
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SKETCHFILL: SKETCH-GUIDED CODE GENERATION
FOR IMPUTING DERIVED MISSING VALUES

Anonymous authors
Paper under double-blind review

ABSTRACT

Missing value is a critical issue in data science, significantly impacting the reliabil-
ity of analyses and predictions. Missing value imputation (MVI) is a longstanding
problem because it highly relies on domain knowledge. Large language models
(LLMs) have emerged as a promising tool for data cleaning, including MVI for
tabular data, offering advanced capabilities for understanding and generating con-
tent. However, despite their promise, existing LLM techniques such as in-context
learning and Chain-of-Thought (CoT) often fall short in guiding LLMs to per-
form complex reasoning for MVI, particularly when imputing derived missing
values, which require mathematical formulas by considering data values across
rows and columns. This gap underscores the need for further advancements in
LLM methodologies to enhance their reasoning capabilities for derived missing
values. To fill this gap, we propose SketchFill, a novel sketch-based method to
guide LLMs in generating accurate formulas to impute missing numerical val-
ues. SketchFill first utilizes a general user-provided Meta-Sketch to generate
a Domain-Sketch tailored to the context of the input dirty table. Subsequently,
it fills this Domain-Sketch with formulas and outputs Python code, effectively
bridging the gap between high-level abstractions and executable solutions. Addi-
tionally, SketchFill incorporates a Reflector component to verify the generated
code. This Reflector assesses the accuracy and appropriateness of the outputs
and iteratively refines the Domain-Sketch, ensuring that the imputation aligns
closely with the underlying data patterns and relationships. Our experimental re-
sults demonstrate that SketchFill significantly outperforms state-of-the-art methods,
achieving 56.2% higher accuracy than CoT-based methods and 78.8% higher
accuracy than MetaGPT. This sets a new standard for automated data cleaning and
advances the field of MVI for numerical values.

1 INTRODUCTION

Missing value imputation (MVI) represents a longstanding data quality challenge, critically impacting
the reliability and effectiveness of data-driven industries, such as healthcare (Shetty et al., 2024;
Psychogyios et al., 2023), IoT research (Adhikari et al., 2022; Li et al., 2023c), and spatial time-series
analysis (Wu et al., 2015; Gong et al., 2023; Tashiro et al., 2021). A notable aspect of this challenge
is the substantial amount of time and resources it demands (Rezig et al., 2019; Rashid & Gupta,
2020). The State of Data Science 2020 Survey, made by Anaconda1, revealed that on average 45%
of time is spent getting data ready (19% and 26% for loading and cleaning respectively) before the
data scientists can use it to develop models and visualizations. This not only consumes an excessive
amount of human resources but also significantly slows down the analytical processes in data-centric
corporations.

Given its critical importance, MVI has been extensively explored within the academic and professional
communities. The literature is rich with a variety of approaches, ranging from traditional statistical
methods to more contemporary machine learning and deep learning-based techniques. Despite the
advancements, the task of MVI continues to pose significant challenges, largely due to the need for
substantial domain-specific expertise to accurately handle missing data. In this work, we address a
specific subset of this problem, termed Derived Missing Value Imputation (DMVI), which can

1https://www.anaconda.com/resources/whitepapers/state-of-data-science-2020

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Ta
bl

e
D

at
a

Fo
rm

ul
a

28.32

Unit Price

73.96

16.67

30.68

Quantity

1

7

7

3 NaN4.6

3.7

Tax5

122.52

Total

146.687.08

77.66

5.83

Height

1.85

1.71

1.58

1.73 NaN74.12

97.1

Weight

31.936

BMI

27.12679.32

38.896

109.3 09:50

Period

10:30

10:40

…

NaN410.03

…

Close

409.27

SMA5

409.142409.19

…

408.78

<latexit sha1_base64="AzA6T3aMzmWPNlNo4XYV7zgNga0=">AAACFnicbVC7SgNBFJ2Nrxhfq5Y2g0GwSdiVJNoEImlshIjmAdm4zE5mkyGzD2ZmhTDsV9j4KzYWitiKnX/j5FFo4oELh3Pu5d57vJhRIS3r28isrK6tb2Q3c1vbO7t75v5BS0QJx6SJIxbxjocEYTQkTUklI52YExR4jLS9UX3itx8IFzQK7+Q4Jr0ADULqU4ykllyzcHt9WYZV6PgcYWWnqpxCRySBq2jVSu9VKYV1FgniKlmgqWvmraI1BVwm9pzkwRwN1/xy+hFOAhJKzJAQXduKZU8hLilmJM05iSAxwiM0IF1NQxQQ0VPTt1J4opU+9COuK5Rwqv6eUCgQYhx4ujNAcigWvYn4n9dNpH/RUzSME0lCPFvkJwzKCE4ygn3KCZZsrAnCnOpbIR4iHZDUSeZ0CPbiy8ukdVa0K8XKTSlfK83jyIIjcAxOgQ3OQQ1cgQZoAgwewTN4BW/Gk/FivBsfs9aMMZ85BH9gfP4AZOueSg==</latexit>

SMA5 =
1

5

4∑

i=0

Closet→i

<latexit sha1_base64="2EgfVnom7oDRrpHyFPE2TpcMThk=">AAACB3icbVDLSsNAFJ3UV62vqEtBBovgqiSlVDdC0U1dCBVsK7SxTKaTduhkEmYmQgnZufFX3LhQxK2/4M6/cZJmoa0HLvdwzr3M3OOGjEplWd9GYWl5ZXWtuF7a2Nza3jF39zoyiAQmbRywQNy5SBJGOWkrqhi5CwVBvstI151cpn73gQhJA36rpiFxfDTi1KMYKS0NzMOL6yt4DvueQDjuEjoaqyRuZv2+mpQGZtmqWBngIrFzUgY5WgPzqz8McOQTrjBDUvZsK1ROjISimJGk1I8kCRGeoBHpacqRT6QTZ3ck8FgrQ+gFQhdXMFN/b8TIl3Lqu3rSR2os571U/M/rRco7c2LKw0gRjmcPeRGDKoBpKHBIBcGKTTVBWFD9V4jHSEeidHRpCPb8yYukU63Y9Ur9plZu1PI4iuAAHIETYINT0ABN0AJtgMEjeAav4M14Ml6Md+NjNlow8p198AfG5w99Kphs</latexit>

BMI =
Weight

Height2
<latexit sha1_base64="mIPQEQ2bTRlcHo24CgG4cC7ZUFE=">AAACEXicbVDLSgMxFM34rPVVdekmWARBKDNSqxuh4MZlC51WaEu5k6YazCRDckccSn/Bjb/ixoUibt25829MHwtfBy4czrk3ufdEiRQWff/Tm5tfWFxazq3kV9fWNzYLW9tNq1PDeMi01OYyAsulUDxEgZJfJoZDHEneim7Ox37rlhsrtGpglvBuDFdKDAQDdFKvcNDQCJKe0VAJrBnBOO2wvkZaT0G59zJ6SBtwd5zvFYp+yZ+A/iXBjBTJDLVe4aPT1yyNuUImwdp24CfYHYJBwSQf5Tup5QmwG7jibUcVxNx2h5OLRnTfKX060MaVQjpRv08MIbY2iyPXGQNe29/eWPzPa6c4OO0OhUpS5IpNPxqkkqKm43hoXxjOUGaOADPC7UrZNRhg6EIchxD8PvkvaR6VgkqpUi8Xq+VZHDmyS/bIAQnICamSC1IjIWHknjySZ/LiPXhP3qv3Nm2d82YzO+QHvPcv8PubyA==</latexit>

Total = UnitPrice · Quantity + Tax5

BMI (Simple) Supermarket (Intermediate) Bajaj Finance (Complex)

Figure 1: DMVI samples from our experimental datasets. The NaN represents the missing values and
the formula on the bottom is the derived solution for the missing value imputation.

D

Diagnosis:

Using mean value,
should apply formula
of Simple Moving
Average of 'close'

(b) Code Generation

Code

Generator

Python Code

imputer
strategy

df
imputer df

=
(=

) 
[] =

. ([[
]])

SimpleImputer 'me
an'

'sma5'
's

ma5'
fit_transform

Answer: 410.194

D

LLM

(COT)

Diagnosis:

Should be
average of 'close'

for rows 10:00 to 10:40

(a) CoT Prompting

Step-by-Step Natual Language

Let's think step by step....

Missing value: row 10:40 'sma5'
column

'sma5' simple moving average
of 'close' for last 5 periods

Calculate average of 'close'

for rows 09:50 to 10:30

Answer: 409.306

(c) Self-Reflected Code Generation

Diagnosis:

Using value of last time

should apply formula of

Simple Moving Average
of 'close'

D

Evaluator

Code

Generator

Reflector

Python Code

data_imputed
method inplace True

.
(= , =)

fillna

'ffill'

Answer: 409.142

(e) SketchFill

Evaluator

Python Code

sma5_value df loc

df at sma5_value

 = . [: ,
]. ()

. [,] =

1 5

5
'close'

'sma5'

mean

Answer: 409.392

Domain-Sketch

S1 Use the pandas

library df.isnull()

S2 'close'

...

