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ABSTRACT

Missing value is a critical issue in data science, significantly impacting the reliabil-
ity of analyses and predictions. Missing value imputation (MVI) is a longstanding
problem because it highly relies on domain knowledge. Large language models
(LLMs) have emerged as a promising tool for data cleaning, including MVI for
tabular data, offering advanced capabilities for understanding and generating con-
tent. However, despite their promise, existing LLM techniques such as in-context
learning and Chain-of-Thought (CoT) often fall short in guiding LLMs to per-
form complex reasoning for MVI, particularly when imputing derived missing
values, which require mathematical formulas by considering data values across
rows and columns. This gap underscores the need for further advancements in
LLM methodologies to enhance their reasoning capabilities for derived missing
values. To fill this gap, we propose SketchFill, a novel sketch-based method to
guide LLMs in generating accurate formulas to impute missing numerical val-
ues. SketchFill first utilizes a general user-provided Meta-Sketch to generate
a Domain-Sketch tailored to the context of the input dirty table. Subsequently,
it fills this Domain-Sketch with formulas and outputs Python code, effectively
bridging the gap between high-level abstractions and executable solutions. Addi-
tionally, SketchFill incorporates a Reflector component to verify the generated
code. This Reflector assesses the accuracy and appropriateness of the outputs
and iteratively refines the Domain-Sketch, ensuring that the imputation aligns
closely with the underlying data patterns and relationships. Our experimental re-
sults demonstrate that SketchFill significantly outperforms state-of-the-art methods,
achieving 56.2% higher accuracy than CoT-based methods and 78.8% higher
accuracy than MetaGPT. This sets a new standard for automated data cleaning and
advances the field of MVI for numerical values.

1 INTRODUCTION

Missing value imputation (MVI) represents a longstanding data quality challenge, critically impacting
the reliability and effectiveness of data-driven industries, such as healthcare (Shetty et al., 2024;
Psychogyios et al., 2023), IoT research (Adhikari et al., 2022; Li et al., 2023c), and spatial time-series
analysis (Wu et al., 2015; Gong et al., 2023; Tashiro et al., 2021). A notable aspect of this challenge
is the substantial amount of time and resources it demands (Rezig et al., 2019; Rashid & Gupta,
2020). The State of Data Science 2020 Survey, made by Anaconda1, revealed that on average 45%
of time is spent getting data ready (19% and 26% for loading and cleaning respectively) before the
data scientists can use it to develop models and visualizations. This not only consumes an excessive
amount of human resources but also significantly slows down the analytical processes in data-centric
corporations.

Given its critical importance, MVI has been extensively explored within the academic and professional
communities. The literature is rich with a variety of approaches, ranging from traditional statistical
methods to more contemporary machine learning and deep learning-based techniques. Despite the
advancements, the task of MVI continues to pose significant challenges, largely due to the need for
substantial domain-specific expertise to accurately handle missing data. In this work, we address a
specific subset of this problem, termed Derived Missing Value Imputation (DMVI), which can

1https://www.anaconda.com/resources/whitepapers/state-of-data-science-2020
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Total = UnitPrice · Quantity + Tax5

BMI (Simple) Supermarket (Intermediate) Bajaj Finance (Complex)

Figure 1: DMVI samples from our experimental datasets. The NaN represents the missing values and
the formula on the bottom is the derived solution for the missing value imputation.
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Figure 2: Different LLM-based approaches for DMVI

often be observed in real-world numerical data as shown in Figure 1. The derivation process is often
tightly coupled with the characteristics of both the domain and the dataset, implying that imputation
methods effective in one context may not generalize to others. Consequently, both domain-specific
knowledge and dataset-specific knowledge are essential to carry out DMVI tasks.

In recent years, large language models (LLMs) have shown considerable promise in addressing
complex data processing tasks (Zhao et al., 2023; Zhang et al., 2023a), particularly in the field of
table understanding in knowledge extraction and content generation (Sui et al., 2024; Zha et al., 2023;
Li et al., 2023b). Their ability to understand and manipulate textual and, increasingly, tabular data
suggests a promising avenue for enhancing MVI techniques. By leveraging the extensive knowledge
embedded within LLMs (Razniewski et al., 2021), there is potential to significantly improve the
accuracy and efficiency of the DMVI task, where understanding nuanced data relationships and
contexts is crucial.

Let’s illustrate the limitations of existing methods using an example. Figure 2 illustrates various
approaches that impute missing values (annotated with NaN) in the dirty data D using LLMs. Note
that SMA5 is a formula commonly used in the financial domain that requires aggregating the previous
five rows (See the Bajaj Finance sample in Figure 1).

Baseline-1: Chain-of-thoughts (CoT) for DMVI. Figure 2(a) explores the use of CoT prompting,
which encourages LLMs to process information step-by-step. This method, however, tends to produce
answers that are “reasonable” yet oftentimes not sufficiently accurate.

Baseline-2: Code Generation for DMVI. Figure 2(b) highlights the code generation capabilities of
LLMs, which tend to employ common functions such as calculating the mean. Though straightfor-
ward, this approach often fails to address the complexities inherent in many DMVI scenarios.
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Baseline-3: Self-Reflected Code Generation for DMVI. Figure 2(c) introduces the use of a Reflector
to refine the generated code. Despite this enhancement, it still struggles to support LLMs in making
intricate reasoning required for formula generation.

Rethink: How Do Data Scientists Perform DMVI? As illustrated in Figure 2(d), the data scientist
often starts his/her observation on the missing value and surrounding rows and columns (Gibson
et al., 1989) to build dataset knowledge essential for DMVI. Witten & Frank (2005) also mention
the importance of collaboration with domain experts to build domain knowledge. These expertises
are then translated into algorithms via coding, enabling the automation of the DMVI process and
ensuring accurate results. Inspired by this human operation, we argue that the explicit manifestation
of both dataset and domain knowledge via a Meta-Sketch can guide LLMs to generate accurate and
tailored Python code for DMVI.

