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ABSTRACT

Speculative decoding (SD) accelerates large language model inference by employing a
faster draft model for generating multiple tokens, which are then verified in parallel by
the larger target model, resulting in the text generated according to the target model dis-
tribution. However, identifying a compact draft model that is well-aligned with the target
model is challenging. To tackle this issue, we propose DistillSpec, a method that uses
knowledge distillation to better align the draft model with the target model before applying
SD. DistillSpec makes two key design choices, which we demonstrate via systematic study
to be crucial to improving the draft and target alignment: utilizing on-policy data genera-
tion from the draft model, and tailoring the divergence function to the task and decoding
strategy. Notably, DistillSpec yields 10 − 45% speedups over standard SD on a range of
benchmarks, using both greedy and non-greedy sampling. We show that the distilled model
can be well transferred to various tasks with an average speedup of 26%. Furthermore, we
combine DistillSpec with lossy SD to achieve fine-grained control over the latency vs. task
performance trade-off. Finally, in practical scenarios with models of varying sizes, first us-
ing distillation to boost the performance of the target model and then applying DistillSpec
to train a well-aligned draft model can reduce decoding latency by 6− 10× with minimal
performance drop, compared to standard decoding without distillation.

1 INTRODUCTION

Large language models (LLMs) have revolutionized natural language understanding and genera-
tion across diverse applications (OpenAI, 2023; Anil et al., 2023). However, their autoregressive
generation nature poses significant computational challenges, especially in real-time deployments
with stringent latency constraints (Thoppilan et al., 2022; Pope et al., 2023). Conversely, smaller
language models, while computationally efficient, often lack the expressive power of their larger
counterparts and achieve subpar performance. While reducing the inference cost of larger models,
e.g., via quantization or pruning, or improving the performance of the smaller models, e.g., via
knowledge distillation (KD) (Hinton et al., 2015), constitute natural approaches to enable a favor-
able performance versus inference cost trade-off, these approaches frequently result in unacceptable
performance gap compared to the high-quality large models. This has inspired a growing literature
on designing mechanisms that combine both large and small models at inference to approximate the
performance of the larger models without incurring their high computational cost.

Among conventional approaches, model cascading aims to identify easy instances where smaller
models suffice to achieve good performance, and soliciting larger models only on a subset of hard
instances (Rowley et al., 1998; Xu et al., 2014) or tasks (Cai et al., 2023b). Different from such task-
or instance-level cascading, speculative decoding (SD) (Leviathan et al., 2023; Chen et al., 2023)
exploits the token-level variability in the computation demand during LLM inference by interac-
tively invoking a small “draft” model and a large “target” model. At a given stage during inference,
the draft model generates successive candidate tokens for multiple inference steps via autoregressive
decoding. The target model then verifies the candidate tokens via parallel decoding, and employs
rejection sampling to accept a subset of candidate tokens at contiguous positions.

The main objective of SD is to speed up text generation while guaranteeing that the decoded tokens
follow the target model distribution. SD relies on the insight that the combined cost of autoregres-
sive decoding with a small draft model followed by parallel verification with the target model is
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Figure 1: Performance comparison of standard speculative decoding (SD) vs. our proposed DistillSpec, with
small- and XL-sized models from the T5 v1.1 family (Raffel et al., 2020) being utilized as the draft and the
target models, respectively. DistillSpec enhances SD speed by better aligning the draft with the target via
white-box knowledge distillation, resulting in a consistent 10−45% speedup improvement over standard SD
across various datasets. The distilled draft model from GSM8K transfers well to 23 unseen BigBenchHard
tasks (Suzgun et al., 2022), resulting in an average speedup of 26%. See § 5.1 for additional details.

lower than the cost of autoregressive decoding with the target model alone. However, the realized
inference cost reduction or latency improvement crucially depends on the acceptance rate of the
draft-generated tokens by the target model, which can be shown to be directly tied to the alignment
between the token distributions of the draft and target models. Thus, a successful application of SD
hinges on identifying a compact draft model that simultaneously has small autoregressive decoding
cost and is closely aligned with the target model.

In this work, we propose DistillSpec, a novel approach that relies on KD (Hinton et al., 2015) to
obtain an effective draft model. Unlike the standard application of KD which primarily focuses
on improving the task performance of a small student model, DistillSpec aims at aligning the stu-
dent (draft) model with the teacher (target) model to enhance the acceptance rate during SD. We
undertake a comprehensive exploration of the distillation process for speeding up SD, considering
several factors including the composition of training data, choice of divergence functions to define
the training objective for KD, and decoding strategies. Notably, our findings underscore that using
model-generated data is crucial for ensuring strong student-teacher alignment across various tasks
via KD, and that the selection of the best-performing divergence function in DistillSpec is highly
task-dependent and sensitive to the decoding strategy (i.e., greedy versus non-greedy). Furthermore,
we explore the utility of DistillSpec for lossy SD (Leviathan et al., 2023) which allows for sampling
away from the target model distribution. We show that combining DistillSpec with lossy SD enables
a more fine-grained control over the latency versus task performance trade-off.

Finally, we carry out a systematic study of how to design an efficient inference scheme in a practical
setting where one has access to multiple models of increasing size and quality. Leveraging the
insights that we have laid out about KD and SD, our study concludes that the most effective strategy
involves first distilling a large model into a smaller one as the potential target model for performance
optimization, followed by DistillSpec for distilling an even smaller model to be used as the draft
model in SD. This approach results in a remarkable 6 − 10× reduction in latency, compared to a
standalone non-distilled target model of the same size, with minimal performance degradation.

Our key contributions are:

(i) We propose DistillSpec, a method that uses KD to enhance draft model alignment with the target
model (§4), and show that our method can improve SD speed by 10−45% while preserving
model performance across diverse datasets under greedy and non-greedy sampling (Figure 1).

(ii) We conduct an extensive analysis of the optimal distillation recipe (§5.2) for model alignment,
encompassing factors such as training data generation and different divergences, and emphasiz-
ing the distinctions between standard KD and distillation tailored for SD.

(iii) We extend DistillSpec to lossy SD, enabling refined control over the quality-latency trade-off.
Moreover, we offer insights for combining KD and SD when several models are available (§5.3).

2 RELATED WORK

Speculative decoding (SD). Due to the inherent sequential nature of autoregressive decoding,
the primary latency bottleneck in LLM inference arises from memory read/write operations rather
than arithmetic computations (Pope et al., 2023). Speculative decoding (Leviathan et al., 2023;
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Chen et al., 2023) (SD) addresses this challenge by utilizing a compact draft model to generate a
batch of tokens sequentially, while validating them in parallel with a larger target model. Prior to SD,
various parallel computing paradigms have been explored for autoregressive models, including block
parallel sampling (Stern et al., 2018), shallow aggressive decoding (Sun et al., 2021), and aggressive
decoding (Ge et al., 2022). However, these approaches are not readily adaptable to typical language
models due to potential deviations from target model’s distribution, strict input constraints, or limited
support for general stochastic sampling. Notably, recent variants of SD have considered different
interactions between the draft and target model to reduce unnecessary computation (Kim et al.,
2023) and incorporated parallel computation along the batch axis, sometimes combined with token
tree verification, as seen in SpecTr (Sun et al., 2023), SpecInfer (Miao et al., 2023), and Medusa (Cai
et al., 2023a). In contrast, our work focuses on enhancing SD by improving the alignment between
the small draft model and the large target model through KD, which does not require any changes
to serving infrastructures already implementing SD and is complementary to the recent variants of
SD. Furthermore, we conduct a systematic study of lossy SD for providing nuanced control over the
trade-off between quality and latency for specific serving models.

Knowledge distillation (KD) for LLMs. KD (Buciluǎ et al., 2006; Hinton et al., 2015),
which trains high-quality smaller student models with the supervision of larger teacher models,
has emerged as a vital technique for reducing inference cost while maintaining model quality across
a range of domains. In the context of LLMs, prior uses of KD (Taori et al., 2023; Fu et al., 2023)
have mostly focused on black-box KD, wherein only the teacher’s output generations, generally
via APIs, are accessible during student training. However, with the proliferation of open-source
LLMs (Zhang et al., 2022; Touvron et al., 2023), which enable access to teacher weights and logits,
there is a growing interest in white-box KD. White-box KD allows student models to benefit from
richer supervision signals provided by white-box teacher models, leading to enhanced language
abilities (Agarwal et al., 2023; Gu et al., 2023; Wen et al., 2023).

Unlike prior works focused on creating highly capable standalone student models, we harness KD
to foster closer collaboration between smaller and larger models in SD, which may be particularly
valuable when a small distilled model alone cannot meet stringent quality requirements. While
Stern et al. (2018) use a black-box KD approach (SeqKD) to enhance blockwise parallel decoding,
their samples are generated from the large target model, which is prohibitively expensive for LLMs.
Furthermore, they ignore the teacher model’s logits and train their draft model using only one-hot
teacher labels—a reasonable choice for greedy decoding but a less effective one for non-greedy
sampling (Figure 2). Concurrently, Liu et al. (2023) propose to improve SD using KD, but they
assume an online setup with a changing query distribution, and focus on improving the acceptance
rate rather than reducing the actual latency.

