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Abstract

Recently there has been significant theoretical progress on understanding the
convergence and generalization of gradient-based methods on nonconvex losses
with overparameterized models. Nevertheless, many aspects of optimization and
generalization and in particular the critical role of small random initialization
are not fully understood. In this paper, we take a step towards demystifying this
role by proving that small random initialization followed by a few iterations of
gradient descent behaves akin to popular spectral methods. We also show that this
implicit spectral bias from small random initialization, which is provably more
prominent for overparameterized models, also puts the gradient descent iterations
on a particular trajectory towards solutions that are not only globally optimal but
also generalize well. Concretely, we focus on the problem of reconstructing a
low-rank matrix from a few measurements via a natural nonconvex formulation.
In this setting, we show that the trajectory of the gradient descent iterations from
small random initialization can be approximately decomposed into three phases:
(I) a spectral or alignment phase where we show that that the iterates have an
implicit spectral bias akin to spectral initialization allowing us to show that at the
end of this phase the column space of the iterates and the underlying low-rank
matrix are sufficiently aligned, (II) a saddle avoidance/refinement phase where
we show that the trajectory of the gradient iterates moves away from certain
degenerate saddle points, and (III) a local refinement phase where we show that
after avoiding the saddles the iterates converge quickly to the underlying low-rank
matrix. Underlying our analysis are insights for the analysis of overparameterized
nonconvex optimization schemes that may have implications for computational
problems beyond low-rank reconstruction.

1 Introduction

Many contemporary problems in machine learning and signal estimation spanning deep learning to
low-rank matrix reconstruction involve fitting nonlinear models to training data. Despite tremendous
empirical progress, theoretical understanding of these problems poses two fundamental challenges.
First, from an optimization perspective, fitting these models often requires solving highly nonconvex
optimization problems and except for a few special cases, it is not known how to provably find globally
or approximately optimal solutions. Yet simple heuristics such as running (stochastic) gradient
descent from (typically) small random initialization is surprisingly effective at finding globally
optimal solutions. A second generalization challenge is that many modern learning models including
neural network architectures are trained in an overparameterized regime where the parameters of the
model exceed the size of the training dataset. It is well understood that in this overparameterized
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regime, these large models are highly expressive and have the capacity to (over)fit arbitrary training
datasets including pure noise. Mysteriously however overparameterized models trained via simple
algorithms such as (stochastic) gradient descent when initialized at random continue to predict well
or generalize on yet unseen test data. In particular, it has been noted in a number of works that
for many modern machine learning architectures, the scale of initialization is important for the
generalization/test behavior [1, 2]. It has been noted that stronger generalization performance is
typically observed for a smaller scale initialization. Indeed, small random initialization followed by
(stochastic) gradient descent iterative updates is arguably the most widely used learning algorithm in
modern machine learning and signal estimation.

There has been a large number of exciting results aimed at demystifying both the optimization and
generalization aspects over the past few years. We will elaborate on these results in detail in the
supplementary, however, we would like to briefly mention the common techniques and their existing
limitations. On the optimization front a large body of work has emerged on providing guarantees for
nonconvex optimization which can roughly be put into two categories: (I) smart initialization+local
convergence and (II) landscape analysis+saddle escaping algorithms. Approaches in (I) focus on
showing local convergence of local search techniques from carefully designed spectral initializations
[3, 4, 5, 6, 7, 8, 9, 10]. Approaches in (II) focus on showing that in some cases the optimization
landscape is benign in the sense that all local minima are global (no spurious local minima) and
the saddle points have a direction of strict negative curvature (strict saddle) [11]. Then specialized
truncation or saddle escaping algorithms such as trust region, cubic regularization [12, 13], or noisy
(stochastic) gradient-based methods [14, 15, 16, 17] are deployed to provably find a global optimum.
Both approaches fail to fully explain the typical behavior of local search techniques in practice.
Indeed, for many nonconvex problems local search techniques or simple variants, when initialized at
random, quickly converge to globally optimal solutions without getting stuck in local optima/saddles
without the need for sophisticated initialization or saddle escaping heuristics. We note that while for
differentiable losses eventual convergence to local minimizers is known from a random initialization
[18] on problems of the form (II), these results cannot rule out exponentially slow cases in the
worst-case [19]. Indeed, it has been argued that in general a more granular analysis of the trajectory
of gradient descent beyond the landscape may be necessary [20]. For example, some recent advances
has been made by analysing the trajectory of gradient descent using a leave-one-out analysis for the
phase retrieval problem [21].

