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Abstract
As first-order optimization methods become the
method of choice for solving large-scale optimiza-
tion problems, optimization solvers based on first-
order algorithms are being built. Such general-
purpose solvers must robustly detect infeasible
or misspecified problem instances, but the com-
putational complexity of first-order methods for
doing so has yet to be formally studied. In this
work, we characterize the optimal accelerated rate
of infeasibility detection. We show that the stan-
dard fixed-point iteration achieves a O(1/k2) and
O(1/k) rates, respectively, on the normalized it-
erates and the fixed-point residual converging to
the infimal displacement vector, while the accel-
erated fixed-point iteration achieves O(1/k2) and
Õ(1/k2) rates. We then provide a matching com-
plexity lower bound to establish that Θ(1/k2) is
indeed the optimal accelerated rate.

1. Introduction
First-order optimization methods have become the method
of choice for solving the large-scale optimization problems
of the modern era. As first-order methods scale more fa-
vorably than classical interior-point methods (O’Donoghue
et al., 2016; Stellato et al., 2020; Garstka et al., 2021), new
optimization solvers based on first-order algorithms are be-
ing built with the goal of replacing classical solvers based
on interior-point methods or simplex methods in large-scale
applications.

However, these new first-order solvers are far less equipped
to robustly detect infeasible or misspecified problem in-
stances. A general-purpose solver must robustly detect
infeasible problem instances arising from user misspecifi-
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cation or from applications such as embedded application,
mixed-integer optimization with branch-and-bound tech-
nique, or combinatorial optimization (Naik & Bemporad,
2017; De Loera et al., 2012). Classical solvers based on in-
terior point methods or simplex methods, in their first phase,
determines whether the problem is feasible or infeasible
by finding a feasible point. The behavior of such classical
solvers under pathologies is well understood through ex-
tensive theoretical research and through the decades-long
deployment of open-source and commercial solvers. The
analysis of first-order algorithms such as Douglas-Rachford
splitting (DRS) and ADMM applied to pathological prob-
lem instances has started to gain attention. However, the
computational complexity of determining the infeasibility
of a given problem instance has yet to be formally studied.

In this work, we characterize the optimal accelerated rate of
infeasibility detection by analyzing the convergence rates
of fixed-point iterations towards the infimal displacement
vector, which serves as a certificate of infeasibility. We show
that the standard fixed-point iteration achieves a O(1/k2)
and O(1/k) rates, respectively, on the normalized iterates
and the fixed-point residual, while the accelerated fixed-
point iteration achieves O(1/k2) and Õ(1/k2) rates. We
then provide a matching complexity lower bound to estab-
lish that Θ(1/k2) is indeed the optimal accelerated rate.

1.1. Preliminaries and notations

We use the standard notations in Ryu & Yin (2022).

Sets and operators. Let H be a real Hilbert space. For a
set C ⊆ H, we denote by convC a convex hull of C, C a
closure of C, and convC a closure of a convex hull of C.
If C is a nonempty closed convex set, for any x ∈ H, there
exists a unique vector z ∈ C such that z ∈ argminy∈C ∥x−
y∥2, which is denoted as ΠC(x) and called a projection of
x onto C. We also let δC refer to the indicator function of
set C. We denote by Sn the set of all n × n symmetric
matrices and by Sn

+ the set of all n× n symmetric positive
semidefinite matrices. We say X ⪰ Y if X − Y ∈ Sn

+ for
X,Y ∈ Sn.

Let 𝕋 : H ⇒ H be a set-valued operator. dom𝕋 = {x |
𝕋x ̸= ∅} is called the domain of 𝕋, and R(𝕋) = {y | ∃x ∈
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H s.t. y ∈ 𝕋x} is called the range of 𝕋. For a single-valued
operator 𝕋 : H → H, it is called nonexpansive if ∥𝕋x −
𝕋y∥ ≤ ∥x−y∥ for all x, y ∈ dom𝕋 and γ-contractive with
0 < γ < 1 if ∥𝕋x− 𝕋y∥ ≤ γ∥x− y∥ holds for all x, y ∈
dom𝕋, and θ-averaged if there exists nonexpansive operator
𝕊 and identity operator 𝕀 such that 𝕋 = θ𝕊+ (1− θ)𝕀. 𝕋 is
called maximal nonexpansive (contractive) if dom𝕋 = H.
If x⋆ ∈ H is a point such that x⋆ = 𝕋x⋆, we call x⋆ a fixed
point of 𝕋. Fix𝕋 ⊆ H denotes a set of fixed points of 𝕋.

Fixed-point iteration. Classical Banach fixed-point the-
orem illustrates that if 𝕋 : H → H is a contraction, then
Fix𝕋 is nonempty and the Picard iteration (Picard)

xk+1 = 𝕋xk, k = 0, 1, . . . (Picard)

starting from x0 ∈ H converges to some x⋆ ∈ Fix𝕋.
When 𝕋 is nonexpansive but not necessarily contractive,
(Picard) may not converge to the fixed point of 𝕋. In
such cases, to guarantee the convergence, one may use
Krasnosel’skiı̆-Mann iteration (Krasnosel’skiı̆, 1955; Mann,
1953) or Halpern iteration (Halpern, 1967), whose forms
are described in Section 3.

Constrained optimization and fixed-point iterations.
Consider a constrained optimization problem

minimize
x∈H

f(x)

subject to x ∈ C,

where f : Rn → R is convex and C ⊆ Rn is a nonempty
closed convex set. Problems of this type can be solved
with various first-order methods including projected gra-
dient method, proximal gradient method, alternating di-
rection method of multipliers (ADMM), and primal-dual
hybrid gradient (PDHG). These methods can be understood
and analyzed as nonexpansive fixed-point iterations (Ryu &
Yin, 2022). Therefore, the analysis of fixed-point iteration
broadly applies to this broad class of first-order methods.

Inconsistent operators. We say 𝕋 is consistent if
Fix𝕋 ̸= ∅ and inconsistent if Fix𝕋 = ∅. 𝕋 is inconsistent
if and only if 0 /∈ R(𝕀 − 𝕋). From the well-known fact
that R(𝕀− 𝕋) is closed and convex (Pazy, 1971, Lemma
4), v = ΠR(𝕀−𝕋)

(0) is well-defined, and v is called infimal
displacement vector. If 𝕋 is consistent, then v = 0. If v ̸= 0,
then 𝕋 is inconsistent.

Any nonexpansive operator 𝕋 is of exactly one of these
three cases: (i) Fix𝕋 ̸= ∅, (ii) v ̸= 0, and (iii) Fix𝕋 = ∅
with v = 0. In convex optimization, (i) corresponds to the
case where primal and dual solution exist and primal-dual
gap being 0, and (ii) corresponds to the case where either
the primal problem or the dual problem is infeasible. (iii)
corresponds to pathological weakly feasible and weakly

infeasible cases (Banjac et al., 2019; Liu et al., 2019; Ryu
et al., 2019). Our main focus will be on cases (i) and (ii).

1.2. Prior work

Inconsistent fixed-point iteration. Browder & Petryshyn
(1966) first proved that the iterates of Picard iteration is
bounded if and only if 𝕋 is consistent, and later followed
by work of Pazy (1971) showing the convergence of −xk/k
to the infimal displacement vector. This result has been ex-
tended to Banach space setup by Reich (1973). If 𝕋 is more
than just a nonexpansive operator, then difference of iterates
𝕋kx0 −𝕋k+1x0 also converges to the infimal displacement
vector; see Bailion et al. (1978), Reich & Shafrir (1987),
and Bruck Jr (1977) for averaged, firmly-nonexpansive, and
strongly nonexpansive operators in Banach spaces. For
more on general settings, see Reich (1981; 1982); Plant
& Reich (1983); Ariza-Ruiz et al. (2014); Nicolae (2013).
Despite its numerous appearance, it was not until in late
1990s where the term ‘minimal displacement vector’ was
coined (Bauschke et al., 1997). It was later called ‘infimal
displacement vector’ (Bauschke et al., 2014), and its proper-
ties have been analyzed with depth as well (Bauschke et al.,
2016; Ryu, 2018; Bauschke & Moursi, 2018; 2020b).

First-order numerical solvers. The interior point method
(Nesterov & Nemirovskii, 1994) has been successful in
solving convex optimization problems, and a number of
numerical solvers based on this exists (Nesterov & Ne-
mirovskii, 1994; Sturm, 1999; Gurobi Optimization, LLC,
2023; ApS, 2019; Mattingley & Boyd, 2012). Recently,
first-order method solving conic optimization programs has
gained huge interest, due to its scalability to very large and
high-dimensional problems. ADMM-based solvers such
as SCS (O’Donoghue et al., 2016; Sopasakis et al., 2019),
OSQP (Stellato et al., 2020), and COSMO (Garstka et al.,
2021), and also include PDHG-based solver PDLP (Cham-
bolle & Pock, 2011; Applegate et al., 2021a) are first-order
numerical solvers.

Constrained optimization and infeasibility. For convex
feasibility problem, primary choice of methods are cyclic
projection (Von Neumann, 1951), Dykstra’s algorithm (Dyk-
stra, 1983), AAR method (Bauschke et al., 2004), and so
on. These methods have been analyzed extensively (Boyle
& Dykstra, 1986; Bauschke & Borwein, 1994; Bauschke
et al., 1997; Artacho et al., 2014; Borwein & Tam, 2015;
Aragón Artacho et al., 2016). For general constrained
convex optimization problem, Douglas-Rachford splitting
(DRS) (Lions & Mercier, 1979) and alternating direction
method of multipliers (ADMM) (Glowinski & Marroco,
1975; Gabay & Mercier, 1976) are popular choices of al-
gorithm, and their behavior on infeasible primal or dual
problems has been recently analyzed (Eckstein & Bertsekas,
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1992; Bauschke et al., 2014; Raghunathan & Di Cairano,
2014; Banjac et al., 2019; Liu et al., 2019; Bauschke &
Moursi, 2020a; Banjac, 2021; Banjac & Lygeros, 2021;
Bauschke & Moursi, 2021; O’Donoghue, 2021; Moursi
& Saurette, 2022). Recently, PDHG (Chambolle & Pock,
2011) has been used as a first-order algorithm solving possi-
bly inconsistent LP and QP (Applegate et al., 2021b).

Accelerated fixed-point iterations. Picard iteration con-
verges when the operator 𝕋 is contractive, but does not
converge with nonexpansivity alone. If 𝕋 is averaged,
fixed-point residual of Picard iteration converges in O(1/k)
rate (Davis, 2015). But rather than adding conditions on
operators, interpolation or extrapolation schemes (Kras-
nosel’skiı̆, 1955; Mann, 1953; Anderson, 1965; Ishikawa,
1976; Xu, 2004; Maingé, 2008; Dong et al., 2018; Shehu,
2018; Themelis & Patrinos, 2019; Reich et al., 2021; Walker
& Ni, 2011; Zhang et al., 2020; Shehu & Gibali, 2020;
Shehu et al., 2020; Scieur et al., 2020; Barré et al., 2022a)
may result in faster convergence rate, which is the case for
Halpern iteration (Halpern, 1967), which exhibits O(1/k2)
rate (Sabach & Shtern, 2017; Lieder, 2021).

For the inconsistent fixed-point iteration, the rate of conver-
gence to infimal displacement vector is measured. Unlike
the convergence itself (Bailion et al., 1978), the O(1/k)
rate of convergence was not known until late 2010s (Liu
et al., 2019). Another sequence converging to infimal dis-
placement vector is normalized iterates, and it is proven to
converge in O(1/k2) rate (Applegate et al., 2021b).

Complexity lower bound. Using the information-based
complexity framework (Nemirovski, 1992), lower bounds
to the iteration complexity has been thoroughly studied for
first-order convex optimization methods (Nesterov, 2004;
Drori, 2017; Carmon et al., 2020; Drori & Shamir, 2020;
Carmon et al., 2021; Dragomir et al., 2022; Drori & Tay-
lor, 2022; Yoon & Ryu, 2021; Park & Ryu, 2022). For
the fixed-point iterations, Diakonikolas (2020) first proved
Ω(1/k2)-lower bound, and Park & Ryu (2022) later closed
the constant gap by showing that Halpern iteration of Lieder
(2021) has exactly matching Θ(1/k2)-complexity to the
lower bound of Park & Ryu (2022). However, these works
are restricted to the consistent fixed-point iterations.

Performance estimation problem (PEP). From the sem-
inal work of Drori & Teboulle (2014), performance esti-
mation problem (PEP) has been widely used to obtain the
worst-case complexity of algorithms, including first-order
methods (Kim & Fessler, 2017; Taylor et al., 2017; De Klerk
et al., 2017; Kim & Fessler, 2018; Taylor et al., 2018b; Barré
et al., 2020; De Klerk et al., 2020; Kim & Fessler, 2021; Ab-
baszadehpeivasti et al., 2022a;c; Barré et al., 2022b; Kamri
et al., 2022; Rotaru et al., 2022; Gupta et al., 2023), operator

splitting methods (Ryu et al., 2020), minimax algorithms
(Abbaszadehpeivasti et al., 2021; Gorbunov et al., 2022;
Zamani et al., 2022), proximal point methods (Gu & Yang,
2020; Kim, 2021; Gu & Yang, 2022; 2023), decentralized
methods (Colla & Hendrickx, 2021; 2022a;b), coordinate
descent methods (Abbaszadehpeivasti et al., 2022b), and
even the continuous-time models (Moucer et al., 2022). PEP
also finds the optimal method with optimal worst-case com-
plexity (Drori & Teboulle, 2016; Kim & Fessler, 2016; Drori
& Taylor, 2020; Taylor & Drori, 2022; Kim, 2021; Park &
Ryu, 2022), and is even used to construct the Lyapunov
function for the proof of convergence (Taylor et al., 2018a)
and complexity lower bound (Dragomir et al., 2022). All
these works assume the existence of the solution or optimal
value.

