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ABSTRACT

In the field of visual object tracking, one-stream pipelines have become the main-
stream framework due to its efficient integration of feature extraction and re-
lationship modeling. However, existing methods still face the issue of seman-
tic misalignment: firstly, the interaction of position encoding between the two
branches leads to a misalignment between feature semantics and position encod-
ing; secondly, traditional attention mechanisms fail to distinguish between se-
mantic attraction and repulsion among features, resulting in semantic misalign-
ment when the model processes these features. To address these issues, we pro-
pose an Enhanced Semantic Alignment Transformer Tracker (ESAT) with posi-
tion learning and force-directed attention. By leveraging self-supervised posi-
tion loss (SPL), ESAT separately learns the absolute position encodings of the
target and search branches, distinguishing the locations of various tokens and
their positive or negative relationships, thereby enhancing the semantic consis-
tency between position and features. Additionally, ESAT incorporates a repulsion-
attraction mechanism applied to the self-attention module, named force-directed
attention (FDA),simulating dynamic interactions between nodes to improve fea-
ture discrimination. Extensive experiments on multiple public tracking datasets
show that our method outperforms many pipelines and achieves superior perfor-
mance on five challenging benchmarks.

1 INTRODUCTION

Visual Object Tracking (VOT) has attracted increasing attention due to its broad applications in var-
ious fields, including traffic monitoring (Chandrakar et al., 2022), medical science (Bouget et al.,
2017) and self-driving cars (Gao et al., 2019). Single Object Tracking (SOT) is a one of the popular
category of VOT, which can be described as follows: Capture the target’s appearance features in
the first frame and maintain continuous tracking in subsequent frames (Soleimanitaleb & Keyvan-
rad, 2022). Notwithstanding many highly effective trackers have emerged (Bertinetto et al., 2016;
Li et al., 2019), challenges such as occlusions and deformations continue to perplex numerous re-
searchers, impinging on the accuracy and stability of tracking. In recent years, based on Transformer
(Vaswani et al., 2017), Vision Transformer (ViT) (Dosovitskiy et al., 2020) with its superior atten-
tion mechanisms and capacity for global feature capture, have achieved remarkable success in VOT
tasks (Chen et al., 2022; Lin et al., 2022; Hu et al., 2024).

Despite advancements in feature fusion, current prevailing trackers still have limitations in dealing
with semantic alignment. On the one hand, self-attention cannot capture the ordering of input
tokens, so incorporating positional encoding is particularly important. In VOT tasks, absolute po-
sitional encoding (Vaswani et al., 2017) is a widely adopted method. This method assigns distinct
vectors to each position in the template and search token sequences, which may result in a seman-
tic misalignment. Meanwhile, the template contains target feature information, while the search
region includes potential target positions and background information. However, the differing se-
mantic content and context of these areas may hinder the ability of model to effectively capture
their relationships. On the other hand, traditional attention mechanisms in object tracking exhibit
a significant limitation in feature weight allocation. Traditional methods indiscriminately sum the
weights of various features, overlooking the complex interactions between them. This ”one-size-fits-
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all” approach is particularly inadequate given the semantic complexity, where feature relationships
involving appearance, motion patterns, and background are interwoven and interdependent. For
instance, in SOT tasks, certain features like the target’s color may attract each other in specific con-
texts, while others, such as background interference, may repel due to semantic conflicts. Traditional
attention mechanisms struggle to capture these subtle differences and dynamic relationships, leading
to biases in the model’s tracking accuracy and ultimately affecting its ability to discern the target’s
true state and motion trajectory.