Similarly, there has been a lot of exciting progress on the generalization front, especially for neural
networks. Specific to generalization capabilities of gradient-based approaches these results broadly
fall into two categories: (a) the first category is based on a linearization principle which characterizes
the performance of nonlinear models such as neural networks by comparing it to a linearized kernel
problem around the initialization (a.k.a. Neural Tangent Kernels) [22, 23, 24, 25, 26, 27, 28]. This
has often been referred to as ”lazy training". (b) the second category is based on a continuous
limit analysis in the limit of width going to infinity and learning rate going to zero (mean-field
analysis) [29, 30, 31, 32, 33]. However, these existing analyses contain many idealized and non-
realistic assumptions (e.g. requiring large, random initialization in (a), which typically leads to worse
generalization than what is observed in practice, or unrealistically large widths in (b)) and therefore
cannot fully explain the success of overparameterized models or serve as a guiding principle for
practitioners [34].

Despite the aforementioned exciting recent theoretical progress many aspects of optimization and
generalization and in particular the role of random initialization remains mysterious. This leads us to
the main challenge of this paper

Why is small random initialization combined with gradient descent updates so ef-
fective at finding globally optimal models that generalize well despite the nonconvex
nature of the optimization landscape or model overparameterization?

In this paper we wish to take a step towards addressing the above challenge by demystifying the
critical role of small random initialization in gradient-based approaches. Specifically we show that

Small random initialization followed by a few iterations of gradient descent
behaves akin to spectral initialization.

By that, we mean more precisely, that if the initialization is chosen small enough, then in the initial
stage of the training, gradient descent implicitly behaves like spectral initialization techniques such as
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Figure 1: Gradient descent from small random initialization is akin to spectral initialization.
The left figure depicts the empirical landscape of a low-rank matrix reconstruction problem with the
two green circles depicting the two global minima and the white circle the saddle point at the origin.
In this figure, we also depict the trajectory of the gradient descent iterations (magenta) together
with the power method based on a popular spectral initialization technique (blue). Both gradient
descent and power method use the same small initialization near the origin. We see that in the early
stage, the two trajectories are almost the same. The figure on the right depicts the angle between
the gradient descent (magenta)/power method (blue) iterates and a popular spectral initialization
technique, denoted by θGD and θP respectively. This figure clearly demonstrates that for the first
iterations these angles are practically the same further confirming that the initial trajectory of gradient
descent and power methods are similar. See Section 5 for further detail on the experimental setup. (In
this figure we have used r = r⋆ = 1.)

those commonly used in techniques based on the method of moments. This implicit spectral bias
of gradient descent from random initialization puts the gradient descent iterations on a particular
trajectory towards solutions that are not only globally optimal but also generalize well for overpa-
rameterized models. We also show that with small random initialization this implicit spectral bias
phenomenon is more prominent for more overparameterized models in the sense that it materializes
after fewer iterations. This intriguing phenomenon is depicted in Figure 1 in the context of a low-rank
reconstruction problem. This figure clearly demonstrates that the first few iterations of gradient
descent starting from a small random initialization are virtually identical to that of running power
iterations (a popular algorithm to find the spectral initialization, see, e.g. [35]).