1.3. Contribution

We summarize the contribution of this work as follows.
First, we prove upper bounds on the rates of convergence of
certain sequences to the infimal displacement vector, which
can serve as a certificate of infeasibility. In particular, we
establish a O(1/k2)-rate for the normalized iterates and
Õ(1/k2)-rate for the fixed-point residual of the Halpern
iteration. Second, we extend the performance estimation
problem (PEP) methodology to inconsistent fixed-point it-
erations based on a new interpolability result and demon-
strate how we used this methodology to discover the upper
bounds. Third, we prove a matching Ω(1/k2)-complexity
lower bound and thereby establish that the O(1/k2) upper
bound is the optimal accelerated rate. Finally, we comple-
ment our theoretical results with a numerical experiment on
a decentralized semidefinite program (SDP).

2. Measure of optimality
Consider a nonexpansive operator 𝕋 : H → H. Then
Fix𝕋 = ∅ if and only if 0 /∈ R(𝕀− 𝕋). In such case, since
R(𝕀− 𝕋) is a closed convex set, it has a unique minimum
element v = argmin

y∈R(𝕀−𝕋)
∥y∥2. Roughly, v represents

the distance from R(𝕀− 𝕋) to containing 0, or 𝕋 being
consistent. As long as v remains nonzero, 𝕋 will never have
a fixed point. For an operator 𝕋 which we do not have full
access to, if we are able to obtain v approximately from only
a sufficient number of first-order oracle calls, then this will
save resources including time and computational power.

Given a nonexpansive operator 𝕋 : H → H, we measure
the rate of convergence to v for following sequences.

Definition 1. We call xk−x0

αk
with proper scaling factor

αk > 0 a normalized iterate, and call xk − 𝕋xk a fixed-
point residual.

Normalized iterate of Picard iteration converges to −v (Ap-
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plegate et al., 2021b), and fixed-point residual of Picard
iteration with averaged operator converges to v (Ryu et al.,
2019). Following lemma states that when vk is either nor-
malized iterate or fixed-point residual at iteration k, strong
(norm) convergence of vk to v is equivalent to the conver-
gence of ∥vk∥ to ∥v∥. Therefore, we measure the rate of
convergence for both ∥vk − v∥2 → 0 and ∥vk∥ − ∥v∥ → 0.
Lemma 2. Let 𝕋 : H → H be a nonexpansive operator
and v be its infimal displacement vector. If vk for k ∈ N is
either −xk−x0

αk
or xk − 𝕋xk with assumption that αk > 0

satisfies −xk−x0

αk
∈ R(𝕀− 𝕋) for all k ∈ N, then

⟨vk, v⟩ ≥ ∥v∥2, k = 1, 2, . . .

and
lim
k→∞

vk = v ⇔ lim
k→∞

∥vk∥ = ∥v∥.

Proof of Lemma 2 is deferred to Appendix A.

2.1. Comparison of two optimality measures

In Section 3, we show upper bounds on the two optimality
measures ∥vk − v∥2 and (∥vk∥ − ∥v∥)2. Since

∥vk − v∥ ≥ ∥vk∥ − ∥v∥

by the triangle inequality, the former is the more rigorous
optimality measure in the sense that it is no easier to re-
duce. This makes intuitive sense as ∥vk − v∥2 corresponds
to characterizing the rate of vk → v, which is the conver-
gence of both the magnitude and direction of the vectors,
while (∥vk∥ − ∥v∥)2 corresponds to characterizing the rate
of ∥vk∥ → ∥v∥, which is the convergence of only the mag-
nitude of the vectors.

The relative difference ∥vk − v∥ ≥ ∥vk∥ − ∥v∥ do man-
ifest in terms of different constants. For both optimality
measures ∥vk − v∥2 and (∥vk∥ − ∥v∥)2, the best known
upper bound, presented in Corollary 5, is 4

k2 ∥x0 − x⋆∥2.
On the other hand, the best lower bound for ∥vk − v∥2 is
4
k2 ∥x0−x⋆∥2, while for (∥vk∥−∥v∥)2 it is 1

2k2 ∥x0−x⋆∥2.
So a conclusion of this work is that the two optimality mea-
sures are equivalent (up to a constant factor of at most 8) in
their optimal worst-case computational complexity.

3. Rate of convergence to v

We study the rate of convergence to v for normalized iterate
and fixed-point residual of (KM) and (Halpern). In the last
part, we deal with the normalized iterate of general Mann
iteration.

3.1. Convergence of KM iteration

Consider the Krasnosel’skiı̆-Mann iteration (KM)

xk+1 = λk+1x
k+(1−λk+1)𝕋x

k, k = 0, 1, . . . , (KM)

where x0 ∈ H is a starting point and λk+1 ∈ [0, 1).

Theorem 3 (Convergence rate of normalized iterate). Let
{xk}k∈N be the iterates of (KM) starting from x0 ∈ H.
For any ε > 0 and xε ∈ H such that ∥xε − 𝕋xε − v∥ ≤
min

{
ε2

2∥v∥+1 , 1, ε
}

,

∥∥∥∥ xk − x0∑k
i=1(1− λi)

+ v

∥∥∥∥2 ≤
(

2∑k
i=1(1− λi)

∥x0 − xε∥+ ε

)2

for all k = 1, 2, . . . . If we further assume that v ∈ R(𝕀−𝕋),
then there exists x⋆ ∈ H such that x⋆ − 𝕋x⋆ = v and∥∥∥∥ xk − x0∑k

i=1(1− λi)
+ v

∥∥∥∥2 ≤ 4

(
∑k

i=1(1− λi))
2 ∥x

0 − x⋆∥2

for all k = 1, 2, . . . .

Theorem 4 (Convergence rate of fixed-point residual). Let
{xk}k∈N be the iterates of (KM) starting from x0 ∈ H and
k0 = min{i ∈ N | λi > 0}. For any ε > 0 and xε ∈ H
such that ∥xε − 𝕋xε − v∥ ≤ min

{
ε2

2∥v∥+1 , 1, ε
}

,

(
k∑

i=0

λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

∥xi − 𝕋xi − v∥

)2

≤

(
1√∑k

i=0λi+1(1− λi+1)
∥x0 − xε∥+ ε

)2

and(
∥xk − 𝕋xk∥ − ∥v∥

)2
≤

(
1√∑k

i=0λi+1(1− λi+1)
∥x0 − xε∥+ ε

)2

for k ≥ k0. If we further assume that v ∈ R(𝕀− 𝕋), then
there exists x⋆ ∈ H such that x⋆ − 𝕋x⋆ = v,(

k∑
i=0

λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

∥xi − 𝕋xi − v∥

)2

≤ 1∑k
i=0λi+1(1− λi+1)

∥x0 − x⋆∥2,

and(
∥xk − 𝕋xk∥ − ∥v∥

)2 ≤ 1∑k
i=0λi+1(1− λi+1)

∥x0 − x⋆∥2

for k ≥ k0.

We defer the proofs to Appendix B.1. Note that Theorems 3
and 4 imply the convergence of normalized iterate and fixed-
point residual to v respectively when

∑∞
k=1(1− λk) = ∞

and
∑∞

k=1 λk(1 − λk) = ∞. We also point out that the
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bound on the Cesàro mean in Theorem 4 is practically useful
when we use the randomized iterate selection technique of
Ghadimi & Lan (2013; 2016): choosing k̄ ∈ {1, 2, . . . , k}
with probability proportional to λk̄+1(1−λk̄+1), fixed-point
residual xk̄ −𝕋xk̄ of k̄-th iterate will yield the same rate of
convergence as Theorem 4.
Corollary 5. Let {xk}k∈N be the iterates of (KM) starting
from x0 ∈ H. Assume that v ∈ R(𝕀 − 𝕋). The bound of
Theorem 3 is optimized at λk = 0 for all k ∈ N with∥∥∥∥xk − x0

k
+ v

∥∥∥∥2 ≤ 4

k2
∥x0 − x⋆∥2.

The bound of Theorem 4 is optimized at λk = 1
2 for all

k ∈ N with

1

k + 1

k∑
i=0

∥xi − 𝕋xi − v∥2 ≤ 4

k + 1
∥x0 − x⋆∥2

and

(∥xk − 𝕋xk∥ − ∥v∥)2 ≤ 4

k + 1
∥x0 − x⋆∥2.

Corollary 5 recovers the rates of (Liu et al., 2019, Theo-
rem 3) and (Applegate et al., 2021b, Theorem 3). To clarify,
we view the results of Sections 3.2 and 5 to be the major
contributions of this work. Our contribution of Section 3.1,
presented in Theorems 3 and 4, is to generalize the results
of (Liu et al., 2019; Applegate et al., 2021b) to the KM
iteration with {λk}k∈N that varies with k.

Counterexample. Theorems 3 and 4 show that conver-
gence of normalized iterates requires

∑∞
k=1(1− λk) = ∞,

while convergence of fixed-point residual requires the
stronger condition

∑∞
k=1 λk(1− λk) = ∞. The following

demonstrates that it is possible for the normalized iterates
to converge while the fixed-point residual diverges.

Define 𝕋 : R3 → R3 as 𝕋(x, y, z) = (−y, x, z − 1).
Then R(𝕀 − 𝕋) = R2 × {1} and v = (0, 0, 1). Let
{(xk, yk, zk)}k∈N∪{0} be a sequence of iterates generated
by (KM) with 𝕋 and λk = 0 for all k ∈ N starting from
(x0, y0, z0) = (1, 0, 0). Then

(xk, yk, zk) =

(
cos

kπ

2
, sin

kπ

2
, −k

)
,

and the normalized iterates converge to −v. However,∥∥(xk, yk, zk)− 𝕋(xk, yk, zk)− v
∥∥ =

√
2 for all k ∈ N,

so the fixed-point residual does not converge to v.

3.2. Convergence of Halpern iteration

Consider the Halpern iteration (Halpern)

xk+1 = λk+1x
0 + (1− λk+1)𝕋x

k, k = 0, 1, . . . ,
(Halpern)

where x0 ∈ H is a starting point and λk+1 ∈ [0, 1). Note
that (Picard) corresponds λk ≡ 0 and OHM (Lieder, 2021)
corresponds to λk = 1

k+1 . Define θ0 = 0 and

θk =

k∑
n=1

(1− λk)(1− λk−1) · · · (1− λk−n+1)

for k = 1, 2, . . . .
Lemma 6. For k = 0, 1, . . . ,

θk+1 = (1− λk+1)(1 + θk).

If λk ≡ 0, then θk = k. If λk = 1
k+1 , then θk = k

2 .
Theorem 7 (Convergence rate of normalized iterate). Let
{xk}k∈N be the iterates of (Halpern) starting from x0 ∈ H.
For any ε > 0 and xε ∈ H such that ∥xε−𝕋xε∥2−∥v∥2 ≤
ε2, ∥∥∥∥xk − x0

θk
+ v

∥∥∥∥2 ≤
(

2

θk
∥x0 − xε∥+ ε

)2

for k = 1, 2, . . . . If we further assume that v ∈ R(𝕀− 𝕋),
then there exists x⋆ ∈ H such that x⋆ − 𝕋x⋆ = v and∥∥∥∥xk − x0

θk
+ v

∥∥∥∥2 ≤ 4

θ2k
∥x0 − x⋆∥2

for k = 1, 2, . . . .

We defer the proofs to Appendix B.2. Note that the normal-
ized iterates converge to −v if θk → ∞, which, in particular,
happens if λk → 0. See Lemma 23.
Theorem 8 (Convergence rate of fixed-point residual). Let
{xk}k∈N be the iterates of (Halpern) starting from x0 ∈ H
with λk = 1

k+1 . For any ε > 0 and xε ∈ H such that
∥xε − 𝕋xε∥2 − ∥v∥2 ≤ O(ε2), we have(

∥xk − 𝕋xk∥ − ∥v∥
)2 ≤

(
4

k
∥x0 − xε∥+ ε

)2

and

∥xk − 𝕋xk − v∥2

≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − xε∥2 + ε

for k = 1, 2, . . . . If we further assume that v ∈ R(𝕀− 𝕋),
then there exists x⋆ ∈ H such that x⋆ − 𝕋x⋆ = v,(

∥xk − 𝕋xk∥ − ∥v∥
)2 ≤ 16

k2
∥x0 − x⋆∥2,

and

∥xk − 𝕋xk − v∥2 ≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − x⋆∥2

for k = 1, 2, . . . .
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Proof outline. Consider a potential function V k defined as

V k

= (k + 1)
{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
+ k(k + 1)

〈
−2

k
(xk − x0)− (xε − 𝕋xε) , xε − 𝕋xε

〉
+

2(k + 1)

k

∥∥∥∥xk − xε +
k

2
(xε − 𝕋xε)

∥∥∥∥2
−

(
k∑

n=1

1

n

)
∥x0 − xε∥2

for all k ∈ N. We can show V k ≤ V k−1 ≤ · · · ≤ V 1.
From V k ≤ V 1 ≤ 3∥x0 − xε∥2, we obtain the desired
convergence rate. When there exists x⋆ such that v =
x⋆ − 𝕋x⋆, use x⋆ instead of xε. The detailed proof is
deferred to Appendix B.2.