To alleviate these problems, we propose a novel Enhanced Semantic Alignment Transformer
Tracker (ESAT) with position learning and force-directed attention. Specifically, we introduce a
novel self-supervised position loss function and a self attention mechanism incorporating repulsive
and attractive forces. (1) Self-supervised position loss (SPL) allows each token to implicitly incor-
porate its positional information. We propose two types of positional labels: absolute positional
labels and positive-negative positional labels. We input the features of the template and search re-
gions outputted by the tracking model into two separate fully convolutional networks (FCN), each
consisting of L stacked Conv-BN-ReLU layers. This module outputs the corresponding position in-
formation for each image patch. Based on this, we calculate the position losses using the two types
of labels and the obtained positional information separately, distinguishing the positions of different
tokens and their positive and negative values, to enhance the semantic consistency of positions and
features. (2) Force-directed attention (FDA) define the repulsive and attractive forces, by calculating
the difference between query (q) and key (k). Repulsive force reduces the attention weight between
different features, while attractive force enhances the weight of similar features. By adjusting the at-
tention matrix, the model considers the interaction between features in attention allocation, thereby
reducing the problem of semantic misalignment.

(f) Positive-Negative Position Embeddings(e) Absolute Position Embeddings

(a) Original Features

(d) Enhanced Semantic Alignment Features

(b) Original Position Embeddings (c) Enhanced Semantic Alignment Position 
Embeddings

Figure 1: Visualization of the correlation between features of the template and search region, as well
as their positional correlation. The lighter the color indicates the higher the correlation; conversely,
the darker the color indicates the lower correlation. The visualization of correlations can be divided
into four parts: template region self-correlation, search region self-correlation, and two sections
representing the correlation between the template and the search image.

As depicted in Fig.1 (a), the original features have a smaller color distinction, while the features of
the ESAT exhibit a greater color distinction, which indicates that the semantics of the model have
been enhanced after applying ESAT shown in Fig.1 (d). Both template and search images start from
1, which can cause the most relevant areas to shift towards the beginning when the two regions
interact, resulting in a misalignment of semantics, as illustrated in Fig.1 (b). Therefore, we apply
self-supervised position learning to make the template most relevant to the target position in the
search area. The learned absolute positional embeddings indicate that the most relevant regions for
both are located in the middle, which corresponds to the areas where the template and the target po-
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sition in the search region are most related. The positive-negative positional embeddings correspond
to the absolute, highlighting the most relevant areas. By merging these two, we obtain the enhanced
semantics alignment position embeddings as seen in Fig.1 (c).

To sum up, the main contributions of this work are threefold: (1) We propose a self-supervised po-
sition loss (SPL) and two positional labels: absolute and positive-negative positional labels, which
mitigates the issue of semantic misalignment between template and search region. (2) We introduce
force-directed attention (FDA) to adjust the attention weight matrix. FDA can enhance attention
between similar features and weaken attention between different features to improve the semantics
between features. (3) The above modules collaboratively form a comprehensive Enhanced Semantic
Alignment Transformer Tracker (ESAT). Experiments on several widely used benchmarks demon-
strate its outstanding performance and validate the efficiency and effectiveness of SPL and FDA.

2 RELATED WORK

2.1 TRANSFORMER BASED TRACKER

Transformer-based tracking models can be categorized into two distinct groups based on the frame-
work and method of feature extraction they employ: CNN-Transformer based trackers and Fully-
Transformer based trackers (Kugarajeevan et al., 2023).

CNN-Transformer based trackers (Chen et al., 2021b; Yan et al., 2021b) combine the Convolu-
tional Neural Network (CNN) (Krizhevsky et al., 2012) and Transformer (Vaswani et al., 2017) to
be a hybrid architecture. Following fully-convolutional siamese networks based trackers (Bertinetto
et al., 2016; Li et al., 2019), they use two identical pipelines of CNNs to extracted the features of
the target template and search region and then flat the features into vectors and pass this information
to the Transformer which capture the similarity features of the target in the search region. Although
CNN-Transformer based trackers utilize the attention mechanism, they still rely on CNN for feature
extraction, which makes them to be difficult to capture global feature representations.

