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Abstract001

The use of large language models (LLMs) is002
growing due to their impressive performance003
on a wide range of tasks. As new versions of004
these models appear to achieve better results,005
their size often increases, making it more chal-006
lenging to maintain different versions special-007
ized in specific domains. However, by employ-008
ing the Low-Rank Adaptation (LoRA) method,009
we can bypass this space limitation, as the fine-010
tuning changes of the model are stored in a011
file of just a few megabytes. In the Machine012
Translation (MT) field, it is common to have013
models specialized for particular domains or014
language pairs. In our case, we apply these015
models within Interactive Machine Translation016
(IMT), where it is crucial that the model gen-017
erates high-quality translations and adapts to018
user modifications. We have incorporated Re-019
inforcement Learning (RL) techniques to op-020
timize the model using various metrics to en-021
hance this adaptability further. We have per-022
formed experiments with BLOOM (560M),023
and our results demonstrate that these meth-024
ods effectively improve the quality of trans-025
lations generated by the models, although in026
some cases, this comes at the cost of a slight027
reduction in generalization capability.028

1 Introduction029

Machine Translation (MT) has undergone signif-030

icant changes in recent years, mainly due to the031

advent of neural models. These advances have032

enabled models to perform with a level of effi-033

ciency comparable to that of human translators034

across a broad range of machine translation tasks035

(Toral, 2020). Despite this progress, there are still036

many instances where models struggle to produce037

high-quality translations. In such cases, human038

involvement is required for post-editing to ensure039

flawless translations, as experts review and cor-040

rect these. Various Computer-Assisted Translation041

(CAT) tools have been developed to minimize the042

effort these human experts require, including Inter- 043

active Machine Translation (IMT) (Federico et al., 044

2014; Sanchis-Trilles et al., 2014; Herbig et al., 045

2020). 046

IMT systems aim to reduce the effort required by 047

users by creating a collaborative framework where 048

the expert user and the translation model work iter- 049

atively to produce perfect translations. Instead of 050

correcting all the errors found, the user only needs 051

to correct the first error and provide this feedback 052

to the system, which then generates an improved 053

translation. This process is repeated until the user 054

approves the translation. Various protocols can be 055

implemented to facilitate this interaction (Foster 056

et al., 1997; Alabau et al., 2010; Domingo et al., 057

2017), but in our case, we will use the prefix-based 058

protocol, as it aligns more closely with the genera- 059

tion process of MT models. 060

One technique employed alongside IMT systems 061

involves providing each user with a personalized 062

translation model, slightly adjusted to favor the 063

user’s preferred word choices. This model adjust- 064

ment can be achieved through online or active learn- 065

ing techniques (Peris and Casacuberta, 2018, 2019), 066

allowing the model to adapt as the system is be- 067

ing used in real-time. However, this approach is 068

becoming increasingly obsolete with the advent 069

of Large Language Model (LLM) such as GPT 070

(Achiam et al., 2023), BLOOM (Scao et al., 2022), 071

Gemini (Team et al., 2023), and Llama2 (Touvron 072

et al., 2023), which are growing in size, making 073

it impractical for each user to maintain a personal 074

copy. 075

By applying the Low-Rank Adaptation (LoRA) 076

technique (Hu et al., 2021) to LLM trained for 077

multiple tasks, we can fine-tune the model for a 078

specific domain without creating a new copy of the 079

model for each case. This technique allows us to 080

save the changes required for the model to function 081

in the targeted domain in only a few megabytes of 082

file. Thus, instead of maintaining separate copies 083
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of the model for each task, we only need to keep084