Our Proposal: Sketch-Guided Self-Reflected Code Generation. Figure 2(e) presents our pro-
posed method SketchFill. Accordingly, SketchFill mimics this human-driven expertise, which shifts
from CoT to using an explicit user-provided Meta-Sketch to direct LLMs in generating a Domain-
Sketch. Consequently, the Domain-Sketch, which contains the reasoning result embedded with
knowledge of the particular dataset, can better guide LLMs to generate Python code for DMVI by
Code Generator. It also adopts a Reflector module to iteratively refine the Domain-Sketch, leading to
the accurate formulation of a problem-specific formula that is subsequently instantiated into Python
code. Afterwards, the Summarizer module will wrap the imputation code into a structured format for
execution. This approach significantly improves the precision and applicability of DMVI solutions.

Contributions. Our main contributions in tackling DMVI issue are summarized as follows:

1. Integration of Meta-Sketch and Domain-Sketch for DMVI Code Generation: SketchFill
incorporates a high-level user hint Meta-Sketch (e.g., explicitly saying that more rows and
more columns need to be checked), which will be used by the Domain-Sketch Generator
to produce a Domain-Sketch and then by Code Generator to generate executable Python
code. This two-step sketch generation and guided code generation can not only aid LLMs in
identifying the correct formulas for imputation but also impose constraints on the output
format, ensuring that the results are structured and predictable.

2. Iterative Reflector-Based Framework: SketchFill employs an effective reflector-based
iterative framework that guides LLMs in discovering the correct formula for imputing
missing values. This framework iteratively refines the output, enabling the LLM to align
more closely with the complexities of the specific imputation task.

3. Output Summarization: To enhance the usability of the imputed data, SketchFill includes a
Summarizer that processes the outputs for multiple missing values. Thanks to the constrained
output format provided by the Meta-Sketch, the Summarizer efficiently organizes the results
into an easily readable format, allowing users to understand and apply the formulas across
multiple instances of missing data.

4. Empirical Validation: We have conducted comprehensive experiments across five different
domains to validate the effectiveness of SketchFill. These experiments demonstrate the
robustness and versatility of our approach in improving the accuracy and reliability of
missing value imputation across diverse datasets and application contexts.

2 RELATED WORK

Missing Value Imputation (MVI) has been explored with the advent of data science, aiming to look
at the patterns and mechanisms that create the missing data, as well as a taxonomy of missing data
in datasets (Little & Rubin, 2019). Despite a single imputation method like Hot-Deck (Andridge &
Little, 2010; Christopher et al., 2019), which is imputed from a randomly selected similar record, we
categorize existing solutions in the context of statistics and machine intelligence for missing value
imputation as follows.

Statistic-based Methods. Initially, the most common strategy for MVI is using a descriptive statistic,
e.g., mean, median, or most frequent, along each column, or using a constant value. It is widely

3
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adopted in existing packages and tools, such as sklearn.SimpleImputer (Pedregosa et al., 2011)
and Excel FlashFill (Gulwani, 2011). Besides, curated packages such as MICE (Van Buuren &
Groothuis-Oudshoorn, 2011) can impute incomplete multivariate data by chained equations.

Machine Learning-based Methods. Tao et al. (2004) improve algorithms in Reverse kNN, allowing
to retrieve an arbitrary number of neighbors in multiple dimensions. Sridevi et al. (2011) propose
ARLSimpute, an autoregressive model to predict missing values. Stekhoven & Bühlmann (2012)
propose an iterative imputation method MissForest that can impute the missing value of mixed-type
data. Tsai et al. (2018) propose CCMVI, which calculates the distances between observed data and
the class centers to define the threshold for later imputation. Razavi-Far et al. (2020) propose kEMI
and kEMI` for imputing categorical and numerical missing data correspondingly. They both first
utilize the k-nearest neighbors (KNN) algorithm to search the K-top similar records to a record with
missing values, then invoke the Expectation-Maximization Imputation (EMI) algorithm, which uses
feature correlation among the K-top similar records to impute missing values.

Deep Learning-based Methods. Gondara & Wang (2018) propose a multiple imputation model
based on overcomplete deep denoising autoencoders, which is capable of handling different missing
situations in terms of the data types, patterns, proportions, and distributions. With the advent of
the diffusion model, the CSDI (Tashiro et al., 2021) acts as a time series imputation method that
utilizes score-based diffusion models to exploit correlations on observed values. Later on, Zheng &
Charoenphakdee (2022) explore the use of conditional score-based diffusion models for tabular data
(TabCSDI) to impute missing values in tabular datasets. Their study evaluates three techniques for
effectively handling categorical variables and numerical variables simultaneously.

LLM-based Methods. With the advance of LLM, especially superb generative models like GPT,
some techniques can be applied to the MVI task. Since LLMs are trained on extensive and diverse
corpora, they inherently possess knowledge of a wide array of common entities (Razniewski et al.,
2021; Narayan et al., 2022), intuitively, we can directly ask LLM to perform MVI given some
dirty data. Besides, CoT prompting (Wei et al., 2023) can significantly improve the ability of
complex reasoning. Alternatively, Poldrack et al. (2023) explore the code generation ability utilizing
LLM so that a specific script for MVI can be generated. Additionally, LLM-powered agentic tool,
MetaGPT (Hong et al., 2023; 2024) reveals its capability on data cleaning tasks. In short, we will
seize the above methods and discuss their performance in the later section.

3 METHODOLOGY

3.1 PRELIMINARIES

Derived Missing Value Imputation. Let T be a table with missing values that are denoted by NaN.
The problem of derived missing value imputation (DMVI) can be mathematically expressed as finding
a formula f such that for each missing value NaN in T , we have:

x “ fpT q, s.t. x « xg (1)

where x is the filled value and xg is the ground truth value. Moreover, the complexity of the deriving
formula involving missing values can range from simple to highly intricate as shown in Figure 1.

Sketch-Guided Approach. Normally, the sketch refers to a high-level, abstract representation of the
content. The sketch-guided approach has been proven to be effective in various scenarios, such as code
generation (Li et al., 2023a; Zan et al., 2022; Calò & Russis, 2022), text-to-SQL (Choi et al., 2020),
and image generation (An et al., 2023). In our framework, we adopt it to guide LLMs for better code
generation by incorporating two types of sketches: Meta-Sketch and Domain-Sketch, respectively. A
Meta-Sketch is defined as a series of instructions that mimic the task-specific procedure of expert
users. A Domain-Sketch is iteratively generated into a series of curated instructions from the
Meta-Sketch. We will elaborate them in Domain-Sketch Generator Section 3.3.

