
Approximation theory for 1-Lipschitz ResNets

Davide Murari
Department of Applied Mathematics and Theoretical Physics

University of Cambridge
dm2011@cam.ac.uk

Takashi Furuya
Faculty of Life and Medical Sciences, Department of Biomedical Engineering

Doshisha University
RIKEN AIP

takashi.furuya0101@gmail.com

Carola-Bibiane Schönlieb
Department of Applied Mathematics and Theoretical Physics

University of Cambridge
cbs31@cam.ac.uk

Abstract

1-Lipschitz neural networks are fundamental for generative modelling, inverse
problems, and robust classifiers. In this paper, we focus on 1-Lipschitz residual net-
works (ResNets) based on explicit Euler steps of negative gradient flows and study
their approximation capabilities. Leveraging the Restricted Stone–Weierstrass
Theorem, we first show that these 1-Lipschitz ResNets are dense in the set of
scalar 1-Lipschitz functions on any compact domain when width and depth are
allowed to grow. We also show that these networks can exactly represent scalar
piecewise affine 1-Lipschitz functions. We then prove a stronger statement: by
inserting norm-constrained linear maps between the residual blocks, the same
density holds when the hidden width is fixed. Because every layer obeys simple
norm constraints, the resulting models can be trained with off-the-shelf optimisers.
This paper provides the first universal approximation guarantees for 1-Lipschitz
ResNets, laying a rigorous foundation for their practical use.

1 Introduction

The flexibility of neural network parameterisations allows them to approximate any regular enough
target function arbitrarily well [8, 17, 20, 28, 40, 41]. Despite this desirable aspect, there are
several reasons why one would not want a completely unconstrained parameterisation. For instance,
unconstrained networks tend to be overly sensitive to input adversarial perturbations because their
local Lipschitz constants can be large, making them unreliable classifiers [34]. There are also
situations where one is purely interested in modelling specific sets of functions, for example, to turn
a constrained optimisation problem into an unconstrained one [19, 31, e.g]. A prominent example
is the critic in Wasserstein GANs [2], which must be 1-Lipschitz to yield a valid estimate of the
1-Wasserstein distance via the Kantorovich-Rubinstein duality [37]. In this paper, we focus on
scalar-valued neural networks that are constrained to be 1-Lipschitz in the Euclidean ℓ2 norm. These
networks have found extensive applications in inverse problems [16, 32, 33], generative modelling
[14, 21, 24], and as a means to improve network resilience to adversarial attacks [23, 29, 33, 35, 36].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

The approximation properties of constrained networks are poorly understood, and different enforce-
ment strategies can yield markedly different expressiveness. The commonly adopted strategies to
constrain a network’s Lipschitz constant tend to reduce its expressiveness, leading to noticeable
performance drops. This paper studies the approximation properties of Lipschitz-constrained residual
networks. We propose new constrained networks that are theoretically able to approximate any
scalar 1-Lipschitz function arbitrarily well. Although our analysis is theoretical, the architectures we
consider are readily implementable and can be trained like existing Lipschitz-constrained layers.

We next review related work (Section 1.1), summarise our contributions (Section 1.2), and present an
outline of the paper (Section 1.3).

1.1 Related work

1-Lipschitz neural networks. We can identify three principal approaches to enforce or promote Lip-
schitz constraints: weight normalisation strategies, changes to the network layers, and regularisation
strategies. Spectral normalisation or orthogonal weight matrices provide the most well-established
constraining procedure for feed-forward neural networks [24, 35]. When working with Residual
Neural Networks (ResNets), more changes are necessary due to the skip connection. Results in
dynamical systems, numerical analysis, and convex analysis lead to 1-Lipschitz ResNets based on
negative gradient flows [23, 33]. These constrained ResNets are the backbone of most of the results
in this paper, and we will describe them later. They have also proven to be more efficient than
other constraining strategies in terms of performance and computational resource consumption [29].
Because of the empirical decrease in expressiveness with constrained networks, an alternative to
hard constraining the Lipschitz constant is regularising the optimisation problem by penalising too
large Lipschitz constants [14, 21, 38, 42]. Lipschitz constraints are also considered in more modern
architectures, such as Transformers [9, 18].

Approximation theory for Lipschitz-constrained networks. Constraining the Lipschitz constant
of a network naturally leads to restricted expressiveness, in the sense that a 1-Lipschitz neural network
can not approximate f(x) = x2 arbitrarily well, for example. However, a more relevant question
is if all the 1-Lipschitz functions can be accurately approximated by a given family of 1-Lipschitz
networks. In [1], the authors present the Restricted Stone-Weierstrass Theorem and prove that
feed-forward networks based on the GroupSort activation function and norm-constrained weights
are dense in the set of scalar 1-Lipschitz functions. This theorem is fundamental for our derivations
as well, and we state it in Section 2. In [25], the authors study feed-forward networks with splines
as activation functions and show that they have the same expressiveness as the networks studied in
[1]. To the best of our knowledge, no such results are available for 1-Lipschitz ResNets. Closely
related to ResNets, we mention [10] where the authors show that Neural ODEs with a constraint on
the Lipschitz constant of the flow map are still universal approximators of continuous functions if the
linear lifting and projection layers are left unconstrained.

For further motivation of why we study 1-Lipschitz ResNets and why the 1-Lipschitz constraint is
relevant, see Appendix F.1.

1.2 Main contributions

This paper studies the approximation capabilities of 1-Lipschitz Residual Neural Networks (ResNets).
We focus on ReLU(x) = max{x, 0} as activation function.

Relying on the Restricted Stone-Weierstrass Theorem, in Theorem 3.1 we show that a class of
ResNets with residual layers based on explicit Euler steps of negative gradient flows is dense in the
set of scalar 1-Lipschitz functions. To achieve this approximation result, we allow for networks of
arbitrary width and depth. We also provide an alternative proof by showing, in Theorem 3.2, that this
set of networks contains all the 1-Lipschitz piecewise affine functions. This alternative derivation
provides further insights into the considered networks. It also informs the other main result of the
paper, where the network width is fixed, allowing us to connect these two main theorems. This
density result is extended to vector-valued 1-Lipschitz functions as well, see Lemma 5.1.

By interleaving the residual layers with suitably constrained linear maps, we show, in Theorem 4.1,
that the width can be fixed while preserving the density in the set of scalar 1-Lipschitz functions. This

2

second main result allows us to propose a new, practically implementable ResNet-like architecture
that is flexible enough to approximate to arbitrary accuracy any scalar 1-Lipschitz function.

We remark that one of the main novelties of our analysis lies in proving the universality of 1-
Lipschitz ResNets without relying on the Restricted Stone-Weierstrass Theorem, and in providing
two alternative viewpoints to our analysis, thereby gaining a deeper understanding of Lipschitz-
continuous ResNets. Not directly relying on the Restricted Stone-Weierstrass Theorem forces us
to understand that the set of considered networks contains a very well-studied set of functions:
1-Lipschitz piecewise affine functions. This derivation has significant consequences, since it allows
us to transfer the approximation properties of this function class to our neural networks. In other
words, part of our theoretical derivations is constructive and is hence informative on what can be
represented through the set of networks we consider. On the other hand, the Restrictive-Stone
Weierstrass Theorem provides a very general technique for analysing parametric sets of functions
and allows for obtaining universality in a non-constructive manner.

1.3 Outline of the paper

The paper is structured as follows. Section 2 introduces the primary building block behind our
network architectures and some needed notation. In Section 3 we prove that a class of 1-Lipschitz
ResNets with an arbitrary number of layers and hidden neurons, is dense in the set of 1-Lipschitz
scalar functions. Section 4 provides the second main result, where we show that the same density
result can be obtained by fixing the number of hidden neurons and slightly modifying the architecture.
Section 5 discusses the implications of these results and outlines potential extensions.

2 Preliminaries

In this section, we present the primary building block behind our proposed architectures. We do so
after having introduced some necessary notation and definitions.

2.1 Notation

We focus on approximating functions in the space

C1(X ,Rc) =
{
g : X → Rc

∣∣∣ ∥g(y)− g(x)∥2 ≤ ∥y − x∥2 ∀x, y ∈ X
}
,

where X ⊆ Rd, d is the input dimension, and ∥x∥22 = x⊤x is the Euclidean ℓ2-norm. Most of the
paper focuses on the case c = 1, in which case we write C1(X ,R). We will denote the network
width with h, i.e., the number of hidden neurons, and the network depth with L, which is the number
of layers. We interchangeably refer to a linear map and its matrix representation with the same
notation, e.g., Q ∈ Rh×d or Q : Rd → Rh. Given a matrix A ∈ Rr×s, the notation ∥A∥2 stands
for its spectral norm, i.e., ∥A∥2 =

√
λmax(A⊤A). We also work with the vector ℓ1 norm, which

for a vector x ∈ Rd is defined as ∥x∥1 =
∑d

i=1 |xi|. We write Id ∈ Rd×d, 1d ∈ Rd, 0d,h ∈ Rd×h,
and 0d ∈ Rd to denote the d× d identity matrix, a vector of ones, a matrix of zeros, and a vector of
zeros, respectively. To refer to the Lipschitz constant of a function f : Rd → Rc, we use the notation
Lip(f), i.e., ∥f(y)− f(x)∥2 ≤ Lip(f)∥y − x∥2 for any x, y ∈ Rd.

2.2 Universal approximation property

This paper focuses on universal approximation results for C1(X ,R), with X ⊂ Rd compact.

Definition 2.1. Let X ⊂ Rd be a compact set, and consider the set of functions A ⊂ C1(X ,R). We
say that A satisfies the universal approximation property for C1(X ,R) if, for any ε > 0 and any
f ∈ C1(X ,R) there is a g ∈ A such that

max
x∈X

|f(x)− g(x)| < ε.

We now report the statement of the Restricted Stone-Weierstrass Theorem, i.e. [1, Lemma 1], where
we adapt the notation and focus on the ℓ2-metric, which is the one adopted in our paper.

3

Definition 2.2 (Lattice). Let X ⊆ Rd and consider a set A of functions from X to R. A is a lattice if
for any pair of functions f, g ∈ A, the functions h, k : X → R defined as h(x) = max{f(x), g(x)}
and k(x) = min{f(x), g(x)} belong to A as well.
Definition 2.3 (Subset separating points). Let X ⊆ Rd be a set with at least two points and consider
a set A ⊂ C1(X ,R). A separates the points of X if for any pair of distinct elements x, y ∈ X and
real numbers a, b ∈ R with |a− b| ≤ ∥y − x∥2, there is an f ∈ A such that f(x) = a and f(y) = b.
Theorem 2.1 (Restricted Stone-Weierstrass). Let X ⊂ Rd be compact and have at least two
points. Let A ⊂ C1(X ,R) be a lattice separating the points of X . Then A satisfies the universal
approximation property for C1(X ,R).

2.3 1-Lipschitz residual layers

The main building block of ResNets are layers of the form x 7→ x+Fθℓ(x) =: Φθℓ(x), where x ∈ Rd,
and Fθℓ : Rd → Rd is a parametric map depending on the parameters collected in θℓ. We recall that
given two Lipschitz continuous functions f : Rd1 → Rd2 and g : Rd2 → Rd3 , the Lipschitz constant
of h = g ◦ f : Rd1 → Rd3 satisfies Lip(h) ≤ Lip(f)Lip(g). For this reason, to build 1-Lipschitz
networks, one typically works with layers that are all 1-Lipschitz. For a generic Lipschitz continuous
function Fθℓ , it is challenging to have a better bound than Lip(Φθℓ) ≤ 1 + Lip(Fθℓ), which is the
one following from the triangular inequality. However, by making further assumptions of the form of
Fθℓ , it is possible to get 1-Lipschitz residual layers, as formalised in the following proposition.
Proposition 2.1 (Theorem 2.3 and Lemma 2.5 in [33]). Assume σ : R → R is 1−Lipschitz continuous
and non-decreasing, and define Φθℓ : Rh → Rh as

Φθℓ(x) = x− τℓW
⊤
ℓ σ(Wℓx+ bℓ) (1)

with Wℓ ∈ Rhℓ×h, τℓ ∈ R, b ∈ Rhℓ having 0 ≤ τℓ ≤ 2/∥Wℓ∥22. Then, Lip(Φθℓ) ≤ 1.