3 BACKGROUND: SPECULATIVE DECODING

Notation. Given an input sequence x comprising tokens from a pre-defined vocabulary, a lan-
guage model M provides a distribution over possible output sequences y. Suppose we employ
SD with a compact draft model Mq to assist a larger target model Mp. Let p(yt |x, y<t) and
q(yt |x, y<t) represent the distributions governing next-token predictions at time step t for Mp and
Mq , respectively, given the context ρ = {x, y<t}. Given input x as prefix, let p≤T (y |x) and
q≤T (y |x) represent the distributions governing the sequence y sampled autoregressively from Mp

and Mq , respectively, where the generation stops either when an end-of-sequence token is sampled
or the maximum sequence length T is reached. For simplicity, we use p(yt) and q(yt) as shorthands
for p(yt |x, y<t) and q(yt |x, y<t), whenever the context ρ is clear. Similarly, p≤T (y) and q≤T (y)
serve as shorthands for p≤T (y |x) and q≤T (y |x), whenever the input x is clear.

Speculative sampling. Standard SD uses a procedure called speculative sampling to generate
tokens from the draft model while maintaining the same output distribution as the target model. As
detailed in Algorithm A.1 (Appendix), each step of SD works as follows. First, a block of γ tokens,
denoted as yt, . . . , yt+γ−1, is autoregressively sampled from q(yt), . . . , q(yt+γ−1). Next, the γ
tokens are verified in parallel by passing them to Mp as a whole block, which sequentially accepts
token yt+i with probability min (1, p(yt+i)/q(yt+i)). If any token yt+i is rejected before the end of
the block, the subsequent tokens are discarded and the rejected token is resampled from the adjusted
distribution p′(yt+i) ∝ max(0, p(yt+i)− q(yt+i)); otherwise, the drafted tokens are all accepted
and an extra token is sampled from p(yt+γ) and appended to the output sequence. This process
guarantees that the sequence of accepted and resampled tokens follow the same output distribution
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as p(yt+i) (Leviathan et al., 2023). The procedure is repeated until an end-of-sequence token is
accepted, or the maximum sequence length T has been reached.

Efficiency measure: acceptance rate. Each SD step takes a constant amount of time, so the
wall-clock time scales linearly with the number of steps. This number is equal to the total number of
times that the target model rejects a token, plus the number of blocks accepted as a whole, where the
latter term is small for large γ. This motivates us to use the acceptance rate as a surrogate efficiency
measure for the wall-clock time. For an ideal SD process with γ = ∞, we define the sequence-level
acceptance rate α(x) for a given input x as follows:

α(x) :=
E [number of accepted tokens in generating y]

E [number of tokens in y]
=

Ey∼p≤T (y | x)

[∑|y|
t=1 β(x, y<t)

]
Lp(x)

, (1)

where β(x, y<t) := Eyt∼q(yt) [min (1, p(yt)/q(yt))] is the token-level acceptance rate, and expec-
tations are taken over the randomness in SD. Since speculative sampling preserves the output dis-
tribution of the target model, the denominator is simply equal to the expected length of the target
output Lp(x) := Ey∼p≤T (y | x) [|y|], which is invariant to the choice of draft model. Therefore, the
acceptance rate is directly related to the expected total number of rejected tokens (1−α(x)) ·Lp(x),
which lower bounds the expected number of SD steps.

Efficiency measure: block efficiency. In practice, SD is usually employed with a fixed finite
block size γ; thus, a more relevant efficiency measure is the block efficiency τ . Given an input x,
we compute the block efficiency τ(x) as the expected number of accepted tokens per block. Note
that, for a given block size γ, the maximum value of τ(x) is γ + 1, corresponding to the case where
all drafted tokens are accepted and augmented with an additional token sampled by the target model.
If we assume that the token-level rates β(x, y<t) are i.i.d., then the sequence-level acceptance rate
satisfies α = E [β] and τ(x) = (1− αγ+1)/(1− α) (Leviathan et al., 2023).

Wall-clock time improvement. For given block efficiency τ(x), the expected speedup of SD is
given by τ(x)/(cγ + 1), where the relative latency c is the ratio between the times elapsed when
making a single forward pass through the draft model Mq and through the target model Mp.

4 DISTILLSPEC: KNOWLEDGE DISTILLATION FOR SPECULATIVE DECODING

As described in § 3, speculative decoding (SD) leverages a small (draft) model to reduce the latency
of decoding from the larger (target) model distribution without any performance drop. However, the
realized speedup critically depends on how “well-aligned” the draft model is to the target model. In
this work, we propose DistillSpec, a general framework that improves SD by better aligning the tar-
get model and draft model using white-box knowledge distillation (KD). We first present KD-based
training of the draft model, and highlight how our objective of enhancing SD via KD influences
our selection of training data generation method and divergence function—two key ingredients of
DistillSpec. We then discuss how DistillSpec can be extended to lossy SD.

Let the draft model Mθ
q be parameterized by θ. DistillSpec utilizes predictions from the target model

Mp as a source of supervision in training the draft model Mθ
q . We assume white-box access to both

models, i.e., we can obtain their next-token distributions p(yt) and q(yt), and therefore we are able to
generate samples from both models. Given a divergence function D that measures the misalignment
between two distributions, KD-based training of the draft model seeks to minimize the divergence
between the teacher (target) and student (draft) distributions over a training set G:

θ∗ := argminE(x,y)∼G

[
D(Mp∥Mθ

q)(y|x)
]
, (2)

where D(Mp∥Mθ
q)(y|x) = 1

|y|
∑|y|

t=1 D
(
p( · |x, y<t)∥qθ( · |x, y<t)

)
.We note that flexibility in how

G is constructed and the choice of divergence D gives rise to different possible KD algorithms. For
instance, G may consist of task-specific input-output pairs (X,Y ) or sequences generated from Mp

or Mθ
q . While forward KL (DFKL) is the commonly used divergence for KD (Hinton et al., 2015),

recent works (Agarwal et al., 2023; Wei et al., 2022) have shown the effectiveness of alternative
divergences, including reverse KL (DRKL), Jensen–Shannon divergence (DJSD[β]), and total varia-
tion distance (DTVD). Further details on each divergence can be found in Appendix A.1. Table 1
summarizes various distillation recipes, each being a specialized instance of Algorithm A.2.
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Table 1: Summary of various KD algorithms in terms of training data G and divergence D (cf. Eq. 2). Wen
et al. (2023); Agarwal et al. (2023) also consider other D; we list the most representative one.

Name Divergence Training Data (G)

SeqKD (Kim & Rush, 2016) (Black-box KD) FKL Data generated by teacher Mp

Supervised KD (Hinton et al., 2015) FKL Fixed dataset of input-output pairs
ImitKD (Lin et al., 2020) FKL Fixed dataset + data generated by Mθ

q

f-Distill (Wen et al., 2023) TVD Data generated by Mθ
q and Mp

On-policy GKD (Agarwal et al., 2023) FKL / JSD On-policy data from student Mθ
q

Our choices for G and D are guided by how the resulting distilled model, once employed as draft
model, improves the speed of SD. Towards this, we first highlight the role that DTVD between p(yt)
and q(yt) plays in dictating the acceptance rate (§ 3)—a key efficiency measure for SD.

TVD as proxy for the acceptance rate. Leviathan et al. (2023, Corollary 3.6) show that the
token-level acceptance rate β(x, y<t) satisfies β(x, y<t) = 1 −DTVD(p(yt), q(yt)). Hence, Eq. 1
implies that maximizing the sequence-level acceptance rate α(x) is equivalent to minimizing the
expected DTVD between p(yt) and q(yt) over the output sequence distribution of Mp, i.e.:

α(x) = 1− Ey∼p≤T (y | x)

[ |y|∑
t=1

DTVD(p(yt), q(yt))
]
/Lp(x). (3)

Choice of divergence. Based on Eq. 3, it appears that directly minimizing DTVD may be a princi-
pled objective for draft model distillation. While optimizing DTVD(p, q) is theoretically inspired,
our empirical study shows that such an objective may not consistently yield optimal results. We find
that the choice of the most suitable divergence is highly task-dependent (§ 5.2).

Choice of training data. As for G, one could resort to an existing ground-truth dataset, however
the teacher’s output distribution may deviate from the ground-truth distribution despite the teacher
having been fine-tuned on it. Moreover, ground-truth datasets are often limited in size, so training
only on such data could result in overfitting. To mitigate these issues, we use model-generated
outputs for distillation. Specifically, we prompt the model with a task input sampled from a ground-
truth training dataset, and use the model response as data for distillation. Both the teacher and
student models may be used to generate the distillation examples.