Prior Analysis. We conducted several observations prior to our framework as shown in Figure 2.
Intuitively, LLMs can be leveraged to fill missing values by a simple prompt “fill the missing values
of the input dirty table”, or using Chain-of-Thought by adding a prefix “let’s think step by step”.
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Algorithm 1: SketchFill imputation workflow
Input: Meta-Sketch, T and V
Output: D1 and F

1 C,D “ tT1, T2, ¨ ¨ ¨ , Tnu Ð randomly sample k rows of clean data from T and chunk T ;
2 Cm Ð randomly masked λ rows of of V in C;
3 while retry ď retry_limit do
4 S, P Ð Call Domain-Sketch Generator: use Meta-Sketch to generate Domain-Sketch S

and Call Code Genrator: interpret S into Python code P to impute missing value in Cm;
5 C 1

m Ð Execute P to get imputed data;
6 if Call Evaluator: C 1

m “ C then
7 F Ð Call Summarizer: generate imputation function for V in form of Python code

function F ;
8 else
9 Snew Ð Call Reflector: reflect and generate new Domain-Sketch Snew;

10 retry “ retry ` 1;
11 end
12 end
13 D1 Ð Execute F on D;
14 return D1 and F ;

However, these approaches may not be robust enough to guide LLMs to derive a correct solution
for the DMVI task, such as utilizing formulas. Besides, directly applying code generation also fails
to generate the correct solution for the DMVI task, as it lacks some high-level user hint to unleash
the power of LLMs to reason the domain knowledge of the dataset. We also include the reflector
to polish the generated code. However, without the guidance from the sketch, the reflector lacks of
DMVI task understanding so that fails to carry out the correct inference and refine the Python code.
To cope with this problem, we offer a sketch-guided solution. On the one hand, it allows the users to
provide simple hints. On the other hand, it can provide more context information to LLMs, in order
to perform targeted code generation and improve the reflection.

3.2 SKETCHFILL OVERVIEW

We propose a novel framework that leverages extensive knowledge embedding within LLMs to
resolve the challenge of DMVI. Algorithm 1 elaborates the workflow by which we implement
SketchFill. It takes the input of a dirty table T , a user-provided prompt Meta-Sketch, and the column
V that requires for imputation. It outputs an imputed dataset D1 and a Python code function F for
human review.

To extract the formula within the dirty table, SketchFill first samples a subset of clean data C within
the dirty table and randomly masks it (lines 1-2). Then SketchFill iteratively reason and reflect
to ensure the generated formula is aligned more closely with the relation behind variables (lines
3-12), based on Cm and the following components. The Domain-Sketch Generator guides LLMs
to generate Domain-Sketch S, including a series of logical steps and descriptions (line 4). Next,
the Code Generator turns S into executable Python code P , which will be executed and generate
imputed data C 1

m (line 5). If C 1
m is identical to C based on the result of the Evaluator, S and P are

considered correct and will be summarized into an imputation function F for review and imported by
the Executor (lines 6-7). Otherwise, the Reflector will refine the wrong sketch S and generate a new
Domain-Sketch Snew for the Code Generator (lines 8-9). This process continues until the imputation
Domain-Sketch is considered correct or reaches the retry_limit of Reflector. Note that, the retry_limit
is a hyperparameter, where in our experiments retry_limit=3. If the retry times reach the retry_limit,
the program will send feedback of unable to impute. It then executes the derived formula on the dirty
data (line 13) and outputs the repaired data D1, as well as the function F (line 14).

As demonstrated in Figure 3, SketchFill mainly includes four modules to carry out the DMVI task:
Domain-Sketch Generator 3.3, Self-Reflected Code Generator 3.4, Summarizer 3.5, and Executor 3.6.
We will discuss the details of each module in the following sections.
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Figure 3: The SketchFill framework

3.3 DOMAIN-SKETCH GENERATOR

LLMs have demonstrated their ability to capture the two-dimensional structure of tabular data through
techniques such as role-prompting and fine-tuning (Sui et al., 2024; Zha et al., 2023). However, DMVI
requires a series of operations, such as locating missing values, building solutions and calculations.
Even with step-by-step prompting of CoT reasoning, LLMs still struggle to fully comprehend the
formulaic relationship and conduct calculations. To address this challenge, SketchFill includes the
Domain-Sketch Generator to construct the imputation solution as one of main contributions that
improve DMVI performance (See Phase ①, Figure 3).

The Domain-Sketch Generator is tasked with producing the Domain-Sketch, adhering to Meta-Sketch
guidance to exploit the LLMs’ embedding knowledge about the specific dataset at hand. The Meta-
Sketch, a pseudo-code-like file, contains a series of logical steps and descriptions, encapsulating the
formula-based strategy for DMVI. Then, LLMs could generate specific step-by-step Domain-Sketch
to guide other agents to output Python code for DMVI. Consider the circumstance that domain experts
of dirty data when imputing the missing value. It is common for them to decompose DMVI into the
following steps, w.r.t the Meta-Sketch template in Phase ①, Figure 3:

• S1-S2: locating the missing value and recalling the associated knowledge about the variable
of missing value, by searching for variables in this dirty table that are related to the missing
value,

• S3-S6: drafting and verifying the formula to calculate the missing value by applying it to
rows without missing values, and,

• S7: calculating the missing value, utilizing the verified formula.

In our experiments, we sufficiently illustrate that LLM-powered (See Appendix B.1) Domain-Sketch
Generator can carry out a satisfying Domain-Sketch for the specific dataset based on the instruction
from Meta-Sketch. To exemplify, given a masked clean subset (Cm), the Domain-Sketch Generator
receives this Cm as input and creates the Domain-Sketch (S) based on the Meta-Sketch.