Concretely we focus on the problem of low-rank matrix recovery, which appears in many different
application areas such as recommendation systems, phase retrieval, and quantum tomography [36].
Here, our goal is to recover a low-rank matrix of the form XXT from a few linear measurements.
We consider a natural, non-convex approach based on matrix factorization, where we minimize
the loss function via gradient descent. In this paper, we show that, regardless of the amount of
overparameterization used, for small random initialization vanilla gradient descent will always
converge towards the low-rank solution. This holds as long as the measurement operator obeys a
popular restricted isometry property [37].

Our analysis consists of three phases. The first phase is the aforementioned spectral or alignment
phase where we show gradient descent from small random initialization behaves akin to spectral
initialization, which is a key insight of this paper. Indeed, we show that the first few gradient descent
iterates can be accurately approximated by power method iterates. Next, we show that after this first
spectral or alignment phase, gradient descent enters a second phase, which we refer to as saddle
avoidance phase. In this phase, we show that the trajectory of the gradient iterates moves away from
degenerate saddle points, while the iterates maintain almost the same effective rank as XXT . In the
third phase, the local refinement phase, we show that the iterates approximately converge towards the
underlying low-rank matrix XXT with a geometric rate up to a certain error floor which depends on
the initialization scale. In particular, by decreasing the scale of initialization this error threshold can
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be made arbitrarily small. While in this paper our main focus is on low-rank matrix reconstruction,
we believe that our analysis holds more generally for a variety of contemporary machine learning and
signal estimation tasks including neural networks.

Finally we note that while a similar setting has already been studied in [38], our analysis goes beyond
it in many important ways. For example, our result holds for any amount of overparameterization
and allows for arbitrarily small initialization. Maybe most importantly, we study the spectral phase
phenomenon at initialization.

2 Low-rank matrix recovery via non-convex optimization

As mentioned earlier in this paper we focus on reconstructing a (possibly overparameterized) Positive
Semidefinite (PSD) low rank matrix from a few measurements. In this problem, given m observations
of the form

yi = ⟨Ai,XXT ⟩ = Tr (AiXXT ) i = 1, . . . ,m, (1)
we wish to reconstruct the unknown matrix XXT . Here, X ∈ Rn×r⋆ with 1 ≤ r⋆ ≤ n is a factor of the
unknown matrix and {Ai}mi=1 are known symmetric measurement matrices. A common approach to
solving this problem is via minimizing the loss function

min
Ū∈Rn×r f(Ū) ∶= min

Ū∈Rn×r
1

4m

m∑
i=1

(yi − ⟨Ai, Ū ŪT ⟩)2
,

with r ≥ r⋆. More compactly one can rewrite the optimization problem above in the form

min
Ū∈Rn×r f(Ū) ∶= min

Ū∈Rn×r
1

4
∥A (Ū ŪT −XXT )∥2

`2
, (2)

where A ∶ Rn×n Ð→ Rm is the measurement operator defined by [A (Z)]i ∶= 1√
m
⟨Ai, Z⟩.

In order to solve the minimization problem (2) we run gradient descent iterations starting from (often
small) random initialization. More specifically,

Ut+1 = Ut − µ∇f (Ut) = Ut + µA∗ [y −A (UtUTt )]Ut= Ut + µ [(A∗A) (XXT −UtUTt )]Ut.
where we have set U0 = αU is the initialization matrix, A∗ denotes the adjoint operator of A and
y = (yi)mi=1 ∈ Rm denotes the measurement vector. Here, U ∈ Rn×r is a typically random matrix
which represents the form of the initialization and α > 0 is a scaling parameter.

There are two challenges associated with analyzing such randomly initialized gradient descent updates.
The first is an optimization challenge. Since f is non-convex it is a priori not clear whether gradient
descent converges to a global optimum or whether it gets stuck in a local minima and/or saddle. The
second challenge is that of generalization. This is particularly pronounced in the overparameterized
scenario where the number of parameters are larger than the number of data points i.e. rn ≥m. In
this case, there are infinitely many Ū such that f(Ū) = 0, but ∥Ū ŪT −XXT ∥F is arbitrarily large
(see, e.g., [39, Proposition 1]). That is, even if gradient descent converges to a global optimum, i.e.
f (Ū) = 0, it is a priori not clear whether it has found the low-rank solution XXT (see also Figure 5).