Model-generated distillation data. Eq. 3 suggests optimizing the expected DTVD over outputs
generated from the teacher. Decoding from a large teacher is generally prohibitively expensive, es-
pecially at the scale of dataset required for KD. To reduce the generation cost, we explore using
on-policy data during distillation, i.e., output sequences sampled from the student itself. Besides
being more computationally efficient compared to teacher generations, this approach is motivated
by Gu et al. (2023); Agarwal et al. (2023), who have shown that distilling on on-policy data improves
student task performance. However, different from these prior works, our primary focus is on im-
proving the student-teacher alignment. Thus, it may not be immediately clear whether minimizing
the expected DTVD over on-policy (student-generated) data ensures an improved acceptance rate,
which is computed as an expectation over the teacher’s output distribution (cf. Eq. 3). Our following
result shows that this is indeed the case.
Theorem 4.1. For SD, if the draft model Mθ

q achieves on-policy KD loss ϵ =

Ex∼X,y∼q≤T (y | x)
[
DTVD(Mp∥Mθ

q)(y |x)
]
, then the sequence-level acceptance rate is at least

Ex∼X [α(x)] ≥ 1− T · Ex∼X

[
T

Lp(x)

]
ϵ. (4)

When the target output length is always T , the bound simplifies to Ex∼X [α(x)] ≥ 1− Tϵ.

We defer the proof to Appendix A.2. Intuitively, it builds upon the following insights. If the on-
policy KD loss is small, then, for any 1 ≤ t ≤ T , the same loss evaluated only at the t-th token
should also be small. Since the first token generation is independent of any other tokens, a small
value of on-policy KD loss ensures that the first token distributions of the draft and target models
are close. Then, an inductive argument shows that once the draft and target are similar on the first t
tokens, the distributions of the (t+1)-th token should also be close. Our proof makes this argument
rigorous by utilizing variational representations of DTVD, leading to a linear error bound in T .
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Figure 2: Distillation enhances block efficiency (τ ) across diverse datasets, highlighting the superiority of
model-generated data over fixed ground truth data (SupervisedKD) and emphasizing the importance of white-
box distillation in addressing SeqKD’s subpar performance.

DistillSpec with lossy SD. DistillSpec enhances SD efficiency without any quality loss com-
pared to the target model Mp. In practical applications, a reduction in model quality may be jus-
tified in order to support even faster inference. For such scenarios, we extend DistillSpec to lossy
SD (Leviathan et al., 2023), which uses a lenience function f(p, ϵ) that modifies the acceptance
probability from min (1, p(yt)/q(yt)) to min (1, f(p(yt), ϵ)/q(yt)) (cf. § 3). Here f : [0, 1]2 → R+

is increasing and decreasing in its first and second arguments, respectively, and ϵ ∈ [0, 1] is a free
parameter (cf. Algorithm A.1). In this work, we evaluate multiple choices for the lenience functions:
flin(p, ϵ) = p/ϵ, fsq(p, ϵ) = p/ϵ2, and fexp(p, ϵ) = pϵ. For example, when the lenience function
is fsq(p, ϵ) and ϵ = 0.1, token x sampled from q(yt) becomes hundred times more likely to be
accepted by the target, thus enabling faster inference at the expense of a potential drop in generation
quality. Lenience was discussed by Leviathan et al. (2023) in the context of flin and their treatment
focuses solely on latency improvements, whereas we explore the use of different lenience functions
as a precise control mechanism to achieve the desired quality-latency profile.

5 EXPERIMENTS

5.1 ENHANCING SPECULATIVE DECODING THROUGH DISTILLATION

We evaluate the effectiveness of KD in improving the speed of speculative decoding (SD). We fol-
low Leviathan et al. (2023) and investigate its impact on the acceptance rate α, block efficiency τ ,
and actual latency speedup with a batch size of 1 under greedy sampling (T = 0) and standard
temperature sampling (T = 1).

Tasks and models. Following Leviathan et al. (2023), we evaluate two model types: 1) GPT-
like decoder-only Transformer models trained on LM1B task (Chelba et al., 2013) using a standard
autoregressive objective, where the target and draft models have 234M and 33M parameters, re-
spectively; and 2) standard encoder-decoder T5 v1.1 models (Raffel et al., 2020) fine-tuned on
four different tasks, with T5-XL (3B) and T5-Small (77M) serving as the target and draft mod-
els, respectively. We utilize two datasets from the T5 paper, namely WMT EnDe (Bojar et al.,
2014) and CNN/DM (Hermann et al., 2015), which deal with translation and text summarization,
respectively. The remaining two tasks used to test T5 models are XSum (Narayan et al., 2018) and
GSM8K (Cobbe et al., 2021), which deal with abstractive summarization and arithmetic reasoning,
respectively. See Appendix B for more details.

Decoding speedup. Figure 1 shows that the impact of distillation on SD speed is evident, con-
sistently yielding a 10−46% improvement across various datasets. This effect is most pronounced
when employing greedy decoding. The performance of KD for different block sizes and decoding
strategies across five datasets is presented in Table C.1 (Appendix). These findings demonstrate
that KD significantly enhances the acceptance rate and block efficiency of SD for both decoder-only
and encoder-decoder models across all datasets. Distillation algorithms utilizing model-generated
data consistently outperform other approaches, resulting in ∼20% additional speedup compared to
standard SD on LM1B, XSum, CNN/DM, and GSM8K.

Block efficiency. Figure 2 presents a comparison of block efficiency across different algorithms,
employing temperature sampling (T = 1) with a block size γ = 7. The figure underscores the
utility of model-generated data: using ground-truth data (i.e., Supervised KD) ranks lowest across
all settings. In contrast, f -Distill and GKD, which only use model-generated data, significantly out-
perform other KD variants. The subpar performance of SeqKD, despite being purely trained on data
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Figure 3: (a) White-box KD using teacher logits and model-generated data is crucial. Draft model’s on-policy
data can be as effective as target model data. GKD achieves the best wall-time performance improvement
on XSum. (b) Distillation improves the block efficiency for all examples on GSM8K. (c) Empirical block
efficiency aligns well with its DTVD-based theoretical counterpart.

generated by the target model, suggests that white-box distillation (i.e., supervision from the target
model’s logits) is vital for SD. This is corroborated by Figure 3a, which illustrates the evolution of
the acceptance rate throughout training. Supervised KD ranks lowest, and its performance plateaus
early during training due to the static nature of the dataset. In contrast, algorithms using model-
generated data lead to continual improvement of the acceptance rate. Despite f -Distill being much
more computationally costly than GKD due to the use of teacher-generated data, both algorithms
exhibit comparable performance. Notably, GKD achieves the best wall-time performance improve-
ment. See Appendix C.1.2 for more visualizations of performance improvement during training.

We also investigate whether KD improves block efficiency universally or impacts a limited subset
of examples. Figure 3b depicts the improvement per example. We observe consistent gains in block
efficiency across most examples, which can also be seen in various datasets (see Figure C.16). Fig-
ure 3c illustrates a strong agreement between theoretical and empirical block efficiency values for
several distilled models (each model is represented as a filled circle). Despite theoretical values oc-
casionally overestimating or underestimating empirical values, possibly due to potential deviations
from the i.i.d. token-level assumption (cf. §3), the ranking of distilled models remains highly con-
sistent. In summary, these findings largely confirm that KD effectively optimizes block efficiency.

Transferability of distilled models. We next examine the transferability of distilled models on
diverse datasets unseen during training. We use a draft model distilled on GSM8K and test its
ability to speed up SD on zero-shot chain-of-thought (CoT) prompting over 23 reasoning tasks from
the BigBenchHard suite (Suzgun et al., 2022). The results, illustrated in Figure 1, indicate effective
transferability to other datasets. Compared to standard SD, the distilled model significantly enhances
average decoding speeds, yielding speedup improvements from 1.93× and 1.78× to 2.21× and
2.02× for greedy and non-greedy decoding methods, respectively. Further analysis in Figure C.1
reveals that using our distilled T5-Small as draft model is also compatible with larger target models
(T5-XXL) despite being distilled from a different-sized model (T5-XL). Despite being not fully
optimized, this configuration consistently outperforms standard SD by 7% − 37% across various
datasets. See Appendix C.1 for more details.

5.2 DISTILLSPEC RECIPE

We now focus on identifying the optimal KD approach for SD. Following the training and evaluation
protocols in § 5.1, we explore four training data construction methods and four divergence functions
on XSum and GSM8K. Specifically, we explore the following variants of training data: 1) fixed
ground-truth dataset DTrain, 2) data generated only from the draft model Mθ

q , 3) data generated only
from target Mp, 4) data generated from both Mθ

q and Mp in equal proportion. We also examine the
following divergences: 1) forward KL (FKL), 2) Jenson-Shannon divergence (JSD), 3) reverse KL
(RKL), and 4) total variation distance (TVD).