S7 Missing value is the

average 'close' values

for rows 10:00 to 10:40

Domain-Sketch

S1 Use the pandas

library df.isnull()

S2 'close'

...

S7 Missing value is the

average 'close' values

for rows 10:00 to 10:40

D

Diagnosis:

Using the correct rows
to caluculate the

Simple Moving Average
of 'close'

ReflectorCode

Generator

Domian-Sketch

Generator

Meta-Sketch

S1 Find missing value

S2 Find related column

S3 Draft solution

S4 Calculate intermediate variables

S5 Find related rows

S6 Varify the solution with exmpale rows

S7 Construct solution

(d) Human Operation

Diagnosis:

Using the correct rows
to caluculate the

Simple Moving Average
of 'close'

D

Python Code

sma5_value df loc

df at sma5_value

 = . [: ,
]. ()

. [,] =

1 5

5
'close'

'sma5'

mean

Answer: 409.392

Data
Scientist

Domain
Expert

Discussion

Observe dataset and
acquire data knowledge

Figure 2: Different LLM-based approaches for DMVI

often be observed in real-world numerical data as shown in Figure 1. The derivation process is often
tightly coupled with the characteristics of both the domain and the dataset, implying that imputation
methods effective in one context may not generalize to others. Consequently, both domain-specific
knowledge and dataset-specific knowledge are essential to carry out DMVI tasks.

In recent years, large language models (LLMs) have shown considerable promise in addressing
complex data processing tasks (Zhao et al., 2023; Zhang et al., 2023a), particularly in the field of
table understanding in knowledge extraction and content generation (Sui et al., 2024; Zha et al., 2023;
Li et al., 2023b). Their ability to understand and manipulate textual and, increasingly, tabular data
suggests a promising avenue for enhancing MVI techniques. By leveraging the extensive knowledge
embedded within LLMs (Razniewski et al., 2021), there is potential to significantly improve the
accuracy and efficiency of the DMVI task, where understanding nuanced data relationships and
contexts is crucial.

Let’s illustrate the limitations of existing methods using an example. Figure 2 illustrates various
approaches that impute missing values (annotated with NaN) in the dirty data D using LLMs. Note
that SMA5 is a formula commonly used in the financial domain that requires aggregating the previous
five rows (See the Bajaj Finance sample in Figure 1).

Baseline-1: Chain-of-thoughts (CoT) for DMVI. Figure 2(a) explores the use of CoT prompting,
which encourages LLMs to process information step-by-step. This method, however, tends to produce
answers that are “reasonable” yet oftentimes not sufficiently accurate.

Baseline-2: Code Generation for DMVI. Figure 2(b) highlights the code generation capabilities of
LLMs, which tend to employ common functions such as calculating the mean. Though straightfor-
ward, this approach often fails to address the complexities inherent in many DMVI scenarios.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Baseline-3: Self-Reflected Code Generation for DMVI. Figure 2(c) introduces the use of a Reflector
to refine the generated code. Despite this enhancement, it still struggles to support LLMs in making
intricate reasoning required for formula generation.

Rethink: How Do Data Scientists Perform DMVI? As illustrated in Figure 2(d), the data scientist
often starts his/her observation on the missing value and surrounding rows and columns (Gibson
et al., 1989) to build dataset knowledge essential for DMVI. Witten & Frank (2005) also mention
the importance of collaboration with domain experts to build domain knowledge. These expertises
are then translated into algorithms via coding, enabling the automation of the DMVI process and
ensuring accurate results. Inspired by this human operation, we argue that the explicit manifestation
of both dataset and domain knowledge via a Meta-Sketch can guide LLMs to generate accurate and
tailored Python code for DMVI.

Our Proposal: Sketch-Guided Self-Reflected Code Generation. Figure 2(e) presents our pro-
posed method SketchFill. Accordingly, SketchFill mimics this human-driven expertise, which shifts
from CoT to using an explicit user-provided Meta-Sketch to direct LLMs in generating a Domain-
Sketch. Consequently, the Domain-Sketch, which contains the reasoning result embedded with
knowledge of the particular dataset, can better guide LLMs to generate Python code for DMVI by
Code Generator. It also adopts a Reflector module to iteratively refine the Domain-Sketch, leading to
the accurate formulation of a problem-specific formula that is subsequently instantiated into Python
code. Afterwards, the Summarizer module will wrap the imputation code into a structured format for
execution. This approach significantly improves the precision and applicability of DMVI solutions.

Contributions. Our main contributions in tackling DMVI issue are summarized as follows:

1. Integration of Meta-Sketch and Domain-Sketch for DMVI Code Generation: SketchFill
incorporates a high-level user hint Meta-Sketch (e.g., explicitly saying that more rows and
more columns need to be checked), which will be used by the Domain-Sketch Generator
to produce a Domain-Sketch and then by Code Generator to generate executable Python
code. This two-step sketch generation and guided code generation can not only aid LLMs in
identifying the correct formulas for imputation but also impose constraints on the output
format, ensuring that the results are structured and predictable.

2. Iterative Reflector-Based Framework: SketchFill employs an effective reflector-based
iterative framework that guides LLMs in discovering the correct formula for imputing
missing values. This framework iteratively refines the output, enabling the LLM to align
more closely with the complexities of the specific imputation task.

3. Output Summarization: To enhance the usability of the imputed data, SketchFill includes a
Summarizer that processes the outputs for multiple missing values. Thanks to the constrained
output format provided by the Meta-Sketch, the Summarizer efficiently organizes the results
into an easily readable format, allowing users to understand and apply the formulas across
multiple instances of missing data.

4. Empirical Validation: We have conducted comprehensive experiments across five different
domains to validate the effectiveness of SketchFill. These experiments demonstrate the
robustness and versatility of our approach in improving the accuracy and reliability of
missing value imputation across diverse datasets and application contexts.

2 RELATED WORK

Missing Value Imputation (MVI) has been explored with the advent of data science, aiming to look
at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data
in datasets (Little & Rubin, 2019). Despite a single imputation method like Hot-Deck (Andridge &
Little, 2010; Christopher et al., 2019), which is imputed from a randomly selected similar record, we
categorize existing solutions in the context of statistics and machine intelligence for missing value
imputation as follows.

Statistic-based Methods. Initially, the most common strategy for MVI is using a descriptive statistic,
e.g., mean, median, or most frequent, along each column, or using a constant value. It is widely

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

adopted in existing packages and tools, such as sklearn.SimpleImputer (Pedregosa et al., 2011)
and Excel FlashFill (Gulwani, 2011). Besides, curated packages such as MICE (Van Buuren &
Groothuis-Oudshoorn, 2011) can impute incomplete multivariate data by chained equations.

Machine Learning-based Methods. Tao et al. (2004) improve algorithms in Reverse kNN, allowing
to retrieve an arbitrary number of neighbors in multiple dimensions. Sridevi et al. (2011) propose
ARLSimpute, an autoregressive model to predict missing values. Stekhoven & Bühlmann (2012)
propose an iterative imputation method MissForest that can impute the missing value of mixed-type
data. Tsai et al. (2018) propose CCMVI, which calculates the distances between observed data and
the class centers to define the threshold for later imputation. Razavi-Far et al. (2020) propose kEMI
and kEMI` for imputing categorical and numerical missing data correspondingly. They both first
utilize the k-nearest neighbors (KNN) algorithm to search the K-top similar records to a record with
missing values, then invoke the Expectation-Maximization Imputation (EMI) algorithm, which uses
feature correlation among the K-top similar records to impute missing values.

Deep Learning-based Methods. Gondara & Wang (2018) propose a multiple imputation model
based on overcomplete deep denoising autoencoders, which is capable of handling different missing
situations in terms of the data types, patterns, proportions, and distributions. With the advent of
the diffusion model, the CSDI (Tashiro et al., 2021) acts as a time series imputation method that
utilizes score-based diffusion models to exploit correlations on observed values. Later on, Zheng &
Charoenphakdee (2022) explore the use of conditional score-based diffusion models for tabular data
(TabCSDI) to impute missing values in tabular datasets. Their study evaluates three techniques for
effectively handling categorical variables and numerical variables simultaneously.