3 Main results

In this section, we present our main results. Stating these results requires a couple of simple definitions.
The first definition concerns the measurement operator A.
Definition 3.1 (Restricted Isometry Property (RIP)). The measurement operator A ∶ Rn×n Ð→ Rm

satisfies RIP of rank r with constant δ > 0, if it holds for all matrices Z of rank at most r

(1 − δ) ∥Z∥2
F ≤ ∥A (Z)∥2

`2
≤ (1 + δ) ∥Z∥2

F . (3)

We note that for a Gaussian measurement operator A 1, RIP of rank r and constant δ > 0 holds with
high probability, if the number of observations satisfies m ≳ nr/δ2 [37, 40].

1By that, we mean that all the entries of the (symmetric) measurement matrices {Ai}
m
i=1 are drawn i.i.d. with

distributionN (0,1) on the off-diagonal and distributionN (0,1/
√

2) on the diagonal.
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The second definition concerns the condition number of the factor X .

Definition 3.2 (condition number). We denote the condition number of X ∈ Rn×r⋆ by κ ∶= ∥X∥
σr⋆(X) ,

where σr⋆ (X) denotes r⋆-th largest singular value of X .

With these definitions in place we are now ready to state our main results. Due to space limitations
in the main paper we focus on the case of r ≥ 2r⋆. With refer the reader to the supplementary for
results covering all r ≥ r⋆ including two special cases: (1) the fully overparameterized case, i.e.,
r = n along with comparisons with existing work, in this case [38], and (2) the scenario that U has
the same number of parameters as X , i.e., r = r⋆.

Theorem 3.3. Let X ∈ Rn×r∗ and assume we have m measurements of the low rank matrix XXT

of the form y = A (XXT ) with A the measurement operator. We assume A satisfies the restricted
isometry property for all matrices of rank at most 2r⋆+1 with constant δ ≤ cκ−4r⋆−1/2. To reconstruct
XXT from the measurements we fit a model of the form Ū ↦ A (Ū ŪT ) with Ū ∈ Rn×r via running
gradient descent iterations of the form Ut+1 = Ut − µ∇f (Ut) on the objective (2) with a step
size obeying µ ≤ cκ−4∥X∥−2. Here, the initialization is given by U0 = αU , where U ∈ Rn×r has
i.i.d. entries distributed as N (0,1/√r). Furthermore, we assume r ≥ 2r⋆ and that the scale of
initialization fulfills

α ≲ min

⎧⎪⎪⎨⎪⎪⎩
(min{r;n})1/4

κ1/2n3/4 (2κ2

√
n

min{r;n})
−6κ2

;
1

κ7n

⎫⎪⎪⎬⎪⎪⎭∥X∥. (4)

Then, after

t̂ ≲ 1

µσmin (X)2
ln( C1nκ

min{r;n} ⋅max{1;
κr⋆

min{r;n} − r⋆} ⋅ ∥X∥
α

)
iterations we have that

∥Ut̂UTt̂ −XXT ∥F∥X∥2
≲ n2κ81/16r

1/8⋆(min{r;n})15/16
⋅ α21/16

∥X∥21/16
, (5)

holds with probability at least 1 −Ce−c̃r. Here, c, c̃,C,C1 > 0 are fixed numerical constants.