The precise form of the O(ε2)-term in Theorem 8 is stated
in the proof, which is deferred to Appendix B.2. Note that in
V k, the first term, written as (k + 1) {· · · }, is the potential
function that was used in prior work (Diakonikolas, 2020;
Park & Ryu, 2022) to analyze the convergence of consis-
tent fixed-point iterations. So the first term is known to be
nonincreasing, and the three additional terms are required
to adapt the proof to the inconsistent case.
Corollary 9. Let {xk}k∈N be the iterates of (Halpern) start-
ing from x0 ∈ H with λk = 1

k+1 . For any ε > 0, there
exists xε ∈ H such that ∥xε − 𝕋xε − v∥ < ε,∥∥∥∥2(xk − x0)

k
+ v

∥∥∥∥2 ≤
(
4

k
∥x0 − xε∥+ ε

)2

,

(
∥xk − 𝕋xk∥ − ∥v∥

)2 ≤
(
4

k
∥x0 − xε∥+ ε

)2

,

and

∥xk − 𝕋xk − v∥2

≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − xε∥2 + ε

for k = 1, 2, . . . . If we further assume that v ∈ R(𝕀− 𝕋),
then there exists x⋆ ∈ H such that x⋆ − 𝕋x⋆ = v,∥∥∥∥2(xk − x0)

k
+ v

∥∥∥∥2 ≤ 16

k2
∥x0 − x⋆∥2,

(
∥xk − 𝕋xk∥ − ∥v∥

)2 ≤ 16

k2
∥x0 − x⋆∥2,

and

∥xk − 𝕋xk − v∥2 ≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − x⋆∥2

for k = 1, 2, . . . .

An observation we point out is that when 𝕋 is an affine
operator, the normalized iterate −xk+1−x0

k+1 of Picard itera-
tion coincides with the fixed-point residual xk − 𝕋xk of
(Halpern) with λk = 1

k+1 . See Lemma 32.

3.3. Convergence of Mann iteration

The Mann iteration (Mann)

xk =

k−1∑
i=0

νki 𝕋xi−1, (Mann)

where νki ≥ 0 for i = 0, . . . , k and k = 1, 2, . . . ,∑k
i=0 ν

k
i = 1 for k = 1, 2, . . . , and 𝕋x−1 := x0,

is a further general class of iterations including (KM)
and (Halpern). Lemma 33 of Appendix B.3 shows that
there exists positive sequence {αk}k∈N that depends on
{νki }0≤i≤k,k∈N such that

−xk − x0

αk
∈ R(𝕀− 𝕋), k = 1, 2, . . . .

Furthermore, Theorem 36 of Appendix B.3 shows that∥∥∥∥xk − x0

αk
+ v

∥∥∥∥2 ≤
(

2

αk
∥x0 − xε∥+ ε

)2

and the normalized iterate converges to −v if αk → ∞.
This result generalizes the convergence results of Theo-
rems 3 and 7 respectively for (KM) and (Halpern).

4. PEP with possibly infeasible operators
Instrumental in the discovery of the results of Section 3 was
the use of the performance estimation problem (PEP) (Drori
& Teboulle, 2014; Taylor et al., 2017). Loosely speaking,
the PEP is a computer-assisted methodology for finding
optimal methods by numerically solving semidefinite pro-
grams (Drori & Teboulle, 2014; 2016; Kim & Fessler, 2016;
Taylor et al., 2018b; Drori & Taylor, 2020; Kim & Fessler,
2021; Kim, 2021; Park & Ryu, 2022). In prior work, PEP
had been utilized in the analysis of consistent monotone
inclusion and fixed-point problems (Ryu et al., 2020; Kim,
2021; Park & Ryu, 2022). In this section, we describe how
to apply the PEP methodology in the analysis of algorithms
for inconsistent problems.

4.1. Interpolation result

The performance estimation problem framework relies on
certain interpolation results. The following result strength-
ens the prior interpolation result of (Ryu et al., 2020, Fact
2) by additionally restricting the range of the extension and
thereby allows us to control the infimal displacement vector
of the interpolation.

6
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Theorem 10 (Interpolability). Let {(xi, yi)}i∈I ⊂ H×H
be a set of vectors with index set I such that

∥yi − yj∥ ≤ ∥xi − xj∥, ∀ i, j ∈ I.

Let C = conv {xi − yi}i∈I ⊆ H, where conv denotes the
closure of the convex hull.

(i) There exists a nonexpansive �̃� : H → H such that

yi = �̃�xi, ∀ i ∈ I

and v = ΠC(0) is its infimal displacement vector.

(ii) If we further assume that v = x⋆ − y⋆, ⋆ ∈ I and

⟨xi − yi, v⟩ ≥ ∥v∥2, ∀ i ∈ I,

then there exists a nonexpansive �̃� : H → H such that

yi = �̃�xi, ∀ i ∈ I

and v is its infimal displacement vector.

We defer the proof to Appendix C.1. The key insight is
to use the range/domain-restricting extension of (Reich &
Simons, 2005; Bauschke, 2007), construction of which, in
turn, relies on the Fitzpatrick function (Fitzpatrick, 1988).

4.2. PEP formulation

We now describe the PEP formulation with inconsistent
operators through an example. Consider (Halpern) with
λk = 1

k+1 , which we refer to as the optimized Halpern
method (OHM) of (Lieder, 2021). Let k ∈ N and define the
index set I = {0, 1, . . . , k, ⋆}. We consider nonexpansive
operators 𝕋 that have an infimal displacement vector v and
a point x⋆ ∈ H such that v = x⋆ −𝕋x⋆. The goal is to find
the worst-case instance of 𝕋 such that ∥xk − 𝕋xk − v∥2 is
maximized.

We start from the infinite-dimensional performance estima-
tion problem

maximize
𝕋

∥xk − 𝕋xk − v∥2

subject to 𝕋 : H → H is nonexpansive
v = ΠR(𝕀−𝕋)

(0) = x⋆ − 𝕋x⋆

xn+1 = n+1
n+2𝕋x

n + 1
n+2x

0

∥x0 − x⋆∥2 ≤ R2

where n = 0, 1, . . . , k − 1. Using Theorem 10 and scaling
by R, we get the equivalent non-convex finite-dimensional
problem

maximize
(xi, yi)i∈I

∥xk − yk − v∥2

subject to ∥yi − yj∥2 ≤ ∥xi − xj∥2, ∀i, j ∈ I, i ̸= j
v = x⋆ − y⋆〈
xi − yi, v

〉
≥ ∥v∥2, ∀i ∈ I

xn+1 = n+1
n+2y

n + 1
n+2x

0

∥x0 − x⋆∥2 ≤ 1

where n = 0, 1, . . . , k − 1. Next, consider the following
Gram matrix Z = G⊺G ∈ Sk+3

+ , where

G =
[
v0 · · · vk v x0 − x⋆

]
(1)

with vi = xi − yi for i = 0, 1, . . . , k. We finally obtain the
following equivalent (convex) semidefinite program,

maximize
Z∈S

k+3
+

tr(CkZ)

subject to tr(Ai,jZ) ≥ 0, ∀ i, j ∈ I \ {⋆}, i ̸= j
tr(Ai,⋆Z) ≥ 0, ∀ i ∈ I \ {⋆}
tr(BiZ) ≤ 0, ∀ i ∈ I \ {⋆}
tr(D0Z) ≤ 1,

where Ai,j , Ai,⋆, and Bi for i, j ∈ I \ {⋆}, Ck, and D0 in
Sk+3 are all defined in Appendix C.2. The details and the
subtleties of deriving the SDP representation are also further
discussed in Appendix C.2.

5. Complexity lower bound
In this section, we establish a lower bound on the compu-
tational complexity of approximating the infimal displace-
ment vector v. Following the information-based complexity
framework (Nemirovski, 1992), we begin by considering
algorithms satisfying the linear span condition

xk+1 = x0 + span{x0 −𝕋x0, x1 −𝕋x1, . . . , xk −𝕋xk},
(span)

which covers a broad range of fixed-point iterations includ-
ing (KM), (Halpern), (Mann), Anderson acceleration and
many more. We then remove the linear span assumption
and expand the class of algorithm to all “deterministic fixed-
point iterations.”

Theorem 11. Let k ∈ N, x0 = 0 ∈ H, and v ∈ H, where
dimH ≥ k+1. Then, there exists a nonexpansive operator
𝕋 : H → H and x⋆ ∈ H such that v = x⋆ − 𝕋x⋆, v
becomes the infimal displacement vector of 𝕋, and(∥∥∥∥∥

k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥v∥

)2

≥ 1

2k2
∥x0 − x⋆∥2

and ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)− v

∥∥∥∥∥
2

≥ 4

k2
∥x0 − x⋆∥2

hold for any iterates {xn}k−1
n=0 satisfying (span) and any

choice of real numbers {νi}k−1
i=0 such that

∑
i νi = 1.

Proof outline. We construct a nonexpansive operator
𝕋 : Rk+1 → Rk+1 with its infimal displacement ṽ =
(0, . . . , 0, ∥v∥). Then, we choose an orthogonal matrix
U ∈ R(k+1)×(k+1) such that U⊺U = 𝕀 and U⊺ṽ = v

7
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Figure 1. Solving SDP with 50, 000 iterations of PG-EXTRA (Picard) and OHM with PG-EXTRA (Halpern). We use an infeasible
instance, whose setups are described in Appendix E. Parameters are n = 10, m = 11, p = 10 with α = β = 0.01. (Left) Network graph.
(Middle) Squared norm of normalized iterate ∥(xk − x0)/αk∥2. (Right) Squared norm of fixed-point residual ∥xk − 𝕋xk∥2.

to construct a nonexpansive operator 𝕋U = U𝕋U⊺ whose
infimal displacement vector is v. Our specific construction,
inspired by Park & Ryu (2022), is

x− 𝕋x =



1 0 0 . . . 0 1 0
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . −1 1 0
0 0 0 . . . 0 0 0


︸ ︷︷ ︸

∈R(k+1)×(k+1)

x+



α
0
0
...
0
0

∥v∥



for all x ∈ Rk+1 with α ̸= 0. We provide the detailed proof
in Appendix D.

Matching upper and lower bounds. The 4
k2 ∥x0 − x⋆∥2

upper bound on (Picard) for −xk−x0

k → v of Corollary 5
exactly matches the 4

k2 ∥x0 − x⋆∥2 lower bound of Theo-
rem 11. The upper bounds on (KM) with λk ≡ λ ∈ (0, 1)
and (Halpern) with λk = 1

k+1 of Corollary 9 match the
lower bound up to a constant.

The O( log k
k2 ) upper bound of (Halpern) for xk − 𝕋xk → v

matches the lower bound up to logarithmic factors, and this
is the fastest known rate for the convergence of the fixed-
point residual xk − 𝕋xk to v. However, the O(1/k2) upper
bound of (Halpern) for ∥xk −𝕋xk∥ → ∥v∥ does match the
lower bound up to a constant.

Finally, the upper bound

(∥vk∥ − ∥v∥)2 ≤ (∥vk − v∥)2 ≤ 4

k2
∥x0 − x⋆∥2

of Corollary 5 and the 1
2k2 ∥x0 − x⋆∥2 lower bound of

∥vk∥ → ∥v∥ of Theorem 11 match only up to a constant
factor 8 (where vk are as defined in Theorem 11 and Corol-
lary 5). Reducing this gap may be an interesting direction
of future work.

Lower bounds for deterministic iterations. Finally, we
use the resisting oracle technique of Nemirovski & Yudin
(1983) to extend the complexity lower bound to general
deterministic fixed-point iterations, an algorithm class we
formally define in Appendix D. The following result no
longer requires the linear span assumption (span).

Theorem 12. Let k ∈ N, x0 ∈ H, and v ∈ H, where
dimH ≥ 2k−1. Then, there exists a nonexpansive operator
𝕋 : H → H and x⋆ ∈ H such that v = x⋆ − 𝕋x⋆, the
infimal displacement vector of 𝕋 is v, and(∥∥∥∥∥

k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥v∥

)2

≥ 1

2k2
∥x0 − x⋆∥2

and ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)− v

∥∥∥∥∥
2

≥ 4

k2
∥x0 − x⋆∥2

hold for iterates {xn}k−1
n=0 generated by any determinis-

tic fixed-point iteration and any choice of real numbers
{νi}k−1

i=0 such that
∑

i νi = 1.

The proof of Theorem 12 is deferred to Appendix D.

6. Experiments
Consider an infeasible semidefinite problem (SDP)

minimize
x∈Rd

∑p
i=1 c

⊺
i x

subject to Ai[x] =
∑d

j=1 A
j
ixj ⪯ Bi, 1 ≤ i ≤ p,

where Aj
i , Bi ∈ Sn and Ai : R

d → Sn is a linear operator
defined by Ai[x] =

∑d
j=1 A

j
ixj .