3.4 SELF-REFLECTED CODE GENERATOR

The Code Generator is initialized as an LLM (see Appendix B.2) and serves as the interpreter of
the Domain-Sketch (S) to generate Python code (P ) for DMVI (See Phase ②, Figure 3). However,
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writing code in a single attempt can be challenging, making it difficult to ensure the correctness
of the imputation. Recent research has demonstrated that self-reflection can greatly improve an-
swer accuracy, consistency, and entailment of LLM (Ji et al., 2023). Inspired by Reflexion and
MetaGPT (Shinn et al., 2023; Hong et al., 2023), SketchFill incorporates a self-reflection mechanism
that iteratively refines the initial Domain-Sketch (S) and generated code, enhancing its accuracy and
reliability. Moreover, it reduces the need for human intervention in reviewing the DMVI solution.
The Self-Reflected structure comprises two components: the Evaluator and the Reflector.

Evaluator. Within the Phase ②, the Evaluator holds a vital position by replacing the need for human
evaluation during the imputation. The Evaluator receives the C 1

m as input and compares with C.
Then, it returns a binary signal of whether the imputation is successful or not based on the result
of CloseMatch defined as: sgnp|C 1

mij
´ Cij | ´ ϵq, where ϵ is a user defined hyperparameter that

controls the tolerance of the closeness. If the imputation is regarded as identical, P will be submitted
to Summarizer for further processing. Otherwise, the Reflector shall be activated to refine S.

Reflector. The Reflector, initialized as an LLM (see Appendix B.3), is responsible for the self-
reflected structure in SketchFill. To illustrate the mechanism behind, let us consider a scenario when
the Python code (P ) is generated due to a wrong S. The Evaluator then raise a negative signal and
forwards the S to the Reflector. The Reflector takes the S generated in this iteration, identifying the
root causes of the inaccuracies, such as incorrect index in Python code or wrong formula assumption
(see Appendix C). Based on the analysis, the Reflector refines S and generates a new Snew, as shown
in Phase ②, Figure 3. This process repeats until it reaches the retry_limit or the Evaluator sends a
positive signal, confirming the validity of P for DMVI.

3.5 SUMMARIZER

The motivation for implementing the Summarizer stems from the necessity to conduct the human
review for each imputation of subsets when applying LLMs for DMVI, owing to the token limitation
that LLM can process at a time, particularly when utilizing CoT-based LLM. Meanwhile, LLMs
have exhibited better factual consistency and fewer instances of extrinsic hallucinations in generating
summary, compared to humans (Zhang et al., 2023b; Wu et al., 2023; Pu et al., 2023), as well as
promising code understanding (Nam et al., 2023; Richards & Wessel, 2024).

The Summarizer is initialized as an LLM (see Appendix B.4) as part of SketchFill. Given the similar
pattern of P in the DMVI solution within the same column, the Summarizer has the potential to
develop a generalized solution accordingly such that the Summarizer distil the P into a more readable
and generalized Python function. By doing so, the Summarizer drastically minimizes the need for
human review. As depicted in Phase ③, Figure 3, the Summarizer takes the validated P and abstracts
the specifics of the dataset into parameters, creating a flexible function capable of addressing missing
values across various subsets derived from the dirty table. Consequently, the Summarizer outputs a
finalized Python function (F ). F is then utilized in the Execution module, enabling automatic DMVI
across any subset of the original dirty table without additional manual procedures. The Summarizer
thus streamlines the imputation process, ensuring consistency and scalability while significantly
reducing the manual workload.

3.6 EXECUTOR

The Executor (See Phase ④, Figure 3) is programmed as a particularly Python file, aiming to process
the dirty subsets with the missing value of the same columns by importing F that is generated by
the Summarizer. Therefore, once the F is approved and deployed, the rest of the missing values can
be automatically imputed. For instance, for the variable (V ) in the tabular data case, the Executor is
programmed to apply the DMVI processing with F to impute subsequent missing value in V .

4 EXPERIMENT

4.1 ENVIRONMENT SETUP

Approaches. We compared SketchFill with the following approaches.

7
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Table 1: Statistics of experiment datasets

Bajaj Bmi Supermarket GreenTrip LOLChampion

#-Attributes 12 5 10 13 12
#-Variables 6 3 6 4 5
#-Tuples 3600 720 960 1800 554
#-Missing values 334 138 180 215 107
Missing values (%) 9.28% 19.17% 18.75% 11.94% 19.31%

(1) KNN: It is employed as an ML-based approach, where N=5. (2) MICE: It is employed as a
statistic-based method, conducting DMVI by building chained equations of other variables. (3)
TabCSDI: It is employed as a deep learning-based method, by utilizing diffusion models for DMVI.
(4) LLM: It utilizes LLM intuitively. (5) CoT: It prompts LLM to reply with “Let’s think step by
step”. (6) Code Generation: It requires LLM to generate complete code for DMVI. (7) MetaGPT:
It leverages its built-in code generator and self-reflection module. The implementation details of
non-LLM based approaches and MetaGPT are illustrated in Appendix D.

Backend LLM. We employ GPT-4o as the back-end model supported by OpenAI API2. As for
open-source model experiments, we consider using the Llama3 (Llama3-8B-Instruct) model as the
back-end3. The Llama3 request is supported by the Ollama4 running in a local environment. For both
models, the token size is set as 4096 using a temperature of 0.

Dataset. Our experiments span across five-domain datasets sourced from Kaggle and other open-
access repositories. We illustrate the fact of the dataset and its formulas in Appendix A.

Preprocessing. Each dataset is sequentially segmented into subsets to accommodate the DMVI tasks
that require proper calculation. Given the transparent formulaic association of the target variable to
be imputed and other known variables, each subset is well curated as a testing tuple. Specifically, we
mask the original value of the target variable with NaN to mimic the missing value controlled by an
appropriate missing rate, similar to settings in other works (Zheng & Charoenphakdee, 2022; Tashiro
et al., 2021; Van Buuren & Groothuis-Oudshoorn, 2011). Consequently, multiple missing values
related to the same variable may take place in some testing tuples. Full statistics are shown in Table 1.