Note that the test error ∥Ut̂UTt̂ −XXT ∥2
F can be made arbitrarily small by choosing the scale of

initialization α small enough. In particular, the dependence of the test error on α is polynomial and
the dependence of the number of iterations on α is logarithmic, which means that reducing the test
error by scaling down α introduces only modest additional computational cost. Hence, as long as
the rank at most 2r⋆ + 1 RIP with constant δ ≤ cκ−4r⋆−1/2 holds, gradient descent converges to a
point in the proximity of the low-rank solution, whenever the initialization is chosen small enough
regardless of the choice of r. This holds even when the model is overparameterized i.e. rn ≫ m
and the optimization problem has many global optima many of which do not obey UUT ≈ XXT .
This result thus further demonstrates that when initialized with a small random initialization gradient
descent has an implicit bias towards solutions of low-rank or small nuclear norm. This is in sharp
contrast to Neural Tangent Kernel (NTK)-based theory for low-rank matrix recovery (see [23, Section
4.2]) which will not approximately recover the ground truth matrix XXT due to the larger scale of
initialization required when using that technique.

As discussed in Section 2, the restricted isometry property holds with high probability for a sample
complexity m ≳ nr2⋆κ8 for Gaussian measurement matrices. Up to constants, this sample complexity
is optimal in n, while it is sub-optimal in r⋆ and κ compared to approaches based on nuclear-norm
minimization (see, e.g., [37]). While there is numerical evidence that the true scaling of m in r⋆
should also be linear in the non-convex case [41], we note that the optimal dependence of the sample
complexity on r⋆ is a major open problem in the field, as the sample complexities in all theoretical
results for non-convex approaches in the literature scale at least quadratically in r⋆.

Interpretation: Recall from Section 1 that our convergence analysis can be divided into three phases:
the spectral phase, the saddle avoidance phase, and the local refinement phase. As it will become
clear from the proofs in the supplementary when r ≥ 2r⋆ the bound on the number of iterations can
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be decomposed as follows

t̂ ≲
1

µσmin (X)
2

⎡
⎢
⎢
⎢
⎢
⎣

ln(2κ2

√

n

min{r;n}
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Phase I: spectral/alignment phase

+ ln(
σmin (X)

α
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Phase II: saddle avoidance phase

+ ln(max{1;
κr⋆

min{r;n} − r⋆
}
∥X∥

α
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Phase III: local refinement phase

⎤
⎥
⎥
⎥
⎥
⎦

.

(6)

First, we note that the duration of all three phases scales inversely with σmin (X)2. This is due to the
fact that in all three phases the dynamics associated the smallest singular value of X is the slowest
one and hence needs the most time to complete.

In the spectral phase, the eigenvectors corresponding to the leading r⋆ eigenvalues of UtUTt become
aligned with the eigenvectors corresponding to the leading r⋆ eigenvalues of A∗A (XXT ). We
observe in (6) that in the spectral phase increasing r, i.e. the amount of parameters, decreases the
number of iterations in this phase. As we will explain in the supplementary, the reason is that
increasing r decreases the angle between the column space of the initialization U0 and the span
of the eigenvectors corresponding to the leading r⋆ eigenvalues of A∗A (XXT ) used in spectral
initialization. As a consequence, gradient descent needs fewer iterations to align these two subspaces.

In the saddle avoidance phase (Phase II), σr⋆ (Ut) , the r⋆th largest singular value of Ut, grows
geometrically until it is on the order of σmin (X). Hence, this duration depends on the ratio between
the σmin (X) and the the scale of initialization α. This is clearly reflected in the upper bound on the
number of needed iterations in equation (6).

In Phase III, the local refinement phase, the matrix UtUTt converges towards XXT . In particular, at
iteration t̂ the test error obeys (5). We observe that a smaller α allows for a smaller test error in (5)
but per (6) this higher accuracy is achieved with a modest increase in the required iterations.

4 A glimpse of our analysis

In our proofs, we show that the trajectory of the gradient descent iterations can be approximately
decomposed into three phases: (I) a spectral or alignment phase where we show that gradient descent
from random initialization behaves akin to spectral initialization allowing us to show that at the end
of this phase the column spaces of the iterates Ut and the ground truth matrix X are sufficiently
aligned, (II) a saddle avoidance phase, where we show that the trajectory of the gradient iterates
move away from certain degenerate saddle points , and (III) a refinement phase, where the product
of the gradient descent iterates UtUTt converges quickly to the underlying low-rank matrix XXT .
The latter result holds up to a small error that is commensurate with the scale of the initialization and
tends to zero as the scale of the initialization goes to zero.