Consider a setup where each objective function c⊺i x and i-th
constraint Ai[x] ⪯ Bi are private to the local agent i ∈
{1, . . . , p}. Assume that they communicate only with their

8
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neighbors, which are represented in the graph as connected
nodes. This SDP can be solved in decentralized manner with
PG-EXTRA of Shi et al. (2015). See Appendix E for the
details of infeasible SDP instance, derivation of PG-EXTRA
for SDP, and the choices of parameters.

Figure 1 compares the results of PG-EXTRA and PG-
EXTRA combined with OHM. Both algorithms’ normalized
iterates and fixed-point residuals converged to v, but OHM
is faster for fixed-point residual, as our theory suggests.

7. Conclusions
In this work, we analyzed the convergence rates of fixed-
point iterations towards the infimal displacement vector. By
providing matching upper and lower bounds, we established
the optimal accelerated complexity to be O(1/k2). The dis-
covery of our upper bounds was assisted by the performance
estimation problem (PEP) methodology, which we extended
to accommodate inconsistent problem setups.

In our view, the analysis of optimization algorithms applied
to inconsistent problems is a necessary step in designing
robust general-purpose solvers. Carrying out similar anal-
yses for different algorithms under different inconsistent
problems is an interesting direction of future work, and we
expect our newly extended PEP methodology to be broadly
useful in such endeavors.
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A. Omitted proof of Section 2
Proof of Lemma 2. xk − 𝕋xk ∈ R(𝕀− 𝕋), so vk ∈ R(𝕀− 𝕋). From the property of the projection, as vk ∈ R(𝕀− 𝕋),

⟨vk, v⟩ ≥ ∥v∥2, ∀k ∈ N.

Then we have
∥vk − v∥2 = ∥vk∥2 − 2⟨vk, v⟩+ ∥v∥2 ≤ ∥vk∥2 − ∥v∥2.

If limk→∞ vk = v, then obviously, limk→∞ ∥vk∥ = ∥v∥. If limk→∞ ∥vk∥ = ∥v∥, then limk→∞ ∥vk − v∥2 = 0 from
above inequality, so limk→∞ vk = v.

B. Omitted proofs of Section 3
B.1. Omitted proofs of Section 3.1

Following lemmas will be used in the proof of Theorem 3 and Theorem 4.
Lemma 13. If {xk}k∈N and {yk}k∈N are sequences of iterates generated by (KM) starting from x0 ∈ H and y0 ∈ H
respectively, for any k ∈ N ∪ {0},

∥xk+1 − 𝕋xk+1∥ ≤ ∥xk − 𝕋xk∥
and

∥xk+1 − yk+1∥ ≤ ∥xk − yk∥.

Proof.

∥xk+1 − 𝕋xk+1∥ = ∥xk+1 − 𝕋xk + 𝕋xk − 𝕋xk+1∥
≤ ∥xk+1 − 𝕋xk∥+ ∥xk − xk+1∥
= λk+1∥xk − 𝕋xk∥+ (1− λk+1)∥xk − 𝕋xk∥
= ∥xk − 𝕋xk∥

and

∥xk+1 − yk+1∥ = ∥(1− λk+1)(𝕋x
k − 𝕋yk) + λk+1(x

k − yk)∥
≤ (1− λk+1)∥xk − yk∥+ λk+1∥xk − yk∥
= ∥xk − yk∥.

Lemma 14. For any ε > 0, there exists xε ∈ H such that

∥xε − 𝕋xε − v∥ ≤ ε.

And for any k ∈ N ∪ {0},
∥xk

ε − 𝕋xk
ε∥ − ∥v∥ ≤ ε.

Proof. Since v ∈ R(𝕀− 𝕋), for any ε > 0, we may choose yε ∈ R(𝕀 − 𝕋) such that ∥yε − v∥ ≤ ε. As yε ∈ R(𝕀 − 𝕋),
there exists xε ∈ H such that yε = xε − 𝕋xε, so

∥xε − 𝕋xε − v∥ ≤ ε.

We know that from Lemma 13 that for any k ∈ N,

∥xk
ε − 𝕋xk

ε∥ ≤ ∥xk−1
ε − 𝕋xk−1

ε ∥.

Therefore,

∥xk
ε − 𝕋xk

ε∥ − ∥v∥ ≤ ∥xε − 𝕋xε∥ − ∥v∥
≤ ∥xε − 𝕋xε − v∥ ≤ ε.
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We now prove our main results of this section.

Proof of Theorem 3. For ε > 0, define ε̃ as

ε̃ = min

{
ε2

2∥v∥+ 1
, 1, ε

}
and let xε ∈ H be a vector in H such that

∥xε − 𝕋xε − v∥ ≤ ε̃,

whose existence is guaranteed from Lemma 14.

Now let {xk
ε}k∈N be a sequence of iterates generated by (KM) starting from xε. Expanding the xk term, we get

xk − x0∑k
i=1(1− λi)

+ v

=
1∑k

i=1(1− λi)

{
(xk − xk

ε)− (x0 − xε)−

(
xε − xk

ε −

(
k∑

i=1

(1− λi)

)
v

)}

=
1∑k

i=1(1− λi)

{
(xk − xk

ε)− (x0 − xε)−
k∑

i=1

(1− λi)
(
xi−1
ε − 𝕋xi−1

ε − v
)}

and taking its norm,∥∥∥∥∥ xk − x0∑k
i=1(1− λi)

+ v

∥∥∥∥∥
≤ 1∑k

i=1(1− λi)

(
∥xk − xk

ε∥+ ∥x0 − xε∥
)
+

k∑
i=1

(1− λi)∑k
i=1(1− λi)

∥∥xi−1
ε − 𝕋xi−1

ε − v
∥∥

≤ 2∑k
i=1(1− λi)

∥x0 − xε∥+
k∑

i=1

(1− λi)∑k
i=1(1− λi)

∥xi−1
ε − 𝕋xi−1

ε − v∥ (∵ Lemma 13)

Since
∥x− 𝕋x− v∥2 = ∥x− 𝕋x∥2 − 2⟨x− 𝕋x, v⟩+ ∥v∥2 ≤ ∥x− 𝕋x∥2 − ∥v∥2, ∀x ∈ H,

we get

∥xi
ε − 𝕋xi

ε − v∥2 ≤ ∥xi
ε − 𝕋xi

ε∥2 − ∥v∥2

≤ ∥xε − 𝕋xε∥2 − ∥v∥2 (∵ Lemma 13)
= (∥xε − 𝕋xε∥ − ∥v∥) (∥xε − 𝕋xε∥+ ∥v∥)
≤ ε̃(2∥v∥+ ε̃) (∵ Lemma 14)

≤ ε̃(2∥v∥+ 1) ≤ ε2

for any i ∈ N ∪ {0}. Gathering all facts above, we get∥∥∥∥∥ xk − x0∑k
i=1(1− λi)

+ v

∥∥∥∥∥ ≤ 2∑k
i=1(1− λi)

∥x0 − xε∥+ ε

for any k ∈ N.

If v ∈ R(𝕀− 𝕋), there exists x⋆ ∈ H such that v = x⋆ − 𝕋x⋆. The proof above applies well with ε = 0 and xε = x⋆, so
we are done.

According to Theorem 3, the normalized iterate of (KM) converges to −v when
∑∞

i=1(1− λi) = ∞.
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Corollary 15. Let {xk}k∈N be the iterates of (KM) starting from x0 ∈ H. If
∑∞

i=1(1− λi) = ∞, then

lim
k→∞

xk − x0∑k
i=1(1− λi)

= −v.

Proof. According to the first claim, for any ε > 0, there exists xε ∈ H such that∥∥∥∥∥ xk − x0∑k
i=1(1− λi)

+ v

∥∥∥∥∥ ≤ 2∑k
i=1(1− λi)

∥x0 − xε∥+ ε.

Therefore, given
∑∞

i=1(1− λi) = ∞,

0 ≤ lim sup
k→∞

∥∥∥∥∥ xk − x0∑k
i=1(1− λi)

+ v

∥∥∥∥∥ ≤ ε

for any ε > 0. We may conclude that xk−x0∑k
i=1(1−λi)

converges to −v in norm.

Convergence of the fixed-point residual xk − 𝕋xk to v requires a stronger assumption, which is
∑∞

k=0 λk(1− λk) = ∞.
This is a stronger condition than that of Theorem 3 in a sense that

∞∑
k=0

λi(1− λi) = ∞ =⇒
∞∑
k=0

λi = ∞.

In case of Fix𝕋 ̸= ∅, The iterates {xk} generated by (KM) exhibits Fejer-monotonicity with respect to Fix𝕋 (Bauschke &
Combettes, 2017, Chapter 5), which is a useful concept in proving the convergence of (KM) in terms of xk − 𝕋xk → 0 and
xk → x⋆. However, when Fix𝕋 = ∅, such analysis is impossible.

Consider a sequence {λk}k∈N∪{0} of stepsizes to (KM). Define 𝕋k : H → H, for each k ∈ N as

𝕋k := (1− λk)𝕋+ λk𝕀.

Then if {xk}k∈N is a sequence of iterates generated by (KM) with {λk}k∈N∪{0} starting from x0 ∈ H,

xk+1 = 𝕋k+1x
k.

Lemma 16. If {xk}k∈N and {yk}k∈N are sequences of iterates generated by (KM) starting from x0 ∈ H and y0 ∈ H
respectively, for any k ∈ N ∪ {0},

∥xk − yk∥2 − ∥xk+1 − yk+1∥2 ≥ λk+1(1− λk+1)∥(xk − 𝕋xk)− (yk − 𝕋yk)∥2

Proof. First of all, if λk+1 = 0 or 1, the theorem trivially holds from the fact that 𝕋k+1 is a nonexpansive operator.

Suppose λk+1 ∈ (0, 1).

∥(xk − xk+1)− (yk − yk+1)∥2

= ∥xk − yk∥2 + ∥xk+1 − yk+1∥2 − 2⟨xk+1 − yk+1, xk − yk⟩
= ∥xk − yk∥2 + ∥xk+1 − yk+1∥2 − 2⟨𝕋k+1x

k − 𝕋k+1y
k, xk − yk⟩.

From (1− λk+1)-averagedness of 𝕋k+1, (Bauschke & Combettes, 2017, Proposition 4.35(iv)) gives us

∥𝕋k+1x
k − 𝕋k+1y

k∥2 + (2λk+1 − 1)∥xk − yk∥2 ≤ 2λk+1⟨𝕋k+1x
k − 𝕋k+1y

k, xk − yk⟩.

Then

λk+1∥(xk − xk+1)− (yk − yk+1)∥2

= λk+1∥xk − yk∥2 + λk+1∥xk+1 − yk+1∥2 − 2λk+1⟨𝕋k+1x
k − 𝕋k+1y

k, xk − yk⟩
≤ λk+1∥xk − yk∥2 + λk+1∥xk+1 − yk+1∥2 −

{
(2λk+1 − 1)∥xk − yk∥2 + ∥xk+1 − yk+1∥2

}
= (1− λk+1)

{
∥xk − yk∥2 − ∥xk+1 − yk+1∥2

}
.
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As

xk − xk+1 = xk − {(1− λk+1)𝕋x
k + λk+1x

k} = (1− λk+1)(x
k − 𝕋xk),

combining this fact with above inequality and dividing by 1− λk+1 > 0.

∥xk − yk∥2 − ∥xk+1 − yk+1∥2 ≥ λk+1(1− λk+1)∥(xk − 𝕋xk)− (yk − 𝕋yk)∥2.

We now prove the second main result of this section.

Proof of Theorem 4. Given ε > 0, there exists xε ∈ H such that

∥xε − 𝕋xε − v∥ ≤ ε̃ = min

{
ε2

2∥v∥+ 1
, 1, ε

}
by Lemma 14. Let {xk

ε}k∈N be a sequence of iterates generated by (KM) starting from xε. With y0 = xε, summing up the
inequality in Lemma 16 and removing the telescoping terms, we get

∥x0 − xε∥2 − ∥xk+1 − xk+1
ε ∥2 ≥

k∑
i=0

λi+1(1− λi+1)∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)∥2

for any k ∈ N. Therefore,

1∑k
i=0 λi+1(1− λi+1)

∥x0 − xε∥2

≥
k∑

i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)∥∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)
∥∥2

=

{
k∑

i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)}{
k∑

i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)∥∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)
∥∥2}

≥

{
k∑

i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)∥∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)
∥∥}2

(Cauchy-Schwarz)

or equivalently,

k∑
i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)∥∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)
∥∥ ≤ 1√∑k

i=0 λi+1(1− λi+1)
∥x0 − xε∥.

Note that for any x ∈ H,

∥x− 𝕋x− v∥2 = ∥x− 𝕋x∥2 − 2 ⟨x− 𝕋x, v⟩︸ ︷︷ ︸
≥∥v∥2

+∥v∥2 ≤ ∥x− 𝕋x∥2 − ∥v∥2.