The map Φθℓ can be interpreted as a single explicit Euler step of size τℓ for the negative gradient flow
differential equation ẋ = −W⊤

ℓ σ(Wℓx + bℓ) = −∇gℓ(x), gℓ(x) = 1⊤hℓ
γ(Wℓx + bℓ), γ : R → R

defined by γ′ = σ. We define the set of residual layers satisfying the assumptions of Proposition 2.1
and having weights with spectral norm bounded by one:

Eh,σ =
{
Φθ : Rh → Rh

∣∣∣Φθ(x) = x− τW⊤σ(Wx+ b), W ∈ Rk×h, b ∈ Rk,

θ = (W, b), 0 ≤ τ ≤ 2, ∥W∥2 ≤ 1, k ∈ N
}
.

ResNets with layers as in (1) have been used in [23, 29, 33] to improve the robustness to adversarial
attacks, and in [33] to approximate the proximal operator and develop a provably convergent Plug-
and-Play algorithm for inverse problems.

We will work with residual layers that satisfy the assumptions of Proposition 2.1 and combine them
with suitably constrained affine maps to prove our density results. Our focus is on the activation
function σ(x) = ReLU(x) = max{0, x}, which satisfies the assumptions and simplifies several
derivations since it allows us to represent the identity, and the entrywise maximum and minimum
functions exactly, which are fundamental operations for our theory. They can be recovered as

x = σ(x)− σ(−x), max{x, y} = x+ σ(y − x), min{x, y} = x− σ(x− y), ∀x, y ∈ Rd.

Some linear maps belong to Eh,σ as well, as formalised in the next lemma.
Lemma 2.1. Let M ∈ Rh×h be a symmetric matrix with eigenvalues all in the interval [0, 1]. Then
the linear map x 7→ Mx belongs to Eh,σ if σ = ReLU.

Proof. The matrix M − Ih is symmetric and negative semi-definite. Thus, it can be diagonalised as
M − Ih = −R⊤Λ2R with R⊤R = RR⊤ = Ih and Λ = diag(λ1, ..., λh) having ∥Λ∥2 ≤ 1. Define
V = ΛR. Then,

Mx− x = −V ⊤(V x) = −V ⊤(σ(V x)− σ(−V x)) = −2
(

1√
2
V ⊤ − 1√

2
V ⊤
)
σ

((
1√
2
V

− 1√
2
V

)
x

)
=: −2W⊤σ(Wx), W⊤ =

(
1√
2
V ⊤ − 1√

2
V ⊤
)
,

where we used the positive homogeneity of σ, i.e., σ(γx) = γσ(x) for all x ∈ R and γ ≥ 0. We
conclude the desired result by setting τ = 2, and noticing that ∥W∥2 ≤ 1 since ∥V ∥2 ≤ 1.

4

3 Density with unbounded width and depth

In this section, we consider the following set of parametric maps

Gd,σ(X ,R) := C1(X ,R) ∩
{
v⊤ ◦ ΦθL ◦ · · · ◦ Φθ1 ◦Q : X → R

∣∣∣ Q(x) = Q̂x+ q̂, Q̂ ∈ Rh×d,

q̂ ∈ Rh, v ∈ Rh, ∥v∥2 = 1, Φθℓ ∈ Eh,σ, L, h ∈ N
}
.

We remark that in the definition of Gd,σ(X ,R), the matrix Q̂ is not directly constrained in its norm.
However, the intersection with C1(X ,R) only allows us to consider 1-Lipschitz maps. The lack of
explicit constraints over Q̂ leads to problems when implementing these networks, if the goal is to
guarantee their 1-Lipschitz regularity. This situation will be resolved by the practicality of the set of
networks considered in Section 4. Still, one way to leverage the theory we develop for Gd,σ(X ,R)
in numerical simulations is to leave Q̂ unconstrained while training the model, but simultaneously
regularising the loss function so that the Lipschitz constant of the network is controlled by one, as
done, for example, in [21].

Theorem 3.1. Let d ∈ N, σ = ReLU and X ⊂ Rd be compact. Then, Gd,σ(X ,R) satisfies the
universal approximation property for C1(X ,R).

We prove this theorem in two ways since they provide different perspectives towards the set
Gd,σ(X ,R). First, in Section 3.1, we verify that Gd,σ(X ,R) satisfies the assumptions of Theo-
rem 2.1. Then, in Section 3.2, we show that all the piecewise-linear 1-Lipschitz functions from X to
R belong to Gd,σ(X ,R).

3.1 Proof of Theorem 3.1 based on Restricted Stone-Weierstrass

Lemma 3.1. Let d ∈ N, X ⊆ Rd have at least two points, and σ = ReLU. Then Gd,σ(X ,R)
separates the points of X .

The proof of this lemma is in Appendix A.1, and relies on the fact that all the affine 1-Lipschitz
functions from X to R belong to Gd,σ(X ,R).

Lemma 3.2. Let d ∈ N, X ⊆ Rd, σ = ReLU. Consider two functions f, g ∈ Gd,σ(X ,R). There
exist L ∈ N, h1, h2 ∈ N, v1 ∈ Rh1 , v2 ∈ Rh2 with ∥v1∥2 = ∥v2∥2 = 1, Q1 : Rd → Rh1 and
Q2 : Rd → Rh2 affine maps, Φθ1 , ...,ΦθL ∈ Eh1+h2,σ, and M ∈ R(h1+h2)×(h1+h2) symmetric
positive semi-definite with ∥M∥2 ≤ 1, such that[

f(x)v1
g(x)v2

]
= M ◦ ΦθL ◦ ... ◦ Φθ1 ◦

[
Q1

Q2

]
x.

The proof of this lemma is in Appendix A.1, and is based on the fact that the identity map on Rh

belongs to Eh,σ . We remark that, by Lemma 2.1, the linear map defined by M belongs to Eh1+h2,σ .

Lemma 3.3. Let d ∈ N, X ⊆ Rd, and σ = ReLU. The set Gd,σ(X ,R) is a lattice.

Proof. Let f, g ∈ Gd,σ(X ,R). We show that h : X → R defined by h(x) = max{f(x), g(x)}
belongs to Gd,σ(X ,R) as well. Analogously, one can show that also k(x) = min{f(x), g(x)}
belongs to the set, which is hence a lattice. Recall that since f and g are 1-Lipschitz, k and h will
be 1-Lipschitz as well. Thus, we just have to check that h and k can be written as an element of the
parametric set we intersect with C1(X ,R). Lemma 3.2 allows us to write[

f(x)v1
g(x)v2

]
= ΦθL+1

◦ ΦθL ◦ ... ◦ Φθ1 ◦
[
Q1

Q2

]
x.

We then define

v =

[
v1
0h2

]
, WL+2 =

1√
2

[
−v⊤1 v⊤2

]
∈ R1×(h1+h2), bL+2 = 0h1+h2 , τL+2 = 2.

5

We see that ∥WL+2∥2 ≤ 1, and hence ΦθL+2
(x) = x − τL+2W

⊤
L+2σ(WL+2x + bL+2) belongs to

Eh1+h2,σ . Furthermore, we also notice that ∥v∥2 = 1, and that

v⊤ ◦ ΦθL+2
◦ ΦθL+1

◦ ΦθL ◦ ... ◦ Φθ1 ◦
[
Q1

Q2

]
x = v⊤ ◦ ΦθL+2

([
f(x)v1
g(x)v2

])
= v⊤

([
f(x)v1
g(x)v2

]
+

[
v1
−v2

]
σ(g(x)− f(x))

)
=
[
v⊤1 0

⊤
h2

] [v1 max{f(x), g(x)}
v2 min{f(x), g(x)}

]
= h(x)

as desired.

We have now proved that Gd,σ(X ,R) is a lattice that separates the points of X . Thus, it satisfies the
universal approximation property for C1(X ,R).

3.2 Proof of Theorem 3.1 based on piecewise affine functions

We now present a more constructive reasoning to prove Theorem 3.1. This argument is based on
showing that all the scalar, piecewise affine, 1-Lipschitz functions over X belong to Gd,σ(X ,R).
Definition 3.1. A continuous function f : Rd → R is piecewise affine if there exists a finite collection
P of open, pairwise disjoint, connected sets of Rd with Rd = ∪P∈PP and f |P : P → R is affine for
every P ∈ P .

Lemma 3.4 (Theorem 4.1 in [27]). Let f : Rd → R be a continuous piecewise affine function. Then,
there exists a choice of scalars bi,j ∈ R and vectors ai,j ∈ Rd such that

f(x) = max{f1(x), ..., fk(x)}, fi(x) = min{a⊤i,1x+ bi,1, ..., a
⊤
i,lix+ bi,li}. (2)

We remark that if f : Rd → R is a continuous piecewise affine 1-Lipschitz function, then necessarily
the vectors ai,j ∈ Rd appearing in (2) satisfy ∥ai,j∥2 ≤ 1. This is a consequence of Rademacher’s
Theorem [13, Theorem 3.1.6], ensuring the almost everywhere differentiability of f , which implies
that ∥∇f(x)∥2 ≤ 1 for almost every x ∈ Rd.

We introduce a few fundamental results needed for such a constructive proof.

Proposition 3.1. The functions Rd ∋ x 7→ max{x1, ..., xd} = f(x) ∈ R and Rd ∋ x 7→
min{x1, ..., xd} = g(x) ∈ R belong to Gd,σ(Rd,R) with σ = ReLU.

Proof. We focus on f , and the reasoning for g is analogous. The map

x 7→ [max{x1, x2} min{x1, x2} x3 . . . xd]
⊤ (3)

can be realised as Φθ1(x) = x− 2W⊤
1 σ(W1x), where

W1 =
[
−1/

√
2 1/

√
2 0 . . . 0

]
∈ R1×d.

Given that max{x1, x2, x3} = max{max{x1, x2}, x3}, it follows that choosing

W2 =
[
−1/

√
2 0 1/

√
2 0 . . . 0

]
∈ R1×d,

one has that Φθ1(x)− 2W⊤
2 σ(W2Φθ1(x)) takes the form

[max{x1, x2, x3} min{x1, x2} min{x3,max{x1, x2}} x4 . . . xd]
⊤
.

We can thus call Φθ2(x) = x− 2W⊤
2 σ(W2x). The argument continues up to when, setting v = e1,

the first vector of the canonical basis of Rd, we get

v⊤ ◦ Φθd−1
◦ ... ◦ Φθ1(x) = max{x1, ..., xd} = f(x)

as desired. We remark that, in this case, Q = Id and h = d.

This analysis, together with Proposition 3.1, implies that scalar, piecewise affine, 1−Lipschitz
functions all belong to Gd,σ(Rd,R), as we formalise in the following theorem.

6

Theorem 3.2. Any piecewise affine 1-Lipschitz function f : Rd → R can be represented by a network
in Gd,σ(Rd,R) with σ = ReLU.