Importance of training data and divergence in DistillSpec. Figure 4 illustrates the block
efficiency improvement on XSum and GSM8K, in line with observations from § 5.1. We note that
using model-generated data (last three rows) yields superior performance than using a fixed dataset
(first row). Specifically, on XSum with greedy decoding, using data generated from both Mθ

q and
Mp leads to the best performance, with JSD slightly outperforming the other divergences. However,
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(a) XSum: τ (greedy)
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(b) GSM8K: τ (greedy)
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(c) GSM8K: τ (non-greedy)

Figure 4: DistillSpec recipe. We report improvement in empirical block efficiency post-distillation on (a)
XSum with greedy sampling, and GSM8K with (b) greedy and (c) non-greedy sampling. Which divergence
function and data construction lead to the largest block efficiency improvements highly depends on the task.
They should be treated as a hyperparameters to be tuned on our task of interest.

on GSM8K with greedy decoding, FKL with only draft-generated data emerges as the best setup. In
contrast, with temperature sampling (at T = 1), a different trend is observed as RKL combined with
data generated by Mp is the most effective setup. See Appendix C.2.1 for results on different datasets
and decoding strategies. Nonetheless, using only draft-generated data is found to be competitive.

Impact of distillation on draft quality vs. compatibility. We also study how different distillation
recipes affect task performance and whether there is any one design choice that is simultaneously
optimal for improving both draft model task performance and its utility for SD (cf. Figure C.23,
C.24). Similar to our earlier observations, the use of generated data is paramount for improving
draft performance. Notably, utilizing data generated from Mθ

q yields comparable or superior results
compared to using data generated from Mp. However, which KD algorithm is optimal largely
depends on the task at hand and the underlying decoding strategy. Figure 5a highlights an interesting
dichotomy between block efficiency improvements and task performance gains via KD: distilled
models with high task performance do not necessarily translate into more aligned drafters for SD.

Recommendation. Interestingly, although TVD is the objective we should aim to optimize for
SD (cf. Eq. 3), its direct optimization does not yield the best performance in most of the settings
explored. We generally find that the choice of divergence in KD is a hyperparameter that needs to be
tuned based on the task at hand and decoding strategy used. For training data construction, we pro-
pose using the draft model Mθ

q for data generation as it can achieve similar or superior performance
compared to the target model Mp, but at a much lower cost.

5.3 QUALITY VERSUS LATENCY TRADE-OFF

Lossy speculative decoding. We analyze the quality-latency trade-off using lossy SD variants, as
detailed in Algorithm A.1. As Figure 5b illustrates, employing either KD (⋆) or SD (×) alone does
not fully bridge the performance or latency gaps, respectively. In such case, a leniency parameter
(ε) can help interpolate between these two approaches, as demonstrated in Figure 5b where each
point within a given group corresponds to a different value of ε. As the GSM8K experiment shows,
the power of interpolation can be limited: even using a permissive lenience of ε = 10−5, flin still
results in high performance but high latency, while fsq traces a similar but slightly extended trade-
off curve. Although fexp makes interpolation possible, it yields a worse quality-latency trade-off.
Interestingly, it is possible to significantly reduce latency while preserving most of the quality on
GSM8K, possibly because many tokens are inconsequential for final performance, and a variety of
proposals can be safely accepted with minimal effect on generation quality. See Appendix C.3.1 for
a comparison between non-distilled and distilled draft models, where we show that a distilled draft
model enables a much better quality vs. latency trade-off.

DistillSpec meets model garden. In many practical scenarios, we have access to multiple mod-
els of different sizes—a model garden—to design the inference pipeline. We emulate this setting
by focusing on the five model sizes in the T5 model family: T5-Small (77M), T5-Base (250M),
T5-Large (800M), T5-XL (3B), and T5-XXL (11B). We study the quality-latency trade-off curves
obtained from applying KD and SD as follows: 1) raw: deploying supervised fine-tuned (SFT) T5
models; 2) distilled: applying KD by distilling smaller models from the larger T5 models; 3) spec-
ulative: applying SD using T5 models; and 4) DistillSpec: applying KD on T5 models and using
SD with distilled models as target and draft models.
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Figure 5: (a) The improvement on speculative decoding and downstream task performance are only weakly
correlated. A high quality distilled model does not imply it can be an effective draft model in speculative
decoding. (b) We employ leniency as a precise control mechanism to achieve the desired quality-latency profile.
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Figure 6: DistillSpec excels in both quality and latency, offering a remarkable 6.4x and 10.7x latency reduction
on XSum (left) and GSM8K (right), while maintaining nearly identical performance.

Figure 6 shows that SD effectively shifts the trade-off curve leftward, especially with larger model
sizes. However, its efficacy diminishes with smaller model sizes when the computation time between
the draft and target models is closely matched. In contrast, distillation, which optimizes the model
for downstream task performance, appears to offer a superior trade-off between quality and latency,
particularly for smaller models. Conversely, a reverse trend is observed for larger model sizes when
evaluating the model with temperature sampling. Figure C.30a indicates a substantial gap between
the distilled model and the larger teacher model, while the SD-based method is able to significantly
reduce latency. This suggests that when stringent performance and decoding strategy constraints are
in place, SD remains a valuable approach. Our DistillSpec method, which combines the benefits
of distillation and SD, consistently achieves the best trade-off between quality and latency, yielding
an impressive reduction in latency while maintaining nearly identical performance. Specifically,
DistillSpec reduces relative latency from 17.3 to 2.7 and from 15.0 to 1.4 on XSum and GSM8K,
respectively, representing speedup improvements of 6.4× and 10.7×. In contrast, the Rouge2 score
only marginally decreases, from 23.1 to 23.0 on XSum, while the model accuracy on GSM8K
actually improves from 33.1 to 34.8.

6 CONCLUSION

In this paper, we evaluate the efficacy of white-box knowledge distillation (KD) in enhancing spec-
ulative decoding (SD) through improved alignment between target and draft models. A thorough
analysis is conducted to understand the impact of training data construction and divergence func-
tions on KD performance. We underscore the significance of utilizing model-generated data and
argue that employing the draft model’s on-policy data during KD is a cost-efficient way of improv-
ing model alignment. Additionally, we assess the trade-off between quality and latency within the
scope of lenience and availability of multiple models of varying quality and size (model garden),
concluding that KD enables a superior trade-off compared to standard SD. The optimal strategy in-
volves first applying KD for downstream task performance, followed by SD using a distilled draft
model, resulting in a six to ten-fold decrease in latency with negligible performance loss. Our study
contributes novel insights into white-box KD algorithms for LLMs and provides guidance for strik-
ing an effective balance between quality and latency using KD and SD.
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A METHOD

A.1 DESCRIPTION OF DIVERGENCE FUNCTIONS

Below are some common divergence functions used in distillation, given two discrete probability
distribution P (C) and Q(C).
Kullback-Leibler (KL) divergence.

DKL(P∥Q) =
∑
c∈C

P (c) log
P (c)

Q(c)
(A.1)

We note that the KL divergence is not symmetric, i.e., DKL(P∥Q) ̸= DKL(Q∥P ). As such, we
refer to DKL(P∥Q) as the forward KL (FKL) and DRKL(P ||Q) := DKL(Q∥P ) as the reverse
KL (RKL) between P and Q. Minimization of the FKL under an empirical data distribution cor-
responds to maximum likelihood estimation (MLE), which is the typical loss objective used in
supervised learning given a fixed dataset.

Jensen–Shannon (JS) divergence.

DJS(P∥Q) =
1

2
(DKL(P∥M) +DKL(Q∥M), where M =

1

2
(P +Q) (A.2)

Generalized Jensen-Shannon divergence (DJSD[β]).

DJSD[β](P∥Q) = βDKL

(
P
∥∥∥βP + (1− β)Q

)
+ (1− β)DKL

(
Q
∥∥∥βP + (1− β)Q

)
(A.3)

Interestingly, it can be proved that limβ→0
DJSD(β)(P∥Q)

β = DKL(P∥Q) (Huszár, 2015). As such,
DJSD[β] behaves similarly to forward KL for small values of β. Similarly, DJSD[β] has similar
behavior to reverse KL for β close to 1, since DJSD[β](P∥Q) = DJSD[1−β](Q∥P ).

Total variation distance (TVD).

DTVD(P∥Q) =
∑
c∈C

|P (c)−Q(c)

2
| (A.4)
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A.2 JUSTIFICATION OF USING ON-POLICY DATA

In this section, we prove Theorem 4.1 which motivates our use of on-policy data. We follow the
notations in Sections 3 and 4. In addition, we write ϵ(x) := Ey∼q≤T (y | x)

[
DTVD(Mp∥Mθ

q)(y |x)
]

for the distillation loss of a single input x.

To ease the analysis, let decompose α(x) and ϵ(x) into sums of contributions from each token.

Lemma A.1. For all x, α(x) = 1− 1
Lp(x)

∑T
t=1 At and ϵ(x) ≥ 1

T

∑T
t=1 Et, where:

At(x) := Ey∼p≤T (y | x)
[
1{t≤|y|}DTVD(p(yt |x, y<t), q(yt |x, y<t))

]
, (A.5)

Et(x) := Ey∼q≤T (y | x)
[
1{t≤|y|}DTVD(p(yt |x, y<t), q(yt |x, y<t))

]
. (A.6)

Proof. By Equation 3, we have:

α(x) = 1−
Ey∼p≤T (y | x)

[∑|y|
t=1 DTVD(p(yt |x, y<t), q(yt |x, y<t))

]
Lp(x)

.