For any i ∈ N,

∥xi
ε − 𝕋xi

ε − v∥2 ≤ (∥xi
ε − 𝕋xi

ε∥ − ∥v∥)(∥xi
ε − 𝕋xi

ε∥+ ∥v∥)
≤ (∥xε − 𝕋xε∥ − ∥v∥)(∥xε − 𝕋xε∥+ ∥v∥)
≤ ε̃(2∥v∥+ ε̃) ≤ ε2,

so ∥∥(xi − 𝕋xi)− (xi
ε − 𝕋xi

ε)
∥∥ ≤

∥∥xi − 𝕋xi − v
∥∥− ∥∥xi

ε − 𝕋xi
ε − v

∥∥
≤
∥∥xi − 𝕋xi − v

∥∥− ε.
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Therefore, we get

k∑
i=0

(
λi+1(1− λi+1)∑k
i=0 λi+1(1− λi+1)

)∥∥xi − 𝕋xi − v
∥∥ ≤ 1√∑k

i=0 λi+1(1− λi+1)
∥x0 − xε∥+ ε.

Also, note that for any i such that 0 ≤ i ≤ k − 1,∥∥xi − 𝕋xi − v
∥∥ ≥

∥∥xi − 𝕋xi
∥∥− ∥v∥ ≥

∥∥xk − 𝕋xk
∥∥− ∥v∥

where the first inequality comes from triangular inequality, and the last inequality comes from Lemma 13. Hence we get

∥xk − 𝕋xk∥ − ∥v∥ ≤ 1√∑k
i=0 λi+1(1− λi+1)

∥x0 − xε∥+ ε.

If v ∈ R(𝕀− 𝕋), there exists x⋆ ∈ H such that v = x⋆ − 𝕋x⋆. The proof above applies well with ε = 0 and xε = x⋆, so
we are done.

According to Theorem 4, the fixed-point residual of (KM) converges to v if
∑∞

i=1 λi(1− λi) = ∞.
Corollary 17. Let {xk}k∈N be the iterates of (KM) starting from x0 ∈ H. If

∑∞
i=1 λi(1− λi) = ∞, then

lim
k→∞

(
xk − 𝕋xk

)
= v.

Proof. Given
∑∞

i=1 λi(1− λi) = ∞,

0 ≤ lim sup
k→∞

∥xk − 𝕋xk∥ − ∥v∥ ≤ ε.

Since above inequality holds for any choice of ε > 0, limk→∞ ∥xk − 𝕋xk∥ = ∥v∥. Since

∥xk − 𝕋xk − v∥2 ≤ ∥xk − 𝕋xk∥2 − ∥v∥2,

taking limit on both sides, we get

0 ≤ lim sup
k→∞

∥xk − 𝕋xk − v∥2 ≤ lim
k→∞

∥xk − 𝕋xk∥2 − ∥v∥2 = ∥v∥2 − ∥v∥2 = 0.

B.2. Omitted proofs of Section 3.2

Following lemmas will be used in the proof of Theorem 7 and Theorem 8.

We first prove Lemma 6.

Proof of Lemma 6. If k = 0, then
θ1 = (1− λ1) = (1− λ1)(1 + θ0︸︷︷︸

=0

).

Suppose k ≥ 1.

θk+1 =

k+1∑
n=1

(1− λk+1)(1− λk) · · · (1− λk−n+2)

= (1− λk+1) + (1− λk+1)

k+1∑
n=2

(1− λk) · · · (1− λk−n+2

= (1− λk+1) + (1− λk+1)

k∑
n=1

(1− λk) · · · (1− λk−n+1

= (1− λk+1)(1 + θk).
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Suppose λk ≡ 0. Then
θk = 1 + θk−1 = 2 + θk−2 = · · · = k + θ0 = k.

If λk = 1
k+1 for all k ∈ N, then from θ0 = 0, suppose θk−1 = k−1

2 . Then as

θk =

(
1− 1

k + 1

)
(1 + θk−1) =

k

k + 1

k + 1

2
=

k

2
,

the induction holds.

Remark 18. Let {xk}k∈N be the iterates of (Halpern) starting from x0 ∈ H. Then the k-th iterate xk of (Halpern) can be
expressed as

xk − x0 = −
k−1∑
i=0

{(1− λk) · · · (1− λi+1)} (xi − 𝕋xi).

If λk = 1
k+1 for k ∈ N, the k-th iterate xk of (Halpern) can be expressed as

xk − x0 = −
k−1∑
i=0

i+ 1

k + 1
(xi − 𝕋xi)

The sequence {θk} refers to the sum of all linear coefficients to {xi − 𝕋xi}i=0,1,...,k−1 used in the xk-update of (Halpern).

Following lemma refers to the property that two independent iterates {xk} and {yk} generated by (Halpern) cannot be
further than the distance between initial points ∥x0 − y0∥.
Lemma 19. Let {xk}k∈N and {yk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H and y0 ∈ H,
respectively. Then

∥xk − yk∥ ≤ ∥x0 − y0∥, k = 0, 1, . . . .

Proof. We prove by induction on k. If k = 0, the claim automatically holds. Suppose k ≥ 1 and ∥xk−1−yk−1∥ ≤ ∥x0−y0∥.
Then

∥xk − yk∥ ≤ (1− λk) ∥𝕋xk−1 − 𝕋yk−1∥+ λk∥x0 − y0∥
≤ (1− λk) ∥xk−1 − yk−1∥+ λk∥x0 − y0∥
≤ (1− λk) ∥x0 − y0∥+ λk∥x0 − y0∥ = ∥x0 − y0∥.

Lemma 20. If {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H, then

∥xk − x0∥
θk

≤ ∥x0 − 𝕋x0∥, k = 1, 2, . . . .

Proof. We prove by induction on k.

(i) k = 1. First of all,
x1 − x0 = −(1− λ1)(x

0 − 𝕋x0)

so from θ1 = 1− λ1,
∥x1 − x0∥

θ1
= ∥x0 − 𝕋x0∥.

(ii) k ≥ 2. Suppose that the claim holds true for all n such that n < k.

xk − x0 = (1− λk) (𝕋x
k−1 − x0)

= (1− λk) (𝕋x
k−1 − 𝕋x0) + (1− λk) (𝕋x

0 − x0)

∥xk − x0∥ ≤ (1− λk) ∥𝕋xk−1 − 𝕋x0∥+ (1− λk) ∥x0 − 𝕋x0∥
≤ (1− λk) ∥xk−1 − x0∥+ (1− λk) ∥x0 − 𝕋x0∥
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Therefore,

∥xk − x0∥
θk

≤ 1− λk

θk
∥xk−1 − x0∥+ 1− λk

θk
∥x0 − 𝕋x0∥

=
θk−1

1 + θk−1

∥xk−1 − x0∥
θk−1

+
1

1 + θk−1
∥x0 − 𝕋x0∥ (∵ Lemma 6)

≤ θk−1

1 + θk−1
∥x0 − 𝕋x0∥+ 1

1 + θk−1
∥x0 − 𝕋x0∥

= ∥x0 − 𝕋x0∥.

Following lemma identifies the proper averaging of xk that resides in the closure of the range of 𝕀− 𝕋, which becomes the
candidate for the sequence {vk}k∈N converging to v.

Lemma 21. If {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H, then

−xk − x0

θk
∈ R(𝕀− 𝕋)

for k = 1, 2, . . . .

Proof. We prove by induction on k, using the convexity of R(𝕀− 𝕋).

(i) k = 1.

−x1 − x0

θ1
= x0 − 𝕋x0 ∈ R(I − T ).

(ii) k ≥ 2. Suppose that

−xk−1 − x0

θk−1
∈ R(𝕀− 𝕋).

As

−xk − x0

θk
= − (1− λk)θk−1

θk

xk−1 − x0

θk−1
+

1− λk

θk
(xk−1 − 𝕋xk−1)

=
θk−1

1 + θk−1

(
−xk−1 − x0

θk−1

)
+

1

1 + θk−1
(xk−1 − 𝕋xk−1),

−xk−x0

θk
is a convex combination of vectors in a convex set R(𝕀− 𝕋), so it is also an element of R(𝕀− 𝕋).

We now prove Theorem 7.

Proof of Theorem 7. From v ∈ R(𝕀− 𝕋), we may choose a point xε in H such that

∥xε − 𝕋xε∥2 − ∥v∥2 ≤ ε2.

Let k ≥ 1. From Lemma 19, ∥∥∥∥xk − x0

θk
− xk

ε − xε

θk

∥∥∥∥ ≤
∥∥∥∥xk − xk

ε

θk

∥∥∥∥+ ∥∥∥∥x0 − xε

θk

∥∥∥∥
≤ 2

θk
∥x0 − xε∥.
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Note that ∥∥∥∥xk
ε − xε

θk
+ v

∥∥∥∥2 ≤
∥∥∥∥xk

ε − xε

θk

∥∥∥∥2 − ∥v∥2

≤ ∥xε − 𝕋xε∥2 − ∥v∥2 ≤ ε2, (∵ Lemma 20)

and from this we have ∥∥∥∥xk − x0

θk
+ v

∥∥∥∥ ≤
∥∥∥∥xk − x0

θk
− xk

ε − xε

θk

∥∥∥∥+ ∥∥∥∥xk
ε − xε

θk
+ v

∥∥∥∥
≤ 2

θk
∥x0 − xε∥+ ε.

This result holds for any k ≥ 1.

If v ∈ R(𝕀− 𝕋), there exists x⋆ ∈ H such that v = x⋆ − 𝕋x⋆. The proof above applies well with ε = 0 and xε = x⋆, so
we are done.

According to Theorem 7, the normalized iterate of (Halpern) converges to −v when limk→∞ θk = ∞.

Corollary 22. Let {xk}k∈N be the iterates of (Halpern) starting form x0 ∈ H. If limk→∞ θk = ∞, then

lim
k→∞

xk − x0

θk
= −v.

Proof. Further assume that limk→∞ θk = ∞. Using triangle inequality,∥∥∥∥xk − x0

θk

∥∥∥∥− ∥v∥ ≤
∥∥∥∥xk − x0

θk
+ v

∥∥∥∥ ≤ 2

θk
∥x0 − xε∥+ ε.

From the fact that −xk−x0

θk
∈ R(𝕀− 𝕋) by Lemma 21 and the fact that v is the minimum norm element in R(𝕀− 𝕋),∥∥∥∥xk − x0

θk

∥∥∥∥ ≥ ∥v∥.

Then

∥v∥ ≤ lim inf
k→∞

∥∥∥∥xk − x0

θk

∥∥∥∥ ≤ lim sup
k→∞

∥∥∥∥xk − x0

θk

∥∥∥∥ ≤ ∥v∥+ ε

holds for any possible choice of ε > 0, so

lim
k→∞

∥∥∥∥xk − x0

θk

∥∥∥∥ = ∥v∥.

We may conclude that, by the uniqueness of v as a minimum norm element in R(𝕀− 𝕋),

lim
k→∞

xk − x0

θk
= −v.

As in Section 3.2, we have a simpler condition for {λk}k∈N to ensure the convergence of normalized iterate of Halpern
iteration to −v.

Lemma 23. If
lim
k→∞

λk = 0,

then
lim
k→∞

θk = ∞.
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Proof.

lim
k→∞

θk+1

1 + θk
= lim

k→∞
(1− λk+1) = 1,

and λk+1 ∈ [0, 1], so for any 0 < ε < 1, there exists Nε ∈ N such that

θk+1

1 + θk
≥ 1− ε, ∀ k ≥ Nε.

Then

θk+Nε ≥ (1− ε)θk+Nε−1 + (1− ε)

≥ (1− ε)kθNε + (1− ε) + · · ·+ (1− ε)k

= (1− ε)kθNε
+

(
1

ε
− 1

){
1− (1− ε)k

}
.

As k → ∞,

lim inf
k→∞

θk ≥ 1

ε
− 1

holds for all ε ∈ (0, 1). As ε → 0, lim infk→∞ θk = ∞, so we are done.

In order to prove Theorem 8, we use the following fact to construct Lyapunov function.
Lemma 24. If {xk}k∈N is a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1

k+1 , then

∥𝕋xk − 𝕋xk+1∥2 ≤ ∥xk − xk+1∥2

⇔ (k + 2)
{
(k + 1)∥xk+1 − 𝕋xk+1∥2 + 2⟨xk+1 − 𝕋xk+1, xk+1 − x0⟩

}
≤ (k + 1)

{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
Proof. From

xk+1 =
k + 1

k + 2
𝕋xk +

1

k + 2
x0, k = 0, 1, . . . ,

we have

∥xk − xk+1∥2 − ∥𝕋xk − 𝕋xk+1∥2

= ∥(xk − 𝕋xk)− (xk+1 − 𝕋xk)∥2 − ∥(xk+1 − 𝕋xk+1)− (xk+1 − 𝕋xk)∥2

= ∥xk − 𝕋xk∥2 − ∥xk+1 − 𝕋xk+1∥2 − 2⟨xk − 𝕋xk, xk+1 − 𝕋xk⟩+ 2⟨xk+1 − 𝕋xk+1, xk+1 − 𝕋xk⟩

= ∥xk − 𝕋xk∥2 − ∥xk+1 − 𝕋xk+1∥2 − 2

〈
xk − 𝕋xk,

1

k + 2
(xk − 𝕋xk)− 1

k + 2
(xk − x0)

〉
+ 2

〈
xk+1 − 𝕋xk+1, (xk+1 − x0)− k + 2

k + 1
(xk+1 − x0)

〉
=

1

k + 2

{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
− 1

k + 1

{
(k + 1)∥xk+1 − 𝕋xk+1∥2 + 2⟨xk+1 − 𝕋xk+1, xk+1 − x0⟩

}
Equivalence follows immediately.

We use the Lyapunov function V k for k = 1, 2, . . . of the following form.