See Appendix A.2 for the proof. A proof of Theorem 3.1 then follows from the universal approxima-
tion property of piecewise affine 1-Lipschitz maps defined on a compact set X in C1(X ,R).
Lemma 3.5. The set of piecewise affine 1-Lipschitz functions over X ⊂ Rd, a compact set, satisfies
the universal approximation property for C1(X ,R).

To prove this lemma, one could use the Restricted Stone-Weierstrass Theorem, since the set of
piecewise affine 1-Lipschitz functions is a lattice separating points. We provide a more explicit and
direct proof of Lemma 3.5 for the case X is a convex polytope in Appendix A.2.

4 Density with fixed width and unbounded depth

Theorem 3.1 ensures that it is possible to approximate to arbitrary accuracy any scalar 1-Lipschitz
function over a compact set X by using ResNets relying on negative gradient steps. This result is
informative but it has two drawbacks: (i) the elements of Gd,σ(X ,R) do not have explicit constraints
on the affine lifting layer Q, making them challenging to implement, (ii) there is no control neither
on the depth nor on the width of the networks in Gd,σ(X ,R). We now address these limitations by
providing a second set of 1-Lipschitz networks, which are easier to implement and have fixed width.

For the derivations in this section, we need to introduce two sets of suitably constrained affine maps.
Let k ∈ N, fix a vector m ∈ Nk, and call αm = ∥m∥1 = m1 + ...+mk. We define

L̃m =
{
A ∈ Rαm×αm

∣∣∣ A =

A11 ... A1k

...
. . .

...
Ak1 ... Akk

 , Aij ∈ Rmi×mj ,

k∑
j=1

∥Aij∥2 ≤ 1, i = 1, ..., k
}
,

Lm =
{
A : Rαm → Rαm

∣∣∣ ∃Â ∈ L̃m, â ∈ Rαm : A(u) = Âu+ â, ∀u ∈ Rαm

}
,

R̃d,m =
{
B ∈ Rαm×d

∣∣∣ B =

B1

...
Bk

 , Bi ∈ Rmi×d, ∥Bi∥2 ≤ 1, i = 1, ..., k
}
,

Rd,m =
{
Q : Rd → Rαm

∣∣∣ ∃Q̂ ∈ R̃d,m, q̂ ∈ Rαm : Q(x) = Q̂x+ q̂, ∀x ∈ Rd
}
.

We also extend the set of functions Eh,σ to a subset of Eh+3,σ as follows

Ẽh,σ =
{
Φθ : Rh+3 → Rh+3

∣∣∣Φθ(x) =


max{x1, x2}
min{x1, x2}

x3

Φ̃θ(x4:)

 , Φ̃θ ∈ Eh,σ
}
,

where, for x ∈ Rh+3, x4: ∈ Rh denotes a vector coinciding with x to which the first three entries are
removed. We remark that the first two components of the functions in Ẽh,σ resemble the MaxMin
activation in [1] or the Orthogonal Permutation Linear Unit in [7].

Lemma 4.1. Let h ∈ N and σ = ReLU. The set Ẽh,σ is a subset of Eh+3,σ .

See Appendix C for the proof.

Fix h ≥ 3. We now consider the set

G̃d,σ,h(X ,R) :=
{
v⊤ ◦ ΦθL ◦AL−1 ◦ · · · ◦ Φθ2 ◦A1 ◦ Φθ1 ◦Q : X → R

∣∣∣ m = (1, 1, 1, h− 3),

Q ∈ Rd,m, v ∈ Rh, ∥v∥1 ≤ 1, A1, ..., AL−1 ∈ Lm,Φθℓ ∈ Ẽh−3,σ, L ∈ N
}
.

Lemma 4.2. Let σ = ReLU, d, h ∈ N, with h ≥ 3. All the functions in G̃d,σ,h(Rd,R) are
1-Lipschitz.

7

See Appendix C for the proof. This lemma addresses the first limitation in the definition of Gd,σ(X ,R),
given that we have explicit constraints over all the terms defining a neural network in G̃d,σ,h(X ,R).
We now state the second main result of this paper.

Theorem 4.1. Let d ∈ N, σ = ReLU, and X ⊂ Rd be compact. The set G̃d,σ,d+3(X ,R) satisfies
the universal approximation property for C1(X ,R).

This result ensures we can fix the network width to h = d+ 3 and preserve the universal approxi-
mation property. We will further comment on the connections between the two sets Gd,σ(X ,R) and
G̃d,σ,h(X ,R) and on extensions of the set G̃d,σ,h(X ,R) in Section 5. We remark that our proof of
Theorem 4.1 relies on setting Φ̃θ(x4:) = x4: for the elements in Ẽh,σ . Still, we present the results for
the larger set of allowed residual maps Ẽh,σ since, in practice, this additional freedom can lead to
more efficient approximations of target maps than the one provided constructively in our proof.

4.1 Proof of Theorem 4.1

This proof follows similar ideas as the one presented in Section 3.2.
Proposition 4.1. Fix n ∈ N, a1, ..., an ∈ Rd, and b1, ..., bn ∈ R, with ∥a1∥2, ..., ∥an∥2 ≤ 1. The
functions Rd ∋ x 7→ max{a⊤1 x + b1, ..., a

⊤
n x + bn} = f(x) ∈ R and Rd ∋ x 7→ min{a⊤1 x +

b1, ..., a
⊤
n x+ bn} = g(x) ∈ R belong to G̃d,σ,h(Rd,R) with σ = ReLU and h = d+ 3.

Proof. We focus on f , and a similar reasoning applies for g. Set W̃1 = 0d,d, b̃1 = 0d, and Q so that

Φθ1 ◦Q(x) =
[
max{a⊤1 x+ b1, a

⊤
2 x+ b2} min{a⊤1 x+ b1, a

⊤
2 x+ b2} 0 x⊤]⊤ ,

where Φ̃θ1(x) = x − 2W̃⊤
1 σ(W̃1x + b̃1). Set m = (1, 1, 1, d). Let us then introduce A1 ∈ Lm

defined as A1(x) = Ã1x+ ã1 where

Ã1 =

 1 0 0 0⊤d
0 0 0 a⊤3
0 0 0 0⊤d
0d 0d 0d Id

 ∈ Rh×h, ã1 =

 0
b3
0
0

 ∈ Rh,

so that

A1 ◦ Φθ1 ◦Q(x) =
[
max{a⊤1 x+ b1, a

⊤
2 x+ b2} a⊤3 x+ b3 0 x⊤]⊤ ∈ Rh.

The next step is to build Φθ2 so that

Φθ2 ◦A1 ◦ Φθ1 ◦Q(x) =

 max{a⊤1 x+ b1, a
⊤
2 x+ b2, a

⊤
3 x+ b3}

min{max{a⊤1 x+ b1, a
⊤
2 x+ b2}, a⊤3 x+ b3}

0
x

 .

The reasoning extends up to when we reach the final configuration, after L = n− 1 residual maps,
where v⊤ ◦ ΦθL ◦AL−1 ◦ ΦθL−1

◦ ... ◦A1 ◦ Φθ1 ◦Q(x) = f(x), by fixing v = e1 ∈ Rh.

We remark that in the proof of Proposition 4.1 the third entry is irrelevant, and the fourth component
is used as a memory of the original input x. The third component is fundamental in the proof of
Theorem 4.2, which is why it is included. Keeping track of x is essential to recover the affine pieces
a⊤i x+ bi online, without generating them all at the beginning as we did in the proof of Theorem 3.2.
This operation allows us to detach the hidden dimension h from the number of linear pieces, and get
a universal approximation theorem for a fixed network width.
Theorem 4.2. Any piecewise affine 1-Lipschitz function f : Rd → R can be represented by a network
in G̃d,σ,h(Rd,R) with σ = ReLU and h = d+ 3.

The proof of Theorem 4.2 relies on the representation of piecewise affine 1-Lipschitz functions in
(2), the construction presented in the proof of Proposition 4.1, and on using the third component as a
running maximum of the previously computed minima. See Appendix C for the full proof.

The proof of Theorem 4.1 then follows by combining Theorem 4.2 with Lemma 3.5.

We discuss how the network size depends on the input dimension d ∈ N in Appendix F.2.

8

Remark 4.1. The set of networks G̃d,ReLU,d+3(X ,R) contains all the piecewise affine 1-Lipschitz
functions, as stated in Theorem 4.2. On the other hand, it is also true that all the elements of
G̃d,ReLU,d+3(X ,R) are piecewise affine 1-Lipschitz functions. The latter result follows from the fact
that ReLU is piecewise affine, and we only compose it with affine maps. This reasoning allows us to
conclude that the new architecture that we propose and study in Theorem 4.1 coincides with the set
of piecewise affine 1-Lipschitz functions, and provides yet another representation strategy for this
lattice of functions.

5 Discussion and future work

We now connect our two main theorems, comment on their practical value, and provide relevant
extensions.

Different proving strategies. To prove Theorem 3.1, we followed two strategies: verified that the
assumptions of the Restricted Stone-Weierstrass Theorem are satisfied by Gd,σ(X ,R), and verified
that Gd,σ(X ,R) contains all the scalar piecewise affine and 1-Lipschitz functions. The two arguments
are strictly related. In fact, the first one relies on showing that Gd,σ(X ,R) is a lattice separating the
points of X , while the second shows that Gd,σ(X ,R) contains a lattice that separates points. This
latter strategy is the one we used to prove Theorem 4.1 as well.

Necessity for the affine maps A1, ..., AL−1 ∈ Lm. To obtain universality while maintaining the
width fixed, we introduced affine layers between the residual gradient steps. Setting them to identity
maps would lead to a subset of G̃d,σ,h(X ,R) which might not be universal. Since these maps are
not 1-Lipschitz as maps from Rαm to itself, we had to restrict the set of allowed gradient steps to
Ẽh,σ ⊂ Eh+3,σ. It is thus interesting to further explore if it is possible to remove these affine maps
and allow for more general gradient steps. Still, there are two fundamental aspects to mention.

First, to get a 1-Lipschitz network, it is not necessary to have all the layers that are 1-Lipschitz, as
demonstrated by the maps in G̃d,σ,h(X ,R). This idea is explored in [4], where the authors build
1-Lipschitz networks combining 1-Lipschitz maps as in Ed,σ with positive gradient steps of the form
u 7→ u+ τW⊤σ(Wu+ b). It will thus be interesting to further explore this path for future research.

Second, the restriction defined in Ẽh,σ provides a rather minimal set to carry out the proofs in this
paper. One can generalise it while preserving the Lipschitz property and potentially getting more
practically efficient networks. We provide a generalisation of Ẽh,σ and G̃d,σ,h(X ,R) in Appendix D.

Connections between Theorem 3.1 and Theorem 4.1. Both the main results we proved in this
paper ensure the universality of neural networks that rely on residual layers coming from negative
gradient flows. Theorem 3.1 focuses on architectures studied in [23, 29, 33], while Theorem 4.1
considers a new, practically implementable constrained architecture that we propose. It is essential
to note that in [23, 29, 33] the elements in Gd,σ(X ,R) are implemented with a unit-norm constraint
on the lifting map Q : Rd → Rh. Our theory does not allow us to say that this constraining strategy
provides a set of networks dense in C1(X ,R), and hence leaving it unconstrained while regularising
for the network to be almost 1-Lipschitz would be a better strategy according to our analysis.

Theorem 4.1 trades the unlimited width of Theorem 3.1 for additional constrained linear layers. Still,
there are several similarities between the two theorems. For example, the constrained maps in Ẽh,σ
appear also in the proof of Theorem 3.1, see, for example, (3).