We can rewrite
∑|y|

t=1 DTVD(p(yt), q(yt)) =
∑T

t=1 1{t≤|y|}DTVD(p(yt), q(yt)) and swap the order
between the summation and the expectation to obtain:

α(x) = 1−
∑T

t=1 Ey∼p≤T (y | x)
[
1{t≤|y|}DTVD(p(yt |x, y<t), q(yt |x, y<t))

]
Lp(x)

,

which proves Equation A.5.

Similarly, by definition of ϵ(x) and DTVD we have:

ϵ(x) = Ey∼q≤T (y | x)

 1

|y|

|y|∑
t=1

DTVD(p(yt |x, y<t), q(yt |x, y<t))


≥ Ey∼q≤T (y | x)

 1

T

|y|∑
t=1

DTVD(p(yt |x, y<t), q(yt |x, y<t))

 .

Again, we can rewrite
∑|y|

t=1 DTVD(p(yt), q(yt)) =
∑T

t=1 1{t≤|y|}DTVD(p(yt), q(yt)) and then
swap the order between the summation and the expectation to obtain:

ϵ(x) ≥ 1

T

T∑
t=1

Ey∼q≤T (y | x)
[
1{t≤|y|}DTVD(p(yt |x, y<t), q(yt |x, y<t))

]
,

which proves Equation A.6.

Lemma A.1 motivates us to study At(x) and Et(x) instead. Below we rewrite them in variational
forms that will be used later. For this, we introduce some defintiions.

Definition A.1. For any sequence z ∈ {P, Q}τ that consists only of letters P and Q, we define
M(x, y, z) as the distribution of sequences sampled as follows:

1. Initialize a sequence of tokens as y;

2. If there are t− 1 tokens, sample the t-th token from Mp if zt = P, and from Mq otherwise;

3. Repeat until an end-of-sequence token is sampled, or the sequence length has reached τ .

We use the shorthand Pk and Qk to represent the sequence of k consecutive letters of P and Q re-
spectively. Let Ωk denote the set of all possible strings of length k, and δ : Ωt → [−1/2, 1/2] be a
generic function that maps a sequence of t tokens to a real number in [−1, 1]. We abuse the notation
and assign δ(y) = 0 for all y /∈ Ωt.
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Lemma A.2. For all x and all 1 ≤ t ≤ T :

At(x) = sup
δ:Ωt→[−1/2,1/2]

{
Ey∼M(x,∅,Pt) [δ(y)]− Ey∼M(x,∅,Pt−1Q) [δ(y)]

}
, (A.7)

Et(x) = sup
δ:Ωt→[−1/2,1/2]

{
Ey∼M(x,∅,Qt−1P) [δ(y)]− Ey∼M(x,∅,Qt) [δ(y)]

}
. (A.8)

Proof. For a fixed pair x and y, we rewrite the total variance distance between p(yt |x, y<t) and
q(yt |x, y<t) as the following variational form:

DTVD(p(yt |x, y<t), q(yt |x, y<t))

= sup
δ̃:Ω→[−1/2,1/2]

Eyt∼p(yt | x,y<t)

[
δ̃(yt)

]
− Eyt∼q(yt | x,y<t)

[
δ̃(yt)

]
︸ ︷︷ ︸

=:∆(x,y<t,δ̃)

 .

After taking the expectations:

At(x) = Ey∼p≤T (y | x) [DTVD(p(yt |x, y<t), q(yt |x, y<t))]

= Ey∼p≤T (y | x)

[
sup

δ̃:Ω→[−1/2,1/2]

{
∆(x, y<t, δ̃)

}]

= Ey∼M(x,∅,Pt−1)

[
sup

δ̃:Ω→[−1/2,1/2]

{
1{|y|=t−1}∆(x, y, δ̃)

}]
= sup

δ:Ωt→[−1/2,1/2]

{
Ey∼M(x,∅,Pt−1)

[
1{|y|=t−1}∆(x, y, δ(y, · ))

]}
,

where the third equality uses the observation that for any function f , Ey∼p≤T (y | x) [f(x, y<t)] can
be replaced with Ey∼M(x,∅,Pt−1)

[
1{|y|=t−1}f(x, y)

]
, and the last equality swaps the order between

the expectation and the supremum. Finally, we move the expectations in ∆ to merge with the
expectation outside and obtain:

At(x) = sup
δ:Ωt→[−1/2,1/2]

{
Ey∼M(x,∅,Pt)

[
1{|y|=t}δ(y)

]
− Ey∼M(x,∅,Pt−1Q)

[
1{|y|=t}δ(y)

]}
= sup

δ:Ωt→[−1/2,1/2]

{
Ey∼M(x,∅,Pt) [δ(y)]− Ey∼M(x,∅,Pt−1Q) [δ(y)]

}
,

where the last step follows from our abuse of notation that δ(y) = 0 for all y /∈ Ωt. This proves
Equation A.7, and Equation A.8 can be proved similarly.

Based on our variational forms of At(x) and Et(x), we obtain the following lemma for bounding
At(x) in terms of Et(x).

Lemma A.3. For all x and 1 ≤ t ≤ T :

At(x) ≤ 2

t−1∑
k=1

Ek(x) + Et(x). (A.9)

Proof. It suffices to find an upper bound on Ey∼M(x,∅,Pt) [δ(y)] and a lower bound on
Ey∼M(x,∅,Pt−1Q) [δ(y)] for all δ : Ωt → [−1/2, 1/2].

For all 1 ≤ k ≤ t, we can replace the first P in Ey∼M(x,∅,Qk−1Pt−k+1) [δ(y)] with Q by only intro-
ducing an error of Ek+1(x):

Ey∼M(x,∅,Qk−1Pt−k+1) [δ(y)] = Ey∼M(x,∅,Qk−1P)

[
1{|y|=k}Ey′∼M(x,y,Pt−k) [δ(y

′)]
]

≤ Ey∼M(x,∅,Qk)

[
1{|y|=k}Ey′∼M(x,y,Pt−k) [δ(y

′)]
]
+ Ek(x)

= Ey∼M(x,∅,QkPt−k) [δ(y)] + Ek(x),
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where the second inequality holds because we can define a function δ′ : Ωk →
[−1/2, 1/2], suchthatδ(y) = 1{|y|=k}Ey′∼M(x,y,Pt−k) [δ(y

′)] and then apply Equation A.8.

Now taking a telescoping sum over 1 ≤ k ≤ t, we obtain:

Ey∼M(x,∅,Pt) [δ(y)] ≤ Ey∼M(x,∅,Qt) [δ(y)] +

t∑
k=1

Ek(x). (A.10)

Similarly, for all 1 ≤ k ≤ t− 1, we can replace the first P in Ey∼M(x,∅,Qk−1Pt−kQ) [δ(y)] with Q and
only introduce an error of Ek(x):

Ey∼M(x,∅,Qk−1Pt−kQ) [δ(y)] = Ey∼M(x,∅,Qk−1P)

[
1{|y|=k}Ey′∼M(x,y,Pt−k−1Q) [δ(y

′)]
]

= −Ey∼M(x,∅,Qk−1P)

[
−1{|y|=k}Ey′∼M(x,y,Pt−k−1Q) [δ(y

′)]
]

≥ −
(
Ey∼M(x,∅,Qk)

[
−1{|y|=k}Ey′∼M(x,y,Pt−k−1Q) [δ(y

′)]
]
+ Ek(x)

)
= Ey∼M(x,∅,QkPt−k−1Q) [δ(y)]− Ek(x).

Taking a telescoping sum over 1 ≤ k ≤ t− 1 yields:

Ey∼M(x,∅,Pt−1Q) [δ(y)] ≥ Ey∼M(x,∅,Qt) [δ(y)]−
t−1∑
k=1

Ek(x). (A.11)

Subtracting Equation (A.11) from Equation (A.10), we have the following holds for all functions
δ : S → [−1/2, 1/2]:

Ey∼M(x,∅,Pt) [δ(y)]− Ey∼M(x,∅,Pt−1Q) [δ(y)] ≤
t∑

k=1

Ek(x) +

t−1∑
k=1

Ek(x) = 2

t−1∑
k=1

Ek(x) + Et(x),

which proves the claim.

Proof of Theorem 4.1. Summing Equation A.9 over 1 ≤ t ≤ T , we have:

T∑
t=1

At(x) ≤
T∑

t=1

(1 + 2(T − t))Et(x).

Combining this with Lemma A.1 yields:

α(x) = 1− 1

Lp(x)

T∑
t=1

At ≥ 1− 1

Lp(x)

T∑
t=1

(1 + 2(T − t))Et(x)

≥ 1− 2T

Lp(x)

T∑
t=1

Et(x)

≥ 1− 2T 2

Lp(x)
ϵ(x),

which proves the theorem statement after taking the expectation over x ∼ X .
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A.3 DISTILLSPEC ALGORITHMS

Algorithm A.1 Speculative decoding step

Require: target model Mp, draft model Mq , context ρ = {x, y<t}.
Hyperparameters: block size (γ), lenience Function f(p, ϵ) (ϵ = 1 for lossless and ϵ < 1 for lossy decoding).