the original model and the lightweight LoRA files,085

which are then added to the base model to use086

them. Given the minimal storage requirements and087

that LoRA has demonstrated comparable results088

to conventional fine-tuning, the possibility of each089

user having their customized model or maintaining090

multiple models for specific tasks becomes feasible091

once again.092

In this article, we aim to evaluate the efficiency093

of LoRA fine-tuned models within the IMT do-094

main. It has been demonstrated that fine-tuning095

large language models for specific translation tasks096

improves the quality of the generated translations.097

However, in the field of IMT, we require more098

than just high-quality initial translations; we need099

models that can adapt to user feedback, effectively100

generalizing to produce alternative translations that101

better align with the translator’s expectations. Addi-102

tionally, we explore how different training methods103

for LoRA models impact human effort metrics like104

WSR, KSR, or MAR. To this end, we have also105

implemented a Reinforcement Learning (RL) algo-106

rithm to fine-tune the models, optimizing metrics107

such as Accuracy, TER, and BLEU.108

2 Related Work109

In this article, we focus on four primary areas of110

research:111

Large Language Models A significant number112

of Large Language Models (LLMs) have emerged113

recently. Among them, we have chosen to use114

BLOOM (Scao et al., 2022) primarily because it115

is an open-source model, trained across multiple116

languages, and available in various sizes. While117

the list of prominent LLMs is constantly evolving,118

some of the most well-known currently include119

GPT-4 (Achiam et al., 2023), LLaMA2 (Touvron120

et al., 2023), Gemini (Team et al., 2023), FALCON121

(Almazrouei et al., 2023), and Mistral (Jiang et al.,122

2023).123

Finetuning with Adapters While we are em-124

ploying LoRA, there are other methods that fall125

under the umbrella of Parameter-Efficient Fine-126

Tuning (PEFT). Several of these methods also uti-127

lize adapters for fine-tuning the model, such as128

Low-Rank Hadamard Product (LoHA) (Hyeon-129

Woo et al., 2021) and Orthogonal Fine-Tuning130

(OFT) (Qiu et al., 2023). Other PEFT methods,131

categorized as Soft Prompts, aim to identify the132

optimal input tensor for a given task rather than133

altering the model’s weights. Among these are 134

techniques like prompt tuning (Lester et al., 2021), 135

prefix tuning (Li and Liang, 2021), and P-tuning 136

(Liu et al., 2023). 137

Interactive Machine Translation In the field 138

of IMT, various protocols can be followed depend- 139

ing on how the user performs the corrections. In 140

our case, we are working at the prefix level (Foster 141

et al., 1997), requiring the user to make corrections 142

from left to right. Alternatively, segment-level pro- 143

tocols (Domingo et al., 2017) allow users more 144

flexibility as they can correct wherever words they 145

find, though it supposes a more significant chal- 146

lenge for the translation model. Other methods to 147

reduce human effort include using confidence mea- 148

sures (Specia et al., 2013), touch-only interactions 149

(Wang et al., 2020), or auto-completing written pre- 150

dictions (Barrachina et al., 2009). These tools are 151

often integrated into workbenchs like CasMaCat 152

(Alabau et al., 2013) or TranSmart (Huang et al., 153

2021) to minimize human effort as much as possi- 154

ble. 155

Reinforcement Learning There are various ap- 156

proaches to incorporating RL into the training of 157

translation models. However, most approaches be- 158

gin with a pre-trained model due to the typically 159

large action space involved. We are using the Pol- 160

icy Gradient (PG) algorithm (Sutton et al., 2000) 161

to improve the model’s performance on Accuracy, 162

BLEU, and TER metrics. Additionally, other re- 163

search efforts focus on aligning the evaluation met- 164

ric with the training objective (Bahdanau et al., 165

2016), leveraging bandit feedback in reinforcement 166

learning (Kreutzer et al., 2018), or simplifying the 167

input provided during the IMT session at the cost 168

of requiring an RL model that adapts and learns 169

from the input (Lam et al., 2019). 170

3 System Framework 171

In this article, we explore two distinct areas of re- 172

search. The first focuses on training LLM using 173

the LoRA method to minimize their storage foot- 174

print. We integrated a RL algorithm, specifically 175

PG (Sutton et al., 2000), into this training approach 176

to optimize models for metrics pertinent to MT and 177

IMT, including translation accuracy, BLEU, and 178

TER scores. Additionally, we tested these models 179

within an IMT system to evaluate their performance 180

and determine whether the training applied to the 181

base model enhances its effectiveness. In the con- 182

text of IMT, it is crucial not only to generate a 183
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high-quality initial translation and adapt effectively184