LLM-based Methods. With the advance of LLM, especially superb generative models like GPT,
some techniques can be applied to the MVI task. Since LLMs are trained on extensive and diverse
corpora, they inherently possess knowledge of a wide array of common entities (Razniewski et al.,
2021; Narayan et al., 2022), intuitively, we can directly ask LLM to perform MVI given some
dirty data. Besides, CoT prompting (Wei et al., 2023) can significantly improve the ability of
complex reasoning. Alternatively, Poldrack et al. (2023) explore the code generation ability utilizing
LLM so that a specific script for MVI can be generated. Additionally, LLM-powered agentic tool,
MetaGPT (Hong et al., 2023; 2024) reveals its capability on data cleaning tasks. In short, we will
seize the above methods and discuss their performance in the later section.

3 METHODOLOGY

3.1 PRELIMINARIES

Derived Missing Value Imputation. Let T be a table with missing values that are denoted by NaN.
The problem of derived missing value imputation (DMVI) can be mathematically expressed as finding
a formula f such that for each missing value NaN in T , we have:

x “ fpT q, s.t. x « xg (1)

where x is the filled value and xg is the ground truth value. Moreover, the complexity of the deriving
formula involving missing values can range from simple to highly intricate as shown in Figure 1.

Sketch-Guided Approach. Normally, the sketch refers to a high-level, abstract representation of the
content. The sketch-guided approach has been proven to be effective in various scenarios, such as code
generation (Li et al., 2023a; Zan et al., 2022; Calò & Russis, 2022), text-to-SQL (Choi et al., 2020),
and image generation (An et al., 2023). In our framework, we adopt it to guide LLMs for better code
generation by incorporating two types of sketches: Meta-Sketch and Domain-Sketch, respectively. A
Meta-Sketch is defined as a series of instructions that mimic the task-specific procedure of expert
users. A Domain-Sketch is iteratively generated into a series of curated instructions from the
Meta-Sketch. We will elaborate them in Domain-Sketch Generator Section 3.3.

Prior Analysis. We conducted several observations prior to our framework as shown in Figure 2.
Intuitively, LLMs can be leveraged to fill missing values by a simple prompt “fill the missing values
of the input dirty table”, or using Chain-of-Thought by adding a prefix “let’s think step by step”.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: SketchFill imputation workflow
Input: Meta-Sketch, T and V
Output: D1 and F

1 C,D “ tT1, T2, ¨ ¨ ¨ , Tnu Ð randomly sample k rows of clean data from T and chunk T ;
2 Cm Ð randomly masked λ rows of of V in C;
3 while retry ď retry_limit do
4 S, P Ð Call Domain-Sketch Generator: use Meta-Sketch to generate Domain-Sketch S

and Call Code Genrator: interpret S into Python code P to impute missing value in Cm;
5 C 1

m Ð Execute P to get imputed data;
6 if Call Evaluator: C 1

m “ C then
7 F Ð Call Summarizer: generate imputation function for V in form of Python code

function F ;
8 else
9 Snew Ð Call Reflector: reflect and generate new Domain-Sketch Snew;

10 retry “ retry ` 1;
11 end
12 end
13 D1 Ð Execute F on D;
14 return D1 and F ;

However, these approaches may not be robust enough to guide LLMs to derive a correct solution
for the DMVI task, such as utilizing formulas. Besides, directly applying code generation also fails
to generate the correct solution for the DMVI task, as it lacks some high-level user hint to unleash
the power of LLMs to reason the domain knowledge of the dataset. We also include the reflector
to polish the generated code. However, without the guidance from the sketch, the reflector lacks of
DMVI task understanding so that fails to carry out the correct inference and refine the Python code.
To cope with this problem, we offer a sketch-guided solution. On the one hand, it allows the users to
provide simple hints. On the other hand, it can provide more context information to LLMs, in order
to perform targeted code generation and improve the reflection.

3.2 SKETCHFILL OVERVIEW

We propose a novel framework that leverages extensive knowledge embedding within LLMs to
resolve the challenge of DMVI. Algorithm 1 elaborates the workflow by which we implement
SketchFill. It takes the input of a dirty table T , a user-provided prompt Meta-Sketch, and the column
V that requires for imputation. It outputs an imputed dataset D1 and a Python code function F for
human review.

To extract the formula within the dirty table, SketchFill first samples a subset of clean data C within
the dirty table and randomly masks it (lines 1-2). Then SketchFill iteratively reason and reflect
to ensure the generated formula is aligned more closely with the relation behind variables (lines
3-12), based on Cm and the following components. The Domain-Sketch Generator guides LLMs
to generate Domain-Sketch S, including a series of logical steps and descriptions (line 4). Next,
the Code Generator turns S into executable Python code P , which will be executed and generate
imputed data C 1

m (line 5). If C 1
m is identical to C based on the result of the Evaluator, S and P are

considered correct and will be summarized into an imputation function F for review and imported by
the Executor (lines 6-7). Otherwise, the Reflector will refine the wrong sketch S and generate a new
Domain-Sketch Snew for the Code Generator (lines 8-9). This process continues until the imputation
Domain-Sketch is considered correct or reaches the retry_limit of Reflector. Note that, the retry_limit
is a hyperparameter, where in our experiments retry_limit=3. If the retry times reach the retry_limit,
the program will send feedback of unable to impute. It then executes the derived formula on the dirty
data (line 13) and outputs the repaired data D1, as well as the function F (line 14).

As demonstrated in Figure 3, SketchFill mainly includes four modules to carry out the DMVI task:
Domain-Sketch Generator 3.3, Self-Reflected Code Generator 3.4, Summarizer 3.5, and Executor 3.6.
We will discuss the details of each module in the following sections.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Time close sma5
09:50 408.78 409.270

10:00 409.18 409.186

10:10 408.78 408.942

10:20 409.78 409.106

10:30 409.19 409.142

10:40 410.03 NaN

Masked Table: D

Summarizer

Domian-Sketch

Generator

Meta-Sketch

S1 Find missing value

S2 Find related column

S3 Draft solution

S4 Calculate intermediate variables

S5 Find exmaple rows

S6 Varify the solution with exmpale rows

S7 Construct solution

Evaluator

Python Code

def df
 indices df df isnull axis
 idx indices
 isnull df idx
 value df idx idx
 df idx value

impute_missing_value():

= [. ().any(=)].index

:

. (.at[,]):

= .loc[- : ,].mean()

.at[,] =

1

4

for in
if pd 'sma5'

'close'
'sma5'

Reflector

Code

Generator

Python Code

sma5_value df loc

df at sma5_value

 = . [: ,
]. ()

. [,] =

1 5

5
'close'

'sma5'

mean

Answer: 409.392

Domain-SketchDomain-Sketch

S1 Use the pandas df.isnull()

S2 'close'

S3 Simple moving average
of 'close' for last 5 periods

S4 related_row=

df.loc
S5 - S7 sma5_value

=relate_rows.mean()

[0:4,'close']

(Wrong)

Domain-SketchDomain-Sketch

S1 Use the pandas df.isnull()

S2 'close'

S3 Simple moving average of

'close' for last 5 periods

S4 related_row=

df.loc
S5 - S7 sma5_value =

relate_rows.mean()

[1:5,'close']

(Correct)

Executor
Dirty dataset

Sample and Mask data

for Formula Extraction

Clean dataset

1 2

34

Execution Stage

Figure 3: The SketchFill framework

3.3 DOMAIN-SKETCH GENERATOR

LLMs have demonstrated their ability to capture the two-dimensional structure of tabular data through
techniques such as role-prompting and fine-tuning (Sui et al., 2024; Zha et al., 2023). However, DMVI
requires a series of operations, such as locating missing values, building solutions and calculations.
Even with step-by-step prompting of CoT reasoning, LLMs still struggle to fully comprehend the
formulaic relationship and conduct calculations. To address this challenge, SketchFill includes the
Domain-Sketch Generator to construct the imputation solution as one of main contributions that
improve DMVI performance (See Phase ①, Figure 3).

The Domain-Sketch Generator is tasked with producing the Domain-Sketch, adhering to Meta-Sketch
guidance to exploit the LLMs’ embedding knowledge about the specific dataset at hand. The Meta-
Sketch, a pseudo-code-like file, contains a series of logical steps and descriptions, encapsulating the
formula-based strategy for DMVI. Then, LLMs could generate specific step-by-step Domain-Sketch
to guide other agents to output Python code for DMVI. Consider the circumstance that domain experts
of dirty data when imputing the missing value. It is common for them to decompose DMVI into the
following steps, w.r.t the Meta-Sketch template in Phase ①, Figure 3:

• S1-S2: locating the missing value and recalling the associated knowledge about the variable
of missing value, by searching for variables in this dirty table that are related to the missing
value,

• S3-S6: drafting and verifying the formula to calculate the missing value by applying it to
rows without missing values, and,

• S7: calculating the missing value, utilizing the verified formula.

In our experiments, we sufficiently illustrate that LLM-powered (See Appendix B.1) Domain-Sketch
Generator can carry out a satisfying Domain-Sketch for the specific dataset based on the instruction
from Meta-Sketch. To exemplify, given a masked clean subset (Cm), the Domain-Sketch Generator
receives this Cm as input and creates the Domain-Sketch (S) based on the Meta-Sketch.