To formalize the above, we use L and Lt to denote the subspaces spanned by the eigenvectors
corresponding to the r⋆ largest eigenvalues of the matrix A∗A (XXT ), and UtUTt , respectively.
Moreover, for a subspace L of dimension r⋆ we use VL ∈ Rn×r⋆ to denote an orthonormal matrix
whose columns span the subspace L. Note that L is the subspace, which is obtained by commonly
used spectral methods. Using this notation, Figure 2a depicts the three phases described above.

In the spectral phase we will prove that we can approximate the iterate Ut by

Ut ≈ (Id + µA∗A (XXT ))t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶Zt

U0 = Zt1U0 ∶= Ũt. (7)

We note that the matrix Z1 = Id + µA∗A (XXT ) is the basis for the commonly used spectral
initialization, where typically a factorization of the rank r∗ approximation of this matrix is used as
the initialization [6, 5, 42]. Therefore, the approximation (7) suggests that gradient descent iterates
modulo the normalization are akin to running power method on Z1. Hence, we expect that at the end
of the spectral phase the subspace Lt to be closely aligned with the subspace L, i.e. the subspace
obtained by commonly used spectral initialization techniques. In particular, this also implies that
Lt is also aligned with the subspace X . Figure 2b clearly illustrates that the first few iterations of
gradient descent behave essentially identical to the power method, confirming our intuition.

The description of the second and third phase is more elaborate and technical in nature and we
defer to the supplementary for a more detailed and intuitive explanation. However, to give a brief
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Figure 2: (a) Depiction of the three phases of convergence. This figure demonstrates that the
convergence analysis can be divided into three phases: (I) spectral/alignment phase; (II) saddle
avoidance phase and (III) the refinement phase. We see that in the first phase the first r⋆ eigenvectors
of UtUTt rapidly learn the subspace corresponding to the first r⋆ eigenvectors of A∗A (XXT ), i.e.
the angle ∥V TL⊥VLt∥ becomes small. The r⋆th largest singular value of Ut is still small in this phase
and the (normalized) test error ∥UtUt −XXT ∥2

F /∥XXT ∥2
F has not decreased yet. In Phase (II),

however, we see that σr⋆ (Ut) is growing, whereas the loss begins to decrease in this phase and
the subspaces stay aligned. In Phase (III) we see that the test error is converging towards 0 rapidly,
meaning that UtUTt converges to XXT . Consequently, σr⋆ (Ut) /σr⋆ (X) converges to 1 (red curve).
We also see that in this phase the angle ∥V TL⊥VLt

∥ grows again, until it reaches a certain threshold.
This is because in this phase the top r⋆ eigenvalues of UtUTt become aligned with the eigenvectors of
XXT . (b) Depiction of the spectral alignment phase: in the first few iterations, gradient descent
with small initialization behaves like a power method. Denote by L̃t the subspace spanned by
the eigenvectors corresponding to the r⋆ largest eigenvalues of the matrix ŨtŨt

T
. Analogously as

before denote by VL̃t
an orthonormal matrix, whose columns span the subspace L̃t. In this figure, we

observe that in the first iterations Ut and Ũt learn the subspace L at almost exactly the same rate.

description, in these two phases we will decompose the iterates Ut into the sum of two matrices, a
"signal" matrix of rank r⋆ and a "noise" matrix of rank at most r − r⋆. In Phase (II) we will prove that
the smallest singular value of the signal term, which is approximately the same as σr⋆ (Ut) grows,
whereas the spectral norm of the noise matrix grows at a much slower rate. We will also show that in
this phase the columns of the signal term stay approximately aligned with the span of the matrix X .
As soon as the smallest singular value of the signal term of Ut is approximately at the same order than
the smallest singular value of X we enter Phase (III). In that Phase we provide a local convergence
argument, which shows that the signal term of Ut converges towards X (up to a rotation), whereas
the noise term stays small.