Evaluation Metrics. We assessed the imputation performance using three commonly adopted metrics:
(1) Accuracy: This metric evaluates the overall accuracy by comparing the imputed values to the
ground truth values. (2) FindAccuracy: This metric measures the accuracy of values that have been
correctly imputed at least once, ignoring variables where all imputations failed. It is particularly
helpful to evaluate datasets with noisy data, where a formula may not robustly hold for all rows but
correct for the majority. It describes the accuracy of variable detection under the circumstance that
the formula is constructed, even though not entirely correct. (3) RMSE (Root Mean Square Error):
This metric calculates the difference between the imputed value and ground truth value. A lower
RMSE indicates better imputation accuracy, with a zero value indicating identical imputation.

4.2 RESULT ANALYSIS

Figure 4 and Table 2 report the performance of DMVI using different approaches on five datasets
from different domains. KNN and MICE approaches are statistic/ML-based; TabCSDI is deep
learning-based; while the others are based on LLMs. We omit the imputation accuracy of KNN
because its performance is less competitive. Besides, we only report the summary RMSE results of
TabCSDI due to the limitation of its source code. Detailed results from Llama3-8B are shown in
Appendix C. Next, we will analyze the experimental results for each dataset.

2https://platform.openai.com/docs/models/gpt-4o
3https://llama.meta.com/llama3/
4https://ollama.com/library/llama3

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0% 20
%

70
%

70
%

29
%

1%

38
%

36
%

50
%

26
%

1%

34
%

30
%

54
%

21
%

0%

62
%

34
%

17
%

13
%

0% 9% 0% 15
%

3%

84
%

10
0%

84
%

74
% 79

%

0%

20%

40%

60%

80%

100%

Bajaj Bmi Supermarket GreenTrip LOLChampion
(a) Imputation accuracy

MICE LLM
CoT Code Generation
MetaGPT SketchFill

2%

53
%

10
0%

70
%

36
%

2%

38
% 43

% 50
%

26
%

17
%

34
%

36
%

54
%

25
%

2%

62
% 67

%

32
%

22
%

0%

24
%

0%

45
%

4%

10
0%

10
0%

10
0%

74
% 79

%

0%

20%

40%

60%

80%

100%

Bajaj Bmi Supermarket GreenTrip LOLChampion
(b) Imputation find accuracy

MICE LLM
CoT Code Generation
MetaGPT SketchFill

Figure 4: (a) SketchFill performance across 5 datasets showing imputation accuracy compared with
different approaches. (b) SketchFill performance across 5 datasets showing imputation find accuracy
compared with different approaches. LLMs are backend by GPT-4o.

Table 2: RMSE-measured imputation result by dataset by variable using different approaches

Dataset Variable KNN MICE TabCSDI LLM CoT Code Generation MetaGPT SketchFill
Bajaj SMA5 1.1383 0.4232 N/A 0.5101 0.5051 0.7337 1.0743 0.0000

EMA5 1.6213 0.2014 N/A 0.3488 0.4004 0.8762 1.3908 0.0000
CCI5 69.5075 56.6780 N/A 59.7540 61.8278 76.1961 76.3084 0.0000
ROC5 0.5257 0.3239 N/A 0.3887 0.3943 0.5555 0.5779 0.0000
MOM10 3.1901 1.7620 N/A 1.8774 2.0001 2.6661 2.6459 0.0000
RSI8 7.8397 2.5590 N/A 4.9973 5.5522 7.1357 7.3535 8.7993
Summary 13.9704 10.3246 17.2945 11.3127 11.7800 14.6939 14.8918 1.4666

Bmi Weight 10.6149 2.7142 N/A 1.2109 0.8870 4.0040 14.9811 0.0000
Height 0.0570 0.0424 N/A 0.0554 0.0671 28.6804 0.0649 0.0000
BMI 4.6873 1.4047 N/A 0.0307 0.0342 0.0000 9.9793 0.0000
Summary 5.1197 1.3871 5.0527 0.4323 0.3294 10.8948 8.3418 0.0000

Supermarket UnitPrice 20.1411 18.5245 N/A 2.0401 6.1623 26.6527 26.6527 0.0000
Quantity 2.2487 1.5734 N/A 0.0941 0.1374 2.2191 2.7918 0.0000
Tax5 9.3763 0.0000 N/A 0.8740 0.8962 2.9530 12.3807 0.0000
Total 166.1456 0.0000 N/A 55.5336 38.8426 0.0000 246.1067 0.0000
CostsofGoodsSold 146.9721 0.0000 N/A 0.5560 26.4411 239.0153 239.0153 0.0000
GrossIncome 5.6514 0.0000 N/A 1.4392 0.6683 8.1654 8.9878 0.7749
Summary 58.4225 3.3497 53.9156 10.0895 12.1913 46.5009 89.3225 0.1292

GreenTrip TipAmount 2.6736 1.335 N/A 3.1168 3.3141 3.2938 3.2938 0.7329
TotalAmount 3.4047 0.7834 N/A 1.5971 1.6945 12.6227 3.4435 0.5507
CongestionSurcharge 1.1505 0.2636 N/A 1.2596 1.2596 12.0969 1.0591 0.3647
TollsAmount 0.5387 0.7574 N/A 0.5540 0.4382 1.6866 0.5177 0.5720
Summary 1.9419 0.7845 5.8039 1.6319 1.6766 7.4250 2.0785 0.5551

LOLChampion PRateplusBRate 0.2008 0.0733 N/A 0.0474 0.0474 0.0466 0.2227 0.0474
D 26.8432 14.6811 N/A 48.2048 43.4857 52.2125 46.1367 0.5847
K 48.5434 45.2328 N/A 73.5042 180.9566 52.4258 71.2392 1.2712
KDA 1.9720 1.8090 N/A 1.5361 2.1047 1.7919 1.7919 0.0267
PRate 0.0670 0.0733 N/A 0.0730 0.0744 0.0716 0.0775 0.0329
Summary 15.5253 12.3606 27.1722 24.6731 45.3338 21.3097 23.8936 0.3926

Bajaj: For this dataset, SketchFill exhibits exceptional performance in imputing variables governed
by single-step formulaic relations such as SMA5, EMA5, ROC5, and MOM10 and demonstrates
better accuracy in these variables with zero score of RMSE, although other approaches can still
preserve a fair good imputation result at a low score. In the context of multi-step calculations required
for variables such as RSI8 and CCI5, which present significant challenges for all approaches, it is
noteworthy that SketchFill succeeded in imputing variables, such as CCI5, SMA5, EMA5, ROC5, and
MOM10 with a zero RMSE score, surpassing other solutions. However, MICE approach performs
best in terms of RMSE score on RSI8, as SketchFill fails to reason the correct formula of RSI8.