Fully-Transformer based trackers (Lin et al., 2022; Cui et al., 2022; Ye et al., 2022; Hu et al.,
2024) are proposed to solve this problem, which are categorized into Two-stream Two-stage trackers
and One-stream One-stage trackers. Two-stream Two-stage trackers use two identical and indepen-
dent Transformer based tracking pipelines to extract features and then employ another Transformer
network to find the relationships between these features. STMTrack (Fu et al., 2021) introduces a
space-time memory network that integrates historical template and search features for better adapt-
ing to appearance variations during tracking. One-stream One-stage trackers like SimTrack (Chen
et al., 2022) and OSTrack (Ye et al., 2022), using pretrained ViT as the backbone Transformer.
In SimTrack, central concave window technology is developed to accurately capture target specific
clues, which cropping the smaller areas of the template image, with the target in the middle, and then
serialized into image markers. OSTrack points out that some search patches contain background in-
formation, which is not necessary in the tracking process, so an early candidate elimination strategy
gradually discards the background regions in the search area during the inference process.

Although the dual stream method has achieved great success, the separation of feature extraction and
relationship modeling has the following limitations. In this case, we use the One-stream One-stage
method as as the baseline model.

2.2 ATTENTION MECHANISM IN TRANSFORMER TRACKING

The attention mechanism can establish rich global contextual dependencies, excelling at extracting
edge features and distinguishing similar features, making it highly suitable for single object tracking
tasks.

CNN-Transformer based trackers: STARK (Yan et al., 2021b) captures the feature dependency
relationships between each element in the tracking sequence and enhances the original features using
global contextual information, using multiple self attention layers to achieve information exchange
and fusion between features. TransT (Chen et al., 2021b) replaces the traditional cross correlation
with attention, using self attention and cross attention based feature enhancement module in the
feature fusion stage.
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Fully-Transformer based trackers: For Two-stream Two-stage methods, building on TransT
(Chen et al., 2021b), SparseTT (Fu et al., 2022) proposes a sparse multi-head attention mechanism
to improve the ability to differentiate between foreground and background. SwinTrack (Lin et al.,
2022) explore to concatenate template and search features, and use multiple self-attention layers
to facilitate feature interaction and fusion, reducing computational costs and enhancing model ac-
curacy. CSWinTT (Song et al., 2022) proposed an attention module based on multi-scale cyclic
moving windows, elevating pixel level attention to window level, which helps to maintain the in-
tegrity of the target and preserve more bit information. Force reduces the ambiguity of the target
edge area. For One-stream One-stage methods, MixFormer (Cui et al., 2022) designs a set of Mixed
Attention Modules based on the CVT (Wu et al., 2021a) structure to simultaneously extract and
integrate features of the target and search region. Compared to CNN-Transformer based trackers,
Fully-Transformer based method has a larger network capacity, stronger representation ability for
its output features, and it exhibits greater robustness.

2.3 POSITIONAL ENCODING

Transformer (Vaswani et al., 2017) relies on positional encoding (PE) to help it understand the
spatial structure of images, as it does not utilize convolutional operations to extract local features.
PE provides explicit spatial location information for each patch in the image. Each offering different
advantages depending on the context of the task.

Absolute Position Encoding (APE) assigns a unique position vector to each element in the sequence
or image, indicating its specific location. It provides a clear reference for the position of each
element. There are several choices of APE. In Vision Transformer (ViT) (Dosovitskiy et al., 2020),
the PE is generated by the fixed 1-D sinusoidal functions of different frequencies. At the same
time, there are 2-D sinusoidal PE methods (Raisi et al., 2021; Wang & Liu, 2021) that incorporate
information about the height and width of the image. Meanwhile, the APE can also be learnable, as
it is randomly initialized and updated with the model’s parameters during the training process.

Relative Position Encoding (RPE) encodes the relative distances or relationships between elements
instead of focusing on the absolute position. It allows the model to understand how far apart ele-
ments are from each other. Based on the APE, RPE is added into the self-attention weight calcula-
tion. (Bello et al., 2019) firstly proposes a new relative positional encoding methods dedicated to 2D
images, which is used in Swin-Transformer (Liu et al., 2021). (Wu et al., 2021b) further improves
the 2-D RPE, called image RPE (iRPE), which integrates the modeling of directional relative dis-
tances as well as the interactions between queries and relative positional embeddings in self attention
mechanism.