3.4 SELF-REFLECTED CODE GENERATOR

The Code Generator is initialized as an LLM (see Appendix B.2) and serves as the interpreter of
the Domain-Sketch (S) to generate Python code (P) for DMVI (See Phase ②, Figure 3). However,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

writing code in a single attempt can be challenging, making it difficult to ensure the correctness
of the imputation. Recent research has demonstrated that self-reflection can greatly improve an-
swer accuracy, consistency, and entailment of LLM (Ji et al., 2023). Inspired by Reflexion and
MetaGPT (Shinn et al., 2023; Hong et al., 2023), SketchFill incorporates a self-reflection mechanism
that iteratively refines the initial Domain-Sketch (S) and generated code, enhancing its accuracy and
reliability. Moreover, it reduces the need for human intervention in reviewing the DMVI solution.
The Self-Reflected structure comprises two components: the Evaluator and the Reflector.

Evaluator. Within the Phase ②, the Evaluator holds a vital position by replacing the need for human
evaluation during the imputation. The Evaluator receives the C 1

m as input and compares with C.
Then, it returns a binary signal of whether the imputation is successful or not based on the result
of CloseMatch defined as: sgnp|C 1

mij
´ Cij | ´ ϵq, where ϵ is a user defined hyperparameter that

controls the tolerance of the closeness. If the imputation is regarded as identical, P will be submitted
to Summarizer for further processing. Otherwise, the Reflector shall be activated to refine S.

Reflector. The Reflector, initialized as an LLM (see Appendix B.3), is responsible for the self-
reflected structure in SketchFill. To illustrate the mechanism behind, let us consider a scenario when
the Python code (P) is generated due to a wrong S. The Evaluator then raise a negative signal and
forwards the S to the Reflector. The Reflector takes the S generated in this iteration, identifying the
root causes of the inaccuracies, such as incorrect index in Python code or wrong formula assumption
(see Appendix C). Based on the analysis, the Reflector refines S and generates a new Snew, as shown
in Phase ②, Figure 3. This process repeats until it reaches the retry_limit or the Evaluator sends a
positive signal, confirming the validity of P for DMVI.

3.5 SUMMARIZER

The motivation for implementing the Summarizer stems from the necessity to conduct the human
review for each imputation of subsets when applying LLMs for DMVI, owing to the token limitation
that LLM can process at a time, particularly when utilizing CoT-based LLM. Meanwhile, LLMs
have exhibited better factual consistency and fewer instances of extrinsic hallucinations in generating
summary, compared to humans (Zhang et al., 2023b; Wu et al., 2023; Pu et al., 2023), as well as
promising code understanding (Nam et al., 2023; Richards & Wessel, 2024).

The Summarizer is initialized as an LLM (see Appendix B.4) as part of SketchFill. Given the similar
pattern of P in the DMVI solution within the same column, the Summarizer has the potential to
develop a generalized solution accordingly such that the Summarizer distil the P into a more readable
and generalized Python function. By doing so, the Summarizer drastically minimizes the need for
human review. As depicted in Phase ③, Figure 3, the Summarizer takes the validated P and abstracts
the specifics of the dataset into parameters, creating a flexible function capable of addressing missing
values across various subsets derived from the dirty table. Consequently, the Summarizer outputs a
finalized Python function (F). F is then utilized in the Execution module, enabling automatic DMVI
across any subset of the original dirty table without additional manual procedures. The Summarizer
thus streamlines the imputation process, ensuring consistency and scalability while significantly
reducing the manual workload.

3.6 EXECUTOR

The Executor (See Phase ④, Figure 3) is programmed as a particularly Python file, aiming to process
the dirty subsets with the missing value of the same columns by importing F that is generated by
the Summarizer. Therefore, once the F is approved and deployed, the rest of the missing values can
be automatically imputed. For instance, for the variable (V) in the tabular data case, the Executor is
programmed to apply the DMVI processing with F to impute subsequent missing value in V .

4 EXPERIMENT

4.1 ENVIRONMENT SETUP

Approaches. We compared SketchFill with the following approaches.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Statistics of experiment datasets

Bajaj Bmi Supermarket GreenTrip LOLChampion

#-Attributes 12 5 10 13 12
#-Variables 6 3 6 4 5
#-Tuples 3600 720 960 1800 554
#-Missing values 334 138 180 215 107
Missing values (%) 9.28% 19.17% 18.75% 11.94% 19.31%

(1) KNN: It is employed as an ML-based approach, where N=5. (2) MICE: It is employed as a
statistic-based method, conducting DMVI by building chained equations of other variables. (3)
TabCSDI: It is employed as a deep learning-based method, by utilizing diffusion models for DMVI.
(4) LLM: It utilizes LLM intuitively. (5) CoT: It prompts LLM to reply with “Let’s think step by
step”. (6) Code Generation: It requires LLM to generate complete code for DMVI. (7) MetaGPT:
It leverages its built-in code generator and self-reflection module. The implementation details of
non-LLM based approaches and MetaGPT are illustrated in Appendix D.

Backend LLM. We employ GPT-4o as the back-end model supported by OpenAI API2. As for
open-source model experiments, we consider using the Llama3 (Llama3-8B-Instruct) model as the
back-end3. The Llama3 request is supported by the Ollama4 running in a local environment. For both
models, the token size is set as 4096 using a temperature of 0.

Dataset. Our experiments span across five-domain datasets sourced from Kaggle and other open-
access repositories. We illustrate the fact of the dataset and its formulas in Appendix A.

Preprocessing. Each dataset is sequentially segmented into subsets to accommodate the DMVI tasks
that require proper calculation. Given the transparent formulaic association of the target variable to
be imputed and other known variables, each subset is well curated as a testing tuple. Specifically, we
mask the original value of the target variable with NaN to mimic the missing value controlled by an
appropriate missing rate, similar to settings in other works (Zheng & Charoenphakdee, 2022; Tashiro
et al., 2021; Van Buuren & Groothuis-Oudshoorn, 2011). Consequently, multiple missing values
related to the same variable may take place in some testing tuples. Full statistics are shown in Table 1.

Evaluation Metrics. We assessed the imputation performance using three commonly adopted metrics:
(1) Accuracy: This metric evaluates the overall accuracy by comparing the imputed values to the
ground truth values. (2) FindAccuracy: This metric measures the accuracy of values that have been
correctly imputed at least once, ignoring variables where all imputations failed. It is particularly
helpful to evaluate datasets with noisy data, where a formula may not robustly hold for all rows but
correct for the majority. It describes the accuracy of variable detection under the circumstance that
the formula is constructed, even though not entirely correct. (3) RMSE (Root Mean Square Error):
This metric calculates the difference between the imputed value and ground truth value. A lower
RMSE indicates better imputation accuracy, with a zero value indicating identical imputation.

4.2 RESULT ANALYSIS

Figure 4 and Table 2 report the performance of DMVI using different approaches on five datasets
from different domains. KNN and MICE approaches are statistic/ML-based; TabCSDI is deep
learning-based; while the others are based on LLMs. We omit the imputation accuracy of KNN
because its performance is less competitive. Besides, we only report the summary RMSE results of
TabCSDI due to the limitation of its source code. Detailed results from Llama3-8B are shown in
Appendix C. Next, we will analyze the experimental results for each dataset.

2https://platform.openai.com/docs/models/gpt-4o
3https://llama.meta.com/llama3/
4https://ollama.com/library/llama3

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0% 20
%

70
%

70
%

29
%

1%

38
%

36
%

50
%

26
%

1%

34
%

30
%

54
%

21
%

0%

62
%

34
%

17
%

13
%

0% 9% 0% 15
%

3%

84
%

10
0%

84
%

74
% 79

%

0%

20%

40%

60%

80%

100%

Bajaj Bmi Supermarket GreenTrip LOLChampion
(a) Imputation accuracy

MICE LLM
CoT Code Generation
MetaGPT SketchFill

2%

53
%

10
0%

70
%

36
%

2%

38
% 43

% 50
%

26
%

17
%

34
%

36
%

54
%

25
%

2%

62
% 67

%

32
%

22
%

0%

24
%

0%

45
%

4%

10
0%

10
0%

10
0%

74
% 79

%

0%

20%

40%

60%

80%

100%

Bajaj Bmi Supermarket GreenTrip LOLChampion
(b) Imputation find accuracy

MICE LLM
CoT Code Generation
MetaGPT SketchFill

Figure 4: (a) SketchFill performance across 5 datasets showing imputation accuracy compared with
different approaches. (b) SketchFill performance across 5 datasets showing imputation find accuracy
compared with different approaches. LLMs are backend by GPT-4o.