V k = (k + 1)
{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
−

(
k∑

n=1

1

n

)
∥x0 − xε∥2

+ k(k + 1)

〈
−2

k
(xk − x0)− (xε − 𝕋xε) , xε − 𝕋xε

〉
+

2(k + 1)

k

∥∥∥∥xk − xε +
k

2
(xε − 𝕋xε)

∥∥∥∥2
(Lyapunov function)
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xε ∈ H is chosen to be the point which makes xε −𝕋xε very close to v. In particular, if v ∈ R(𝕀−𝕋), choose xε such that
v = xε − 𝕋xε.

Now, we show the monotonicity of {V k}k in k.

Lemma 25. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 , and

define {V k}k∈N∪{0} as (Lyapunov function). For any k ∈ N,

V k ≥ V k+1.

Proof. From Lemma 24,

V k − V k+1

≥ 1

k + 1
∥x0 − xε∥2 + k(k + 1)

〈
−2

k
(xk − x0)− (xε − 𝕋xε), xε − 𝕋xε

〉
− (k + 1)(k + 2)

〈
− 2

k + 1
(xk+1 − x0)− (xε − 𝕋xε), xε − 𝕋xε

〉
+

2(k + 1)

k

∥∥∥∥xk − xε +
k

2
(xε − 𝕋xε)

∥∥∥∥2 − 2(k + 2)

k + 1

∥∥∥∥xk+1 − xε +
k + 1

2
(xε − 𝕋xε)

∥∥∥∥2
=

1

k + 1
∥x0 − xε∥2 +

{
−k(k + 1) + (k + 1)(k + 2) +

k(k + 1)

2
− (k + 1)(k + 2)

2

}
∥xε − 𝕋xε∥2

+
〈
xε − 𝕋xε, −2(k + 1)(xk − x0) + 2(k + 2)(xk+1 − x0) + 2(k + 1)(xk − xε)− 2(k + 2)(xk+1 − xε)

〉
+

2(k + 1)

k
∥xk − xε∥2 −

2(k + 2)

(k + 1)
∥xk+1 − xε∥2

=
1

k + 1
∥x0 − xε∥2 + (k + 1)∥xε − 𝕋xε∥2 − 2

〈
xε − 𝕋xε, x

0 − xε

〉
+

2(k + 1)

k
∥xk − xε∥2 −

2(k + 2)

(k + 1)
∥xk+1 − xε∥2.

Using
∥xk − xε∥2 ≥ ∥𝕋xk − 𝕋xε∥2,

we get

V k − V k+1

≥ 1

k + 1
∥x0 − xε∥2 + (k + 1)∥xε − 𝕋xε∥2 − 2

〈
xε − 𝕋xε, x

0 − xε

〉
+

2(k + 1)

k
∥ 𝕋xk − 𝕋xε︸ ︷︷ ︸
(𝕋xk−xε)+(xε−𝕋xε)

∥2 − 2(k + 2)

k + 1
∥ xk+1 − xε︸ ︷︷ ︸
= k+1

k+2 (𝕋x
k−xε)+

1
k+2 (x

0−xε)

∥2

=
k

(k + 1)(k + 2)
∥x0 − xε∥2 +

(k + 1)(k + 2)

k
∥xε − 𝕋xε∥2 − 2⟨xε − 𝕋xε, x

0 − xε⟩

+
4(k + 1)

k(k + 2)
∥𝕋xk − xε∥2 +

4(k + 1)

k
⟨xε − 𝕋xε,𝕋x

k − xε⟩ −
4

k + 2
⟨𝕋xk − xε, x

0 − xε⟩

=
1

k(k + 1)(k + 2)

∥∥2(k + 1)(𝕋xk − xε)− k(x0 − xε) + (k + 1)(k + 2)(xε − 𝕋xε)
∥∥2

≥ 0.

Lemma 26. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 and
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{V k}k∈N∪{0} be defined as (Lyapunov function). For k ≥ 1,

V k ≥ (k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

− 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x
0 − xε⟩ −

(
k∑

n=1

1

n

)
∥x0 − xε∥2.

Proof.

V k = (k + 1)
{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
−

(
k∑

n=1

1

n

)
∥x0 − xε∥2

+ k(k + 1)

〈
−2

k
(xk − x0)− (xε − 𝕋xε) , xε − 𝕋xε

〉
+

2(k + 1)

k

∥∥∥∥xk − xε +
k

2
(xε − 𝕋xε)

∥∥∥∥2
≥ (k + 1)

{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
−

(
k∑

n=1

1

n

)
∥x0 − xε∥2

+ k(k + 1)

〈
−2

k
(xk − x0)− (xε − 𝕋xε) , xε − 𝕋xε

〉
= k(k + 1)

(
∥xk − 𝕋xk∥2 − ∥xε − 𝕋xε∥2

)
+ 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x

k − x0⟩

−

(
k∑

n=1

1

n

)
∥x0 − xε∥2

= k(k + 1)∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩
+ 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x

k − xε⟩ − 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x
0 − xε⟩

−

(
k∑

n=1

1

n

)
∥x0 − xε∥2.

𝕋 is nonexpansive, from
∥𝕋xk − 𝕋xε∥2 ≤ ∥xk − xε∥2,

we get

∥xk − xε∥2 − ∥𝕋xk − 𝕋xε∥2 =
〈
(xk − xε)− (𝕋xk − 𝕋xε), (x

k − xε) + (𝕋xk − 𝕋xε)
〉

=
〈
(xk − 𝕋xk)− (xε − 𝕋xε), 2(x

k − xε)− {(xk − 𝕋xk)− (xε − 𝕋xε)}
〉

= 2
〈
(xk − 𝕋xk)− (xε − 𝕋xε), x

k − xε

〉
−
∥∥(xk − 𝕋xk)− (xε − 𝕋xε)

∥∥2
≥ 0

so
⟨(xk − 𝕋xk)− (xε − 𝕋xε), x

k − xε⟩ ≥
1

2
∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2.

From this, we get

V k ≥ (k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

− 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x
0 − xε⟩ −

(
k∑

n=1

1

n

)
∥x0 − xε∥2.

Lemma 27. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 and

{V k}k∈N∪{0} be defined as (Lyapunov function). Then

V 1 ≤ 3∥x0 − xε∥2.
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Proof.

V 1

= 2
{
∥x1 − 𝕋x1∥2 + 2⟨x1 − 𝕋x1, x1 − x0⟩

}
− ∥x0 − xε∥2

+ 2
〈
−2(x1 − x0)− (xε − 𝕋xε), xε − 𝕋xε

〉
+ 4

∥∥∥∥x1 − xε +
1

2
(xε − 𝕋xε)

∥∥∥∥2
≤ 0− 2

〈
2(x1 − x0) + (xε − 𝕋xε), xε − 𝕋xε

〉
+ 4

∥∥∥∥(x1 − x0) + (x0 − xε) +
1

2
(xε − 𝕋xε)

∥∥∥∥2 − ∥x0 − xε∥2

=
∥∥{2(x1 − x0) + (xε − 𝕋xε)}+ 2(x0 − xε)

∥∥2 − 2⟨2(x1 − x0) + (xε − 𝕋xε), xε − 𝕋xε⟩ − ∥x0 − xε∥2

= ∥ − {(x0 − 𝕋x0)− (xε − 𝕋xε)}+ 2(x0 − xε)∥2 + 2⟨(x0 − 𝕋x0)− (xε − 𝕋xε), xε − 𝕋xε⟩ − ∥x0 − xε∥2

= ∥(x0 − 𝕋x0)− (xε − 𝕋xε)∥2 − 4⟨(x0 − 𝕋x0)− (xε − 𝕋xε), x
0 − xε⟩

+ 3∥x0 − xε∥2 + 2⟨(x0 − 𝕋x0)− (xε − 𝕋xε), xε − 𝕋xε⟩
≤ 2⟨(x0 − 𝕋x0)− (xε − 𝕋xε), xε − 𝕋xε⟩+ 3∥x0 − xε∥2 − ∥(x0 − 𝕋x0)− (xε − 𝕋xε)∥2

= 3∥x0 − xε∥2 − ∥x0 − 𝕋x0∥2 − 3∥xε − 𝕋xε∥2

≤ 3∥x0 − xε∥2.

First inequality comes from Lemma 24 with k = 0.

Theorem 28. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 and

{V k}k∈N∪{0} be defined as (Lyapunov function). For any k ≥ 1,

(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

− 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x
0 − xε⟩ −

(
k∑

n=1

1

n

)
∥x0 − xε∥2

≤ 3∥x0 − xε∥2.

Proof. Direct application of Lemma 25, Lemma 26 and Lemma 27.

Lemma 29. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 . For any

k ∈ N,

∥xk − 𝕋xk∥ ≤ ∥x0 − 𝕋x0∥.

Proof. We use Lemma 24, the definition of xk+1-update and and that θk = k
2 , which is from Lemma 6. Dividing by

(k+1)(k+2)
2 , we have

2k

k + 2
∥xk − 𝕋xk∥2 + 4⟨xk − 𝕋xk, xk − x0⟩

≥ 2∥xk+1 − 𝕋xk+1∥2 + 4

k + 1
⟨xk+1 − 𝕋xk+1, xk+1 − x0⟩

= ∥xk+1 − 𝕋xk+1∥2 +
∥∥∥∥(xk+1 − 𝕋xk+1) +

xk+1 − x0

θk+1

∥∥∥∥2 − ∥∥∥∥xk+1 − x0

θk+1

∥∥∥∥2 .
Since

xk+1 − x0

θk+1
=

k

k + 2

(
xk − x0

θk

)
− 2

k + 2
(xk − 𝕋xk),

26



Accelerated Infeasibility Detection of Constrained Optimization and Fixed-Point Iterations

we have

∥xk+1 − 𝕋xk+1∥2 +
∥∥∥∥(xk+1 − 𝕋xk+1) +

xk+1 − x0

θk+1

∥∥∥∥2
≤ 2k

k + 2
∥xk − 𝕋xk∥2 + 4⟨xk − 𝕋xk, xk − x0⟩+

∥∥∥∥ k

k + 2

(
xk − x0

θk

)
− 2

k + 2
(xk − 𝕋xk)

∥∥∥∥2
= ∥xk − 𝕋xk∥2 +

(
k

k + 2

)2 ∥∥∥∥(xk − 𝕋xk) +
xk − x0

θk

∥∥∥∥2
hold for all k = 0, 1, . . .. Therefore, for any k ∈ N, we get

∥x0 − 𝕋x0∥2 ≥ ∥x1 − 𝕋x1∥2 +
∥∥∥∥(x1 − 𝕋x1) +

x1 − x0

θ1

∥∥∥∥2
≥ ∥x1 − 𝕋x1∥2 +

(
1

1 + 2

)2 ∥∥∥∥(x1 − 𝕋x1) +
x1 − x0

θ1

∥∥∥∥2
≥ ∥x2 − 𝕋x2∥2 +

∥∥∥∥(x2 − 𝕋x2) +
x2 − x0

θ2

∥∥∥∥2
≥ · · ·

≥ ∥xk − 𝕋xk∥2 +
∥∥∥∥(xk − 𝕋xk) +

xk − x0

θk

∥∥∥∥2
≥ ∥xk − 𝕋xk∥2.

Now we find some relation between xε − 𝕋xε and v.
Lemma 30. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1

k+1 . For any
ε > 0, there exists xε ∈ dom𝕋 such that

∥xε − 𝕋xε − v∥ ≤ ε,

and from this,
∥xk − 𝕋xk − (xε − 𝕋xε)∥2 ≥ ∥xk − 𝕋xk − v∥2 − 2∥x0 − 𝕋x0∥ε

and
⟨xk − 𝕋xk − (xε − 𝕋xε), xε − 𝕋xε⟩ ≥ ⟨xk − 𝕋xk − v, v⟩ −

{
∥x0 − 𝕋x0∥+ 2∥v∥+ ε

}
ε.

Furthermore, if v ∈ R(𝕀− 𝕋), then there exists x⋆ ∈ dom𝕋 such that x⋆ − 𝕋x⋆ = v.

Proof.

∥xk − 𝕋xk − (xε − 𝕋xε)∥2 − ∥xk − 𝕋xk − v∥2

= −2⟨xk − 𝕋xk, xε − 𝕋xε − v⟩+ ∥xε − 𝕋xε∥2 − ∥v∥2︸ ︷︷ ︸
≥0

≥ −2∥xk − 𝕋xk∥∥xε − 𝕋xε − v∥
≥ −2∥x0 − 𝕋x0∥ε

where the last inequality comes from Lemma 29. Also,

⟨xk − 𝕋xk − (xε − 𝕋xε), xε − 𝕋xε⟩
= ⟨(xk − 𝕋xk − v)− (xε − 𝕋xε − v), (xε − 𝕋xε − v) + v⟩
= ⟨xk − 𝕋xk − v, v⟩+ ⟨xk − 𝕋xk − v, xε − 𝕋xε − v⟩ − ∥xε − 𝕋xε − v∥2

− ⟨xε − 𝕋xε − v, v⟩
≥ ⟨xk − 𝕋xk − v, v⟩ − ∥xk − 𝕋xk − v∥∥xε − 𝕋xε − v∥
− ∥xε − 𝕋xε − v∥2 − ∥xε − 𝕋xε − v∥∥v∥.
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Then

⟨xk − 𝕋xk − (xε − 𝕋xε), xε − 𝕋xε⟩ − ⟨xk − 𝕋xk − v, v⟩
≥ −∥xε − 𝕋xε − v∥

{
∥xk − 𝕋xk − v∥+ ∥xε − 𝕋xε − v∥+ ∥v∥

}
≥ −ε

{
(∥xk − 𝕋xk∥+ ∥v∥) + ε+ ∥v∥

}
= −ε

{
∥x0 − 𝕋x0∥+ 2∥v∥+ ε

}
where the last inequality comes from Lemma 29.

