.89 5506 5279 5578 5394 | 5840 5252 6136 5106 5674 | WSR
KSR | 5320 5610 5407 5727 5506 | 5669 5387 6444 5333 5971 KSR
MAR | 2262 20.17 2077 2000 2077 | 1934 1731 1434 1746 1574 | MAR
EU-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-EU
WSR | 6533 8560 8855 8668  89.04 | 8041 8819 8800 8923 8883 | WSR
KSR | 69.60 8800 8936 8770  89.84 | 86.67 90.15 8974 9075  90.76 | KSR
MAR | 2298 8651 07.96 0874 0805 | 1619 09.04 0923 0899  09.19 | MAR

| SW-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5-shot LoRA RLAcc RLBleu RLTER | EN-SW |
WSR | 6034 6077 6797 6140 6178 | 6445 5492 6831 7224  69.09 | WSR
KSR | 6433 6199 6905 6277  63.18 | 6807 5444 6839 7252 6938 | KSR
MAR | 2042 1063  09.59 1111 1098 | 2727 1026 08.60 0883 0920 | MAR

| LN-EN | 5-shot LoRA RLAcc RLBleu RLTER | 5shot LoRA RLAcc RLBleu RLTER | EN-LN
WSR | 7970 7208 7188 7279 7096 | 9672 8675 87.64 8622 8491 | WSR
KSR | 8437 7761 7758 7845  77.02 | 9823 8971 90.87  89.57  88.67 | KSR
MAR | 83.64 2436 2454 2412 1333 | 1204 1615 1597 1697 1799 | MAR
YO-EN | 5-shot LoRA RLAcc RLBleu RLTER |5-shot LoRA RLAcc RLBleu RLTER | EN-YO
WSR | 8366 8070 76.63  81.31 80.03 | 98.64 9569 9397 9551 95.67 | WSR
KSR | 8876 8660 8351  87.11 86.19 | 99.10 97.10 9596 9706 9720 | KSR
MAR | 2023 2015 2264 2032 2071 | 0849 1027 1162 1037 1030 | MAR

Table 3: Human Effort results of the translations generated by our trained models compared to performing 5-shot
on the base model. All values are reported as percentages. Best results are denoted in bold. Fr denotes French; Es,
Spanish; Eu, Basque; Sw, Swahili; Ln, Lingala; Yo, Yoruba; and En, English;

correctly translated.

Figure 1 illustrates a simulation example for
translating a source sentence from Basque to En-
glish. The translation session begins with the sys-
tem generating an initial hypothesis that requires
user review and correction. In the first iteration,
the user corrects the initial error, Take, prompting
the system to generate a new hypothesis incorpo-
rating this feedback. During the next iteration, the
user identifies and corrects a subsequent error, back,
thereby validating the prefix Take your glass. This
process repeats for one more iteration, with the user
correcting the word empty, leading the system to
produce the correct translation. The session con-
cludes with the user validating the final translation
through a mouse action.

5 Results

To evaluate the performance of our models, we first
need to assess the quality of the translations they
generate, as this will serve as the starting point
for the IMT systems. We also tested the original
BLOOM model using few-shot prompting to adapt
it to the task for a more comprehensive comparison.
Given that we provided 5 examples for each task,

we refer to this baseline model as 5-shot. The
models achieved an average interaction time of
93 milliseconds, a lower value than the threshold
set by Nielsen (1994) of 100 milliseconds, and
an average time of 900 milliseconds to translate a
sentence correctly.

The results based on BLEU and TER scores are
presented in Table 2. As expected, fine-tuning the
model specifically for the language pairs used in
the task proved more beneficial across all language
pairs than providing five examples. It is worth not-
ing that the quality improvement in translation was
less significant for Lingala and Yoruba, the lan-
guages that were least represented in the dataset
used to train the BLOOM LLM. This is partly be-
cause the LoRA method performs better when only
minor adjustments are needed to adapt the model
to the task.