to user modifications.185

3.1 Reinforcement Learning Training186

Since we planned to use the models trained with187

LoRA in an IMT system, we wanted to evaluate188

the performance of models trained using the stan-189

dard approach and observe how models optimized190

for different metrics behave within this environ-191

ment. For instance, BLEU is commonly used to192

assess the quality of generated translations, while193

TER is more closely associated with the amount194

of post-editing required. To explore these aspects,195

we decided to incorporate a RL algorithm into the196

training process of the LoRA models.197

The first step in implementing the RL algorithm198

is to define our objective. In our case, we aim199

to maximize the expected reward of following the200

model’s policy. This can be represented as:201

maximize EŷT1 ∼πθ(ŷT1 )[r(ŷ1, ..., ŷT )] (1)202

where πθ(·) is the policy that we are following,203

which is represented by our LLM, ŷt is the word204

chosen by the model at time t and r(ŷ1, ..., ŷT ) is205

the reward associated with the sequence ŷ1, ..., ŷT .206

When training using Teacher Forcing (Bengio207

et al., 2015), a ground truth sequence is provided,208

and words are selected based on the current pol-209

icy. Upon generating an end-of-sequence (EOS)210

token, the reward is calculated by comparing the211

generated sequence with the ground truth. This212

training process aims to find the model parame-213

ters that maximize this expected reward. This loss214

is defined as the negative expected reward of the215

generated sequence:216

Lθ = −EŷT1 ∼πθ(ŷT1 )[r(ŷ1), ..., ŷT ] (2)217

If we use only a single sample from the action218

distribution from the model to approximate the ex-219

pectation, the derivative of the previous function220

can be expressed as:221

5θLθ = −EŷT1 ∼πθ [5θ log πθ(ŷ
T
1 )r(ŷT1 )] (3)222

By applying the chain rule and differentiating223

with respect to the final softmax layer of the model,224

we can define this gradient as follows (Williams,225

1992; Zaremba and Sutskever, 2015): 226

∂Lθ
∂ot

=
(
πθ(yt|ŷt−1, st, ct−1)−1(ŷt)

)(
r(ŷT1 )−rb

)
(4) 227

where ot is the input of the softmax function, 1(ŷt) 228

is the one-hot vector representation of the ground- 229

truth and rb is a baseline reward and can be any 230

value, provided it is independent of the parameters 231

of model. 232

We employed Eq. (4) to train the models using 233

three different metrics. The first and most straight- 234

forward metric is translation accuracy. While ac- 235

curacy is not typically used in the field of MT, our 236

goal is to minimize the number of corrections re- 237

quired by the user in an IMT environment. Given 238

this objective, it seemed logical to experiment with 239

a more direct metric that provides insight into the 240

number of correct words generated and, conse- 241

quently, the number of corrections still needed. 242

The second metric we employed is BiLingual 243

Evaluation Understudy (Bleu), the most commonly 244

used metric for evaluating the quality of transla- 245

tions generated by MT models. Additionally, exist- 246

ing studies have utilized Bleu for training with RL, 247

demonstrating a slight improvement in translation 248

quality compared to standard training methods. 249

Finally, we employed the Translation Error Rate 250

(TER) metric, which is particularly relevant in the 251

context of IMT, as it provides insight into the num- 252

ber of operations —insertions, substitutions, dele- 253

tions, and swaps—required to correct a translation 254

in a post-editing environment. 255

3.2 IMT Implementation 256

The Neural Machine Translation (NMT) frame- 257

work operates as follows. Given a source language 258

sentence xJ1 = x1, . . . , xJ , the goal is to generate 259

the most probable translation ŷÎ1 = ŷ1, . . . , ŷÎ in 260

the target language Y . The fundamental equation 261

of the statistical approach to NMT is then expressed 262

as: 263

ŷT̂1 = arg max
T,yT1

Pr(yT1 | xJ1 ) ≈

≈ arg max
T,yT1

T∏
t=1

πθ(yt | yt−1
1 , xJ1 )

(5) 264

where Pr(yT1 |xJ1 ) and πθ(yt|yt−1
1 , xJ1 ), are the 265

probability distribution and the probability that as- 266
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Europarl HPLT NLLB

Es–En Fr–En Eu–En Sw–En Ln–En Yo–En

Train
|S| 2.0M 2.0M 606K 1.7M 2.9M 1.5M
|T | 51.6M/49.2M 60.5M/54.5M 65.7M/62.6M 140.1M/121.6M 141.5M/128.8M 111.6M/84.9M
|V | 422.6K/309.0K 160.0K/131.2K 725.1K/456.7K 918.7K/825.4K 483.9K/748.7K 1.2M/619.3K