Bmi: SketchFill has effectively derived the BMI calculation formula for both forward and backward
computations, achieving a 100% accuracy on all variables and zero scores on RMSE as shown in
Figure 4. This flawless performance indicates that SketchFill can impute with remarkable accuracy
when working on ordinary formulas. Besides, the Code Generation approach achieves all correct on
the DMVI task of variable BMI with a zero score on RMSE.

Supermarket: We observe that SketchFill performs outstanding results on all variables, except for
GrossIncome with an RMSE score of 0.7749, surpassed by MICE, which yields an RMSE score of 0.
Notably, MICE achieves excellent results in terms of imputation find accuracy as demonstrated in
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Figure 4. Also, contributed by the chained equations strategy of MICE, the imputation results on
other variables, such as Tax5, Total, CostsofGoodsSold and GrossIncome, are all correct. Besides,
the intuitive Code Generation approach is all correct on the DMVI task of variable Total with a zero
score on RMSE.

GreenTrip: The GreenTrip dataset is collected from actual taxi trip records, which poses a wild
challenge in that the formula behind involves more variables compared to other datasets. RMSE score
illustrates that SketchFill also outperforms other approaches, except for TollsAmount surpassed by
the CoT approach, also for CongestionSurcharge slightly surpassed by the MICE approach. Overall,
SketchFill achieves the highest score of 74% for both accuracy compared to other approaches as
demonstrated in Figure 4.

LOLChampion: The dataset LOLChampion was found to contain noisy data, such as duplication
and ambiguous column names, posing challenges in the imputation process, particularly in formula
derivation. Therefore, the Accuracy decreased to 79% for SketchFill, but still holds at least 50%
higher accuracy than other approaches. Specifically, the dataset exhibits identical PRateplusBRate
values across different Champion positions, despite having distinct PRate and BRate values. Thus,
SketchFill performance was adversely affected, measuring RMSE score at 0.0474 (PRatepluseBRate)
and 0.0329 (PRate) respectively. Nevertheless, SketchFill demonstrates superior performance with
the lowest RMSE score in all variables except for PRateplusBRate.

4.3 DISCUSSION ON OTHER APPROACHES

The imputation accuracy of KNN approaches is limited across all datasets due to its weakness in
in-context learning on tabular data. MICE achieves good performance in variables that are the linear
combination of other variables because this approach conducts MVI based on the regression model.
TabCSDI is a deep learning-based approach that leverages diffusion models for DMVI. However, its
generative approach struggles to learn the formulaic relationship of numeric variables in the dataset.
MetaGPT has developed a series of data-cleaning strategies (see Appendix D) for handling dirty data.
However, these pre-defined strategies lack context awareness, leading to their struggles with DMVI
tasks across all datasets.

5 CONCLUSION

This paper evaluates the performance of DMVI across several approaches using five datasets from
various domains. The findings highlight the exceptional performance of our proposed approach,
SketchFill, particularly in the context of single-step formulas. Notably, SketchFill achieves 74%
Accuracy and 100% FindAccuracy on 3 datasets, with fabricated data inside the datasets. Furthermore,
SketchFill demonstrates an overall accuracy of 84.2% across these datasets, demonstrating its
robustness. And the Accuracy of SketchFill is 56.2% higher than CoT-based approaches, 59% higher
than Code Generation approaches and 78.8% higher than MetaGPT. This establishes a new standard
for automated data cleaning and points a new direction for missing value imputation. However,
SketchFill is not incompatible with rendering non-derived features such as observation, transaction,
or trading data (refer to the close price of the Bajaj Finance data from Figure 1). Additionally,
SketchFill encounters difficulties in handling multi-step calculations and noisy data when processing
Bajaj and LOLChampion datasets respectively. Furthermore, we observe that the performance of
SketchFill relies on the inference capabilities of the backend LLM. As discussed in Appendix C,
the Llama-8B model conducts limited capabilities on complex DMVI tasks. These issues present
opportunities for future research on DMVI tasks using LLMs.
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A DATASET BREAKDOWN

A.1 FINANCE: BAJAJ

Bajaj Finance Stock Price Data with Indicators, with license: CCO: Public Domain (Debashis,
2023). It is originally sourced from a listed financial company in India and released on Kaggle. The
testing dataset captures a historical period of stock exchange information at a 10-minute interval. The
imputation results of all variables are evaluated under the CloseMatch, where ϵ “ 0.001.

SMA5: the abbreviation of the simple moving average of 5 periods. Here is the formula:

SMA5 “
1

5

4
ÿ

i“0

Closet´i (2)

EMA5: the abbreviation of the Exponential Moving Average of 5 periods. Here is the formula:

EMApNq “
2

N ` 1
¨ CloseN ` p1 ´

2

N ` 1
q ¨ EMApN ´ 1q (3)

where N “ 5 and EMAp1q “ Close1.

CCI5: an index to evaluate the stock market, formulated as:

CCIpnq “
pTP ´ MApTP, nqq

0.015 ¨ MD

MD “

d

řt
i“t´npClosei ´ TPiq

2

n

MApTP, nq “
TP1 ` TP2 ` ¨ ¨ ¨ ` TPn

n

TP “
pHeight ` Low ` Closeq

3

(4)

where n “ 5.

ROC5: an index to evaluate the stock market, formulated as:

ROCpnq “
AX

BX
AX “ Closet ´ Closet´n

BX “ Closet´n

(5)

where n “ 5.

MOM10: an index to evaluate the stock market, formulated as:

MOMpnq “ Closet ´ Closet´n (6)

where n “ 10.

RSI8: an index to evaluate the stock market, formulated as:

RSIpnq “ 100 ´
100

1 ` RSpnq

RSpnq “
Average of n day’s up closes

Average of n day’s down closes

(7)

where n “ 8.
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A.2 HEALTH: BMI

Age, Weight, Height, BMI Analysis (Missonnier, 2023). The dataset is listed on Kaggle for public
access, although the license is not specified. The dataset comprises 741 individual records that cover
attributes, such as height, weight, and BMI. The imputation results of all variables are evaluated
under the CloseMatch, where ϵ “ 0.01.