We build upon the previous method of explicitly combining positional information by using po-
sitional information as a supervised signal for the self-supervised training of the tracking model,
allowing each encoded patch to implicitly contain its positional information.

3 METHODOLOGY

In this section, we introduce the framework of the proposed Enhanced Semantic Alignment Trans-
former Tracker (ESAT). Subsequently, we present self-supervised position loss and force-directed
attention one by one.

3.1 FRAMEWORK OF ESAT

One-stream One-stage trackers integrate features more efficiently within a single Transformer, al-
lowing simultaneous extraction and fusion. Therefore, we conduct research based on OSTrack (Ye
et al., 2022). The pipeline of the tracker ESAT is shown in Fig.2. The whole framework can be
divided into three parts:

Positional Label Generation. As shown in Fig.2 (a), we generate the corresponding absolute posi-
tional labels for each patch in the search image, while the absolute positional labels for the template
image correspond to the central region of the search region. Next, we set the area corresponding to
the ground truth box in the search image as the positional label of the template. For the positive-
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Figure 2: The pipeline of EAST.

negative positional labels, we assign a value of 1 to both the template region and the target area in
the search region, while the background in the search region is set to 0.

Backbone. The input of the ESAT pipeline are template image z and search image x, and then split
and flatten them into a series of patches zp ∈ RNz×(3·P 2) and xp ∈ RNx×(3·P 2), where Nz and
Nx are respectively the number of template and search patches and P × P is the resolution of each
image patch. Then, a Linear Projection Layer is used for generating the embeddings Ez ∈ RNz× D

of zp and Ex ∈ RNx× D of xp, where D is the embedding dimension. Next, we input them into
several subsequent Encoder Layers. Learnable 1D position embeddings Pz and Px are added to
the patch embeddings of the template and search region separately to produce the final template
token embeddings Hz ∈ RNz× D and search region token embeddings Hx ∈ RNx× D. After that,
all these tokens are concatenated as a sequence with a length of Nz + Nx and fed to an encoder.
Each encoder layer updates the input tokens via a Force-directed Attention (FDA) block and a feed-
forward network (FFN) as illustrated in Fig.2 (b).

Head and loss. The output template and search tokens from the last encoder layer are reshaped to the
2D feature maps according to their original spatial positions shown in Fig.2. We input the feature
maps to fully convolutional networks (FCN) and concatenate the processed features, generating
positional embeddings through linear layers. The search feature map is also taken as the input of to
a convolutional head for target bounding box prediction. Finally, we calculate the loss and perform
back-propagation to optimize the model parameters.

3.2 SELF-SUPERVISED POSITION LOSS

Self-supervised position loss function (SPL) enables each token within a model to implicitly inte-
grate its positional information, thereby enhancing the overall understanding of spatial relationships
in the data. As shown in Fig.3, we introduce two distinct types of positional labels: absolute posi-
tional labels, which provide the exact location of each token within the input space, and positive-
negative positional labels, which indicate whether a token is in a positive or negative position relative
to its context.

To implement this, we take the features extracted from both the template and the search regions gen-
erated by the tracking model and feed them into two separate fully convolutional networks (FCNs).
We denote the template and search feature maps as ET ∈ RC×H×W and ES ∈ RC×H×W . Each
FCN is designed with a structure comprising L stacked Conv-BN-ReLU layers, which allows the
networks to effectively capture and process the spatial characteristics of the input features. After
that, we concatenate the processed template and search features as the positional feature vector:

[p1; p2; · · · ; pNz+Nx ] = [FCN (ET ) ; FCN (ES)] , (1)
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Figure 3: The process of self-supervised position loss.

Then, input the feature into absolute and positive-negative positional classifiers:

Pp,y =
exp

(
w⊤p

)∑N
j=1 exp

(
w⊤

j p
) , (2)

where p is positional feature; y is positional label; N is the length of the positional feature;
[w1; w2; · · · ; wN ] ∈ RD×N is the weights in the positional classifier, D denotes the dimension of
the feature. These position embeddings not only contain information about the features themselves
but also effectively incorporate positional information, enabling the model to better understand and
utilize spatial relationships when performing tasks.