Val.
|S| 3003 3000 2000 2000 2000 2000
|T | 69.5K/63.8K 73.7K/64.8K 220.3K/211.4K 167.3K/144.5K 96.5K/88.1K 159.5K/119.1K
|V | 16.5K/14.3K 11.5K/9.7K 13.8K/11.3K 7.7K/7.4K 6.4K/5.7K 9.7K/7.8K

Test
|S| 3000 1500 2000 2000 2000 2000
|T | 62.0K/56.1K 29.9K/27.2K 213.7K/204.2K 161.4K/139.2K 99.9K/91.9K 155K/115.1K
|V | 15.2K/13.3K 6.3K/5.6K 13.7K/11.1K 7.3K/7.1K 6.7K/5.9K 9.9K/7.7K

Table 1: Corpora statistics. K denotes thousands and M millions. |S| stands for number of sentences, |T| for
number of tokens and |V| for size of the vocabulary. Fr denotes French; Es, Spanish; Eu, Basque; Sw, Swahili;
Ln, Lingala; Yo, Yoruba; and En, English;

signs the policy to the next target word given the267

source sentence and the previous words so far.268

We have developed a prefix-based IMT system269

integrated with the NMT framework. Upon receiv-270

ing a translation from the system, the user provides271

feedback by correcting the first detected error fp.272

The system then leverages this feedback to gen-273

erate the subsequent translation with the highest274

probability, ensuring it maintains the same prefix275

and incorporates the user-provided correction. This276

iterative process continues until the user fully vali-277

dates the sentence. The translation procedure can278

be formally described by incorporating the feed-279

back and the last generated hypothesis into 5 as280

follows:281

ŷT̂1 ≈ arg max
T,yT1

T∏
t=1

πθ(yt | yt−1
1 , xJ1 , ȳ

T̄
1 , f

p
1 )

subject to

1 ≤ t < p ft = yt = ȳt

fp = yp 6= ȳp

(6)282

where ȳT1 = ȳ1, . . . , ȳT is the previous hypothesis,283

fp1 is the feedback provided, and p is the length of284

the feedback. Although the user only performs one285

word correction per interaction, the feedback fp1 is286

the prefix of the hypothesis until the position p− 1287

and the word correction.288

4 Experimental Framework289

4.1 Evaluation metrics290

We utilized a range of evaluation metrics to assess291

the quality of translations produced by our mod-292

els after fine-tuning them using a specific training293

method and language pair. This approach allows us 294

to compare the improvement of each model across 295

different techniques and establish their baseline 296

performance for experiments related to IMT. 297

To assess the quality of the translations, we have 298

computed the following metrics by using the im- 299

plementation from sacreBLEU1 (Post, 2018): 300

BiLingual Evaluation Understudy (Papineni 301

et al., 2002): computes the geometric mean of 302

the modified n-gram precision, adjusted by a 303

brevity penalty to account for short sentences. 304

This adjustment ensures the consistency of 305

BLEU scores across different translation 306

outputs. 307

Translation Error Rate (Snover et al., 2006): 308

calculates the number of word-level edit 309

operations—insertions, substitutions, dele- 310

tions, and swaps—normalized by the total 311

word count in the final translation. This metric 312

is a simplified approximation of the user effort 313

required to correct a translation hypothesis in 314

a traditional post-editing scenario. 315

Given that these models are intended for use within 316

the field of IMT, it is crucial to assess the human 317

effort required to correct the translations they pro- 318

duce using a prefix-based IMT environment. We 319

have simulated this process, and its methodology 320

is detailed in Section 4.4. 321

To assess the human effort performed to correct 322

the translations, we have computed the following 323

metrics: 324

Word Stroke Ratio (Tomás and Casacuberta, 325

2006): quantifies the number of words which 326

1https://github.com/mjpost/sacrebleu
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SOURCE: Hartu edalontzia mahaira hutsik.
TARGET: Take your glass back to the table empty .

ITER-0 Translation hypothesis Leave the door open .