BMI, Weight, Height: the abbreviation of Body Mass Index. Here is the formula:

BMI “
Weight

Height2
(8)

A.3 RETAIL: SUPERMARKET

Sales of a Supermarket, with license: Apache 2.0 (Bansal, 2023). The dataset is originally sourced
from the 3-month historical sales transaction of a supermarket company in Myanmar and released on
Kaggle. For each entry, it covers the necessary fields, such as the unit price, quantity, and sale tax.
The imputation results of all variables are evaluated under the CloseMatch, where ϵ “ 0.01. Total,

UnitPrice, Quantity, Tax5: here is the formula:
Total “ UnitPrice ¨ Quantity ` Tax5 (9)

GrossIncome, CostsofGoodsSold: here is the formula:
GrossIncome “ CostsofGoodsSold ¨ GrossMarginPercentage (10)

A.4 TRANSPORTATION: GREENTRIP

Trip Record Data (Taxi & Commission, 2024). The license is not specified on its website, but
users don’t have to submit an access request, which is now available for immediate download. The
dataset is collected from taxi trip records in New York City and is actively updated every month. For
each entry, it covers the necessary fields, such as tip fee, total paid, and tolls. Specifically, we seize
the Green Taxi trip records in January 2024 for testing. The imputation results of all variables are
evaluated under the CloseMatch, where ϵ “ 0.01.

TotalAmount, TipAmount, CongestionSurcharge, TollsAmount: here is the formula:
TotalAmount “ FareAmount ` Extra ` MtaTax ` TipAmount

` CongestionSurcharge ` TollsAmount ` ImprovementSurcharge
(11)

where the other fields are necessary fields provided in the dataset as well.

A.5 GAMING: LOLCHAMPION

LOL Champion Stats (Elixir, 2024). The dataset is downloaded from a game hub website, which is
provided free of charge, and is intended for use by analysts, commentators, and fans. Specifically, we
seize the LPL data from Spring 2023 to Spring 2024 as a testing base. For each entry, it introduces
a bunch of statistics about one game character. The imputation results are evaluated under the
CloseMatch, where ϵ “ 1 for K and D, ϵ “ 0.1 for KDA, ϵ “ 0.01 for PRate and PRateplusBRate
correspondingly.

KDA, K, D: KDA is a metric to evaluate the performance of the player or champion on average per
game, K means the number of opponents the champion kills on average per game and D means the
number of times the champion was killed on average per game. here is the formula:

KDA “
K ` A

D
(12)

PRateplusBRate, PRate: PRate means the rate at which the champion is picked, and PRateplusBRate
means the sum of the rate at which the champion is picked and the rate at which the champion is
banned. Here is the formula, namely:

PRateplusBRate “ PRate ` BRate (13)
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B SKETCHFILL PROMPT TEMPLATE
B.1 DOMAIN-SKETCH GENERATOR

Assume that you are a data scientist. I offer you a table in CSV form with missing values denoted
as NaN. The first row is the variables’ names it contains, and the separator of this CSV format file
is char ",". Suggest a solution to fill in each missing value, denoted by NaN. You must sketch
your solution into the following template for each missing value you found.
Process all the steps and Give Python code solutions for each missing value. This is extremely
important. Omitting any steps of any missing value is forbidden.

Step 1 Finding Missing value: find the location of the missing value and describe the missing
value, outputting the entire row where the missing values are located in this step.
Step 2 Finding related Columns: Find related Columns that are related to the missing value
column you are filling. These related Columns are helpful for the imputation of missing values.
Outputting the names of these related Columns in this step.
Step 3 Drafting Solution: Using the related Columns you find in Step 2, draft the solution
for missing value imputation. The solution should be based on the related columns you find.
Outputting the solution.
Step 4 Calculating Intermediate Values: Check if there were unknown variables in the solution.
If there were, calculate the intermediate values of the intermediate Variable missing and needed
in the solution. Output the calculation process of all the intermediate values in this step.
Step 5 Finding Related Rows: Find the values of other rows in the table that are needed in the
imputation. Outputting all the values you find in this step.
Step 6 Calculating and Verifying the parameters: Check if there were unknown or unsure
parameters in the solution for missing value imputation. You need to calculate and verify these
parameters based on rows without missing values. Find 3 rows as examples for you to calculate
and verify the parameters. Output the parameters you get and the rows you used in this step.
Step 7 Use results from step 1 to step 6 and rebuild the Solution in Python code and combine
all the steps and Python code you generated in this new Python code. When you rebuild the
code, you must make sure the value for imputation is in the same row and column of the missing
value. Remember the index in Python is 0-based, the first number starts with 0. Generate the
rebuilt solution in Python code way. So be extremely careful with the row index when rebuilding
your Python code. And write your code in this format:

### Python
Your Python code for rebuilding the solution
### Python

Process all the steps and Give Python code solutions for each missing value. This is extremely
important. Omitting any steps of any missing value is forbidden. Here is the data:
{data}

B.2 CODE GENERATOR

Assume you are a code rewriter, you are given a Python code sketch for imputation task on
the given data. The new Python code you rewrite should take the given data for input and fill in
the missing value of it. When you rewrite the code, you must slice the dataset and use the same
row or column index in the given Python code sketch. Trust the Python code in the given sketch.
You must turn this data as DataFrame of pandas in your Python code. The Python code needs to
save the dataset in csv format after imputation in this path {save_path}. Here is the requirement:

Give only the Python code for your reply. Do not generate any other information. And write your
code in this format:

### Python
Put only your rewritten Python code here.
### Python

Here is the Python code sketch for you to rewrite:
{code}

You must turn this data as DataFrame in your Python code.
Here is the data: {data}
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B.3 REFLECTOR

You are an advanced reasoning agent that can improve based on self-reflection. You will be
given a previous sketch trial in which you were required to generate a solution for missing value
imputation for the given dirty table. You were unsuccessful in imputing missing values in the
dirty table for some reason.