Once we have the positional information output from the FCNs, we proceed to compute the position
losses using both types of labels. This computation is performed separately for the absolute posi-
tional labels and the positive-negative positional labels. By distinguishing the positions of different
tokens and their associated positive and negative values, we aim to enhance the semantic consistency
between the positions and the features represented by the tokens:

Labs = − 1

n

n∑
i=1

log
(
P abs
pi,yabs

i

)
, (3)

Lpn = − 1

n

n∑
i=1

log
(
P pn
pi,y

pn
i

)
. (4)

The integration of these position losses into the training process serves to reinforce the model’s un-
derstanding of spatial relationships and improve its ability to accurately track objects across frames.
By leveraging self-supervised learning mechanisms, our approach fosters a more robust and nu-
anced representation of positional information, ultimately leading to better performance in tasks
that require precise localization and tracking.

3.3 FORCE-DIRECTED ATTENTION

Force-Directed Attention (FDA) innovatively adjusts the distribution of attention among features
by introducing the concept of force from physics, enabling the model to more effectively capture
meaningful relationships when faced with complex features. FDA defines two interacting forces:
repulsive force and attractive force by calculating the differences between queries and keys. Fig.4
illustrates an example of the FDA.

In FDA, the role of the repulsive force is to decrease the attention scores between different features.
When the difference between the query and the key is large, the model applies repulsive force, caus-
ing these features to be suppressed in the attention distribution. This mechanism effectively reduces
the model’s focus on irrelevant features, thereby avoiding information interference and enhancing
the model’s sensitivity to important features. As Eq.5 shown, the repulsive force is calculated by de-
termining the Euclidean distance between the query and the key, squaring it, and then scaling it with
the hyperparameter δ to derive the repulsive force value Arepulsive. This value plays a suppressive

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Repulsive AttractiveSearch Image Initial Attention
Attention after 
force-directed

Figure 4: An illustration for Force-directed Attention Mechanism. The red blocks represent the
target, while the gray blocks represent the background. Nodes with the same color indicate similar
features, which attract each other, whereas nodes with different colors repel one another. Through
force-directed modulation, the features of both colors are strengthened during the propagation pro-
cess.

role in updating the attention scores, resulting in a decrease in the final attention scores Afinal for
features that are significantly different from the query.

Arepulsive = (∥q1 − k1∥22 + ∥q2 − k2∥22) · δ, (5)
where q1 and q2, as well as k1 and k2 represent different dimensions. We compute the differences
across these dimensions separately to capture the feature relationships more comprehensively.

On the other hand, the attractive force enhances the attention scores between similar features. When
the difference between the query and the key is small, the model applies attractive force, prompting
an increase in the attention scores among similar features. The interaction between targets leads
to a situation where the greater the repulsive force, the smaller the attractive force, and vice versa.
This process applys an exponential function to the repulsive force, yielding an attractive force value
Aattractive. The introduction of attractive force allows the model to better focus on semantically
related features, thereby improving the interrelatedness of features and the efficiency of information
transfer:

Aattractive = e−Arepulsive . (6)

Finally, by combining repulsive and attractive forces, the force-directed attention Afinal is obtained:

Afinal = Aorigin + α ·Aattractive − β ·Arepulsive, (7)

where α and β are hyperparameter used to adjust attraction repulsion respectively.

Through the dynamic adjustment of repulsive and attractive forces, FDA can effectively reconstruct
the attention matrix, enabling the model to better capture semantic information while considering
the interactions between features. This mechanism reduces the problem of semantic misalignment
among features, allowing FDA to help the model more accurately understand contextual relation-
ships, thereby enhancing the effectiveness of task completion.

3.4 TARGET PREDICTION HEAD

During training, we use weighted focal loss (Law & Deng, 2018) to classify and perform bounding
box regression by using L1 loss and generalized IoU loss (Rezatofighi et al., 2019). Combining the
two position losses we designed, the overall loss function is:

Ltrack = Lfocal + λgiouLgiou + λL1
L1 + λabsLabs + λpnLpn, (8)

where λL1 = 5, λgiou = 2, λabs = 0.01 and λpn = 0.1 are the regularization parameters.