ITER-1 Feedback Take
Translation hypothesis Take your glass again to the table empty

ITER-2 Feedback Take your glass back
Translation hypothesis Take your glass back to the table .

ITER-3 Feedback Take your glass back to the table empty
Translation hypothesis Take your glass back to the table empty .

END Final translation Take your glass back to the table empty .

Figure 1: Prefix-based IMT session for translating a sentence from Basque to English, the process begins with the
system providing an initial hypothesis.

must be changed, normalized by the total327

word count in the final translation.328

Key Stroke Ratio (Tomás and Casacuberta,329

2006): quantifies the number of characters330

wich must be changed, normalized by the331

number of character in the final translation.332

Mouse Action Ratio (Barrachina et al., 2009):333

quantifies the number of mouse actions per-334

formed, normalized by the number of charac-335

ters in the final translation.336

When comparing results, we should prioritize re-337

ducing the keyboard effort, as some systems have338

implemented automated mouse interactions or the339

use of alternative devices for system navigation,340

which directly reduces the number of mouse ac-341

tions by other means.342

4.2 Corpora343

In our experiments, we utilized language pairs that344

are included in the extensive BLOOM language345

model. We selected languages with varying levels346

of representation within the dataset used to train347

this model. The languages chosen for our experi-348

ments are Spanish (es), French (fr), Basque (eu),349

Swahili (sw), Lingala (ln), and Yoruba (yo), with350

translations occurring between these languages351

and English (en). Among these, Spanish, French,352

and English have the highest representation in the353

dataset used in BLOOM, followed by Basque and354

Swahili. Lingala and Yoruba have the most minia-355

ture representations.356

For Spanish and French, we used the Europarl357

corpus (Koehn, 2005), a compilation of proceed-358

ings from the European Parliament. We employed359

the High Performance Language Technologies360

(HPLT) corpus (De Gibert et al., 2024) for Basque361

and Swahili, which was extracted from the in-362

ternet using web crawlers and subsequently post-363

processed. Lastly, we utilized the No Language 364

Left Behing (NLLB) corpus (Costa-jussà et al., 365

2022) for Lingala and Yoruba, designed to include 366

as many languages as possible while maintaining 367

high data quality. 368

Table 1 shows the main features of the corpus. 369

4.3 Systems 370

We started with the open-source LLM BLOOM 371

(Scao et al., 2022) to train our models. BLOOM 372

is a decoder-only transformer model (Vaswani 373

et al., 2017) that has been trained on a dataset 374

comprising 46 spoken languages and 13 program- 375

ming languages. The base LLM model consists 376

of 176 billion parameters, which poses a chal- 377

lenge due to the capacity of our GPUs. There- 378

fore, we specifically used the checkpoint available 379

at ‘https://huggingface.co/bigscience/bloom-560m’ 380

from the Hugging Face library (Wolf et al., 2020) 381

which consists of 560 million parameters. This 382

checkpoint was chosen primarily due to GPU mem- 383

ory constraints and because it yielded high-quality 384

translation results in our fine-tuned models. 385

For fine-tuning each of the models trained in this 386

study, we employed the LoRA technique (Hu et al., 387

2021). This approach significantly preserves stor- 388

age space: instead of maintaining a full copy of the 389

original model with modified values for each fine- 390

tuned model, LoRA allows us to store a lightweight 391

file containing only a few parameters per model. 392

These parameters are used to calculate weights 393

added to the ones from the original model, thereby 394

saving substantial storage space compared with the 395

other method. 396

For the LoRA method, we reduced the matrix 397

dimensionality to r = 8 and applied the method to 398

the transformer’s query, key, and value layers from 399

the attention blocks. The models were fine-tuned 400

over 100, 000 steps, using a batch size of 8 and a 401

5



ES-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-ES

BLEU 18.10 26.71 26.64 26.66 25.9 16.05 27.01 26.81 26.50 26.26 BLEU
TER 80.56 66.41 66.39 66.20 67.1 82.24 65.56 66.00 65.83 66.41 TER

FR-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-FR

BLEU 22.33 27.34 27.71 26.68 25.80 16.22 29.08 30.02 28.83 29.73 BLEU
TER 72.97 65.90 64.41 66.33 67.98 79.36 71.01 69.37 69.47 68.41 TER