Extension to multivalued functions. This paper focuses on C1(X ,R). Some of our results extend
to the functions in C1(X ,Rc), as formalised by the following lemma, with proof in Appendix E.

Lemma 5.1. Let c, d ∈ N, X ⊂ Rd be compact, and σ = ReLU. Define the set

Gc,d,σ(X ,Rc) :=
{
P ◦ ΦθL ◦ · · · ◦ Φθ1 ◦Q : X → Rc

∣∣∣ Q(x) = Q̂x+ q̂, Q̂ ∈ Rh×d,

q̂ ∈ Rh, P ∈ Rc×h, ∥P∥2,∞ = 1, Φθℓ ∈ Eh,σ, L, h ∈ N
}
.

Then, for any f ∈ C1(X ,Rc) and ε > 0, exists g ∈ Gc,d,σ(X ,Rc) with maxx∈X ∥f(x)−g(x)∥2 ≤ ε.

9

Since we are not intersecting with the set of 1-Lipschitz functions, this time, it is not true that
Gc,d,σ(X ,Rc) ⊂ C1(X ,Rc). In fact, since ∥P∥2,∞ = maxi=1,...,c ∥e⊤i P∥2, where ei ∈ Rc is the
i-th vector of the canonical basis, we have Gd,σ(X ,R) ⊂ G1,d,σ(X ,R1). Extending the universality
result of G̃d,σ,h(X ,R) and enforcing the Lipschitz constraint will be the topic for future research.

Extension to larger sets of parametric functions. As for any universal approximation theorem, the
theoretical analysis we provide can be extended to sets containing Gd,σ(X ,R) and G̃d,σ,h(X ,R). For
example, the universality of Gd,σ(X ,R) implies that the universality persists relaxing the constraint
over v ∈ Rh from ∥v∥2 = 1 to ∥v∥2 ≤ 1. Similarly, we can remove the constraints on the matrices
Wℓ, and allow for 0 ≤ τℓ ≤ 2/∥Wℓ∥22, still leading to 1-Lipschitz Euler steps, see Proposition 2.1. In
fact, ∥Wℓ∥2 ≤ 1 with τℓ ∈ [0, 2] is a particular instance of this constraint. Relaxing such constraints
could improve the numerical performance, given that the model would be less restricted.

Extension to other activation functions. Our proofs strongly rely on the properties of ReLU. The
same results could be obtained by any other activation functions that are positively homogeneous, can
represent the identity map, and the entrywise maximum and minimum functions. When this is not
the case, developing a similar theory would require significantly different arguments. For the further
discussion of other activation functions, see Appendix F.3.

Implementability of our networks. The elements of Gd,σ(X ,R) and G̃d,σ,h(X ,R) are neural
networks that can be numerically implemented. All the weight constraints can be efficiently enforced
in a projected gradient descent fashion. The spectral norms can be estimated via the power method,
see [24], whereas row-wise constraints as in Lm can be enforced by dividing by the ℓ2 norms of the
rows. We further remark that the lack of explicit constraints on the lifting map Q in Gd,σ(X ,R) can
be overcome by regularising the loss function with a term penalising the violation of the Lipschitz
constraint, such as

∑N
i=1(ReLU(∥∇xNθ(xi)∥2 − 1))2. This additional term promotes the local

Lipschitz constant of the network Nθ : Rd → R to be smaller or equal than one, see [21]. The
locations x1, ..., xN ∈ X can be randomly sampled during each training iteration. For some empirical
validation of the implementability and trainability of our networks, see Appendix G.

Acknowledgements

DM acknowledges support from the EPSRC programme grant in ‘The Mathematics of Deep Learning’,
under the project EP/V026259/1. TF was supported by JSPS KAKENHI Grant Number JP24K16949,
25H01453, JST CREST JPMJCR24Q5, JST ASPIRE JPMJAP2329. CBS acknowledges support
from the Philip Leverhulme Prize, the Royal Society Wolfson Fellowship, the EPSRC advanced
career fellowship EP/V029428/1, the EPSRC programme grant EP/V026259/1, and the EPSRC grants
EP/S026045/1 and EP/T003553/1, EP/N014588/1, EP/T017961/1, the Wellcome Innovator Awards
215733/Z/19/Z and 221633/Z/20/Z, the European Union Horizon 2020 research and innovation pro-
gramme under the Marie Skodowska-Curie grant agreement NoMADS and REMODEL, the Cantab
Capital Institute for the Mathematics of Information and the Alan Turing Institute. This research was
also supported by the NIHR Cambridge Biomedical Research Centre (NIHR203312). The views
expressed are those of the author(s) and not necessarily those of the NIHR or the Department of
Health and Social Care.

References
[1] Cem Anil, James Lucas, and Roger Grosse. Sorting out Lipschitz function approximation. In

International Conference on Machine Learning, pages 291–301. PMLR, 2019.

[2] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial
Networks. In International Conference on Machine Learning, pages 214–223. PMLR, 2017.

[3] Valérie Castin, Pierre Ablin, and Gabriel Peyré. How smooth is attention? arXiv preprint
arXiv:2312.14820, 2023.

10

[4] Elena Celledoni, Davide Murari, Brynjulf Owren, Carola-Bibiane Schönlieb, and Ferdia
Sherry. Dynamical Systems–Based Neural Networks. SIAM Journal on Scientific Computing,
45(6):A3071–A3094, 2023.

[5] Qi Chen, Yifei Wang, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. Optimization-Induced
Graph Implicit Nonlinear Diffusion. In International Conference on Machine Learning, pages
3648–3661. PMLR, 2022.

[6] Yanqi Cheng, Carola-Bibiane Schönlieb, and Angelica I Aviles-Rivero. You kan do it in a single
shot: Plug-and-play methods with single-instance priors. arXiv preprint arXiv:2412.06204,
2024.

[7] Artem Chernodub and Dimitri Nowicki. Norm-preserving Orthogonal Permutation Linear Unit
Activation Functions (OPLU). arXiv preprint arXiv:1604.02313, 2016.

[8] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of
Control, Signals and Systems, 2(4):303–314, 1989.

[9] George Dasoulas, Kevin Scaman, and Aladin Virmaux. Lipschitz Normalization for Self-
Attention Layers with Application to Graph Neural Networks. In International Conference on
Machine Learning, pages 2456–2466. PMLR, 2021.

[10] Arturo De Marinis, Davide Murari, Elena Celledoni, Nicola Guglielmi, Brynjulf Owren, and
Francesco Tudisco. Approximation properties of neural ODEs. arXiv preprint arXiv:2503.15696,
2025.

[11] Moshe Eliasof, Eldad Haber, and Eran Treister. PDE-GCN: Novel Architectures for Graph
Neural Networks Motivated by Partial Differential Equations. Advances in neural information
processing systems, 34:3836–3849, 2021.

[12] Moshe Eliasof, Davide Murari, Ferdia Sherry, and Carola-Bibiane Schönlieb. Resilient Graph
Neural Networks: A Coupled Dynamical Systems Approach. In ECAI 2024, pages 1607–1614.
IOS Press, 2024.

[13] Herbert Federer. Geometric Measure Theory. Springer, 2014.

[14] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron C Courville.
Improved Training of Wasserstein GANs. Advances in Neural Information Processing Systems,
30, 2017.

[15] Boris Hanin and Mark Sellke. Approximating Continuous Functions by Relu Nets of Minimal
Width. arXiv preprint arXiv:1710.11278, 2017.

[16] Johannes Hertrich, Sebastian Neumayer, and Gabriele Steidl. Convolutional Proximal Neural
Networks and Plug-and-Play Algorithms. Linear Algebra and its Applications, 631:203–234,
2021.

[17] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer Feedforward Networks are
Universal Approximators. Neural Networks, 2(5):359–366, 1989.

[18] Hyunjik Kim, George Papamakarios, and Andriy Mnih. The Lipschitz Constant of Self-
Attention. In International Conference on Machine Learning, pages 5562–5571. PMLR, 2021.

[19] Carl Leake and Daniele Mortari. Deep Theory of Functional Connections: A New Method for
Estimating the Solutions of Partial Differential Equations. Machine Learning and Knowledge
Extraction, 2(1):37–55, 2020.

[20] Moshe Leshno, Vladimir Ya. Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural
Networks, 6(6):861–867, 1993.

[21] Sebastian Lunz, Ozan Öktem, and Carola-Bibiane Schönlieb. Adversarial Regularizers in
Inverse Problems. Advances in Neural Information Processing Systems, 31, 2018.

11

[22] Alex Massucco, Davide Murari, and Carola-Bibiane Schönlieb. Neural Networks with Orthogo-
nal Jacobian. arXiv preprint arXiv:2508.02882, 2025.

[23] Laurent Meunier, Blaise J Delattre, Alexandre Araujo, and Alexandre Allauzen. A Dynamical
System Perspective for Lipschitz Neural Networks. In International Conference on Machine
Learning, pages 15484–15500. PMLR, 2022.

[24] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral Normaliza-
tion for Generative Adversarial Networks. arXiv preprint arXiv:1802.05957, 2018.

[25] Sebastian Neumayer, Alexis Goujon, Pakshal Bohra, and Michael Unser. Approximation of
Lipschitz Functions using Deep Spline Neural Networks. SIAM Journal on Mathematics of
Data Science, 5(2):306–322, 2023.

[26] Joost AA Opschoor, Philipp C Petersen, and Christoph Schwab. Deep ReLU networks and
high-order finite element methods. Analysis and Applications, 18(05):715–770, 2020.

[27] Sergei Ovchinnikov. Max-Min Representation of Piecewise Linear Functions. arXiv preprint
math/0009026, 2000.

[28] Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica,
8:143–195, 1999.

[29] Bernd Prach, Fabio Brau, Giorgio Buttazzo, and Christoph H Lampert. 1-Lipschitz Layers
Compared: Memory, Speed, and Certifiable Robustness. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 24574–24583, 2024.

[30] Xianbiao Qi, Jianan Wang, Yihao Chen, Yukai Shi, and Lei Zhang. Lipsformer: Introducing
Lipschitz Continuity to Vision Transformers. arXiv preprint arXiv:2304.09856, 2023.

[31] Jack Richter-Powell, Yaron Lipman, and Ricky TQ Chen. Neural Conservation Laws: A
Divergence-Free Perspective. Advances in Neural Information Processing Systems, 35:38075–
38088, 2022.

[32] Ernest Ryu, Jialin Liu, Sicheng Wang, Xiaohan Chen, Zhangyang Wang, and Wotao Yin.
Plug-and-Play Methods Provably Converge with Properly Trained Denoisers. In International
Conference on Machine Learning, pages 5546–5557. PMLR, 2019.

[33] Ferdia Sherry, Elena Celledoni, Matthias J Ehrhardt, Davide Murari, Brynjulf Owren, and
Carola-Bibiane Schönlieb. Designing Stable Neural Networks using Convex Analysis and
ODEs. Physica D: Nonlinear Phenomena, 463:134159, 2024.

[34] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199,
2013.

[35] Asher Trockman and J Zico Kolter. Orthogonalizing Convolutional Layers with the Cayley
Transform. arXiv preprint arXiv:2104.07167, 2021.

[36] Yusuke Tsuzuku, Issei Sato, and Masashi Sugiyama. Lipschitz-Margin Training: Scalable Certi-
fication of Perturbation Invariance for Deep Neural Networks. Advances in Neural Information
Processing Systems, 31, 2018.

[37] Cédric Villani. Optimal Transport: Old and New, volume 338. Springer, 2008.

[38] Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X Yu. Orthogonal Convolutional
Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 11505–11515, 2020.