4 EXPERIMENTS

4.1 IMPLEMENTATION

The experiment is conducted on a server with 8 NVIDIA A100 GPUs. We implement our Enhanced
Semantic Alignment Transformer Tracker using Python 3.8 and PyTorch 1.9.

7
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Table 1: Comparison with state-of-the-art trackers on five popular benchmarks. The best two results
are shown in bold font.

Method Year LaSOT GOT-10K TNL2K TrackingNet LaSOText
AUC PNorm P AO SR0.5 SR0.75 AUC P AUC PNorm P AUC PNorm P

SiamPRN++ (Li et al., 2018) CVPR19 49.6 56.9 49.1 - - - 41.3 41.2 73.3 80.0 69.4 34.0 41.6 39.6
DiMP (Bhat et al., 2019) ICCV19 56.9 65.0 56.7 61.1 71.7 49.2 44.7 43.4 74.0 80.1 68.7 39.2 47.6 45.1

ATOM (Danelljan et al., 2019) CVPR19 51.5 57.6 - - - - 40.1 39.2 - - - - - -
SiamR-CNN (Voigtlaender et al., 2019) CVPR20 64.8 72.2 - 64.9 72.8 59.7 - - 81.2 85.4 80.0 - - -

Ocean (Zhang & Peng, 2020) ECCV20 56.0 65.1 56.6 61.1 72.1 47.3 38.4 37.7 - - - - - -
TrDiMP (Wang et al., 2021a) CVPR21 63.9 - 61.4 67.1 77.7 58.3 - - 78.4 83.3 73.1 - - -
TransT (Chen et al., 2021a) CVPR21 64.9 73.8 69.0 67.1 76.8 60.9 - - 81.4 86.7 80.3 - - -

AutoMatch (Zhang et al., 2021) ICCV21 58.3 - 59.9 65.2 76.6 54.3 47.2 43.5 76.0 - 72.6 - - -
STARK (Yan et al., 2021a) ICCV21 67.1 77.0 - 68.8 78.1 64.1 - - 82.0 86.9 - - - -

TransInMo (Guo et al., 2022) CVPR22 65.7 76.0 70.7 - - - 52.0 52.7 - - - - - -
AiATrack (Gao et al., 2022) ECCV22 69.0 79.4 73.8 69.6 80.0 63.2 - - 82.7 87.8 80.4 - - -

SwinTrack-B (Lin et al., 2022) NeurIPS22 71.3 - 76.5 72.4 80.5 67.8 55.9 57.1 82.5 87.0 80.4 49.1 - 55.6
CiteTracker (Li et al., 2023) ICCV23 69.7 78.6 75.7 74.7 84.3 73.0 57.7 59.6 84.5 89.0 84.2 - - -

MixFormerV2 (Cui et al., 2024) NeurIPS23 70.6 80.8 76.2 - - - 57.4 58.4 83.4 88.1 81.6 50.6 - 56.9
MATTrack (Zhao et al., 2023) CVPR23 67.8 77.3 - 67.7 78.4 - 51.3 - 81.9 86.8 - - - -

OmniTracker (Wang et al., 2023) CVPR23 69.1 77.3 75.4 - - - 51.3 - 83.4 86.7 82.3
GRM (Gao et al., 2023) CVPR23 69.9 79.3 75.8 73.4 82.9 70.4 - - 84.0 88.7 83.3
DATr (Zhao et al., 2024) WACV24 71.0 80.7 77.5 74.2 84.1 71.1 - - - - - 51.8 62.7 59.0

STCFormer (Hu et al., 2024) AAAI24 71.5 81.5 78.0 74.3 84.2 72.6 57.7 59.0 - - - 52.0 63.0 59.6
AQAT (Xie et al., 2024) CVPR24 71.4 81.9 78.6 73.8 83.2 72.1 57.8 59.4 - - - 51.2 62.2 58.9

OSTrack (Ye et al., 2022) ECCV22 71.1 81.1 77.6 73.7 83.2 70.8 55.9 - 83.9 88.5 82.0 50.5 61.3 57.6
ESAT Ours 71.6 81.4 78.0 74.7 84.8 71.5 58.2 59.9 84.2 88.7 83.4 51.2 62.2 58.4

Model. Similar to OSTrack, our model consists of 12 sequential encoder layers, initialized with a
MAE pre-trained model for the backbone network, where the search area pixels are 384 × 384 and
the template pixels are 192× 192. .