EU-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-EU

BLEU 02.12 25.78 24.91 23.71 23.82 01.75 17.11 16.20 15.71 16.64 BLEU
TER 269.3 71.18 72.66 76.27 76.27 275.8 92.70 97.95 95.96 91.47 TER

SW-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-SW

BLEU 08.56 47.21 48.15 44.87 42.99 15.11 43.26 45.04 40.60 41.15 BLEU
TER 172.7 55.14 54.21 58.37 60.59 129.4 67.26 61.39 71.10 71.43 TER

LN-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-LN

BLEU 00.75 05.61 04.97 05.48 04.94 00.57 02.88 03.09 02.90 02.00 BLEU
TER 119.3 147.5 151.7 136.3 146.5 111.9 238.8 228.8 212.7 265.8 TER

YO-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-YO

BLEU 00.24 02.72 02.95 01.62 02.91 00.01 00.80 00.68 00.74 00.63 BLEU
TER 137.6 190.2 178.3 217.1 159.4 411.4 390.0 453.0 418.2 429.5 TER

Table 2: Quality results of the translations generated by our trained models compared to performing 5-shot on
the base model. All values are reported as percentages. Best results are denoted in bold. Fr denotes French; Es,
Spanish; Eu, Basque; Sw, Swahili; Ln, Lingala; Yo, Yoruba; and En, English;

learning rate of 2e− 3.402

In total, we trained four different models for403

each language pair. The first model, referred to as404

LoRA, was trained using the LoRA method with405

the configuration outlined previously. The other406

three models were trained using the Reinforcement407

Learning algorithm described in Section 3.1. These408

include a model trained to maximize translation ac-409

curacy (RL Acc), another optimized for the BLEU410

metric (RL Bleu), and finally, a model where the411

goal was to maximize the TER metric (RL TER).412

4.4 Simulation413

We used simulated users to conduct experiments414

and evaluate the models to address the significant415

time and financial costs associated with human416

evaluation during the development phase. This417

choice allowed us to establish a more controlled418

experimental environment by minimizing poten-419

tial external errors and removing the human factor.420

These simulated users were responsible for gener-421

ating accurate translations from a given reference422

and providing feedback to the IMT system.423

To conduct these evaluations, we employed424

the prefix-based protocol outlined by Foster et al.425

(1997), where the user identifies and corrects the426

leftmost incorrect word, validating all preceding427

words in the prefix up to the point of correction.428

Thus, the validated prefix includes all words pre-429

ceding and including the corrected term.430

We have opted for the prefix-based protocol as 431

it aligns more effectively with the generation pro- 432

cedure of LLMs, which generate words from left 433

to right. This approach allows us to incorporate all 434

the validated words from the prefix into the prompt 435

provided to the LLM, ensuring that the translation 436

continues seamlessly. The prompt used while fine- 437

tuning the model and using it tells which languages 438

appear, the source sentence, and asks for the target. 439

It has the following form: 440

{Source Lang} {Target Lang} 441

SOURCE: 442

{Source Sentence} 443

TARGET: 444

At the start of the simulation, the system gen- 445

erates an initial translation hypothesis, which the 446

simulated user then reviews. The user identifies 447

the first error by comparing the hypothesis with 448

the reference, examining both the words and their 449

positions. Upon detecting an error, the user con- 450

sults the reference to confirm the correct term and 451

provides this correction as feedback to the system. 452

Corrections are inputted via a keyboard stroke, and 453

if the error is not immediately adjacent to the pre- 454

vious correction, a mouse action is also required. 455

This process continues until the simulated user has 456

accurately translated the entire sentence. A final 457

mouse action is performed to validate the transla- 458

tion, signifying that the entire sentence has been 459
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ES-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-ES

WSR 51.38 54.19 53.86 50.84 67.55 57.18 70.92 61.60 74.08 79.73 WSR
KSR 54.18 56.57 56.11 53.11 69.20 59.67 73.62 64.74 76.35 81.45 KSR
MAR 23.12 19.66 19.97 20.95 15.64 20.81 13.85 16.61 12.88 11.13 MAR