Table 2: RMSE-measured imputation result by dataset by variable using different approaches

Dataset Variable KNN MICE TabCSDI LLM CoT Code Generation MetaGPT SketchFill
Bajaj SMA5 1.1383 0.4232 N/A 0.5101 0.5051 0.7337 1.0743 0.0000

EMA5 1.6213 0.2014 N/A 0.3488 0.4004 0.8762 1.3908 0.0000
CCI5 69.5075 56.6780 N/A 59.7540 61.8278 76.1961 76.3084 0.0000
ROC5 0.5257 0.3239 N/A 0.3887 0.3943 0.5555 0.5779 0.0000
MOM10 3.1901 1.7620 N/A 1.8774 2.0001 2.6661 2.6459 0.0000
RSI8 7.8397 2.5590 N/A 4.9973 5.5522 7.1357 7.3535 8.7993
Summary 13.9704 10.3246 17.2945 11.3127 11.7800 14.6939 14.8918 1.4666

Bmi Weight 10.6149 2.7142 N/A 1.2109 0.8870 4.0040 14.9811 0.0000
Height 0.0570 0.0424 N/A 0.0554 0.0671 28.6804 0.0649 0.0000
BMI 4.6873 1.4047 N/A 0.0307 0.0342 0.0000 9.9793 0.0000
Summary 5.1197 1.3871 5.0527 0.4323 0.3294 10.8948 8.3418 0.0000

Supermarket UnitPrice 20.1411 18.5245 N/A 2.0401 6.1623 26.6527 26.6527 0.0000
Quantity 2.2487 1.5734 N/A 0.0941 0.1374 2.2191 2.7918 0.0000
Tax5 9.3763 0.0000 N/A 0.8740 0.8962 2.9530 12.3807 0.0000
Total 166.1456 0.0000 N/A 55.5336 38.8426 0.0000 246.1067 0.0000
CostsofGoodsSold 146.9721 0.0000 N/A 0.5560 26.4411 239.0153 239.0153 0.0000
GrossIncome 5.6514 0.0000 N/A 1.4392 0.6683 8.1654 8.9878 0.7749
Summary 58.4225 3.3497 53.9156 10.0895 12.1913 46.5009 89.3225 0.1292

GreenTrip TipAmount 2.6736 1.335 N/A 3.1168 3.3141 3.2938 3.2938 0.7329
TotalAmount 3.4047 0.7834 N/A 1.5971 1.6945 12.6227 3.4435 0.5507
CongestionSurcharge 1.1505 0.2636 N/A 1.2596 1.2596 12.0969 1.0591 0.3647
TollsAmount 0.5387 0.7574 N/A 0.5540 0.4382 1.6866 0.5177 0.5720
Summary 1.9419 0.7845 5.8039 1.6319 1.6766 7.4250 2.0785 0.5551

LOLChampion PRateplusBRate 0.2008 0.0733 N/A 0.0474 0.0474 0.0466 0.2227 0.0474
D 26.8432 14.6811 N/A 48.2048 43.4857 52.2125 46.1367 0.5847
K 48.5434 45.2328 N/A 73.5042 180.9566 52.4258 71.2392 1.2712
KDA 1.9720 1.8090 N/A 1.5361 2.1047 1.7919 1.7919 0.0267
PRate 0.0670 0.0733 N/A 0.0730 0.0744 0.0716 0.0775 0.0329
Summary 15.5253 12.3606 27.1722 24.6731 45.3338 21.3097 23.8936 0.3926

Bajaj: For this dataset, SketchFill exhibits exceptional performance in imputing variables governed
by single-step formulaic relations such as SMA5, EMA5, ROC5, and MOM10 and demonstrates
better accuracy in these variables with zero score of RMSE, although other approaches can still
preserve a fair good imputation result at a low score. In the context of multi-step calculations required
for variables such as RSI8 and CCI5, which present significant challenges for all approaches, it is
noteworthy that SketchFill succeeded in imputing variables, such as CCI5, SMA5, EMA5, ROC5, and
MOM10 with a zero RMSE score, surpassing other solutions. However, MICE approach performs
best in terms of RMSE score on RSI8, as SketchFill fails to reason the correct formula of RSI8.

Bmi: SketchFill has effectively derived the BMI calculation formula for both forward and backward
computations, achieving a 100% accuracy on all variables and zero scores on RMSE as shown in
Figure 4. This flawless performance indicates that SketchFill can impute with remarkable accuracy
when working on ordinary formulas. Besides, the Code Generation approach achieves all correct on
the DMVI task of variable BMI with a zero score on RMSE.

Supermarket: We observe that SketchFill performs outstanding results on all variables, except for
GrossIncome with an RMSE score of 0.7749, surpassed by MICE, which yields an RMSE score of 0.
Notably, MICE achieves excellent results in terms of imputation find accuracy as demonstrated in

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 4. Also, contributed by the chained equations strategy of MICE, the imputation results on
other variables, such as Tax5, Total, CostsofGoodsSold and GrossIncome, are all correct. Besides,
the intuitive Code Generation approach is all correct on the DMVI task of variable Total with a zero
score on RMSE.

GreenTrip: The GreenTrip dataset is collected from actual taxi trip records, which poses a wild
challenge in that the formula behind involves more variables compared to other datasets. RMSE score
illustrates that SketchFill also outperforms other approaches, except for TollsAmount surpassed by
the CoT approach, also for CongestionSurcharge slightly surpassed by the MICE approach. Overall,
SketchFill achieves the highest score of 74% for both accuracy compared to other approaches as
demonstrated in Figure 4.

LOLChampion: The dataset LOLChampion was found to contain noisy data, such as duplication
and ambiguous column names, posing challenges in the imputation process, particularly in formula
derivation. Therefore, the Accuracy decreased to 79% for SketchFill, but still holds at least 50%
higher accuracy than other approaches. Specifically, the dataset exhibits identical PRateplusBRate
values across different Champion positions, despite having distinct PRate and BRate values. Thus,
SketchFill performance was adversely affected, measuring RMSE score at 0.0474 (PRatepluseBRate)
and 0.0329 (PRate) respectively. Nevertheless, SketchFill demonstrates superior performance with
the lowest RMSE score in all variables except for PRateplusBRate.

4.3 DISCUSSION ON OTHER APPROACHES

The imputation accuracy of KNN approaches is limited across all datasets due to its weakness in
in-context learning on tabular data. MICE achieves good performance in variables that are the linear
combination of other variables because this approach conducts MVI based on the regression model.
TabCSDI is a deep learning-based approach that leverages diffusion models for DMVI. However, its
generative approach struggles to learn the formulaic relationship of numeric variables in the dataset.
MetaGPT has developed a series of data-cleaning strategies (see Appendix D) for handling dirty data.
However, these pre-defined strategies lack context awareness, leading to their struggles with DMVI
tasks across all datasets.

5 CONCLUSION

This paper evaluates the performance of DMVI across several approaches using five datasets from
various domains. The findings highlight the exceptional performance of our proposed approach,
SketchFill, particularly in the context of single-step formulas. Notably, SketchFill achieves 74%
Accuracy and 100% FindAccuracy on 3 datasets, with fabricated data inside the datasets. Furthermore,
SketchFill demonstrates an overall accuracy of 84.2% across these datasets, demonstrating its
robustness. And the Accuracy of SketchFill is 56.2% higher than CoT-based approaches, 59% higher
than Code Generation approaches and 78.8% higher than MetaGPT. This establishes a new standard
for automated data cleaning and points a new direction for missing value imputation. However,
SketchFill is not incompatible with rendering non-derived features such as observation, transaction,
or trading data (refer to the close price of the Bajaj Finance data from Figure 1). Additionally,
SketchFill encounters difficulties in handling multi-step calculations and noisy data when processing
Bajaj and LOLChampion datasets respectively. Furthermore, we observe that the performance of
SketchFill relies on the inference capabilities of the backend LLM. As discussed in Appendix C,
the Llama-8B model conducts limited capabilities on complex DMVI tasks. These issues present
opportunities for future research on DMVI tasks using LLMs.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Deepak Adhikari, Wei Jiang, Jinyu Zhan, Zhiyuan He, Danda B. Rawat, Uwe Aickelin, and Hadi Ak-
barzadeh Khorshidi. A comprehensive survey on imputation of missing data in internet of things.
ACM Computing Surveys, 55:1 – 38, 2022.

Zirui An, Jingbo Yu, Runtao Liu, Chuan Wang, and Qian Yu. Sketchinverter: Multi-class sketch-
based image generation via gan inversion. 2023 IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV), pp. 4308–4318, 2023.

Rebecca R Andridge and Roderick JA Little. A review of hot deck imputation for survey non-response.
International statistical review, 78(1):40–64, 2010.

Lovish Bansal. Sales of a supermarket, 2023. URL https://www.kaggle.com/datasets/
lovishbansal123/sales-of-a-supermarket.