1: for all i = 0 to γ − 1 do
2: qt+i(y)←Mq (x, y<t+i), yt+i ∼ qt+i(y) ▷ Sample γ tokens from Mq autoregressively.
3: end for
4: (pt(y), . . . , pt+γ(y))← (Mp(x, y<t), . . . ,Mp(x, y<t+γ)) ▷ Run Mp in parallel.
5: ri ← f(pi(y),ϵ)

qi(y)
, ∀t ≤ i < t+ γ ▷ Compute the rejection thresholds.

6: ut ∼ Uniform(0, 1), . . . , ut+γ−1 ∼ Uniform(0, 1) ▷ Generate γ random values.
7: n← min ({i | 0 ≤ i < γ, ut+i > rt+i} ∪ {γ}) ▷ Determine the number of accepted tokens n.
8: if n < γ then
9: yt+n ∼ norm (max (0, pt+n(y)− qt+n(y))) ▷ Sample from the adjusted distribution.

10: else
11: yt+n ∼ pt+n(y) ▷ Sample from Mp.
12: end if

Return {x, y<t+n+1} ▷ Append n tokens from Mq and one token from Mp.

Algorithm A.2 Knowledge distillation

Require: target model Mp, draft model Mθ
q , dataset (X,Y ) containing input x and possibly output y.

Hyperparameters: fixed data fraction λ1 ∈ [0, 1], student data fraction λ2 ∈ [0, 1], divergence function D,
learning rate η.

1: u1 ∼ Uniform(0, 1), u2 ∼ Uniform(0, 1) ▷ Generate two random values.
2: if u1 ≤ λ1 then
3: B = {(xb, yb)}Bb=1, where (xi, yi) ∼ (X,Y ) ▷ Sample inputs and outputs from (X,Y ).
4: else
5: B′ = {(xb)}Bb=1, where xi ∼ X ▷ Sample a batch of inputs from X .
6: if u2 ≤ λ2 then
7: B = {(xb, yb)}Bb=1, where xi ∼ B′, yi ∼Mθ

q(·|xi) ▷ Sample data from Mq .
8: else
9: B = {(xb, yb)}Bb=1, where xi ∼ B′, yi ∼Mp(·|xi) ▷ Sample data from Mp.

10: end if
11: end if

Return θ ← θ − η 1
B

∑
(x,y)∈B ∇θD(Mp∥Mθ

q)(y|x) ▷ Update θ to minimize D(Mp∥Mθ
q).
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B IMPLEMENTATION DETAILS

B.1 DATASETS

In this section, we present a comprehensive overview of the datasets employed in this study.

XSum (Narayan et al., 2018). The Extreme Summarization (XSum) dataset serves as an eval-
uation benchmark for abstractive single-document summarization systems. This dataset comprises
226,711 news articles, sourced from BBC articles spanning the years 2010 to 2017. These articles
encompass a wide range of domains, including News, Politics, Sports, Weather, Business, Technol-
ogy, Science, Health, Family, Education, Entertainment, and Arts. Summarization performance is
evaluated using ROUGE scores on the validation dataset split of XSum and primarily emphasizes
ROUGE-2, but with similar trends observed for ROUGE-LSum and ROUGE-1. A maximum input
length of 1,024 and a maximum output length of 64 are employed for distillation and evaluation.

CNN/DM (Hermann et al., 2015). The CNN/Daily Mail (CNN/DM) dataset is tailored for text
summarization. It comprises abstractive summary bullets generated by humans from news stories on
CNN and Daily Mail websites, presented in the form of questions with entities hidden. The questions
can be answered using relevant passages from the source text. Similar to XSum, ROUGE scores
on the validation dataset are reported, primarily emphasizing ROUGE-2 but with similar trends
observed for ROUGE-LSum and ROUGE-1. A maximum input length of 2,048 and a maximum
output length of 128 are used for distillation and evaluation.

WMT EnDe (Bojar et al., 2014). The WMT14 EnDe dataset stands as a standard benchmark for
machine translation. The task entails translating English text to German while preserving content,
semantics and style. Evaluation is based on BLEU scores, which measures the similarity of machine-
translated text to high-quality reference translations. A maximum input length of 80 and a maximum
output length of 80 are employed for distillation and evaluation, with performance assessed on the
original test split.

GSM8K (Cobbe et al., 2021). The GSM8K dataset comprises 8.5K high-quality, linguistically
diverse grade school math word problems crafted by human problem writers. The dataset is divided
into 7.5K training problems and 1K test problems, with solutions typically requiring 2 to 8 steps
involving elementary calculations using basic arithmetic operations. To enhance reasoning abilities,
we explored distillation alongside zero-shot chain-of-thought (CoT), as described in Agarwal et al.
(2023). A maximum input length of 256 and a maximum output length of 320 are used for distillation
and evaluation.

LM1B Chelba et al. (2013). The One Billion Word dataset (LM1B) is a widely recognized
benchmark for language modeling. The training and held-out data are derived from the WMT 2011
News Crawl dataset using Bash shell and Perl scripts. A maximum input length of 128 and a
maximum output length of 128 are used for distillation and evaluation.

B.2 MODELS

In accordance with Leviathan et al. (2023), we evaluate two model types: 1) GPT-like decoder-only
Transformer models trained on the LM1B task (Chelba et al., 2013) using the standard autoregres-
sive objective, where the target and draft models have 234M and 33M parameters, respectively;
and 2) standard encoder-decoder T5 v1.1 models (Raffel et al., 2020) supervised fine-tuned on four
different tasks, with T5-XL (3B) and T5-Small (77M) serving as the target and draft models, respec-
tively.

The target Mp in the decoder-only model experiment has hidden dimension 1,024, feed-forward
dimension 4,096, 12 layers and 16 attention heads per transformer block, for a total of 234M
parameters. The corresponding draft model Mθ

q has hidden dimension 512, feed-forward dimen-
sion 1,024, 4 layers and 4 attention heads per transformer block, for a total of 33M parame-
ters. All models utilize the T5 tokenizer with 32k tokens. As for the T5 base checkpoints, we
start from LM-adapted T5v1.1 models. These LM-adapted models are initialized from T5v1.1
and trained for an additional 100K steps on the LM objective discussed in the T5 paper (Raffel
et al., 2020). These checkpoints are available at https://console.cloud.google.com/
storage/browser/t5-data/pretrained_models.
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In our encoder-decoder distillation experiments, both the student and teacher models are initialized
from models supervised fine-tuned on the original training dataset. This process for each dataset is
detailed as follows:

• XSum: for T5-Small, -Base, -Large, -XL and -XXL models, we warm start distillation
from LM-Adapted T5v1.1 models supervised fine-tuned for 100K, 50K, 30k, 20K and 8K
steps, respectively.

• CNN/DM: for T5-Small,-Base,-Large, -XL and -XXL models, we warm start distillation
from LM-Adapted T5v1.1 models supervised fine-tuned for 200K, 80K, 20k, 20k and 4K
steps, respectively.

• WMT: for T5-Small,-Base,-Large, -XL and -XXL models, we warm start distillation from
LM-Adapted T5v1.1 models supervised fine-tuned for 250K, 250K, 110k , 50K and 10K
steps, respectively.

• GSM8K: all models are supervised fine-tuned starting from FLAN-T5 models on the
PaLM-540 generated CoT dataset for 10K steps.

B.3 DISTILLATION

Training Data for KD. We study the five KD algorithms outlined in Table 1. For SeqKD (Kim &
Rush, 2016) and f -Distill (Wen et al., 2023), we opt for an online teacher data generation approach
instead of a conventional fixed offline teacher-generated dataset. This approach, while computation-
ally expensive, yields a more diverse dataset. For GKD, we exclude the static ground truth data and
solely rely on the data generated by the online student model. All data generated by the teacher or
the student is based on temperature sampling with a temperature of 1.0 (see Appendix C.1.3 for an
ablation study on sampling temperature).

Training Details. We employ an Adafactor optimizer (Shazeer & Stern, 2018) to train the draft
student model (Mθ

q) in all our experiments, following the guidelines outlined in Algorithm A.2. In
the context of our knowledge distillation (KD) loss function, defined in Eq. 2, we maintain the tem-
peratures for both the target model, denoted as Tp, and the draft model, denoted as Tq , at a constant
value of 1.0. We ought to emphasize the significance of maintaining this uniform temperature set-
ting as it plays a pivotal role in speculative decoding, by ensuring a consistent and coherent semantic
interpretation for both Mp and Mθ

q . A summary of the hyperparameters used in our knowledge dis-
tillation process can be found in Table B.1.