FR-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-FR

WSR 51.89 55.06 52.79 55.78 53.94 58.40 52.52 61.36 51.06 56.74 WSR
KSR 53.20 56.10 54.07 57.27 55.06 56.69 53.87 64.44 53.33 59.71 KSR
MAR 22.62 20.17 20.77 20.00 20.77 19.34 17.31 14.34 17.46 15.74 MAR

EU-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-EU

WSR 65.33 85.60 88.55 86.68 89.04 80.41 88.19 88.00 89.23 88.83 WSR
KSR 69.60 88.00 89.36 87.70 89.84 86.67 90.15 89.74 90.75 90.76 KSR
MAR 22.98 86.51 07.96 08.74 08.05 16.19 09.04 09.23 08.99 09.19 MAR

SW-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-SW

WSR 60.34 60.77 67.97 61.40 61.78 64.45 54.92 68.31 72.24 69.09 WSR
KSR 64.33 61.99 69.05 62.77 63.18 68.07 54.44 68.39 72.52 69.38 KSR
MAR 20.42 10.63 09.59 11.11 10.98 27.27 10.26 08.60 08.83 09.20 MAR

LN-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-LN

WSR 79.70 72.08 71.88 72.79 70.96 96.72 86.75 87.64 86.22 84.91 WSR
KSR 84.37 77.61 77.58 78.45 77.02 98.23 89.71 90.87 89.57 88.67 KSR
MAR 83.64 24.36 24.54 24.12 13.33 12.04 16.15 15.97 16.97 17.99 MAR

YO-EN 5-shot LoRA RL Acc RL Bleu RL TER 5-shot LoRA RL Acc RL Bleu RL TER EN-YO

WSR 83.66 80.70 76.63 81.31 80.03 98.64 95.69 93.97 95.51 95.67 WSR
KSR 88.76 86.60 83.51 87.11 86.19 99.10 97.10 95.96 97.06 97.20 KSR
MAR 20.23 20.15 22.64 20.32 20.71 08.49 10.27 11.62 10.37 10.30 MAR

Table 3: Human Effort results of the translations generated by our trained models compared to performing 5-shot
on the base model. All values are reported as percentages. Best results are denoted in bold. Fr denotes French; Es,
Spanish; Eu, Basque; Sw, Swahili; Ln, Lingala; Yo, Yoruba; and En, English;

correctly translated.460

Figure 1 illustrates a simulation example for461

translating a source sentence from Basque to En-462

glish. The translation session begins with the sys-463

tem generating an initial hypothesis that requires464

user review and correction. In the first iteration,465

the user corrects the initial error, Take, prompting466

the system to generate a new hypothesis incorpo-467

rating this feedback. During the next iteration, the468

user identifies and corrects a subsequent error, back,469

thereby validating the prefix Take your glass. This470

process repeats for one more iteration, with the user471

correcting the word empty, leading the system to472

produce the correct translation. The session con-473

cludes with the user validating the final translation474

through a mouse action.475

5 Results476

To evaluate the performance of our models, we first477

need to assess the quality of the translations they478

generate, as this will serve as the starting point479

for the IMT systems. We also tested the original480

BLOOM model using few-shot prompting to adapt481

it to the task for a more comprehensive comparison.482

Given that we provided 5 examples for each task,483

we refer to this baseline model as 5-shot. The 484

models achieved an average interaction time of 485

93 milliseconds, a lower value than the threshold 486

set by Nielsen (1994) of 100 milliseconds, and 487

an average time of 900 milliseconds to translate a 488

sentence correctly. 489

The results based on BLEU and TER scores are 490

presented in Table 2. As expected, fine-tuning the 491

model specifically for the language pairs used in 492

the task proved more beneficial across all language 493

pairs than providing five examples. It is worth not- 494

ing that the quality improvement in translation was 495

less significant for Lingala and Yoruba, the lan- 496

guages that were least represented in the dataset 497

used to train the BLOOM LLM. This is partly be- 498

cause the LoRA method performs better when only 499

minor adjustments are needed to adapt the model 500

to the task. 501

The most significant improvements compared to 502

the baseline were observed in Basque and Swahili. 503

These languages, which have moderate representa- 504

tion in the LLM, also share similarities with more 505

prominent languages included in the model. For 506

Basque, using few-shot prompting resulted in a 507

BLEU score of only 2 points; however, after ap- 508

7



5-shot LoRA
TARGET: Employment and grant RSS Back TARGET: Employment and grant RSS Back
ITE 0: Enplegu eta Beken RSSak Itzuli ITE 0: RSS Employment and Job Search
ITE 1: Employment and Business RSSak Itzuli ITE 1: Employment
ITE 2: Employment and grant RSSak Itzuli ITE 2: Employment and
ITE 3: Employment and grant RSS Itzuli ITE 3: Employment and grant
ITE 4: Employment and grant RSS Back ITE 4: Employment and grant RSS