5 Numerical experiments

In this section, we perform several numerical experiments to corroborate our theoretical results.

Experimental setup. For the experiments we set the ground truth matrix X ∈ Rn×r⋆ to be a random
orthogonal matrix with n = 200 and r⋆ = 5. Moreover, we use m = 10nr⋆ = 50n random Gaussian
measurements. The initialization U is chosen as in Theorem 3.3 and we use a step size of µ = 1/4
which is consistent with these theorems. We note that while all experimental depictions are based on
a single trial, in line with the NeurIPS guidelines we have drawn these curves multiple times (not
depicted) and the behavior of the plots do not change.

Depiction of the three phases and the role of overparameterization. In our first experiment, we
want to examine how increasing the number of parameters via increasing the number of the columns
r of the matrix Ut ∈ Rn×r, affects the spectral phase. To this aim we set the scale of initialization to
α = 1/ (70n2). Let L denote the subspace spanned by the eigenvectors corresponding to the leading
r⋆ singular values of A∗A(XXT ) and Lt denotes the subspace spanned by the left-singular vectors
corresponding to the largest r⋆ singular values of Ut.
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Figure 3: Impact of different levels of overparameterization on (a) the angle ∥V TL⊥VLt∥ and (b) the r⋆th
largest singular value, (c) the trajectory of the (normalized) test error ∥UtUTt −XXT ∥F /∥XXT ∥F .

Spectral phase and alignment under different levels of overparameterization. First, we examine how
the angle between these two subspaces (i.e. ∥V TL⊥VLt∥) changes in the first few iterations. We depict
the results for different r in Figure 3a. We see that in the first few iterations, i.e. in the spectral phase,
this angle converges towards zero. This confirms the main conclusion of this paper that the first few
iterations of gradient descent from small random initialization indeed behaves akin to running power
method for spectral initialization. This experiment also shows that changing the number of columns
r of Ut has an interesting effect on the spectral phase. In particular, increasing r allows the gradient
descent algorithm to learn the subspace L with fewer iterations, i.e. ∥V TL⊥VLt∥ becomes small with
fewer iterations. This is in accordance with our theory for r⋆ ≤ r ≤ n (see, for example, the first
summand on the right-hand side of equation (6)), where we show that more overparameterization
allows gradient descent to leave the spectral phase earlier. Interestingly, this improvement continues
to hold even when increasing r beyond n allowing for even faster convergence of ∥V TL⊥VLt∥. This
holds even though in this case the rank of U0 is still not larger than n. One potential explanation for
this phenomenon might be that for such a choice of r the matrix U0 is better conditioned.

Growth of σr⋆ (Ut) and saddle avoidance. In Figure 3b we depict how σr⋆ (Ut) grows during the
training for different choices of r. We see that the curves look similar, although for smaller r the
growth phase sets in at a slightly later time. This is due to the fact that for smaller r, as we have seen
in Figure 3a, Phase I, the spectral phase takes longer to complete.

Evolution of the test error and the refinement phase. Similarly, in Figure 3c we depict how the
(normalized) test error ∥UtUTt −XXT ∥F /∥XXT ∥F evolves during the training for different choices
of r. We observe that for smaller r the third phase sets in slightly later. Again, this is due to the fact
that for smaller r the spectral phase takes slightly longer to complete (see inequality (6)).

Test error under different scales of initialization. In the next experiment, we focus on
understanding how the scale of initialization α affects the generalization error ∥UtUTt −XXT ∥2

F .
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Figure 5: Change of test error ∥UtUTt −XXT ∥2
F and train error f (Ut) for (a) small and (b) large α

during training.