[39] Lechao Xiao, Yasaman Bahri, Jascha Sohl-Dickstein, Samuel Schoenholz, and Jeffrey Pen-
nington. Dynamical Isometry and a Mean Field Theory of CNNs: How to Train 10,000-Layer
Vanilla Convolutional Neural Networks. In International conference on machine learning,
pages 5393–5402. PMLR, 2018.

12

[40] Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks,
94:103–114, 2017.

[41] Dmitry Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks.
In Conference on Learning Theory, 2018.

[42] Yuichi Yoshida and Takeru Miyato. Spectral Norm Regularization for Improving the Generaliz-
ability of Deep Learning. arXiv preprint arXiv:1705.10941, 2017.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Section 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

13

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Sections 2,3, 4.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.

14

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See Appendix G.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: The experiments are only to support the theory, and they are not meant to be
exhaustive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: See Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

16

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]
Justification: This paper is fundamental and theoretical.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

17

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

18

paperswithcode.com/datasets

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A Proofs in Section 3

A.1 Proof of Theorem 3.1 based on Restricted Stone-Weierstrass

In this appendix, we provide a proof of the lemmas used in Section 3.1. Before proving them, we
report the statement as well.

We start with Lemma 3.1.
Lemma A.1. Let d ∈ N, X ⊆ Rd have at least two points, and σ = ReLU. Then Gd,σ(X ,R)
separates the points of X .

Proof. Consider the functions in Gd,σ(X ,R) with h = 1 and L = 0. These are all and only the
1-Lipschitz affine functions of the form g(x) = u⊤x + w, for a pair u ∈ Rd and w ∈ R, with
∥u∥2 ≤ 1. Let x, y ∈ X be two distinct points and a, b ∈ R be such that |a− b| ≤ ∥y − x∥2. Let

û =
x− y

∥x− y∥2
∈ Rd.

Since û⊤x− û⊤y = û⊤(x− y) = ∥x− y∥2 ̸= 0, the linear system[
û⊤x 1
û⊤y 1

] [
λ
w

]
=

[
a
b

]
has a unique solution. We set g(z) = λû⊤z + w, where

λ =
1

∥x− y∥2
(a− b).

Since |a− b| ≤ ∥x− y∥2 we conclude |λ| ≤ 1 and hence if we set g(x) = u⊤x+ w, with u = λû,
we get g ∈ Gd,σ(X ,R), g(x) = a, and g(y) = b as desired.

We now provide the statement and proof of Lemma 3.2.
Lemma A.2. Let d ∈ N, X ⊆ Rd, σ = ReLU. Consider two functions f, g ∈ Gd,σ(X ,R). There
exist L ∈ N, h1, h2 ∈ N, v1 ∈ Rh1 , v2 ∈ Rh2 with ∥v1∥2 = ∥v2∥2 = 1, Q1 : Rd → Rh1 and
Q2 : Rd → Rh2 affine maps, Φθ1 , ...,ΦθL ∈ Eh1+h2,σ, and M ∈ R(h1+h2)×(h1+h2) symmetric
positive semi-definite with ∥M∥2 ≤ 1, such that[

f(x)v1
g(x)v2

]
= M ◦ ΦθL ◦ ... ◦ Φθ1 ◦

[
Q1

Q2

]
x.

Proof. Consider f, g ∈ Gd,σ(X ,R) that take the form

f(x) = v⊤1 ◦ Φθ1,L1
◦ ... ◦ Φθ1,1 ◦Q1(x)

g(x) = v⊤2 ◦ Φθ2,L2
◦ ... ◦ Φθ2,1 ◦Q2(x),

(4)

with Φθi,ℓ : Rhi → Rhi , for i = 1, 2 and ℓ = 1, ..., Li. Since the identity map belongs to Eh,σ for
any h ∈ N, we can assume L1 = L2 = L. Let ℓ ∈ {1, ..., L} and define Φθℓ : R(h1+h2) → R(h1+h2)

as Φθℓ(x1, x2) = (Φθ1,ℓ(x1),Φθ2,ℓ(x2)), for every (x1, x2) ∈ Rh1 ×Rh2 . More extensively, we can
write

Φθℓ(x1, x2) =

(
x1 − τ1,ℓ(W1,ℓ)

⊤σ(W1,ℓx1 + b1,ℓ)
x2 − τ2,ℓ(W2,ℓ)

⊤σ(W2,ℓx2 + b2,ℓ)

)
,

for a suitable choice of parameters. The dimensions of these parameters are: τ1,ℓ, τ2,ℓ ∈ R, W1,ℓ ∈
Rh1,ℓ×h1 , W2,ℓ ∈ Rh2,ℓ×h2 , b1,ℓ ∈ Rh1,ℓ , and b2,ℓ ∈ Rh2,ℓ . Assume, without loss of generality,
that τ1,ℓ, τ2,ℓ ̸= 0 and τ1,ℓ < τ2,ℓ. We remark that if either τ1,ℓ or τ2,ℓ were zero, we could get the
same map by setting the corresponding weight matrix to zero and replacing the step with any other
admissible scalar. Call γℓ = τ1,ℓ/τ2,ℓ ∈ (0, 1). It follows that

x1 − τ1,ℓ(W1,ℓ)
⊤σ(W1,ℓx1 + b1,ℓ)

= x1 − τ2,ℓγℓ(W1,ℓ)
⊤σ(W1,ℓx1 + b1,ℓ)

= x1 − τ2,ℓ(
√
γℓW1,ℓ)

⊤σ (
√
γℓW1,ℓx1 +

√
γℓb1,ℓ)

= x1 − τ2,ℓ(W̃1,ℓ)
⊤σ(W̃1,ℓx1 + b̃1,ℓ), W̃1,ℓ :=

√
γℓW1,ℓ, b̃1,ℓ :=

√
γℓb1,ℓ,

20

where we used the positive homogeneity of σ, i.e., σ(γx) = γσ(x) for all x ∈ R and γ ≥ 0. Since
√
γ ∈ (0, 1), the property ∥W̃ℓ∥2 ≤ 1 is preserved by this manipulation and, therefore, we can

assume to have τ1,ℓ = τ2,ℓ =: τℓ for every ℓ = 1, ..., L. It follows that

Φθℓ(x1, x2) =

(
x1 − τℓ(W1,ℓ)

⊤σ(W1,ℓx1 + b1,ℓ)
x2 − τℓ(W2,ℓ)

⊤σ(W2,ℓx2 + b2,ℓ)

)
=

(
x1

x2

)
− τℓ

(
W1,ℓ 0h1,ℓ,h2

0h2,ℓ,h1 W2,ℓ

)⊤

σ

((
W1,ℓ 0h1,ℓ,h2

0h2,ℓ,h1 W2,ℓ

)(
x1

x2

)
+

(
b1,ℓ
b2,ℓ

))
=

(
x1

x2

)
− τℓŴ

⊤
ℓ σ

(
Ŵℓ

(
x1

x2

)
+ b̂ℓ

)
,

Ŵℓ =

(
W1,ℓ 0h1,ℓ,h2

0h2,ℓ,h1
W2,ℓ

)
∈ R(h1,ℓ+h2,ℓ)×(h1+h2), b̂ℓ =

(
b1,ℓ
b2,ℓ

)
∈ R(h1,ℓ+h2,ℓ).

We also remark that
∥Ŵℓ∥2 = max{∥W1,ℓ∥2, ∥W2,ℓ∥2} ≤ 1.

Let us then consider the matrix

M =

[
v1v

⊤
1 0h1,h2

0h2,h1
v2v

⊤
2

]
∈ R(h1+h2)×(h1+h2),

which is symmetric, positive semi-definite and with ∥M∥2 ≤ 1 as desired. It is immediate to see that
M plays the desired role, given the expression for f and g in (4).

A.2 Proof of Theorem 3.1 based on piecewise affine functions

We now provide the statement and proof of Theorem 3.2.
Theorem A.1. Any piecewise affine 1-Lipschitz function f : Rd → R can be represented by a
network in Gd,σ(Rd,R) with σ = ReLU.

Proof. By Lemma 3.4, there exists a choice of scalars bi,j ∈ R and vectors ai,j ∈ Rd such that

f(x) = max{f1(x), ..., fk(x)}, fi(x) = min{a⊤i,1x+ bi,1, ..., a
⊤
i,lix+ bi,li}, i = 1, ..., k,

where ∥ai,j∥2 ≤ 1. Fix h = l1 + ...+ lk. We set Q̂ ∈ Rh×d and q̂ ∈ Rh as

Q̂ =



a⊤1,1
...

a⊤1,l1
...

a⊤k,1
...

a⊤k,lk


, q̂ =



b1,1
...

b1,l1
...

bk,1
...

bk,lk


.

Then, by Proposition 3.1, we conclude that there exists a choice Φθ1 , ...,ΦθL , with L ≤ (k − 1) +
(max{l1, ..., lk} − 1), and a unit-norm vector v ∈ Rh such that

f = v⊤ ◦ ΦθL ◦ ... ◦ Φθ1 ◦Q,

where Q(x) = Q̂x+ q̂, as desired. More explicitly, the first max{l1, ..., lk} − 1 residual layers can
be used to assemble the functions f1(x), ..., fk(x) in parallel, using block diagonal weight matrices.
After these, the remaining k − 1 can be used to extract their minimum. We remark that, despite Q is
not 1-Lipschitz, the resulting map f is 1-Lipschitz, and hence f belongs to Gd,σ(Rd,R).

We now provide the statement and proof of Lemma 3.5 for convex polytopes.
Lemma A.3. The set of piecewise affine 1-Lipschitz functions over X ⊂ Rd, a compact and convex
polytope, satisfies the universal approximation property for C1(X ,R).

21

Proof. Let f : X → R be an arbitrary 1-Lipschitz function, and fix ε > 0. Consider a covering
{Si : i = 1, ..., N} of X into simplices having intersections that are either trivial, or coincide with a
vertex, or with a facet. Assume, without loss of generality, that for every Si, one has

max
x∈Si

min
xi,j∈V(Si)

∥x− xi,j∥2 ≤ ε/2,

where V(Si) is the set of vertices of Si. Let gi : Si → R be a 1−Lipschitz piecewise affine interpolant
of f on the vertices of Si, i.e. such that gi(xi,j) = f(xi,j) for every xi,j ∈ V(Si). To build gi, one
could for example follow the construction in [25, Proof of Proposition 2.2]. Then, for every x ∈ Si,
there exists xi,j ∈ V(Si) for which

|f(x)− gi(x)| = |f(x)− f(xi,j) + f(xi,j)− gi(x)| ≤ 2∥x− xi,j∥2 ≤ ε.

We can now glue the local pieces to assemble the piecewise affine continuous function g(x) =∑N
i=1 1Si

(x)gi(x), where

1Si(x) =

{
1, x ∈ Si

0, x /∈ Si
.

The Lipschitz constant of g is given by Lip(g) = maxi=1,...,N Lip(gi) ≤ 1. In fact, let x, y ∈ X and
define the line segment s(t) = x+t(y−x), t ∈ [0, 1], satisfying s(0) = x and s(1) = y. By convexity
of X , s([0, 1]) ⊂ X holds as well. Thus, there exists a finite set of scalars 0 ≤ t1 < t2 < ... < tK ≤ 1
such that s(ti) ∈ Sli ∩ Smi

for a pair of indices li,mi ∈ {1, ..., N}. Let us also define t0 = 0 and
tK+1 = 1. We thus have that

K∑
i=0

∥s(ti+1)− s(ti)∥2 =

K∑
i=0

(ti+1 − ti)∥y − x∥2 = ∥y − x∥2,

and hence

|g(y)− g(x)| =

∣∣∣∣∣
K∑
i=0

g(s(ti+1))− g(s(ti))

∣∣∣∣∣ =(#)

∣∣∣∣∣
K∑
i=0

gℓi(s(ti+1))− gℓi(s(ti))

∣∣∣∣∣
≤

K∑
i=0

Lip(gℓi)∥s(ti+1)− s(ti)∥2 ≤
(

max
j=1,...,N

Lip(gj)

) K∑
i=0

∥s(ti+1)− s(ti)∥2

=

(
max

i=1,...,N
Lip(gi)

)
∥y − x∥2 ≤ ∥y − x∥2.