Table B.1: Hyperparameters for distillation experiments.

hyperparameter value
training steps 300,000
batch size 32
dropout 0.0
learning rate (LR) 0.0003
LR warmup steps 5,000
LR cooldown (begin, end) (150,000, 300,000)
warmup schedule linear (from 0 to LR)
cooldown schedule cosine decay (from LR to 0.1LR)
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B.4 EVALUATION

To obtain scores for each task (specifically, ROUGE-2 for XSum and CNN/DM, BLEU for WMT,
and accuracy for GSM8K), we employ the evaluation methodology in Agarwal et al. (2023). We
assess models on all examples in the test or validation sets and report their average performance. To
assess empirical speculative decoding performance, i.e., the empirical acceptance rate and empirical
block efficiency, we conduct evaluations on all instances in the test or validation sets and report the
average value of these metrics.

To measure the actual latency, we follow Leviathan et al. (2023) and execute both our target model
and draft models are on the same TPUv4 device without utilizing model parallelism. We randomly
sample 500 examples from either the test or validation set, and measure the wall-clock decoding time
on a batch size of 1. This measurement procedure is repeated three times, and the mean performance
is reported. We have observed minimal variance across different random seeds in our results.
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C ADDITIONAL RESULTS

C.1 ENHANCING SPECULATIVE DECODING THROUGH KNOWLEDGE DISTILLATION

Table C.1: DistillSpec improves speculative decoding performance across various datasets and block
sizes, for both greedy decoding and temperature sampling. BBH-AVG contains the evaluation of the
distilled draft model from GSM8K on all BIG-Bench Hard (BBH) tasks (Suzgun et al., 2022); we
report the average results over the 23 BBH tasks. See Figure C.2 and C.3 for a detailed breakdown
of performance on individual BBH tasks.

Dataset Model
Sampling w/o Distillation with Distillation

temp γ τ SPEED τ SPEED ∆ Method

XSum

Target Mp T=0
3 2.31 1.44× 2.62 1.58× +0.14× f -Distill
5 2.57 1.43× 3.08 1.62× +0.19× f -Distill

T5-XL (3B) 7 2.68 1.36× 3.31 1.57× +0.21× f -Distill

Draft Mq T=1
3 2.19 1.40× 2.58 1.57× +0.17× f -Distill
5 2.39 1.37× 3.01 1.61× +0.25× f -Distill

T5-Small (77M) 7 2.47 1.28× 3.21 1.55× +0.27× f -Distill

CNNDM

Target Mp T=0
3 2.83 1.89× 3.19 2.11× +0.22× f -Distill
5 3.46 2.07× 4.13 2.42× +0.35× GKD

T5-XL (3B) 7 3.85 2.07× 4.83 2.53× +0.46× f -Distill

Draft Mq T=1
3 2.49 1.71× 2.87 1.93× +0.23× f -Distill
5 2.89 1.77× 3.52 2.12× +0.35× f -Distill

T5-Small (77M) 7 3.08 1.71× 3.92 2.12× +0.41× f -Distill

WMT

Target Mp T=0
3 3.22 2.08× 3.30 2.13× +0.05× f -Distill
5 4.17 2.33× 4.32 2.41× +0.08× f -Distill

T5-XL (3B) 7 4.83 2.36× 5.06 2.46× +0.10× f -Distill

Draft Mq T=1
3 2.73 1.77× 2.88 1.83× +0.07× GKD
5 3.29 1.83× 3.48 1.93× +0.10× GKD

T5-Small (77M) 7 3.54 1.72× 3.85 1.84× +0.12× f -Distill

GSM8K

Target Mp T=0
3 2.60 1.51× 2.96 1.69× +0.18× GKD
5 3.06 1.42× 3.68 1.65× +0.22× GKD

T5-XL (3B) 7 3.27 1.36× 4.14 1.60× +0.24× GKD

Draft Mq T=1
3 2.58 1.48× 2.84 1.64× +0.16× f -Distill
5 3.03 1.39× 3.45 1.58× +0.19× f -Distill

T5-Small (77M) 7 3.23 1.33× 3.84 1.53× +0.20× f -Distill

LM1B

Target Mp T=0
3 2.96 3.66× 3.13 3.97× +0.31× f -Distill
5 3.69 3.35× 3.92 3.51× +0.16× f -Distill

GPT-Like (234M) 7 4.15 2.52× 4.55 2.72× +0.20× f -Distill

Draft Mq T=1
3 2.51 2.34× 2.69 2.45× +0.11× f -Distill
5 2.90 2.79× 3.20 3.02× +0.23× f -Distill

GPT-Like (33M) 7 3.10 1.98× 3.51 2.18× +0.20× f -Distill

BBH-AVG

Target Mp T=0
3 2.55 1.90× 2.68 2.06× +0.16× f -Distill
5 2.98 1.92× 3.19 2.16× +0.24× f -Distill

T5-XL (3B) 7 3.20 1.93× 3.49 2.21× +0.28× f -Distill

Draft Mq T=1
3 2.45 1.79× 2.57 1.93× +0.14× f -Distill
5 2.81 1.80× 3.03 1.98× +0.18× f -Distill

T5-Small (77M) 7 3.01 1.78× 3.28 2.02× +0.23× f -Distill
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Figure C.1: The distilled draft T5-Small model, derived from a T5-XL teacher model, is capable
of generalizing to a larger target model (T5-XXL), resulting in a substantial acceleration in various
scenarios. BBH-AVG contains the evaluation of the distilled draft model from GSM8K on all BIG-
Bench Hard (BBH) tasks (Suzgun et al., 2022); we report the average results over the 23 BBH tasks.
See Figure C.4 and C.5 for a detailed breakdown of performance on individual BBH tasks.
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Figure C.2: Assessing DistillSpec’s model transferability on the BIG-Bench Hard suite: zero-shot
CoT reasoning with non-greedy decoding. This study examines a T5-Small draft model, initially
trained on the GSM8K dataset, across 23 varied tasks using T5-XL as the target model. DistillSpec
can deliver significant speculative decoding speedups on a broad spectrum of tasks.
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Figure C.3: Assessing DistillSpec’s model transferability on the BIG-Bench Hard suite: zero-shot
CoT reasoning with greedy decoding. This study examines a T5-Small draft model, initially trained
on the GSM8K dataset, across 23 varied tasks using T5-XL as the target model. DistillSpec can
deliver significant speculative decoding speedups on a broad spectrum of tasks.
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Figure C.4: Assessing DistillSpec’s model transferability on the BIG-Bench Hard suite: zero-shot
CoT reasoning with non-greedy decoding. This study examines a T5-Small draft model, initially
trained on the GSM8K dataset, across 23 varied tasks using T5-XXL as the target model. DistillSpec
can deliver significant speculative decoding speedups on a broad spectrum of tasks.
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Figure C.5: Assessing DistillSpec’s model transferability on the BIG-Bench Hard suite: zero-shot
CoT reasoning with greedy decoding. This study examines a T5-Small draft model, initially trained
on the GSM8K dataset, across 23 varied tasks using T5-XXL as the target model. DistillSpec can
deliver significant speculative decoding speedups on a broad spectrum of tasks.
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C.1.1 EMPIRICAL BLOCK EFFICIENCY IMPROVEMENT
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Figure C.6: Empirical block efficiency improvement of DistillSpec for non-greedy sampling (T = 1)
and block size γ = 3. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of the
distillation methods being considered, with f-Distill and GKD yielding the highest gains.

2.40

2.60

2.80

3.00

Bl
oc

k 
Ef

fic
ie

nc
y 

(
)