The most significant improvements compared to
the baseline were observed in Basque and Swahili.
These languages, which have moderate representa-
tion in the LLM, also share similarities with more
prominent languages included in the model. For
Basque, using few-shot prompting resulted in a
BLEU score of only 2 points; however, after ap-
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ITE 2: Employment and grant RSSak Itzuli
ITE 3: Employment and grant RSS Itzuli
ITE 4: Employment and grant RSS Back

LoRA
TARGET: Employment and grant RSS Back
ITE 0: RSS Employment and Job Search
ITE 1: Employment
ITE 2: Employment and
ITE 3: Employment and grant
ITE 4: Employment and grant RSS
ITE 5: Employment and grant RSS Back

Figure 2: Example of the iterative correction process in an IMT system from Basque to English using the base

model 5-shot and the LoRA model is provided.

plying LoRA, the quality increased dramatically to
25 points. Similarly, for Swahili, the BLEU score
jumped from 8 to 48 points, marking a substantial
improvement.

No significant difference in translation quality
was observed between using the LoRA method and
employing the Reinforcement Learning implemen-
tation, which aimed to optimize Accuracy, BLEU,
and TER metrics.

The results of applying these models in a prefix-
based IMT system are presented in Table 3. This
table displays the values for the WSR, KSR, and
MAR for each model, with the best results for each
language pair highlighted in bold. This evaluation
not only assesses the quality of the initial hypothe-
sis generated by the models but also examines their
ability to adapt to user corrections by providing
valid new translations that align with the feedback,
thereby testing their generalization capability.

Although the initial experiment, which assessed
the quality of translations generated by the mod-
els, demonstrated a clear improvement using the
LoRA method, this significant enhancement is not
as evident in the current context. In some cases, the
baseline model using few-shot prompting achieves
a more significant reduction in effort compared to
our models. The most noticeable differences from
the baseline are observed in languages with lower
representation. Nonetheless, the reduction in effort
is minimal, suggesting a slight advantage to using
these models over traditional post-editing methods.

When comparing the IMT sessions of our mod-
els to the baseline, it becomes apparent why the
improved quality of the models does not translate
into a corresponding reduction in human effort.
Figure 2 illustrates this for the Basque-English lan-
guage pair. As shown in Table 2 the initial hypoth-
esis from the LoRA model is significantly better
than the generated from the 5-shot model. How-
ever, the discrepancy in results becomes evident

in subsequent iterations. Despite the 5-shot model
starting with a poor initial hypothesis, even contain-
ing non-target language words, it is able to adapt
to user corrections and continue the translation. In
contrast, the LoORA model, while generating a high-
quality initial translation, loses its generalization
capability. As a result, when the user provides new
feedback, the model frequently predicts the end-of-
sentence (EOS) token with the highest probability,
leading to worst WSR.

6 Conclusions and future work

In this study, we implemented a RL algorithm on
the LoRA method to train various versions of the
BLOOM LLM. The primary objective was to com-
pare the results obtained with the base model using
few-shot prompting in an IMT setting, aiming to
minimize the effort required by human users to
correct the generated translations.

Using the LoRA method has significantly im-
proved the quality of the translations produced by
the models, demonstrating its capability to fine-
tune model weights for specific tasks. However, in
the context of IMT, although LoRA models start
with a better hypothesis, they struggle with general-
ization and adapting to user modifications. Despite
enhancements in translation generation, LoRA
models often continue with an end-of-sentence to-
ken when forced to use a less probable word. This
forces users to input the entire translation manually,
disrupting the interactive environment intended to
simplify the translation process.

7 Limitations

When utilizing LLLM such as the BLOOM model,
which we have employed for this study, we are con-
strained by the substantial memory requirements
necessary for their use, as well as the computa-
tional time required for both fine-tuning and in-



ference. By employing the LoRA technique, we
are able to leverage different versions of the same
model without significantly increasing the memory
footprint. This is achieved by alternating between
LoRA files, which only require a few megabytes of
storage. Nevertheless, it remains necessary to load
the base LLM itself, which in and of itself poses a
challenge for many users.
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