We remark that the equality in (#) follows from the convexity of the simplices, which guarantees
that the line segment connecting s(ti) to s(ti+1) is fully contained in Sli , and the continuity of g at
the boundaries of the simplices.

We conclude that
max
x∈X

|f(x)− g(x)| < ε,

where g is piecewise affine and 1-Lipschitz.

B Preliminary results for Section 4

Fix k ∈ N, and m ∈ Nk. Call αm = ∥m∥1 = m1 + ...+mk. We introduce the set of functions

Fd,m =
{
F : Rd → Rαm

∣∣∣ F (x) =


f1(x)
f2(x)

...
fk(x)

 , fi ∈ C1(Rd,Rmi), i = 1, ..., k
}
. (5)

It is immediate to see that Fd,m = C1(Rd,Rm) if m ∈ N, i.e., k = 1. Furthermore, for any given
m ∈ Nk, one has C1(Rd,Rαm) = Fd,αm

⊂ Fd,m, showing that Fd,m provides a generalisation of
the set of 1-Lipschitz functions from Rd to Rαm . For the results below, we fix a k ∈ N and m ∈ Nk.

22

Definition B.1 (Projection on the i-th component). The projection map on the i-th component
πi : Rαm → Rmi is defined as

Rαm ∋ x =


x1

x2

...
xk

 7→ xi =: πi(x), xi ∈ Rmi .

Lemma B.1. Let F ∈ Fd,m and A ∈ Lm. Then, G = A ◦ F : Rd → Rαm belongs to Fd,m.

Proof. Let x, y ∈ Rd be two arbitrary vectors, and fix i ∈ {1, ..., k}. By direct calculation, we see
that

∥πi(G(y)−G(x))∥2 =

∥∥∥∥∥∥
k∑

j=1

Aijπj(F (y)− F (x))

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
k∑

j=1

Aij(fj(y)− fj(x))

∥∥∥∥∥∥
2

≤
k∑

j=1

∥Aij∥2∥y − x∥2 ≤ ∥y − x∥2

as desired.

Lemma B.2. Let F ∈ Fd,m, and v ∈ Rαm be a vector with ∥v∥1 ≤ 1. Then f(x) = v⊤F (x) is a
scalar 1−Lipschitz function.

Proof. Let x, y ∈ Rd be two arbitrary vectors. By direct calculation, we see that

|f(y)− f(x)| =

∣∣∣∣∣
k∑

i=1

πi(v)
⊤πi(F (y)− F (x))

∣∣∣∣∣ ≤
k∑

i=1

∥πi(v)∥2∥πi(F (y)− F (x))∥2

≤
k∑

i=1

∥πi(v)∥1∥y − x∥2 = ∥v∥1∥y − x∥2 ≤ ∥y − x∥2

as desired.

C Proof of Theorem 4.1

We now provide a proof for Lemma 4.1.

Lemma C.1. Let h ∈ N and σ = ReLU. The set Ẽh,σ is a subset of Eh+3,σ .

Proof. Let x ∈ Rh+3, and consider the map

Φθ(x) =


max{x1, x2}
min{x1, x2}

x3

Φ̃θ(x4:)


with Φ̃θ(x4:) = x4: − τW̃⊤σ(W̃x4: + b̃), where τ ∈ [0, 2], W̃ ∈ Rh′×h, b̃ ∈ Rh′

, and ∥W̃∥2 ≤ 1.
Call γ =

√
τ
2 ∈ [0, 1]. Define

W =


−1/

√
2 1/

√
2 0 0⊤h

0 0 0 0⊤h
0 0 0 0⊤h
0h′ 0h′ 0h′ γW̃

 ∈ R(h′+3)×(h+3), b =


0
0
0

γb̃

 ∈ Rh′+3.

23

We now show that Φθ(x) = x− 2W⊤σ(Wx+ b):

x− 2W⊤σ(Wx+ b)

=

x1

x2

x3

x4:

− 2


−1/

√
2 0 0 0⊤h′

1/
√
2 0 0 0⊤h′

0 0 0 0⊤h′

0h 0h 0h γW̃⊤

σ



−1/

√
2 1/

√
2 0 0⊤h

0 0 0 0⊤h
0 0 0 0⊤h
0h′ 0h′ 0h′ γW̃

x+


0
0
0

γb̃




=

x1

x2

x3

x4:

− 2


− 1

2σ(x2 − x1)
1
2σ(x2 − x1)

0
τ
2 W̃

⊤σ(W̃x4: + b̃)

 =


max{x1, x2}
min{x1, x2}

x3

Φ̃θ(x4:)

 = Φθ(x).

We now prove Lemma 4.2.

Lemma C.2. Let σ = ReLU, d, h ∈ N, with h ≥ 3. All the functions in G̃d,σ,h(Rd,R) are
1-Lipschitz.

Proof. Fix m = (1, 1, 1, h− 3) and x ∈ Rd. We consider the network

x 7→ v⊤ ◦ ΦθL ◦AL−1 ◦ ... ◦A1 ◦ Φθ1 ◦Q(x) ∈ G̃d,σ,h(Rd,R).

For any map Q ∈ Rd,m, there exist four vectors a1, a2, a3, q̃ ∈ Rd, three scalars b1, b3, b3 ∈ R, and
a matrix Q̃ ∈ Rh−3×d such that

Q(x) =


a⊤1 x+ b1
a⊤2 x+ b2
a⊤3 x+ b3
Q̃x+ q̃

 ∈ Rh

and ∥a1∥2, ∥a2∥2, ∥a3∥2, ∥Q̃∥2 ≤ 1. Because the composition of 1-Lipschitz maps is 1-Lipschitz,
and the maximum and minimum of 1-Lipschitz functions is still 1-Lipschitz, it follows that the map

x 7→ Φθ1 ◦Q(x) =


max{a⊤1 x+ b1, a

⊤
2 x+ b2}

min{a⊤1 x+ b1, a
⊤
2 x+ b2}

a⊤3 x+ b3
Q̃x− τ1W̃

⊤
1 σ(W̃1Q̃x+ b̃1)


belongs to Fd,m defined as in (5). Since A1 ∈ Lm, Lemma B.1 implies that

A1 ◦ Φθ1 ◦Q(x) =

f1,1(x)f1,2(x)
f1,3(x)
f1,4(x)

 , f1,1, f1,2, f1,3 : Rd → R, f1,4 : Rd → Rh−3

belongs to Fd,m as well. We leave the components unspecified so that the argument generalises.
Doing one further step, so that the argument generalises to a generic number of compositions L, one
gets

Φθ2 ◦A1 ◦ Φθ1 ◦Q(x) =


max{f1,1(x), f1,2(x)}
min{f1,1(x), f1,2(x)}

f1,3(x)

f1,4(x)− τ2W̃
⊤
2 σ(W̃2f1,4(x) + b̃2)

 ,

which again belongs to Fd,m. Extending the argument, we see that

ΦθL ◦AL−1 ◦ ... ◦A1 ◦ Φθ1 ◦Q(x) =


max{fL−1,1(x), fL−1,2(x)}
min{fL−1,1(x), fL−1,2(x)}

fL−1,3(x)

fL−1,4(x)− τLW̃
⊤
L σ(W̃LfL−1,4(x) + b̃L)

 ,

which belongs to Fd,m. Lemma B.2 allows us to conclude that the output scalar function is 1-Lipschitz
since v ∈ Rh satisfies ∥v∥1 ≤ 1.

24

We conclude with the statement and proof of Theorem 4.2.
Theorem C.1. Any piecewise affine 1-Lipschitz function f : Rd → R can be represented by a
network in G̃d,σ,h(Rd,R) with σ = ReLU and h = d+ 3.

Proof. Fix m = (1, 1, 1, d). Let us consider a generic 1-Lipschitz piecewise affine function, which,
thanks to Lemma 3.4, can be written as

f(x) = max{f1(x), ..., fk(x)}, fi(x) = min{a⊤i,1x+ bi,1, ..., a
⊤
i,lix+ bi,li}, i = 1, ..., k,

for a suitable choice of parameters. We also recall that ∥ai,j∥2 ≤ 1 for every i = 1, ..., k and
j = 1, ..., li. Thanks to Proposition 4.1, there exists a suitable choice of weights giving

g1 := Φθ1,l1−1
◦A1,l1−2 ◦ ... ◦A1,1 ◦ Φθ1,1 : Rh → Rh,

with Φθ1,l1−1
, ...,Φθ1,1 ∈ Ẽd,σ and A1,l1−2, ..., A1,1 ∈ Lm, so that

g1(Q(x)) =

 f1(x)
k1,2(x)
k1,3(x)

x

 ∈ Rd+3,

where we leave the 1-Lipschitz functions k1,2, k1,3 : Rd → R unspecified since they do not play a
role in our construction. We now introduce a map A1 ∈ Lm that is characterised by

A1 ◦ g1 ◦Q(x) =

a
⊤
2,1x+ b2,1

a⊤2,2x+ b2,2
f1(x)
x

 ,

that is A1 ◦ g1 ◦Q(x) = Â1g1(Q(x)) + â1 with

Â1 =


0 0 0 a⊤2,1
0 0 0 a⊤2,2
1 0 0 0⊤d
0d 0d 0d Id

 , â1 =

b2,1b2,2
0
0d

 .

We then define
g2 := Φθ2,l2−1

◦A2,l2−2 ◦ ... ◦A2,1 ◦ Φθ2,1 : Rh → Rh,

so that

g2 ◦A1 ◦ g1 ◦Q(x) =

 f2(x)
k2,2(x)
f1(x)
x

 .

Let S ∈ Lm be such that

S ◦ g2 ◦A1 ◦ g1 ◦Q(x) =

 f2(x)
f1(x)
k2,2(x)

x

 .

We then introduce the residual map Ψ ∈ Ẽd,σ having zero weight matrix, i.e., acting over an input
u ∈ Rd+3 as

Ψ(u) =

max{u1, u2}
min{u1, u2}

u3

u4:

 .

Similarly to A1 defined above, we introduce A2 ∈ Lm so that given a vector u ∈ Rd+3

A2(u) =

a
⊤
3,1u4: + b3,1

a⊤3,2u4: + b3,2
u1

u4:

 ,

25

and hence

A2 ◦ (Ψ ◦ S) ◦
(
g2 ◦A1 ◦ g1 ◦Q(x)

)
=

 a⊤3,1x+ b3,1
a⊤3,2x+ b3,2

max{f1(x), f2(x)}
x

 .

Iterating this reasoning, one can get

e⊤3 ◦Ak ◦ (Ψ ◦ S) ◦ gk ◦ ... ◦A3 ◦ (Ψ ◦ S) ◦ g3 ◦A2 ◦ (Ψ ◦ S) ◦ g2 ◦A1 ◦ g1 ◦Q(x) = f(x),

where e3 ∈ Rd+3 is the third vector of the canonical basis.