Tommaso Calò and Luigi De Russis. Style-aware sketch-to-code conversion for the web. Companion
of the 2022 ACM SIGCHI Symposium on Engineering Interactive Computing Systems, 2022.

Donghyun Choi, Myeong Cheol Shin, EungGyun Kim, and Dong Ryeol Shin. Ryansql: Recursively
applying sketch-based slot fillings for complex text-to-sql in cross-domain databases. Computa-
tional Linguistics, 47:309–332, 2020.

Samuel Zico Christopher, Titin Siswantining, Devvi Sarwinda, and Alhadi Bustaman. Missing value
analysis of numerical data using fractional hot deck imputation. 2019 3rd International Conference
on Informatics and Computational Sciences (ICICoS), pp. 1–6, 2019.

Debashis. Bajaj finance stock price data with indicators, 2023.
URL https://www.kaggle.com/datasets/debashis74017/
bajaj-finance-stock-price-data-with-indicators.

Oracle’s Elixir. Champions stats by tournament, 2024. URL https://oracleselixir.com/
stats/champions/byTournament.

Martin G. Gibson, Roderick J. A. Little, and Donald B. Rubin. Statistical analysis with missing data.
The Statistician, 38:82, 1989.

Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising autoencoders. In
Advances in Knowledge Discovery and Data Mining: 22nd Pacific-Asia Conference, PAKDD 2018,
Melbourne, VIC, Australia, June 3-6, 2018, Proceedings, Part III 22, pp. 260–272. Springer, 2018.

Yongshun Gong, Zhibin Li, Jian Zhang, Wei Liu, Yilong Yin, and Yu Zheng. Missing value
imputation for multi-view urban statistical data via spatial correlation learning. IEEE Transactions
on Knowledge and Data Engineering, 35:686–698, 2023.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. ACM
Sigplan Notices, 46(1):317–330, 2011.

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jin-
lin Wang, Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, Chenglin Wu, and Jürgen Schmidhuber. Metagpt: Meta programming for a multi-agent
collaborative framework, 2023.

Sirui Hong, Yizhang Lin, Bang Liu, Bangbang Liu, Binhao Wu, Danyang Li, Jiaqi Chen, Jiayi Zhang,
Jinlin Wang, Li Zhang, Lingyao Zhang, Min Yang, Mingchen Zhuge, Taicheng Guo, Tuo Zhou,
Wei Tao, Wenyi Wang, Xiangru Tang, Xiangtao Lu, Xiawu Zheng, Xinbing Liang, Yaying Fei,
Yuheng Cheng, Zongze Xu, and Chenglin Wu. Data interpreter: An llm agent for data science,
2024.

Ziwei Ji, Tiezheng Yu, Yan Xu, Nayeon Lee, Etsuko Ishii, and Pascale Fung. Towards mitigating LLM
hallucination via self reflection. In Houda Bouamor, Juan Pino, and Kalika Bali (eds.), Findings of
the Association for Computational Linguistics: EMNLP 2023, pp. 1827–1843, Singapore, Decem-
ber 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-emnlp.123.
URL https://aclanthology.org/2023.findings-emnlp.123.

11

https://www.kaggle.com/datasets/lovishbansal123/sales-of-a-supermarket
https://www.kaggle.com/datasets/lovishbansal123/sales-of-a-supermarket
https://www.kaggle.com/datasets/debashis74017/bajaj-finance-stock-price-data-with-indicators
https://www.kaggle.com/datasets/debashis74017/bajaj-finance-stock-price-data-with-indicators
https://oracleselixir.com/stats/champions/byTournament
https://oracleselixir.com/stats/champions/byTournament
https://aclanthology.org/2023.findings-emnlp.123

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jia Li, Yongming Li, Ge Li, Zhi Jin, Yiyang Hao, and Xing Hu. Skcoder: A sketch-based approach
for automatic code generation. 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), pp. 2124–2135, 2023a.

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman,
Dongmei Zhang, and Surajit Chaudhuri. Table-gpt: Table-tuned gpt for diverse table tasks. arXiv
preprint arXiv:2310.09263, 2023b.

Xiao Li, Huan Li, Hua Lu, Christian S Jensen, Varun Pandey, and Volker Markl. Missing value
imputation for multi-attribute sensor data streams via message propagation. Proceedings of the
VLDB Endowment, 17(3):345–358, 2023c.

R.J.A. Little and D.B. Rubin. Statistical Analysis with Missing Data. Wiley Series in Probability
and Statistics. Wiley, 2019. ISBN 9780470526798. URL https://books.google.com/
books?id=BemMDwAAQBAJ.

Ruken Missonnier. Age, weight, height, bmi analysis, 2023. URL https://www.kaggle.com/
datasets/rukenmissonnier/age-weight-height-bmi-analysis.

Daye Nam, Andrew Peter Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. Myers.
Using an llm to help with code understanding. 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pp. 1184–1196, 2023.

Avanika Narayan, Ines Chami, Laurel Orr, and Christopher Ré. Can foundation models wrangle your
data? Proceedings of the VLDB Endowment, 16(4):738–746, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Russell A Poldrack, Thomas Lu, and Gašper Beguš. Ai-assisted coding: Experiments with gpt-4.
arXiv preprint arXiv:2304.13187, 2023.

Konstantinos Psychogyios, Loukas Ilias, Christos Ntanos, and Dimitris Th. Askounis. Missing value
imputation methods for electronic health records. IEEE Access, 11:21562–21574, 2023.

Xiao Pu, Mingqi Gao, and Xiaojun Wan. Summarization is (almost) dead, 2023.

Wajeeha Rashid and Manoj Kumar Gupta. A perspective of missing value imputation approaches.
Advances in Intelligent Systems and Computing, 2020.

Roozbeh Razavi-Far, Boyuan Cheng, Mehrdad Saif, and Majid Ahmadi. Similarity-learning
information-fusion schemes for missing data imputation. Knowledge-Based Systems, 187:104805,
2020.

Simon Razniewski, Andrew Yates, Nora Kassner, and Gerhard Weikum. Language models as or for
knowledge bases. arXiv preprint arXiv:2110.04888, 2021.

El Kindi Rezig, Lei Cao, Michael Stonebraker, Giovanni Simonini, Wenbo Tao, Samuel Madden,
Mourad Ouzzani, Nan Tang, and Ahmed K. Elmagarmid. Data civilizer 2.0: A holistic framework
for data preparation and analytics. Proc. VLDB Endow., 12(12):1954–1957, aug 2019. ISSN 2150-
8097. doi: 10.14778/3352063.3352108. URL https://doi.org/10.14778/3352063.
3352108.

Jonan Richards and Mairieli Santos Wessel. What you need is what you get: Theory of mind for an
llm-based code understanding assistant. ArXiv, abs/2408.04477, 2024.

Roopashri Shetty, Geetha M., U Dinesh Acharya, and Shyamala G. Enhancing ovarian tumor dataset
analysis through data mining preprocessing techniques. IEEE Access, 12:122300–122312, 2024.

Noah Shinn, Federico Cassano, Edward Berman, Ashwin Gopinath, Karthik Narasimhan, and Shunyu
Yao. Reflexion: Language agents with verbal reinforcement learning, 2023.

12

https://books.google.com/books?id=BemMDwAAQBAJ
https://books.google.com/books?id=BemMDwAAQBAJ
https://www.kaggle.com/datasets/rukenmissonnier/age-weight-height-bmi-analysis
https://www.kaggle.com/datasets/rukenmissonnier/age-weight-height-bmi-analysis
https://doi.org/10.14778/3352063.3352108
https://doi.org/10.14778/3352063.3352108

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

S. Sridevi, S. Rajaram, C. Parthiban, S. SibiArasan, and C. Swadhikar. Imputation for the analysis of
missing values and prediction of time series data. 2011 International Conference on Recent Trends
in Information Technology (ICRTIT), pp. 1158–1163, 2011.

Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value imputation for
mixed-type data. Bioinformatics, 28(1):112–118, 2012.

Yuan Sui, Mengyu Zhou, Mingjie Zhou, Shi Han, and Dongmei Zhang. Table meets llm: Can
large language models understand structured table data? a benchmark and empirical study. In
Proceedings of the 17th ACM International Conference on Web Search and Data Mining, pp.
645–654, 2024.

Yufei Tao, Dimitris Papadias, and Xiang Lian. Reverse knn search in arbitrary dimensionality. In
Proceedings of the Very Large Data Bases Conference (VLDB), Toronto, 2004.

Yusuke Tashiro, Jiaming Song, Yang Song, and Stefano Ermon. Csdi: Conditional score-based diffu-
sion models for probabilistic time series imputation. Advances in Neural Information Processing
Systems, 34:24804–24816, 2021.

New York City Taxi and Limousine Commission. Tlc trip record data, 2024. URL https:
//www.nyc.gov/site/tlc/about/tlc-trip-record-data.page.