Here are some hints for your reflection:
1. using the wrong solution, try to use your domain knowledge in the field related to this data
and fill in the missing value with the calculation based on other variables
2. using the wrong rows or columns when generating the solution, please reflect the rows and
columns you used for imputation. For example, you should use data from the second row to the
fourth row, but you use data from the first row to the third row.
3. remember the index in Python is 0-based.

Here is the wrong sketch to reflect:
{wrong_sketch}

Here is the dirty data:
{dirty_data}

Requirement:
In a few sentences, Diagnose a possible reason for failure or phrasing discrepancy. Take the
hints as examples and Give a new sketch for the missing value imputation of this dirty table. The
new reflected sketch must follow the same steps as the wrong sketch, this is extremely important.
You MUST Return your answer in this Format:

### Diagnosis:
Write your diagnosis here

### New Sketch:
Write your new sketch here

B.4 SUMMARIZER

Assume you are a code summarizer, you are given a code focus on the imputation of miss-
ing value in a particular dataset. Please summarize this code into a function, so it can take
any dirty dataset with the same structure. The input of the function is the dirty dataset,
{clean_data_save_path}.

When you are summarizing the code, pay attention to the following situation:
1. You need to find the missing values index of the dirty data in the Python function.
2. There can be more than 1 missing value in the given new dirty data, when you rewrite the
given code, make sure it can impute multiple missing values in the given dataset.
3. Remember the location of missing values in the new dirty data is not the same as the code
provided. Change the fixed index of the provided code into indexes capable of any location.

Here is the requirement:
The name of the function is impute_missing_value. Give only the Python code for your reply. Do
not generate any other information. Do not write any explanation. And write your code in this
format:

### Python
Put only your rewritten Python code here.
### Python

Here is the code need to be summarized:
{code}
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C EXPERIMENT NOTE

C.1 CALL OF REFLECTOR IN GPT-4O EXPERIMENT ON SMA5 VARIABLE OF BAJAJ DATASET

1 # Last attempt, wrong
2 missing_sma5_value = data[’close’][13:18].mean()
3

4 # New attempt, correct
5 missing_sma5_value = data[’close’][14:19].mean()

Diagnosis on Domain-Sketch: The failure in the previous sketch occurred because the range of rows
used to calculate the missing SMA5 value was incorrect. This is because the SMA5 for a given row
is the average of the close prices for the last 5 periods, including the current one.

C.2 CALL OF REFLECTOR IN LLAMA3-8B EXPERIMENT ON BMI VARIABLE OF BMI DATASET

1 # Last attempt, wrong
2 def calculate_bmi(weight, height):
3 return (weight / (height ** 2)) * 703
4

5 # New attempt, correct
6 def calculate_bmi(weight, height):
7 return (weight / (height ** 2))

Diagnosis on Domain-Sketch: The possible reason for failure or phrasing discrepancy is that the
formula used to calculate BMI is incorrect and does not take into account the actual values in the
Height and Weight columns.

C.3 SKETCHFILL EXPERIMENT USING LLAMA3-8B
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Figure 5: Llama3 imputation accuracy

We apply the same workflow settings as we configured on GPT-4o experiments. In light of the
practical performance of llama3-8B, we slightly alter the prompt design to accommodate the model’s
capabilities, meanwhile retaining the identical framework in parallel. According to the imputation
accuracy of MICE and MetaGPT approaches in Figure 4(a), SketchFill using Llama3 even achieves
higher accuracy on the Bmi dataset. However, it is not as good as MICE on the Supermarket and
GreenTrip datasets concerning the reasoning difficulties of the model itself on complex formula.
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D ADDITIONAL IMPLEMENTATION

KNN: Thanks to the scikit-learn package that provides a KNN-based imputer, we utilize it to conduct
the relevant experiment. Below is the code snippet:

1 from sklearn.impute import KNNImputer
2 # import other packages ...
3

4 def knn_imputation(dirty_data_path, ...):
5 dirty_data = pd.read_csv(dirty_data_path)
6 missing_columns = ...
7 imputer = KNNImputer(n_neighbors=5)
8 dirty_data[missing_columns] = imputer.fit_transform(
9 dirty_data[missing_columns])

MICE: We implement MICE method based on the original paper (Van Buuren & Groothuis-
Oudshoorn, 2011). Although it is implemented in R, we find an alternative implementation in
Python using sklearn.impute.IterativeImputer. More details can be found in the relevant documenta-
tion5.

TabCSDI: We adopt its framework based on the original paper (Zheng & Charoenphakdee, 2022)
and Github repository6. The diffusion model is trained and validated on our experimental datasets,
and we ran our tests on internal server with NVIDIA 4090 GPUs.

MetaGPT: Thanks to the newly released toolkit DataInterpreter (Hong et al., 2024) in MetaGPT, we
can easily deploy a LLM agent for the MVI testing. Below is a code snippet to demonstrate how we
utilize it to perform MVI:

1 import asyncio
2 from metagpt.roles.di.data_interpreter import DataInterpreter
3 # import other packages ...
4

5 async def meta(query):
6 di = DataInterpreter()
7 await di.run(query)
8

9 query = f"""Please read file from local file path: {dirty_data_path},
10 imputed the missing value,
11 save the imputed data file in path: {result_data_path}"""
12

13 asyncio.run(meta(query))

The experiment result has been combined into the Figure 4 and Table 2. Moreover, we go through
the source code of the MetaGPT repository7 and found that it completes missing values with simple
strategies, such as mean, median, most frequent. Below is a code snippet to show how it works:

1 class FillMissingValue(DataPreprocessTool):
2 """
3 Completing missing values with simple strategies.
4 """
5

6 def __init__(
7 self, features: list, strategy: Literal["mean", "median",
8 "most_frequent", "constant"] = "mean", fill_value=None
9 ):

10 self.features = features
11 self.model = SimpleImputer(strategy=strategy, fill_value=

fill_value)

5https://scikit-learn.org/stable/modules/impute.html
6https://github.com/pfnet-research/TabCSDI
7https://github.com/geekan/MetaGPT/blob/main/metagpt/tools/libs/data_preprocess.py
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