Without Distillation

XSum

2.80

3.00

3.20

3.40

3.60

Without Distillation

CNNDM

3.30

3.40

3.50

Without Distillation

WMT

3.00

3.20

3.40

Without Distillation

GSM8K

SupervisedKD SeqKD ImitKD f-Distill GKD

Figure C.7: Empirical block efficiency improvement of DistillSpec for non-greedy sampling (T = 1)
and block size γ = 5. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of the
distillation methods being considered, with f-Distill and GKD yielding the highest gains.
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Figure C.8: Empirical block efficiency improvement of DistillSpec for non-greedy sampling (T = 1)
and block size γ = 7. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of the
distillation methods being considered, with f-Distill and GKD yielding the highest gains.
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Figure C.9: Empirical block efficiency improvement of DistillSpec for greedy sampling (T = 0)
and block size γ = 3. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of
the distillation methods being considered, with GKD weakly outperforming the other methods on
average.
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Figure C.10: Empirical block efficiency improvement of DistillSpec for greedy sampling (T = 0)
and block size γ = 5. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of
the distillation methods being considered, with GKD weakly outperforming the other methods on
average.
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Figure C.11: Empirical block efficiency improvement of DistillSpec for greedy sampling (T = 0)
and block size γ = 7. The draft model is trained using one of the distillation methods listed in
Table 1 of Section 4. The dashed line indicates the block efficiency of speculative decoding using
a non-distilled draft model. DistillSpec outperforms standard speculative decoding across all of
the distillation methods being considered, with GKD weakly outperforming the other methods on
average.
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C.1.2 PERFORMANCE IMPROVEMENT OVER TIME
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Figure C.12: Progression of the acceptance rate α of DistillSpec over the training of the draft model,
measured by the number of training steps. The draft model is trained using one of the distillation
methods listed in Table 1 of Section 4. GKD and f -Distill yields the most consistent improvement in
α over training steps, while SupKD yields the least improvement and exhibits declining acceptance
rates after ∼40k training steps on XSum and CNNDM.
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Figure C.13: Progression of the acceptance rate of DistillSpec over the training of the draft model,
measured by the training wall time. The draft model is trained using one of the distillation methods
listed in Table 1 of Section 4. GKD and f -Distill yield the most consistent improvement in α over
training wall time, while SupKD yields the least improvement and even exhibits an inflection in the
acceptance rate early during training.
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Figure C.14: Progression of the block efficiency τ of DistillSpec over the training of the draft model,
measured by the number of training steps. The draft model is trained using one of the distillation
methods listed in Table 1 of Section 4. GKD and f -Distill yield the most consistent improvement in
τ over training, while SupKD yields the least improvement and exhibits a drop in block efficiency
after ∼40k training steps on XSum and CNNDM.
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Figure C.15: Progression of the task performance of the draft model over the course of its training,
as measured by the number of training steps. Task performance is based on sampling temperature
T = 0.1 and is measured by the Rouge2 score on the XSum and CNNDM datasets, and the accuracy
score with the help of a calculator on GSM8K. The draft model is trained using one of the distillation
methods listed in Table 1 of Section 4. GKD and f-Distill yield the most consistent improvement in
task performance over training, while SupKD yields the least improvement and exhibits declining
Rouge2 scores after ∼40k training steps on XSum and CNNDM.
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Figure C.16: Comparison of the block efficiency of draft models trained with distillation vs. without
distillation. The draft model is trained using f-Distill on XSum and CNNDM, and on-policy GKD
on GSM8K. For each dataset and draft model, the block efficiency is sorted and plotted from lowest
to highest index. The higher position of the curve for the distilled draft model at each index indi-
cates that the distribution of block efficiency of the distilled draft model first-order stochastically
dominates the block efficiency of the non-distilled draft model.
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C.1.3 SAMPLING TEMPERATURE EFFECT
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(a) distilling on student generations (on-policy)
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(b) distilling on target model generations

Figure C.17: Effect of the sampling temperature on the acceptance rate in XSum decoding. We
assess how varying the sampling temperature influences speculative decoding performance in two
distinct scenarios: (a) the draft model is trained on its own generated sequences (on-policy distil-
lation), and (b) the draft model is trained on sequences sampled from the target model. In both
instances, we find that using a high sampling temperature is paramount for attaining superior per-
formance.

C.1.4 REDUCTION IN CROSS-ENTROPY
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Figure C.18: BiLD (Kim et al., 2023) proposes an SD variant that uses the cross-entropy between
the target and draft model as the rejection criterion and uses SeqKD to improve the alignment.
Our experiment shows that GKD can reduce the cross-entropy more effectively than SeqKD. Thus,
DistillSpec can potentially be utilized to improve BiLD.
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C.2 DISTILLATION RECIPE

C.2.1 SCORE AND BLOCK EFFICIENCY IMPROVEMENT
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Figure C.19: Improvement in the Rouge2 score of DistillSpec over standard speculative decoding on
XSum given by different combinations of divergence functions and generative distributions used in
the draft model distillation (see Table 1 of Section 4), using greedy (T = 0) and non-greedy (T = 1)
sampling.
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Figure C.20: Improvement in the block efficiency of DistillSpec over standard speculative decoding
on XSum given by different combinations of divergence functions and generative distributions used
in the draft model distillation (see Table 1 of Section 4), using greedy (T = 0) and non-greedy
(T = 1) sampling.
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Figure C.21: Improvement in the accuracy score of DistillSpec over standard speculative decoding
on GSM8K given by different combinations of divergence functions and generative distributions
used in the draft model distillation (see Table 1 of Section 4), using greedy (T = 0) and non-greedy
(T = 1) sampling.

FKL JSD RKL TVD

Fixed ( Train)

Student ( q)

q + p

Teacher ( p)

0.22 0.31 0.32 0.29

0.42 0.43 0.45 0.41

0.36 0.47 0.47 0.44

0.33 0.44 0.49 0.43

Block Efficiency Improvement

0.0

0.1

0.2

0.3

0.4

(a) non-greedy decoding (T = 1)

FKL JSD RKL TVD

Fixed ( Train)

Student ( q)

q + p

Teacher ( p)

0.23 0.29 0.29 0.26

0.61 0.42 0.43 0.38

0.49 0.43 0.47 0.41

0.35 0.43 0.46 0.42

Block Efficiency Improvement

0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b) greedy decoding (T = 0)

Figure C.22: Improvement in the block efficiency of DistillSpec over standard speculative decoding
on GSM8K given by different combinations of divergence functions and generative distributions
used in the draft model distillation (see Table 1 of Section 4), using greedy (T = 0) and non-greedy
(T = 1) sampling.
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C.2.2 IMPACT OF DISTILLATION ON DRAFT QUALITY VS. COMPATIBILITY

3 4 5 6
Rouge2 Improvement

0.1

0.2

0.3

0.4

0.5

0.6
 Im

pr
ov

em
en

t
Divergence
FKL
JSD0.5
RKL
TVD
TrainData
Teacher ( p)
Student ( q)
Fixed ( Train)

q + p

(a) non-greedy decoding (T = 1)

1 2 3
Rouge2 Improvement

0.0

0.1

0.2

0.3

0.4

0.5

 Im
pr

ov
em

en
t

Divergence
FKL
JSD0.5
RKL
TVD
TrainData
Teacher ( p)
Student ( q)
Fixed ( Train)

q + p

(b) greedy decoding (T = 0)

Figure C.23: Correlation plot of the improvements in the block efficiency (y-axis) and Rouge2 score
(x-axis) of DistillSpec over standard speculative decoding on XSum given by different combinations
of divergence functions and generative distributions used in the draft model distillation (see Table 1
of Section 4), using greedy (T = 0) and non-greedy (T = 1) sampling.
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Figure C.24: Correlation plot of the improvements in the block efficiency (y-axis) and Accuracy (x-
axis) of DistillSpec over standard speculative decoding on GSM8K given by different combinations
of divergence functions and generative distributions used in the draft model distillation (see Table 1
of Section 4), using greedy (T = 0) and non-greedy (T = 1) sampling.
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C.3 QUALITY VERSUS LATENCY TRADE-OFF
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(b) using distilled draft model (DistillSpec)

Figure C.25: Tradeoff between task performance and decoding latency on XSum enabled by com-
bining lossy speculative decoding with the alternative variants of DistillSpec presented in Section 4.
The higher position and flatter slope of the tradeoff curve for DistillSpec indicate that the method
enables larger latency gains for smaller reduction in model quality than are feasible under standard
SD.
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Figure C.26: Tradeoff between task performance and decoding latency on CNNDM enabled by
combining lossy speculative decoding with the alternative variants of DistillSpec presented in Sec-
tion 4. The higher position and flatter slope of the tradeoff curve for DistillSpec indicate that the
method enables larger latency gains for smaller reduction in model quality than are feasible under
standard SD.
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Figure C.27: Tradeoff between task performance and decoding latency on WMT enabled by com-
bining lossy speculative decoding with the alternative variants of DistillSpec presented in Section
4. While the similar height and slope of the tradeoff curves of DistillSpec and standard SD indicate
a comparable quality-latency tradeoff between the two setups, DistillSpec exhibits lower latency
overall.
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(a) using non-distilled draft model (standard SD)
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(b) using distilled draft model (DistillSpec)

Figure C.28: Tradeoff between task performance and decoding latency on GSM8K enabled by com-
bining lossy speculative decoding with the alternative variants of DistillSpec presented in Section
4. While the similar height and slope of the tradeoff curves of DistillSpec and standard SD indicate
a comparable quality-latency tradeoff between the two setups, DistillSpec exhibits lower latency
overall.
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C.3.2 DISTILLSPEC MEETS MODEL GARDEN
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(a) non-greedy decoding (T = 1)
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(b) greedy decoding (T = 0)

Figure C.29: Quality-latency trade-off curves on XSum using greedy (T = 0) or non-greedy (T = 1)
sampling, for a single target LLM trained without distillation (“Raw”), trained by distilling from
a larger LLM (“Distilled”), speculative decoding using a draft model trained without distillation
(“Speculative”), and speculative decoding combining a distilled target LLM with a distilled draft
model (“DistillSpec”).
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(a) non-greedy decoding (T = 1)
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(b) greedy decoding (T = 0)

Figure C.30: Quality-latency trade-off curves on GSM8K using greedy (T = 0) or non-greedy (T =
1) sampling, for a single target LLM trained without distillation (“Raw”), trained by distilling from
a larger LLM (“Distilled”), speculative decoding using a draft model trained without distillation
(“Speculative”), and speculative decoding using a distilled target LLM combining a distilled draft
model (“DistillSpec”).
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