Chih-Fong Tsai, Miao-Ling Li, and Wei-Chao Lin. A class center based approach for missing value
imputation. Knowledge-Based Systems, 151:124–135, 2018.

Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in r. Journal of statistical software, 45:1–67, 2011.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, 2023.

Ian H. Witten and Eibe Frank. Data mining - practical machine learning tools and techniques, second
edition. In The Morgan Kaufmann series in data management systems, 2005.

Shin-Fu Wu, Chia-Yung Chang, and Shie-Jue Lee. Time series forecasting with missing values.
2015 1st International Conference on Industrial Networks and Intelligent Systems (INISCom), pp.
151–156, 2015.

Yunshu Wu, Hayate Iso, Pouya Pezeshkpour, Nikita Bhutani, and Estevam Hruschka. Less is more
for long document summary evaluation by llms. In Conference of the European Chapter of the
Association for Computational Linguistics, 2023.

Daoguang Zan, Bei Chen, Dejian Yang, Zeqi Lin, Minsu Kim, Bei Guan, Yongji Wang, Weizhu Chen,
and Jian-Guang Lou. Cert: Continual pre-training on sketches for library-oriented code generation.
In International Joint Conference on Artificial Intelligence, 2022.

Liangyu Zha, Junlin Zhou, Liyao Li, Rui Wang, Qingyi Huang, Saisai Yang, Jing Yuan, Changbao Su,
Xiang Li, Aofeng Su, Tao Zhang, Chen Zhou, Kaizhe Shou, Miao Wang, Wufang Zhu, Guoshan
Lu, Chao Ye, Yali Ye, Wentao Ye, Yiming Zhang, Xinglong Deng, Jie Xu, Haobo Wang, Gang
Chen, and Junbo Zhao. Tablegpt: Towards unifying tables, nature language and commands into
one gpt, 2023.

Haochen Zhang, Yuyang Dong, Chuan Xiao, and M. Oyamada. Large language models as data
preprocessors. ArXiv, abs/2308.16361, 2023a.

Haopeng Zhang, Xiao Liu, and Jiawei Zhang. Extractive summarization via chatgpt for faithful
summary generation. In Conference on Empirical Methods in Natural Language Processing,
2023b.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models, 2023.

Shuhan Zheng and Nontawat Charoenphakdee. Diffusion models for missing value imputation in
tabular data. arXiv preprint arXiv:2210.17128, 2022.

13

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A DATASET BREAKDOWN

A.1 FINANCE: BAJAJ

Bajaj Finance Stock Price Data with Indicators, with license: CCO: Public Domain (Debashis,
2023). It is originally sourced from a listed financial company in India and released on Kaggle. The
testing dataset captures a historical period of stock exchange information at a 10-minute interval. The
imputation results of all variables are evaluated under the CloseMatch, where ϵ “ 0.001.

SMA5: the abbreviation of the simple moving average of 5 periods. Here is the formula:

SMA5 “
1

5

4
ÿ

i“0

Closet´i (2)

EMA5: the abbreviation of the Exponential Moving Average of 5 periods. Here is the formula:

EMApNq “
2

N ` 1
¨ CloseN ` p1 ´

2

N ` 1
q ¨ EMApN ´ 1q (3)

where N “ 5 and EMAp1q “ Close1.

CCI5: an index to evaluate the stock market, formulated as:

CCIpnq “
pTP ´ MApTP, nqq

0.015 ¨ MD

MD “

d

řt
i“t´npClosei ´ TPiq

2

n

MApTP, nq “
TP1 ` TP2 ` ¨ ¨ ¨ ` TPn

n

TP “
pHeight ` Low ` Closeq

3

(4)

where n “ 5.

ROC5: an index to evaluate the stock market, formulated as:

ROCpnq “
AX

BX
AX “ Closet ´ Closet´n

BX “ Closet´n

(5)

where n “ 5.

MOM10: an index to evaluate the stock market, formulated as:

MOMpnq “ Closet ´ Closet´n (6)

where n “ 10.

RSI8: an index to evaluate the stock market, formulated as:

RSIpnq “ 100 ´
100

1 ` RSpnq

RSpnq “
Average of n day’s up closes

Average of n day’s down closes

(7)

where n “ 8.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.2 HEALTH: BMI

Age, Weight, Height, BMI Analysis (Missonnier, 2023). The dataset is listed on Kaggle for public
access, although the license is not specified. The dataset comprises 741 individual records that cover
attributes, such as height, weight, and BMI. The imputation results of all variables are evaluated
under the CloseMatch, where ϵ “ 0.01.

BMI, Weight, Height: the abbreviation of Body Mass Index. Here is the formula:

BMI “
Weight

Height2
(8)

A.3 RETAIL: SUPERMARKET

Sales of a Supermarket, with license: Apache 2.0 (Bansal, 2023). The dataset is originally sourced
from the 3-month historical sales transaction of a supermarket company in Myanmar and released on
Kaggle. For each entry, it covers the necessary fields, such as the unit price, quantity, and sale tax.
The imputation results of all variables are evaluated under the CloseMatch, where ϵ “ 0.01. Total,

UnitPrice, Quantity, Tax5: here is the formula:
Total “ UnitPrice ¨ Quantity ` Tax5 (9)

GrossIncome, CostsofGoodsSold: here is the formula:
GrossIncome “ CostsofGoodsSold ¨ GrossMarginPercentage (10)

A.4 TRANSPORTATION: GREENTRIP

Trip Record Data (Taxi & Commission, 2024). The license is not specified on its website, but
users don’t have to submit an access request, which is now available for immediate download. The
dataset is collected from taxi trip records in New York City and is actively updated every month. For
each entry, it covers the necessary fields, such as tip fee, total paid, and tolls. Specifically, we seize
the Green Taxi trip records in January 2024 for testing. The imputation results of all variables are
evaluated under the CloseMatch, where ϵ “ 0.01.

TotalAmount, TipAmount, CongestionSurcharge, TollsAmount: here is the formula:
TotalAmount “ FareAmount ` Extra ` MtaTax ` TipAmount

` CongestionSurcharge ` TollsAmount ` ImprovementSurcharge
(11)

where the other fields are necessary fields provided in the dataset as well.

A.5 GAMING: LOLCHAMPION

LOL Champion Stats (Elixir, 2024). The dataset is downloaded from a game hub website, which is
provided free of charge, and is intended for use by analysts, commentators, and fans. Specifically, we
seize the LPL data from Spring 2023 to Spring 2024 as a testing base. For each entry, it introduces
a bunch of statistics about one game character. The imputation results are evaluated under the
CloseMatch, where ϵ “ 1 for K and D, ϵ “ 0.1 for KDA, ϵ “ 0.01 for PRate and PRateplusBRate
correspondingly.

KDA, K, D: KDA is a metric to evaluate the performance of the player or champion on average per
game, K means the number of opponents the champion kills on average per game and D means the
number of times the champion was killed on average per game. here is the formula:

KDA “
K ` A

D
(12)

PRateplusBRate, PRate: PRate means the rate at which the champion is picked, and PRateplusBRate
means the sum of the rate at which the champion is picked and the rate at which the champion is
banned. Here is the formula, namely:

PRateplusBRate “ PRate ` BRate (13)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B SKETCHFILL PROMPT TEMPLATE
B.1 DOMAIN-SKETCH GENERATOR

Assume that you are a data scientist. I offer you a table in CSV form with missing values denoted
as NaN. The first row is the variables’ names it contains, and the separator of this CSV format file
is char ",". Suggest a solution to fill in each missing value, denoted by NaN. You must sketch
your solution into the following template for each missing value you found.
Process all the steps and Give Python code solutions for each missing value. This is extremely
important. Omitting any steps of any missing value is forbidden.