For that, we set r = 180 and run gradient descent with for different choices of α. We stop as soon as
the training error becomes small (f (Ut) ≤ 0.5 ⋅ 10−9). We depict the results in Figure 4. We see that
the test error decreases as α decreases. In particular, this figure indicates that the test error depends
polynomially on the scale of initialization α. This is in line with our theory, where we also show that
the test error decreases at least with the rate α21/16 (see inequality (5) in Theorem 3.3).

Change of test and train error during training. In the next experiment, we set r = 180 and examine
how the test error ∥UtUTt −XXT ∥2

F and the train error f (Ut) changes throughout training and, in
particular, how this depends on the scale of initialization. To this aim, we run gradient descent with
4 ⋅ 105 iterations. We see that for a small scale of initialization, α = 10−3, which is the scenario
studied in this paper, both test error and train error decrease throughout training.

We observe that in the beginning, as described our theory, both test and train error decrease rapidly.
After that the decrease of both test and train error slows down significantly. Moreover, the train error
converges towards zero, in contrast to the test error. One reason for the slow convergence in this
phase might be that Ut is ill-conditioned in the sense that σr⋆ (UtWt) is much larger than ∥UtWt,⊥∥.
It is an interesting future research direction to extend our theory to this part of the training.

For large scale of initialization α = 0.5, we observe a very different behaviour. We see that the train
error converges with linear rate until machine precision is reached. However, the test error barely
changes throughout the training. This scale of initialization corresponds to the lazy training regime
[34], where the parameters stay close to the initialization during the training. We depict the results in
Figure 5.

Number of iterations until convergence: In the last experiment, we set α = 10−3 and examine how
many iterations are needed until the test error ∥UtUTt −XXT ∥2

F falls below a certain threshold of
10−4 for different values of r obeying 5 ≤ r ≤ 30. For each choice of r we run the experiment ten
times and then average the number of iterations for each choice of r. The results are depicted in
Figure 6. We observe that increasing the number of columns r from 5 to 10, i.e., a small amount of
overparameterization, decreases the number of iterations needed. After that the number of iterations
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Figure 6: Number of iterations required for the test error to fall below 10−4 for different levels of
overparameterization.

needed stays roughly constant. This observation is in line with Figure 3, where we have seen that
overparameterization leads to fast decrease of the test error in the spectral phase (with diminishing
speedup as r becomes larger and larger) without affecting the other two phases.

6 Conclusion and Broader Impact

In this paper we focused on demystifying the role of initialization when training overparameterized
models by showing that small random initialization followed by a few iterations of gradient descent
behaves akin to popular spectral methods. We also show that this implicit spectral bias from small
random initialization, which is provably more prominent for overparameterized models, also puts
the gradient descent iterations on a particular trajectory towards solutions that are not only globally
optimal but also generalize well.

We think that our results give rise to a number of interesting future research directions. For example,
one could extend our results to scenarios where the measurement matrices are more structured such
as in matrix completion [43] or in blind deconvolution [44]. Moreover, while our main results, e.g.
Theorem 3.3 do require early stopping, our simulations (e.g. Figure 5a) indicate that early stopping is
not needed. It would be interesting to examine whether we can remove the early stopping requirement.
It is also an interesting future avenue to examine whether the quadratic dependence of the sample
complexity m on r⋆ in our results is really needed.

Moreover, while in this paper our main focus was on low-rank matrix reconstruction, we believe that
our analysis holds more generally for a variety of contemporary overparameterized machine learning
and signal estimation tasks including neural network training. This is a tantalizing future research
direction.

Despite being theoretical/foundational in nature our results have potential for broader practical
impact. In particular, low rank reconstruction problems are an important component of many
recommender engines and our insights may guide better algorithm and systems designs for such
engines. More broadly, training overparameterized models using stochastic GD starting from small
random initialization is the work-horse of modern learning ncluding deep learning and our insights
may in the long term help enable more efficient/reliable training with a smaller carbon footprint
and improved test accuracy. As with other technologies such insights may potentially also be used
nefariously.
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