D Extension of the set Ẽh,σ

We now fix σ = ReLU. The set of networks G̃d,σ,h(X ,R) that we considered, is a subset of

Gd,σ,h(X ,R) :=
{
v⊤ ◦ ΦθL ◦AL−1 ◦ · · · ◦ Φθ2 ◦A1 ◦ Φθ1 ◦Q : X → R

∣∣∣ m = (1, ..., 1, h− k),

h = ∥m∥1, Q ∈ Rd,m, v ∈ Rh, ∥v∥1 ≤ 1, A1, ..., AL−1 ∈ Lm,Φθℓ ∈ Eh−k,k,σ, L ∈ N, k ∈ {1, ..., h}
}
,

where we define

Eh,k,σ =
{
Φθ : Rh+k → Rh+k

∣∣∣Φθ(x) =

[
GroupSort(x1:k; g)

Φ̃θ(x(k+1):)

]
,

Φ̃θ ∈ Eh,σ, g ∈ {1, ..., k}
}
.

The GroupSort(·; g) activation function, introduced in [1], splits the input into groups of a specific
size g and sorts each in descending order. The particular case of group size g = 2 coincides with the
MaxMin function we used to define G̃d,σ,h(X ,R), i.e.,

GroupSort(x1:3; 2) =

[
max{x1, x2}
min{x1, x2}

x3

]
.

We can thus say that Ẽh,σ ⊂ Eh,3,σ , and hence G̃d,σ,h(X ,R) ⊂ Gd,σ,h(X ,R).
The GroupSort(·; g) activation function might not have symmetric Jacobian, and hence might not
be directly expressible with a single negative gradient step. Still, it can be written as a composition
of these residual maps in Eh,σ. This is an immediate consequence of the fact that one can sort
a list of numbers by iteratively ordering subgroups of size two. For example, assume there is a
positive-measure subregion R of X where x2 < x1 < x3 for every x ∈ R. There, the function
GroupSort(·, 3) would act as

GroupSort(x1:3) =

[
x3

x1

x2

]
=

[
0 0 1
1 0 0
0 1 0

]
x1:3 =: Px1:3.

The permutation matrix P is not symmetric, and hence the target map can not be expressed with a
single negative gradient Euler step. Still, we can write it as the following composition[

x1

x2

x3

]
7→

[
x2

x1

x3

]
7→

[
x3

x1

x2

]
which are two maps that belong to E3,σ . More generally, we can represent the map GroupSort(·; 3)
as follows[

x1

x2

x3

]
7→

[
max{x1, x2}
min{x1, x2}

x3

]
7→

[
max{x1, x2, x3}
min{x1, x2}

min{x3,max{x1, x2}}

]

7→

[
max{x1, x2, x3}

max{min{x1, x2},min{x3,max{x1, x2}}
min{min{x1, x2},min{x3,max{x1, x2}}}

]

=

[
max{x1, x2, x3}

max{min{x1, x2},min{x3,max{x1, x2}}
min{x1, x2, x3}

]
= GroupSort(x1:3; 3),

26

which are all maps that belong to E3,σ .

GroupSort(·, g) provides an output with the same scalar components as the input, just reordered.
Thus, if applied to a function having all the components which are 1-Lipschitz, the same property
is preserved after its application. Combining these results, together with the derivations done for
G̃d,σ,h(X ,R), it is easy to derive the following results.

Lemma D.1. Let d ∈ N, X ⊆ Rd, and σ = ReLU. All the functions in Gd,σ,h(X ,R) are 1-Lipschitz.

Lemma D.2. Let d ∈ N, X ⊂ Rd a compact set, and σ = ReLU. The set Gd,σ,h(X ,R) satisfies the
universal approximation property for C1(X ,R) if h = d+ 3.

E Extension to multivalued functions

We now state and prove Lemma 5.1.
Lemma E.1. Let c, d ∈ N, X ⊂ Rd be compact, and σ = ReLU. Define the set

Gc,d,σ(X ,Rc) :=
{
P ◦ ΦθL ◦ · · · ◦ Φθ1 ◦Q : X → Rc

∣∣∣ Q(x) = Q̂x+ q̂, Q̂ ∈ Rh×d,

q̂ ∈ Rh, P ∈ Rc×h, ∥P∥2,∞ = 1, Φθℓ ∈ Eh,σ, L, h ∈ N
}

Then, for any f ∈ C1(X ,Rc) and any ε > 0, there exists g ∈ Gc,d,σ(X ,Rc) such that
maxx∈X ∥f(x)− g(x)∥2 ≤ ε.

Proof. Let f ∈ C1(X ,Rc), and ε > 0. Call fi : X → R, i = 1, ..., c, the i-th component of f ,
which belongs to C1(X ,R). Since Gd,σ(X ,R) ⊂ G1,d,σ(X ,R1) satisfies the universal approximation
property for C1(X ,R), for every i = 1, ..., c, there exist g1, ..., gc ∈ G1,d,σ(X ,R1) such that

max
x∈X

|fi(x)− gi(x)| ≤
ε√
c
, i = 1, ..., c.

The residual maps can represent the identity, and we can thus assume that the number of layers of
g1, ..., gc coincide and are equal to L. Call hi ∈ N, Qi : Rd → Rhi , Φθi,ℓ ∈ Ehi,σ with ℓ = 1, ..., L,
and vi ∈ Rhi , the widths, affine lifting layers, residual layers, and linear projection layers of the c
scalar-valued networks, respectively. Following similar arguments as for the proof of Theorem 3.1, it
is easy to see that

x 7→ g(x) :=

g1(x)...
gc(x)


belongs to Gc,d,σ(X ,Rc). Call h = h1 + ...+ hc, and let Q : Rd → Rh be characterised as

Q(x) =

Q1(x)
...

Qc(x)

 ∈ Rh.

Denote with Φθℓ ∈ Eh,σ , ℓ = 1, ..., L, the maps

Φθℓ(u) =


Φθ1,ℓ(u1:h1)

Φθ2,ℓ(uh1+1:h1+h2
)

...
Φθc,ℓ(uh−hc+1:h)

 ,

where ui:j ∈ Rj−i+1 denotes the entries from position i to position j of u ∈ Rh. Finally, denote
with P ∈ Rc×h the projection matrix defined as

P =


v⊤1 0⊤h2

. . . 0⊤hc

0⊤h1
v⊤2 . . . 0⊤hc

...
.

...
0⊤h1

0⊤h2
. . . v⊤c

 .

27

Since ∥vi∥2 = 1 for every i = 1, ..., c, we have ∥P∥2,∞ = maxi=1,...,c ∥e⊤i P∥2 =
maxi=1,...,c ∥vi∥2 = 1. Therefore, since

g(x) = P ◦ ΦθL ◦ ... ◦ Φθ1 ◦Q(x),

we conclude that g ∈ Gc,d,σ(X ,Rc) as desired. Furthermore, we see that for any given x ∈ X one
has

∥f(x)− g(x)∥2 =

√√√√ c∑
i=1

|fi(x)− gi(x)|2 ≤
√

cε2/c = ε

as desired. Thus, for any f ∈ C1(X ,Rc) and any ε > 0, there exists g ∈ Gc,d,σ(X ,Rc) such that

max
x∈X

∥f(x)− g(x)∥2 ≤ ε.

F Additional comments

F.1 Further motivation for 1-Lipschitz ResNets

We provide further motivation for studying 1-Lipschitz ResNets.

F.1.1 Why study 1-Lipschitz networks?

Regarding the importance of 1-Lipschitz networks, we have already cited some works relying on
them in the related work section. We expand on how essential the 1-Lipschitz constraint is in those
contexts. To do so, we also more explicitly describe the following two problems where 1-Lipschitz
constraints are desirable:

1. Improving the network robustness to adversarial attacks, see for example [12, 29, 33];

2. Deploying a network trained as an image denoiser in a Plug-and-Play algorithm for image
reconstruction in inverse problems, for example, for deblurring problems, see [6, 16, 33].

In general, in all those situations where one is interested in learning maps that are then iteratively
applied, aiming to converge to a fixed point, it is possible to guarantee the convergence of the iterative
scheme only under some Lipschitz constraints. Similarly, in those problems where one needs to
parametrise the lattice of 1-Lipschitz functions, such as to compute the Wasserstein 1-distance, it is
also convenient to rely on these constrained architectures.

Improving the robustness to adversarial attacks Training neural networks to solve classification
problems is a very standard methodology. Still, it is often the case that networks trained to be accurate
classifiers, are very sensitive to perturbations in the inputs. Some of these perturbations, called
adversarial, can be constructed with the sole purpose of fooling the network into misclassifying them,
despite being quantifiably close to data points drawn from the same probability distribution as the
training and test sets. A way to improve the network’s robustness to these kinds of perturbations is by
controlling its Lipschitz constant. This approach was considered in several papers before ours. A
theoretical justification for this methodology can be found by relating the notion of margin to that of
Lipschitz regularity. Consider a network Nθ : Rd → Rc returning probability vectors in Rc, where
c is the number of classes in which we want to partition our dataset. The classification margin at a
point x is defined as

MNθ
(x) := Nθ(x)

⊤eℓ(x) − max
j ̸=ℓ(x)

j∈{1,...,c}

Nθ(x)
⊤ej ,

where ℓ(x) represents the index of the class to which x belongs. If the margin is positive, then the
network correctly classifies x. Furthermore, the higher the margin, the more certain the network is of
this prediction. One can also prove, see [36], that

MNθ
(x) >

√
2Lip(Nθ)ε =⇒ MNθ

(x+ η) > 0, ∀η ∈ Rd, ∥η∥2 ≤ ε.

28

This condition means that if we have a good trade-off between classification margin and Lipschitz
constant of the network, we can guarantee the correct classification of perturbed inputs. Such an
analysis implies that if we force the network to have a small Lipschitz constant, such as Lip(Nθ) ≤ 1
as in our paper, and train the network with a loss function aiming to maximise the margin such as the
multi-class classification hinge loss, we can get improved robustness.

Plug-and-Play algorithm with guaranteed convergence properties The Banach fixed-point
Theorem guarantees that for a map T : Rd → Rd which is strictly 1-Lipschitz, i.e., ∥T (y)−T (x)∥2 <
∥y − x∥2 for every x, y ∈ Rd, there exists a unique fixed point and the iteration xk+1 = T (xk)
will converge to it whatever x0 ∈ Rd is. It is thus intuitive that once we are interested in (partially)
modelling iterative schemes through neural networks, it is fundamental to rely on architectures
constrained as in our paper to get a reliable method. This is the idea behind the Plug-and-Play
algorithm [16, 32, 33] used in inverse problems. This method is inspired by the forward-backwards
splitting proximal gradient descent approach used to solve

min
x∈Rd

f(x) + g(x), f : Rd → R, g : Rd → R ∪ {+∞}.

It is common to have f representing the data-fidelity term in the inverse problem, such as f(x) =
∥Kx− y∥22/2, whereas g represents a regularisation term, such as g(x) = ∥x∥1. Typically, one can
not ask for g to be continuously differentiable, and hence a methodology to efficiently solve this
minimisation problem is the proximal algorithm

xk+1 = proxg,τ (xk − τ∇f(xk)) , proxg,τ (x) = argmin
y∈Rd

(
1

2τ
∥y − x∥22 + g(y)

)
. (6)

There are two main limitations with this procedure for a general inverse problem:

1. It is challenging to design a good regulariser g,
2. The proximal operator proxg,τ of a generic regulariser g does not admit a closed form.