Training. We train our model with following datasets: COCO (Lin et al., 2014), LaSOT (Fan et al.,
2018), GOT-10k (Huang et al., 2018) and TrackingNet (Müller et al., 2018). During the training
process, we set the batch size to 16, the initial learning rate of the backbone to 4×10−5, the learning
rate of other parameters to 4×10−4, and weight decay to 10−4. The total number of training epochs
is 300, and after 240 epochs, we decrease the learning rate by a factor of 10. The model is trained
with AdamW optimizer.

Inference. During inference, we update the parameters normalization according to loss. The bench-
marks we set for test are LaSOT, GOT-10k, TNL2K, TrackingNet and LaSOText.

4.2 RESULTS AND COMPARISONS

To verify the efficacy of the proposed model, we compare them with 20 state-of-the-art approaches
on five different benchmarks. Results are shown in Tab. 1.

LaSOT (Fan et al., 2018). LaSOT focuses on long-term tracking scenarios, providing a large-scale
dataset that includes over 1400 video clips and more than 3.5 million frames, covering 70 categories.
Our ESAT performs 0.5% higher than baseline OSTrack-384 in AUC as well as 0.3% higher in PNorm
and 0.4% higher in P, which means our method is suitable in long-term video sequences.

GOT-10k (Huang et al., 2018). GOT-10k is a dataset for general object tracking, including over
10000 video clips. It takes the average overlap (AO) and the success rate (SR) at overlap thresholds
0.5 and 0.75 as the evaluation metrics. We obtain improvements of the AO, SR0.5, SR0.75 of 1.0%,
1.6%, 0.7%, respectively. And we have a significant advantage over other methods.

TNL2K (Wang et al., 2021b). TNL2K is a new dataset for natural language guided tracking, which
contains 700 high diversity sequences and introduces several adversarial samples and thermal images
to improve the generality of tracking evaluation. Therefore, TNL2K is a challenging benchmark
currently. We created a new state-of-art on it with an AUC of 58.2%, which is 2.3% higher than our
baseline OSTrack-384. And our scores in P also exceed other state-of-the-art tracking algorithms.

TrackingNet (Muller et al., 2018). TrackingNet is a large-scale dataset aimed at evaluating the
performance of target tracking algorithms in real-world scenarios. It contains over 30000 video
clips, covering a variety of different scenes and targets. On TrackingNet, our method outperforms
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Table 2: Quantitative comparison results of tracker with different components. The best results are
shown in bold font.

OSTrack-384 ABS Position Loss PN Position Loss FDA GOT-10K TNL2K LaSOT Speed(fps) MACs(G) Params (M)

✓ 73.7 55.9 71.1 114.4 48.4 92.1
✓ ✓ 74.0 58.0 71.3 106.6 50.9 99.0
✓ ✓ 74.3 57.9 71.3 106.8 50.9 99.0
✓ ✓ 73.6 57.6 71.3 96.2 48.4 92.1
✓ ✓ ✓ 74.7 58.0 71.5 107.5 50.9 99.0
✓ ✓ ✓ 73.9 57.9 71.4 82.3 50.3 94.8
✓ ✓ ✓ 74.2 57.7 71.3 81.7 50.3 94.8

✓ ✓ ✓ ✓ 74.7 58.2 71.6 83.2 50.3 94.8

Table 3: Effect of different weights for ABS position loss and PN position loss. The best results are
shown in bold font.