We now prove the convergence rate result of (Halpern) with λk = 1
k+1 .

Theorem 31. Let {xk}k∈N be a sequence of iterates generated by (Halpern) starting from x0 ∈ H with λk = 1
k+1 . For any

ε > 0 and 0 < α < 1, there exists xε ∈ dom𝕋 such that

∥xk − 𝕋xk − v∥2 ≤ 1

(1− α)(k + 1)2

(
k∑

n=1

1

n
+ 3 +

1

α

)
∥x0 − xε∥2 + ε.

If we further assume that v ∈ R(𝕀− 𝕋), there exists x⋆ ∈ H such that v = x⋆ − 𝕋x⋆ and

∥xk − 𝕋xk − v∥2 ≤ 1

(1− α)(k + 1)2

(
k∑

n=1

1

n
+ 3 +

1

α

)
∥x0 − x⋆∥2.

Proof. For ε > 0 and 0 < α < 1, consider xε ∈ dom𝕋 such that

∥xε − 𝕋xε − v∥ ≤ ε̃

where

ε̃ = min

{(
2∥x0 − 𝕋x0∥+ 2

1− α
(∥x0 − 𝕋x0∥+ 2∥v∥+ 1)

)−1

ε, 1, ε

}
.

According to Theorem 28,

(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

− 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x
0 − xε⟩ −

(
k∑

n=1

1

n

)
∥x0 − xε∥2

≤ 3∥x0 − xε∥2.

For any α ∈ (0, 1),

3∥x0 − xε∥2 ≥ (1− α)(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩
+ α(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), x

0 − xε⟩

+
1

α
∥x0 − xε∥2 −

(
1

α
+

k∑
n=1

1

n

)
∥x0 − xε∥2

= (1− α)(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 + 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

+
1

α

∥∥α(k + 1){(xk − 𝕋xk)− (xε − 𝕋xε)}+ (x0 − xε)
∥∥2 −( 1

α
+

k∑
n=1

1

n

)
∥x0 − xε∥2

≥ (1− α)(k + 1)2∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 −

(
1

α
+

k∑
n=1

1

n

)
∥x0 − xε∥2

+ 2k(k + 1)⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩.
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Rearranging the terms, we get

1

(1− α)(k + 1)2

(
3 +

1

α
+

k∑
n=1

1

n

)
∥x0 − xε∥2

≥ ∥(xk − 𝕋xk)− (xε − 𝕋xε)∥2 +
2

1− α

k

k + 1
⟨(xk − 𝕋xk)− (xε − 𝕋xε), xε − 𝕋xε⟩

≥ ∥xk − 𝕋xk − v∥2 − 2∥x0 − 𝕋x0∥ε̃+ 2

1− α

k

k + 1
⟨xk − 𝕋xk − v, v⟩

− 2

1− α

k

k + 1

{
∥x0 − 𝕋x0∥+ 2∥v∥+ ε̃

}
ε̃

≥ ∥xk − 𝕋xk − v∥2 − 2

1− α

{
(2− α)∥x0 − 𝕋x0∥+ 2∥v∥+ ε̃

}
ε̃

≥ ∥xk − 𝕋xk − v∥2 − ε.

The second inequality comes from Lemma 30, the third inequality comes from Lemma 2, and the last inequality comes from
the definition of ε̃ > 0.

Proof of Theorem 8. With λk = 1
k+1 , we have θk = k

2 from Lemma 6. Using Lemma 24, we get

(k + 2)
{
(k + 1)∥xk+1 − 𝕋xk+1∥2 + 2⟨xk+1 − 𝕋xk+1, xk+1 − x0⟩

}
≤ (k + 1)

{
k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩

}
for all k = 0, 1, . . . . Therefore, for any k ∈ N,

k∥xk − 𝕋xk∥2 + 2⟨xk − 𝕋xk, xk − x0⟩ ≤ 0.

Using the Cauchy-Schwarz inequality, we get

∥xk − 𝕋xk∥ ≤
∥∥∥∥2k (xk − x0)

∥∥∥∥ =

∥∥∥∥xk − x0

θk

∥∥∥∥
for any k ∈ N. Therefore, for any ε > 0 and xε ∈ H such that ∥xε − 𝕋xε∥2 − ∥v∥2 ≤ ε2, we have

∥xk − 𝕋xk∥ − ∥v∥ ≤
∥∥∥∥2k (xk − x0)

∥∥∥∥− ∥v∥ ≤
∥∥∥∥2k (xk − x0) + v

∥∥∥∥ ≤ 4

k
∥x0 − xε∥+ ε

for any k ∈ N, where the second from last inequality comes from Theorem 7.

From Theorem 31, given an arbitrary ε > 0 and xε such that

∥xε − 𝕋xε − v∥ ≤ ε̃

where

ε̃ = min

{(
2∥x0 − 𝕋x0∥+ 2

1− α
(∥x0 − 𝕋x0∥+ 2∥v∥+ 1)

)−1

ε, 1, ε

}
= O(ε),

we get

∥xk − 𝕋xk − v∥2 ≤ 1

(1− α)(k + 1)2

(
3 +

1

α
+

k∑
n=1

1

n

)
∥x0 − xε∥2 + ε

for any 0 < α < 1. Now we find a minimizer α⋆ of

1

1− α

(
ck +

1

α

)
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where

ck = 3 +

k∑
n=1

1

n

is a positive constant.

1

1− α

(
ck +

1

α

)
=

ck
1− α

+
1

α(1− α)

=
ck + 1

1− α
+

1

α

=

(
ck + 1

1− α
+

1

α

)
((1− α) + α)

≥ (
√
ck + 1 + 1)2 (∵ Cauchy-Schwarz.)

and the equality holds if and only if

ck + 1

(1− α)2
=

1

α2
⇔ α =

1√
ck + 1 + 1

=

√
ck + 1− 1

ck
.

With such α, we get
1

1− α

(
ck +

1

α

)
= (

√
ck + 1 + 1)2.

Therefore,

∥xk − 𝕋xk − v∥2 ≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − xε∥2 + ε.

If v = x⋆ − 𝕋x⋆, we follow the same steps and get

∥xk − 𝕋xk − v∥2 ≤


√∑k

n=1
1
n + 4 + 1

k + 1

2

∥x0 − x⋆∥2.

We now prove the equivalence of the normalized iterate −xk+1−x0

k+1 of Picard iteration and the fixed-point residual xk −𝕋xk

of (Halpern) with λk = 1
k+1 for affine 𝕋, which was discussed in the last part of Section 3.2. Let 𝕋 : H → H be an affine

operator, i.e., 𝕋x = Ax+ b where A : H → H is a linear operator and b ∈ H.

Lemma 32. Suppose 𝕋 : H → H is an affine operator. Let {xk}k∈N and {yk}k∈N be the sequences of iterates generated
by (Halpern) with λk = 1

k+1 and Picard iteration with 𝕋, respectively, starting from the same initial point x0 = y0. Then
for any k ∈ N ∪ {0},

xk − 𝕋xk = −yk+1 − y0

k + 1
.

Proof. First, note that when 𝕋 is an affine operator, i.e., 𝕋x = Ax+ b for any x ∈ H,

𝕋

(
k∑

i=1

νi𝕋xi

)
=

k∑
i=1

νi𝕋xi

for any xi ∈ H and νi ∈ [0, 1] such that
∑k

i=1 νi = 1.

We see that for Picard iteration,

−yk+1 − y0

k + 1
= −𝕋k+1y0 − y0

k + 1
= −𝕋k+1x0 − x0

k + 1
.
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Considering the (Halpern) iterates {xk}k∈N starting from x0, we claim by induction on k that

xk =
1

k + 1

k∑
i=0

𝕋ix0.

When k = 1,

x1 =
1

2
𝕋x0 +

1

2
x0.

Now, suppose the claim holds for k = n.

xn+1 =
n+ 1

n+ 2
𝕋xn +

1

n+ 2
x0

=
n+ 1

n+ 2
𝕋

(
1

n+ 1

n∑
i=0

𝕋ix0

)
+

1

n+ 2
x0

=
n+ 1

n+ 2

(
1

n+ 1

n∑
i=0

𝕋i+1x0

)
+

1

n+ 2
x0

=
1

n+ 2

n+1∑
i=0

𝕋ix0.

Therefore,

xk − 𝕋xk =
1

k + 1

k∑
i=0

𝕋ix0 − 𝕋

(
1

k + 1

k∑
i=0

𝕋ix0

)

=
1

k + 1

k∑
i=0

𝕋ix0 − 1

k + 1

k∑
i=0

𝕋i+1x0

=
1

k + 1
x0 − 1

k + 1
𝕋k+1x0

= −𝕋k+1x0 − x0

k + 1
.

Due to Lemma 32, when 𝕋 is an affine nonexpansive operator, (Halpern) with λk = 1
k+1 is exactly optimal with matching

lower bound, for fixed-point residual.

B.3. Omitted proofs of Section 3.3

Consider a Mann iteration

xk =

k∑
i=0

νki 𝕋x
i−1 (Mann)

where νi ≥ 0,
∑k

i=0 ν
k
i = 1 and 𝕋x−1 := x0.

Lemma 33. Let α0 = 0 and {xk}k∈N be a sequence of iterates generated by (Mann) starting from x0 ∈ H. If the sequence
of real numbers {αk}k∈N∪{0} is defined recursively from the equation

αk = (1− νk0 ) +

k∑
i=1

νki αi−1, k = 1, . . . ,

and αk > 0 for all k ∈ N, then

−xk − x0

αk
∈ R(𝕀− 𝕋).
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Proof. Note that αk for k ≥ 1 can also be written as

αk =

k∑
i=1

νki +

k∑
i=1

νki αi−1

since
∑k

i=0 ν
k
i = 1.

Let k = 0. Then from the definition of (Mann), ν00 = 1. If k = 1, α1 = ν11 and

x1 = ν10𝕋x
−1 + ν11𝕋x

0 = x0 − ν11(x
0 − 𝕋x0).

so

−x1 − x0

α1
= −x1 − x0

ν11
= x0 − 𝕋x0 ∈ R(𝕀− 𝕋).

Now, fix k > 1 and suppose that

−xi − x0

αi
∈ R(𝕀− 𝕋), ∀ i < k.

Then from

xk − x0 =

k∑
i=0

νki (𝕋x
i−1 − x0)

=

k∑
i=1

νki (𝕋x
i−1 − x0)

= −
k∑

i=1

νki (x
i − 𝕋xi) +

k∑
i=1

νki (x
i−1 − x0),

we get

−xk − x0

αk
=

∑k
i=1 ν

k
i (x

i−1 − 𝕋xi−1) +
∑k

i=1 ν
k
i αi−1

(
−xi−1−x0

αi−1

)
∑k

i=1 ν
k
i +

∑k
i=1 ν

k
i αi−1

.

Since R(𝕀− 𝕋) is a closed convex set, it is closed under convex combination. Therefore, −xk−x0

αk
∈ R(𝕀− 𝕋).

Remark 34. Note that {αk}k∈N∪{0} of (33) recovers
∑k

i=1(1− λi) of (KM) and θk of (Halpern).

First of all, (KM) is defined as
xk = (1− λk)𝕋x

k−1 + λkx
k−1,

so νkk = 1− λk. From recursively applying the same identity as above, we get

νki =


1− λk if i = k

λk · · ·λi+1(1− λi) if 1 ≤ i < k

λk+1λk · · ·λ1 if i = 0

From Lemma 33, as

αk =

k∑
i=1

νki +

k∑
i=1

νki αi−1

with α0 = 0, we get

αk =

k∑
i=1

(1− λi)

from plugging νki above.
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Next, (Halpern) is defined as
xk = (1− λk)𝕋x

k + λkx
0

so

νki =


1− λk if i = k

0 if 1 ≤ i < k

λk if i = 0

Then

αk =

k∑
i=1

νki +

k∑
i=1

νki αi−1 = (1− λk) + (1− λk)αk−1 = (1− λk)(1 + αk−1).

This recursive formula is exactly the same as the recursive formula in Lemma 6, so αk = θk.

We elaborate on some properties of (Mann) which will be used in our main result, Theorem 36.

Lemma 35. Let {xk}k∈N and {yk}k∈N be the sequences of iterates generated by (Mann) starting from x0 ∈ H and y0 ∈ H,
respectively. Define {αk}k∈N∪{0} as in Lemma 33. Then∥∥∥∥xk − x0

αk

∥∥∥∥ ≤ ∥x0 − 𝕋x0∥, k = 1, 2, . . .

and
∥xk − yk∥ ≤ ∥x0 − y0∥, k = 1, 2, . . . .