Step 1 Finding Missing value: find the location of the missing value and describe the missing
value, outputting the entire row where the missing values are located in this step.
Step 2 Finding related Columns: Find related Columns that are related to the missing value
column you are filling. These related Columns are helpful for the imputation of missing values.
Outputting the names of these related Columns in this step.
Step 3 Drafting Solution: Using the related Columns you find in Step 2, draft the solution
for missing value imputation. The solution should be based on the related columns you find.
Outputting the solution.
Step 4 Calculating Intermediate Values: Check if there were unknown variables in the solution.
If there were, calculate the intermediate values of the intermediate Variable missing and needed
in the solution. Output the calculation process of all the intermediate values in this step.
Step 5 Finding Related Rows: Find the values of other rows in the table that are needed in the
imputation. Outputting all the values you find in this step.
Step 6 Calculating and Verifying the parameters: Check if there were unknown or unsure
parameters in the solution for missing value imputation. You need to calculate and verify these
parameters based on rows without missing values. Find 3 rows as examples for you to calculate
and verify the parameters. Output the parameters you get and the rows you used in this step.
Step 7 Use results from step 1 to step 6 and rebuild the Solution in Python code and combine
all the steps and Python code you generated in this new Python code. When you rebuild the
code, you must make sure the value for imputation is in the same row and column of the missing
value. Remember the index in Python is 0-based, the first number starts with 0. Generate the
rebuilt solution in Python code way. So be extremely careful with the row index when rebuilding
your Python code. And write your code in this format:

Python
Your Python code for rebuilding the solution
Python

Process all the steps and Give Python code solutions for each missing value. This is extremely
important. Omitting any steps of any missing value is forbidden. Here is the data:
{data}

B.2 CODE GENERATOR

Assume you are a code rewriter, you are given a Python code sketch for imputation task on
the given data. The new Python code you rewrite should take the given data for input and fill in
the missing value of it. When you rewrite the code, you must slice the dataset and use the same
row or column index in the given Python code sketch. Trust the Python code in the given sketch.
You must turn this data as DataFrame of pandas in your Python code. The Python code needs to
save the dataset in csv format after imputation in this path {save_path}. Here is the requirement:

Give only the Python code for your reply. Do not generate any other information. And write your
code in this format:

Python
Put only your rewritten Python code here.
Python

Here is the Python code sketch for you to rewrite:
{code}

You must turn this data as DataFrame in your Python code.
Here is the data: {data}

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B.3 REFLECTOR

You are an advanced reasoning agent that can improve based on self-reflection. You will be
given a previous sketch trial in which you were required to generate a solution for missing value
imputation for the given dirty table. You were unsuccessful in imputing missing values in the
dirty table for some reason.

Here are some hints for your reflection:
1. using the wrong solution, try to use your domain knowledge in the field related to this data
and fill in the missing value with the calculation based on other variables
2. using the wrong rows or columns when generating the solution, please reflect the rows and
columns you used for imputation. For example, you should use data from the second row to the
fourth row, but you use data from the first row to the third row.
3. remember the index in Python is 0-based.

Here is the wrong sketch to reflect:
{wrong_sketch}

Here is the dirty data:
{dirty_data}

Requirement:
In a few sentences, Diagnose a possible reason for failure or phrasing discrepancy. Take the
hints as examples and Give a new sketch for the missing value imputation of this dirty table. The
new reflected sketch must follow the same steps as the wrong sketch, this is extremely important.
You MUST Return your answer in this Format:

Diagnosis:
Write your diagnosis here

New Sketch:
Write your new sketch here

B.4 SUMMARIZER

Assume you are a code summarizer, you are given a code focus on the imputation of miss-
ing value in a particular dataset. Please summarize this code into a function, so it can take
any dirty dataset with the same structure. The input of the function is the dirty dataset,
{clean_data_save_path}.

When you are summarizing the code, pay attention to the following situation:
1. You need to find the missing values index of the dirty data in the Python function.
2. There can be more than 1 missing value in the given new dirty data, when you rewrite the
given code, make sure it can impute multiple missing values in the given dataset.
3. Remember the location of missing values in the new dirty data is not the same as the code
provided. Change the fixed index of the provided code into indexes capable of any location.

Here is the requirement:
The name of the function is impute_missing_value. Give only the Python code for your reply. Do
not generate any other information. Do not write any explanation. And write your code in this
format:

Python
Put only your rewritten Python code here.
Python

Here is the code need to be summarized:
{code}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C EXPERIMENT NOTE

C.1 CALL OF REFLECTOR IN GPT-4O EXPERIMENT ON SMA5 VARIABLE OF BAJAJ DATASET

1 # Last attempt, wrong
2 missing_sma5_value = data[’close’][13:18].mean()
3

4 # New attempt, correct
5 missing_sma5_value = data[’close’][14:19].mean()

Diagnosis on Domain-Sketch: The failure in the previous sketch occurred because the range of rows
used to calculate the missing SMA5 value was incorrect. This is because the SMA5 for a given row
is the average of the close prices for the last 5 periods, including the current one.

C.2 CALL OF REFLECTOR IN LLAMA3-8B EXPERIMENT ON BMI VARIABLE OF BMI DATASET

1 # Last attempt, wrong
2 def calculate_bmi(weight, height):
3 return (weight / (height ** 2)) * 703
4

5 # New attempt, correct
6 def calculate_bmi(weight, height):
7 return (weight / (height ** 2))

Diagnosis on Domain-Sketch: The possible reason for failure or phrasing discrepancy is that the
formula used to calculate BMI is incorrect and does not take into account the actual values in the
Height and Weight columns.

C.3 SKETCHFILL EXPERIMENT USING LLAMA3-8B

0% 20
%

70
%

70
%

29
%

0% 0% 0% 0% 0%0% 0% 0% 0% 0%0%

24
%

0% 0% 0%0% 9% 0% 15
%

3%0%

32
% 36

%

3% 0%

0%

20%

40%

60%

80%

100%

Bajaj Bmi Supermarket GreenTrip LOLChampion
Llama3-8B imputation accuracy

MICE LLM
CoT Code Generation
MetaGPT SketchFill

Figure 5: Llama3 imputation accuracy

We apply the same workflow settings as we configured on GPT-4o experiments. In light of the
practical performance of llama3-8B, we slightly alter the prompt design to accommodate the model’s
capabilities, meanwhile retaining the identical framework in parallel. According to the imputation
accuracy of MICE and MetaGPT approaches in Figure 4(a), SketchFill using Llama3 even achieves
higher accuracy on the Bmi dataset. However, it is not as good as MICE on the Supermarket and
GreenTrip datasets concerning the reasoning difficulties of the model itself on complex formula.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D ADDITIONAL IMPLEMENTATION

KNN: Thanks to the scikit-learn package that provides a KNN-based imputer, we utilize it to conduct
the relevant experiment. Below is the code snippet:

1 from sklearn.impute import KNNImputer
2 # import other packages ...
3

4 def knn_imputation(dirty_data_path, ...):
5 dirty_data = pd.read_csv(dirty_data_path)
6 missing_columns = ...
7 imputer = KNNImputer(n_neighbors=5)
8 dirty_data[missing_columns] = imputer.fit_transform(
9 dirty_data[missing_columns])

MICE: We implement MICE method based on the original paper (Van Buuren & Groothuis-
Oudshoorn, 2011). Although it is implemented in R, we find an alternative implementation in
Python using sklearn.impute.IterativeImputer. More details can be found in the relevant documenta-
tion5.

TabCSDI: We adopt its framework based on the original paper (Zheng & Charoenphakdee, 2022)
and Github repository6. The diffusion model is trained and validated on our experimental datasets,
and we ran our tests on internal server with NVIDIA 4090 GPUs.

MetaGPT: Thanks to the newly released toolkit DataInterpreter (Hong et al., 2024) in MetaGPT, we
can easily deploy a LLM agent for the MVI testing. Below is a code snippet to demonstrate how we
utilize it to perform MVI:

1 import asyncio
2 from metagpt.roles.di.data_interpreter import DataInterpreter
3 # import other packages ...
4

5 async def meta(query):
6 di = DataInterpreter()
7 await di.run(query)
8

9 query = f"""Please read file from local file path: {dirty_data_path},
10 imputed the missing value,
11 save the imputed data file in path: {result_data_path}"""
12

13 asyncio.run(meta(query))

The experiment result has been combined into the Figure 4 and Table 2. Moreover, we go through
the source code of the MetaGPT repository7 and found that it completes missing values with simple
strategies, such as mean, median, most frequent. Below is a code snippet to show how it works:

1 class FillMissingValue(DataPreprocessTool):
2 """
3 Completing missing values with simple strategies.
4 """
5

6 def __init__(
7 self, features: list, strategy: Literal["mean", "median",
8 "most_frequent", "constant"] = "mean", fill_value=None
9):

10 self.features = features
11 self.model = SimpleImputer(strategy=strategy, fill_value=

fill_value)

5https://scikit-learn.org/stable/modules/impute.html
6https://github.com/pfnet-research/TabCSDI
7https://github.com/geekan/MetaGPT/blob/main/metagpt/tools/libs/data_preprocess.py

19

	Introduction
	Related Work
	Methodology
	Preliminaries
	SketchFill Overview
	Domain-Sketch Generator
	Self-Reflected Code Generator
	Summarizer
	Executor

	Experiment
	Environment Setup
	Result Analysis
	Discussion on other approaches

	Conclusion
	Dataset breakdown
	Finance: Bajaj
	Health: Bmi
	Retail: Supermarket
	Transportation: GreenTrip
	Gaming: LOLChampion

	SketchFill Prompt template
	Domain-Sketch Generator
	Code Generator
	Reflector
	Summarizer

	Experiment note
	Call of reflector in GPT-4o experiment on SMA5 variable of Bajaj dataset
	Call of reflector in Llama3-8B experiment on BMI variable of Bmi dataset
	SketchFill experiment using Llama3-8B

	Additional implementation