The Plug-and-Play algorithm addresses both limitations above by replacing proxg,τ with a neural
network Nθ : Rd → Rd trained to denoise inputs. In order to guarantee the convergence of this
hybrid scheme

xk+1 = Nθ(xk − τ∇f(xk)), (7)
we need to properly constrain Nθ. If f is strongly convex, L-smooth, and continuously differentiable,
then, taken τ ∈ (0, 2/L), the method in (7) converges to a fixed point whenever Nθ is 1-Lipschitz.
This is another reason why investigating the architecture studied in this paper is fundamental. Weaker
convergence guarantees can also be obtained when f is only convex, but more needs to be asked from
Nθ, see, e.g., [33].

Why study ResNets? There are three main reasons why we focus on ResNets:

1. 1-Lipschitz constrained ResNets have been used extensively in several applications;
2. A theory similar to ours for feedforward networks has already been developed;
3. GNNs, Transformers, and other architectures also rely on residual connections which are

hence an essential piece to understand.

More explicitly, the gradient steps studied in this paper have already been considered to design GNNs
(see, for example, [5, 11, 12]). To the best of our knowledge, these gradient steps have not been used
in Transformers. Still, there has already been interest in studying Lipschitz-continuous transformers
(see [3, 18, 30]), and our theoretical analysis could at least partially be applied to these more complex
architectures.

Theoretical motivation. While unconstrained ResNets can approximate an arbitrary continuous
function, it is not necessarily the case that the same holds for a constrained one. For example, in [25,
Proposition 3.3], the authors prove that feedforward networks with unit-norm weights, which are
1-Lipschitz, are not dense in the set of 1-Lipschitz functions. This holds despite the unconstrained
models being universal approximators of continuous functions. This highlights the necessity of
developing an approximation theory which is specific to 1-Lipschitz architectures such as ResNets.

29

F.2 Dependence of the network size on the input dimension

We now comment on how the network width and depth grow with the input dimension based on our
theoretical analysis.

Depth. In Appendix A.2 we derive that to represent the max and min functions of affine pieces, we
need a network whose depth grows linearly with the number of pieces. This is the primary operation
required to understand how the network depth evolves based on our theory. Still, there are two
essential comments to complement this discussion:

1. First, our proof is designed to be easy to follow and does not aim to present the most efficient
network solving the task. It is in fact evident that a tighter bound for the networks with
unbounded width could be to have L belonging to O(log2(d)), since max{x1, ..., xd} can
be written by computing in parallel d/2 pairwise maxima and iterating the process, leading
to k steps where k ∈ N satisfies (d/2k) ≈ 1, i.e. k ≈ log2(d). This does not immediately
translate to the finite width case, but one could increase the fixed width and improve the
efficiency in terms of network depth.

2. Second, our proof is constructive and provides an upper bound on the size of the network
one needs. When training these models, more efficient weight choices could be made, and a
more effective growth factor may emerge.

Width. For the networks in Theorem 3.1, the network width grows with the number of affine pieces
needed to assemble the function. This is function-dependent, and it can not be bounded a priori solely
based on the input dimension. Still, we also provide an approximation theorem with fixed width,
which does not suffer from this unbounded growth of the width.

Approximation rates. One of our proof strategies involves the representation of an arbitrary
1-Lipschitz piecewise affine function with the considered networks. We thus inherit the same
approximation rates as this class of functions.

F.3 Further discussion of other activation functions

Our theoretical analysis focuses on the ReLU activation function and the techniques we work with
heavily rely on the properties of such a function. The focus on a specific activation, and in particular
on ReLU, is quite common in the mathematics of deep learning, as can be seen, for example, in
[15, 26, 41].

For any other continuous activation σ : R → R which is not a polynomial, it is relatively immediate
to recover the density of the set of networks

Gσ
d (X ,R) := {Nθ ∈ Gd,f (X ,R) : f : R → R, f(s) = u⊤

1 σ(u2s+ u3), u1, u2, u3 ∈ Rh, h ∈ N}

in C1(X ,R). To prove this, one can approximate the elements in Gd,ReLU(X ,R) to an arbitrary
accuracy with elements in Gσ

d (X ,R). Such an approximation can be done because the considered
residual layers are gradient steps for potential energies of the form gℓ(x) = 1⊤hℓ

ReLU2(Wℓx+ bℓ)/2

and, on compact sets, we can approximate ReLU2/2 and ReLU with a single hidden layer network
and its derivative, see [28, Theorem 4.1]. Such an analysis would allow us to recover an approximation
theory for networks whose residual layers are of the form

x 7→ x− τℓW
⊤
ℓ f(Wℓx+ bℓ).

In this case, though, the imposition of the 1-Lipschitz constraints in practice becomes even more
challenging, given the lack of knowledge of the properties of f , e.g., if it is non-decreasing. A
particularly simple example is σ(x) = LeakyReLUα(x) = max{αx, x}, α ∈ (0, 1) where we do
not need approximations since

ReLU(x) =
1

1− α2
(LeakyReLUα(x) + αLeakyReLUα(−x)) .

30

G Numerical experiments and implementability details

This paper focuses on the theoretical analysis of 1-Lipschitz ResNets. We have commented in Section
5 on the implementability of the considered models, and we now demonstrate that they do not have
any intrinsic issues with trainability.

To do so, we consider two classification problems. First, we train models to classify the two-moon
dataset with additive Gaussian noise of standard deviation σ = 0.1. Then, we train networks to
classify the MNIST dataset. We inspect how the performance varies as we consider models coming
from the two families of architectures presented in this paper, and as we vary the network depth and
width.

For the two-moon dataset, we generate 4,000 points, 20% of which are set as training points. For
MNIST, we adopt the standard training/test split and preprocess the inputs by normalising them. The
batch size we consider for both tasks is 256. We optimise the weights for both tasks using Adam and
a cosine annealing learning rate scheduler. The experiments are run on a Quadro RTX 6000 GPU.

The network weights can be initialised to satisfy the dynamical isometry property [22, 39], to avoid
possible trainability problems when considering deep networks. More explicitly, one can set the
intermediate affine layers Aℓ so they realise an isometry, the time steps τℓ = 2, and the weights
Wℓ in the residual layers to random orthogonal matrices. Such an initialisation strategy allows us
to have layers which, at initialisation, are maps with a Jacobian matrix which is orthogonal almost
everywhere. The dynamical isometry theory suggests that initialising the network weights so the
input-to-output Jacobian is orthogonal almost everywhere is sufficient to train deep neural networks.
The reason why the setup written above allows to get the Jacobian orthogonality of the residual layers
is that

ϕθℓ(x)
′ = Ih − 2W⊤

ℓ D(x)Wℓ, D(x) = diag(ReLU′(Wℓx+ wℓ))

(ϕ′
θℓ
(x))⊤ϕ′

θℓ
(x) = Ih + 4(W⊤

ℓ D2(x)Wℓ −W⊤
ℓ D(x)Wℓ) = Ih,

and the same holds for (ϕ′
θℓ
(x)′)⊤ϕ′

θℓ
(x) = Ih, since D(x)2 = D(x) because of the zero and one

slopes of ReLU.

All the layers are constrained as discussed in the main body of the paper, but the first one is left
unconstrained to have fair comparisons between the two types of models, i.e., those stemming from
Theorem 3.1 and Theorem 4.1. We consider models with a varying number of layers and present
the test accuracy as this number changes, along with the time required to enforce the constraints
on the network weights during training, computed as an average over the number of epochs using
the time library in Python. The weight constraints are enforced in a projected gradient descent
fashion, suitably normalising the weights after a gradient step. The code is written in PyTorch and it
is available at the repository https://github.com/davidemurari/1LipschitzResNets.

To compute the spectral norms of the weights and enforce the necessary constraints, we use the power
method as described in [24, 33]. To ensure an efficient implementation, we perform several power
iterations at initialisation to obtain an accurate approximation of the leading singular vector. We
then perform only one iteration per gradient step, as the weights tend to change very mildly during
training, and these pre-computed singular vectors provide accurate initial guesses. The cost of this
normalisation step is negligible compared with the overall cost of the forward and backwards passes.

The models deriving from Theorem 3.1 and Theorem 4.1 consistently train regardless of the network
width and depth. The cost of constraining them is larger for those with affine layers, and it grows
faster as the depth increases than when the width does. Still, the implementation could be optimised,
and this step could be made faster. In Tables 1 and 2, we denote with Theorem 3.1 the architecture
without affine layers, and with Theorem 4.1, with affine layers and further constraints on the gradient
steps.

The experiments for MNIST in Table 3 are performed only for the network newly proposed in
Theorem 4.1. This is because for the one in Theorem 3.1 there have already been more extensive
experimental studies in the past, e.g., [23, 29, 33]. We remark that this task does not entirely represent
our theoretical results, since we focus on approximating scalar-valued functions. In contrast, in this
case, we have outputs in R10, given that 10 is the number of classes in the MNIST dataset. For
this reason, we do not constrain the last affine layer either. The value of these experiments lies in

31

https://github.com/davidemurari/1LipschitzResNets

Number layers Theorem 3.1 Theorem 4.1
Test

Accuracy
Normalisation
Time (seconds)

Test
Accuracy

Normalisation
Time (seconds)

L = 2 99.75% 0.0079 88.25% 0.053

L = 4 99.88% 0.0130 99.88% 0.097

L = 8 100.00% 0.0286 99.88% 0.185

L = 16 100.00% 0.0585 100.00% 0.273

L = 32 99.88% 0.1091 100.00% 0.326

L = 64 100.00% 0.1628 100.00% 0.685

Table 1: Networks with varying depth and fixed width. Numerical experiments for the two–moon
dataset with additive Gaussian noise of standard deviation σ = 0.1. The hidden dimension is set to
d+ 3 = 5, where d = 2 is the input dimension of the data points.

Network width Theorem 3.1 Theorem 4.1
Test

Accuracy
Normalisation
Time (seconds)

Test
Accuracy

Normalisation
Time (seconds)

h = 10 99.88% 0.0372 100.00% 0.1628

h = 20 99.88% 0.0379 99.88% 0.1744

h = 30 99.88% 0.0381 99.88% 0.1829

h = 40 100.00% 0.0378 99.63% 0.2993

Table 2: Networks with fixed depth and varying width. Numerical experiments for the two–moon
dataset with additive Gaussian noise of standard deviation σ = 0.1. The number of layers is fixed to
L = 10 while the hidden dimension h varies.

strengthening the claims about the trainability of these newly proposed models, which, despite the
addition of interleaved affine layers, do not suffer from practical problems.

L = 5 L = 10 L = 20

h = 50 97.85% 97.67% 97.82%

h = 100 97.94% 97.70% 97.58%

h = 200 97.68% 97.77% 97.89%

Table 3: Results on MNIST with the network in Theorem 4.1: test accuracy for different widths h
and depths L.

32

	Introduction
	Related work
	Main contributions
	Outline of the paper

	Preliminaries
	Notation
	Universal approximation property
	1-Lipschitz residual layers

	Density with unbounded width and depth
	Proof of Theorem 3.1 based on Restricted Stone-Weierstrass
	Proof of Theorem 3.1 based on piecewise affine functions

	Density with fixed width and unbounded depth
	Proof of Theorem 4.1

	Discussion and future work
	Proofs in Section 3
	Proof of Theorem 3.1 based on Restricted Stone-Weierstrass
	Proof of Theorem 3.1 based on piecewise affine functions

	Preliminary results for Section 4
	Proof of Theorem 4.1
	Extension of the set E"0365Eh,
	Extension to multivalued functions
	Additional comments
	Further motivation for 1-Lipschitz ResNets
	Why study 1-Lipschitz networks?

	Dependence of the network size on the input dimension
	Further discussion of other activation functions

	Numerical experiments and implementability details