ITE 5: Employment and grant RSS Back

Figure 2: Example of the iterative correction process in an IMT system from Basque to English using the base
model 5-shot and the LoRA model is provided.

plying LoRA, the quality increased dramatically to509

25 points. Similarly, for Swahili, the BLEU score510

jumped from 8 to 48 points, marking a substantial511

improvement.512

No significant difference in translation quality513

was observed between using the LoRA method and514

employing the Reinforcement Learning implemen-515

tation, which aimed to optimize Accuracy, BLEU,516

and TER metrics.517

The results of applying these models in a prefix-518

based IMT system are presented in Table 3. This519

table displays the values for the WSR, KSR, and520

MAR for each model, with the best results for each521

language pair highlighted in bold. This evaluation522

not only assesses the quality of the initial hypothe-523

sis generated by the models but also examines their524

ability to adapt to user corrections by providing525

valid new translations that align with the feedback,526

thereby testing their generalization capability.527

Although the initial experiment, which assessed528

the quality of translations generated by the mod-529

els, demonstrated a clear improvement using the530

LoRA method, this significant enhancement is not531

as evident in the current context. In some cases, the532

baseline model using few-shot prompting achieves533

a more significant reduction in effort compared to534

our models. The most noticeable differences from535

the baseline are observed in languages with lower536

representation. Nonetheless, the reduction in effort537

is minimal, suggesting a slight advantage to using538

these models over traditional post-editing methods.539

When comparing the IMT sessions of our mod-540

els to the baseline, it becomes apparent why the541

improved quality of the models does not translate542

into a corresponding reduction in human effort.543

Figure 2 illustrates this for the Basque-English lan-544

guage pair. As shown in Table 2 the initial hypoth-545

esis from the LoRA model is significantly better546

than the generated from the 5-shot model. How-547

ever, the discrepancy in results becomes evident548

in subsequent iterations. Despite the 5-shot model 549

starting with a poor initial hypothesis, even contain- 550

ing non-target language words, it is able to adapt 551

to user corrections and continue the translation. In 552

contrast, the LoRA model, while generating a high- 553

quality initial translation, loses its generalization 554

capability. As a result, when the user provides new 555

feedback, the model frequently predicts the end-of- 556

sentence (EOS) token with the highest probability, 557

leading to worst WSR. 558

6 Conclusions and future work 559

In this study, we implemented a RL algorithm on 560

the LoRA method to train various versions of the 561

BLOOM LLM. The primary objective was to com- 562

pare the results obtained with the base model using 563

few-shot prompting in an IMT setting, aiming to 564

minimize the effort required by human users to 565

correct the generated translations. 566

Using the LoRA method has significantly im- 567

proved the quality of the translations produced by 568

the models, demonstrating its capability to fine- 569

tune model weights for specific tasks. However, in 570

the context of IMT, although LoRA models start 571

with a better hypothesis, they struggle with general- 572

ization and adapting to user modifications. Despite 573

enhancements in translation generation, LoRA 574

models often continue with an end-of-sentence to- 575

ken when forced to use a less probable word. This 576

forces users to input the entire translation manually, 577

disrupting the interactive environment intended to 578

simplify the translation process. 579

7 Limitations 580

When utilizing LLM such as the BLOOM model, 581

which we have employed for this study, we are con- 582

strained by the substantial memory requirements 583

necessary for their use, as well as the computa- 584

tional time required for both fine-tuning and in- 585

8



ference. By employing the LoRA technique, we586

are able to leverage different versions of the same587

model without significantly increasing the memory588

footprint. This is achieved by alternating between589

LoRA files, which only require a few megabytes of590

storage. Nevertheless, it remains necessary to load591

the base LLM itself, which in and of itself poses a592

challenge for many users.593
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