ABS Position Loss PN Position Loss GOT-10K TNL2K LaSOT

0.001 - 73.9 57.6 71.1
0.01 - 74.0 58.0 71.3
0.1 - 73.5 58.1 70.9
- 0.01 73.8 57.9 71.2
- 0.1 74.3 57.9 71.3
- 1 73.6 57.6 71.1

0.01 0.01 73.5 57.8 71.1
0.01 0.1 74.7 58.0 71.5
0.1 0.01 73.6 57.8 70.8
0.1 0.1 74.1 58.0 71.3

favorably against most other trackers, achieves 84.2% in success score, 88.7% in PNorm score and
83.4% in P score, overtaking most previously published trackers.

LaSOText (Fan et al., 2020). LaSOText is an extended target tracking dataset based on the LaSOT
dataset, which includes 150 additional sequences of 15 object classes. Due to its late release, there
were relatively few results, but we still have a significant improvement compared to the baseline.
Our AUC, P and PNorm have increased by 0.7%, 0.8% and 0.9%, respectively.

4.3 ABLATION STUDY

The Gains of Each Module. We explored the situations when three modules are used separately
or in combination on three benchmarks to judge the exact impact of each part. More specifically,
all three parts have a significant improvement on TNL2K and LaSOT whether used alone or in
combination. The improvement on GOT-10K is evident when using both types of position loss
functions. Tab. 2 shows the results, which prove that each module has made a contribution to the
improvement of performance.

Speed and Size. Our ESAT runs at a reduced speed compared to the baseline. As shown in the Tab.
2, the parameters of our ESAT are 94.8M, which are 2.7M larger than the original OSTrack-384. As
for multiply-accumulate computations (MACs), ours are 50.3G, about 1.9G larger than the baseline.
Experiments show that there is not too much computational burden of our method. The addition of
FDA will lead to a decrease in running speed and a little increase in the computational burden of
parameters and MACs, while the addition for position learning information almost cause no extra
burden in speed in comparison to the baseline OSTrack-384.

Effect of weights on each position loss. We try different weights for λ for each loss we design.
The range of testing weights of each loss is approximately determined by the scale of their values.
According to Tab. 3, results show that 0.01 and 0.1 are best for absolute position loss and positive-
negative position loss, whether used separately or together.
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Table 4: Effect of values on hyperparameter α and β. The best results are shown in bold font.
α&β 1 0.1 0.01

LaSOT 71.1 71.6 71.4
TNL2K 57.8 58.2 58.0

Effect of values on hyperparameter α and β. We also try different values on hyperparameter α
and β for Aattractive and Arepulsive. Tab. 4 shows that the best result is 0.01.

Template & Search Predicted Box in Video FramesFeature MapAttention MapSearch after CE

Figure 5: Visualization of the tracking process. The first column is the search images (the big ones)
and their template images (small ones on upper left corner). The second column shows the search
images after the early candidate elimination process of OSTrack. The third column shows attention
map for corresponding search image. The fourth column shows our feature map for this search. The
fifth column is the tracking results on corresponding frames. The green rectangles are groundtruth
and the blue rectangles are our predicted box.

Visualization. Fig.5 exhibits some examples of our realtime tracking, and we can see that ESAT is
robust in most cases and is able to deal with many challenges. It is able to catch small target (row 3)
and distinguish the target from objects that look similar like it (row 1 and row 4). It can also track
accurately when there are changes in lighting conditions (row 2) and deal with deformation of the
target (row 5).

5 CONCLUSION

In this paper, we propose a novel Enhanced Semantic Alignment Transformer Tracker (ESAT) to
alleviate the problem of semantic misalignment. Specifically, we design the self-supervised posi-
tion loss (SPL) and force-directed attention (FDA). SPL learns absolute positional encoding of both
target and search regions, and distinguish the target and background through positive-negative la-
bels. FDA uses repulsive and attractive forces to adjust attention and enhance semantic relationships
among features. The two modules cooperate to improve semantic alignment. By embedding these
modules into ESAT, extensive and quantitative experiments demonstrate the effectiveness of our
approach. We hope that our work can provide new insights into addressing challenges related to
semantic misalignment in Transformer-based trackers.
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