Proof. For k = 1, −x1−x0

α1
= x0 − 𝕋x0 so the claim is trivial. Now, let∥∥∥∥xi − x0

αi

∥∥∥∥ ≤ ∥x0 − 𝕋x0∥

for all i < k. Then

xk − x0 =

k∑
i=1

νki (𝕋x
i−1 − x0)

= −
k∑

i=1

νki (x
0 − 𝕋x0) +

k∑
i=1

νki (𝕋x
i−1 − 𝕋x0)

= −(1− νk0 )(x
0 − 𝕋x0) +

k∑
i=1

νki (𝕋x
i−1 − 𝕋x0),

so ∥∥∥∥xk − x0

αk

∥∥∥∥ =
1

αk

∥∥∥∥∥(1− νk0 )(x
0 − 𝕋x0)−

k∑
i=2

νki αi−1

(
𝕋xi−1 − 𝕋x0

αi−1

)∥∥∥∥∥
≤ 1

αk

{
(1− νk0 )∥x0 − 𝕋x0∥+

k∑
i=2

νki αi−1

∥∥∥∥𝕋xi−1 − 𝕋x0

αi−1

∥∥∥∥
}

≤ 1

αk

{
(1− νk0 )∥x0 − 𝕋x0∥+

k∑
i=2

νki αi−1

∥∥∥∥xi−1 − x0

αi−1

∥∥∥∥
}

≤ 1

αk

{
(1− νk0 )∥x0 − 𝕋x0∥+

k∑
i=2

νki αi−1∥x0 − 𝕋x0∥

}

=
1

αk

{
(1− νkk ) +

k∑
i=2

νki αi−1

}
∥x0 − 𝕋x0∥ = ∥x0 − 𝕋x0∥.
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Now we prove the second claim. First of all,

∥x1 − y1∥ = ∥ν10(x0 − y0) + ν11(𝕋x
0 − 𝕋y0)∥

≤ ν10∥x0 − y0∥+ ν11∥𝕋x0 − 𝕋y0∥
≤ ν10∥x0 − y0∥+ ν11∥x0 − y0∥ = ∥x0 − y0∥.

Suppose ∥xi − yi∥ ≤ ∥x0 − y0∥ for all i < k. Then

∥xk − yk∥ =

∥∥∥∥∥
k∑

i=0

νki (𝕋x
i−1 − 𝕋yi−1)

∥∥∥∥∥
≤

k∑
i=0

νki ∥𝕋xi−1 − 𝕋yi−1∥

≤ ν00∥x0 − y0∥+
k∑

i=1

νki ∥xi−1 − yi−1∥

≤ ν00∥x0 − y0∥+
k∑

i=1

νki ∥x0 − y0∥ = ∥x0 − y0∥.

We can extend Theorem 3 and Theorem 7 to cover the case of general Mann iteration.
Theorem 36. Let {xk}k∈N be a sequence in H generated by (Mann) starting from x0 ∈ H and {αk}k∈N∪{0} be a sequence
of positive numbers defined in Lemma 33. Then for any ε > 0, there exists xε ∈ H such that ∥xε − 𝕋xε − v∥ < ε and∥∥∥∥xk − x0

αk
+ v

∥∥∥∥ ≤ 2

αk
∥x0 − xε∥+ ε.

If we further assume that v ∈ R(𝕀− 𝕋), then there exists x⋆ ∈ H such that∥∥∥∥xk − x0

αk
+ v

∥∥∥∥ ≤ 2

αk
∥x0 − x⋆∥.

Therefore, if limk→∞ αk = ∞, then

lim
k→∞

xk − x0

αk
= −v.

Proof. Fix ε > 0. Let xε ∈ H be a point such that ∥xε − 𝕋xε∥2 − ∥v∥2 < ε2. Then

∥xε − 𝕋xε − v∥2 = ∥xε − 𝕋xε∥2 − ∥v∥2 − 2 ⟨xε − 𝕋xε − v, v⟩︸ ︷︷ ︸
≥0

≤ ∥xε − 𝕋xε∥2 − ∥v∥2

< ε2.

Suppose {xk
ε}k∈N be a sequence in H generated by (Mann) starting from xε. Since −xk

ε−xε

αk
∈ R(𝕀− 𝕋) by Lemma 33,〈

−xk
ε − xε

αk
, v

〉
≥ ∥v∥2

for any k ∈ N, so we get ∥∥∥∥xk
ε − xε

αk
+ v

∥∥∥∥2 =

∥∥∥∥xk
ε − xε

αk

∥∥∥∥2 + ∥v∥2 − 2

〈
−xk

ε − xε

αk
, v

〉
≤
∥∥∥∥xk

ε − xε

αk

∥∥∥∥2 − ∥v∥2

≤ ∥xε − 𝕋xε∥2 − ∥v∥2 ≤ ε2
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or
∥∥∥xk

ε−xε

αk
+ v
∥∥∥ ≤ ε.

∥∥∥∥xk − x0

αk
+ v

∥∥∥∥ ≤
∥∥∥∥xk − x0

αk
− xk

ε − xε

αk

∥∥∥∥+ ∥∥∥∥xk
ε − xε

αk
+ v

∥∥∥∥
≤ ∥xk − xk

ε∥
αk

+
∥x0 − xε∥

αk
+

∥∥∥∥xk
ε − xε

αk
+ v

∥∥∥∥
≤ 2

αk
∥x0 − xε∥+

∥∥∥∥xk
ε − xε

αk
+ v

∥∥∥∥
≤ 2

αk
∥x0 − xε∥+ ε

holds, where the third inequality comes from Lemma 35. If v ∈ R(𝕀− 𝕋), there exists x⋆ ∈ H such that v = x⋆ − 𝕋x⋆,
and the above proof stil holds with ε = 0 and xε = x⋆. Therefore,∥∥∥∥xk − x0

αk
+ v

∥∥∥∥ ≤ 2

αk
∥x0 − x⋆∥.

If limk→∞ αk = ∞, for any ε > 0,

lim sup
k→∞

∥∥∥∥xk − x0

αk
+ v

∥∥∥∥ ≤ ε,

so we get limk→∞
xk−x0

αk
= −v.

Remark 37. By obtaining the upper bound to αk, we may optimize the upper bound of Theorem 36. From the definition of
{αk}k∈N∪{0},

αk = (1− νk0 ) +

k∑
i=2

νki αi−1 =

k∑
i=1

νki (1 + αi−1)

with α0 = 0.

Consider an extreme case of (Picard), which corresponds to the choice of {νki }i=1,...,k for k ∈ N ∪ {0} as

νki =

{
0 (0 ≤ i ≤ k − 1)

1 (i = k)

In this case, αk = k. We claim that this is the biggest possible value for αk for any k ∈ N, using induction. First, α0 = 0.
Suppose αi ≤ i for all i such that 0 ≤ i < k. Then

αk =

k∑
i=1

νki (1 + αi−1)

≤
k∑

i=1

νki {1 + (i− 1)}

≤
k∑

i=1

νki {1 + (k − 1)}

= k

k∑
i=1

νki ≤ k.

Therefore, αk ≤ k for all k ∈ N. Hence (Picard) yields optimal upper bound, which is the same optimal upper bound as in
Theorem 36.
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C. Omitted proofs of Section 4
C.1. Omitted proofs of Section 4.1

Below results will be used to prove Theorem 10.

Theorem 38 (Projection theorem, Theorem 3.16, Bauschke & Combettes (2017)). Let C be a nonempty closed convex
subset of H. Then for every x and p in H,

p = ΠCx ⇔
[
⟨y − p, x− p⟩ ≤ 0, ∀ y ∈ C

]
Theorem 39 (Corollary 5, Bauschke (2007)). Let D be a nonempty subset of H and let 𝕋 : D → H be firmly-nonexpansive
operator. Then there exists a firmly-nonexpansive operator �̃� : H → H such that �̃� |D= 𝕋 and R(�̃�) ⊂ convR(𝕋).

Lemma 40. Let R be a nonempty set in H. Suppose that v ∈ R is a vector such that

⟨x− v, v⟩ ≥ 0, ∀x ∈ R.

Then
⟨x− v, v⟩ ≥ 0, ∀x ∈ convR.

Proof. Let x ∈ convR. Then there exists {xk}k∈N such that xk ∈ convR for all k and limk→∞ xk = x.

Since xk ∈ convR, for each k, there exist nk ∈ N, αk
i ∈ (0, 1] and xk

i ∈ R for i = 1, . . . , nk such that

xk =

nk∑
i=1

αk
i x

k
i

and
∑nk

i=1 α
k
i = 1.

⟨xk, v⟩ =

〈
nk∑
i=1

αk
i x

k
i , v

〉
=

nk∑
i=1

αk
i ⟨xk

i , v⟩ ≥
nk∑
i=1

αk
i ∥v∥2 = ∥v∥2.

So ⟨xk − v, v⟩ ≥ 0 for all xk ∈ convR. Then

⟨x, v⟩ =
〈

lim
k→∞

xk, v

〉
= lim

k→∞
⟨xk, v⟩ ≥ ∥v∥2.

Lemma 41. Let {(xi, yi)}i∈I ⊂ H×H be a set of vectors with index set I such that

∥yi − yj∥ ≤ ∥xi − xj∥, ∀ i, j ∈ I

and define D = {xi}i∈I ⊂ H. Then there exists a nonexpansive operator �̃� : H → H such that �̃� |D= 𝕋 and

R(𝕀− �̃�) = convR(𝕀− 𝕋).

Proof. Define an operator 𝕋 : D → H as
𝕋xi = yi, i ∈ I

where D = {xi}i∈I ⊂ H. Then 𝕊 : D → H defined as 𝕊 = 𝕀−𝕋
2 is a firmly-nonexpansive operator. According to

Theorem 39, there exists a firmly-nonexpansive extension �̃� : H → H of 𝕊 such that �̃� |D= 𝕊 and R(�̃�) ⊂ convR(𝕊). If
�̃� = 𝕀 − 2�̃�, then �̃� : H → H becomes a nonexpansive extension of 𝕋 such that �̃� |D= 𝕋 and R(𝕀 − �̃�) = 2R(�̃�) ⊂
2convR(𝕊) = convR(2𝕊) = convR(𝕀− 𝕋). Obviously,

R(𝕀− 𝕋) ⊆ R(𝕀− �̃�) ⊆ convR(𝕀− 𝕋).
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Since R(𝕀− �̃�) is a convex set,

convR(𝕀− 𝕋) ⊆ R(𝕀− �̃�) ⊆ convR(𝕀− 𝕋),

and as it is also a closed set,

R(𝕀− �̃�) = convR(𝕀− 𝕋).

We now prove Theorem 10.

Proof of Theorem 10. Let C = conv {xi − yi}i∈I .

(i) From Lemma 41, there exists a nonexpansive operator �̃� : H → H such that yi = �̃�xi, ∀ i ∈ I and R(𝕀− �̃�) = C.
Then v = ΠC(0) = Π

R(𝕀−�̃�)
(0) is an infimal displacement vector of �̃�.

(ii) Further assume that v = x⋆ − y⋆ with ⋆ ∈ I and

⟨xi − yi, v⟩ ≥ ∥v∥2, ∀ i ∈ I.

Then Lemma 41 asserts that there exists a nonexpansive operator �̃� : H → H such that yi = �̃�xi, ∀ i ∈ I and
R(𝕀− �̃�) = C. According to Lemma 40, ⟨z, v⟩ ≥ ∥v∥2 for all z ∈ C. Then from Theorem 38, v = ΠC(0) =
Π

R(𝕀−�̃�)
(0) so it is an infimal displacement vector of �̃�.

C.2. Omitted proofs of Section 4.2

Problem we want to solve is a maximization problem in following form, given k ∈ N and an index set I = {0, 1, . . . , k, ⋆}.
As pointed out, we restrict the choice of nonexpansive operator 𝕋 to be the ones where v actually lies in the range of 𝕀− 𝕋.

maximize
𝕋

∥xk − 𝕋xk − v∥2

subject to 𝕋 : H → H is nonexpansive
v = ΠR(𝕀−𝕋)

(0) = x⋆ − 𝕋x⋆

xn+1 =
n+ 1

n+ 2
𝕋xn +

1

n+ 2
x0, n = 0, 1, . . . , k − 1

∥x0 − x⋆∥2 ≤ R2

Without loss of generality, we may only consider the case of R = 1, which can be rescaled by R to obtain original problem.

maximize
𝕋

∥xk − 𝕋xk − v∥2

subject to 𝕋 : H → H is nonexpansive
v = ΠR(𝕀−𝕋)

(0) = x⋆ − 𝕋x⋆

xn+1 =
n+ 1

n+ 2
𝕋xn +

1

n+ 2
x0, n = 0, 1, . . . , k − 1

∥x0 − x⋆∥2 ≤ 1

Above problem is an infinite-dimensional problem, which is possibly an intractable problem. Such dimensionality stems
from the variable of this problem, 𝕋, lying in a function space which cannot be finite-dimensional.
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We use Theorem 10 reduce the problem dimension by not considering the whole function space of nonexpansive operators
any more. According to Theorem 10, the existence of nonexpansive 𝕋 with v = x⋆ − 𝕋x⋆ is equivalent to the existence of
iterates {(xi, yi)}i∈I satisfying the following inequalities.

∥yi − yj∥2 ≤ ∥xi − xj∥2, ∀ i, j ∈ I, i ̸= j

⟨xi − yi, v⟩ ≥ ∥v∥2, ∀ i ∈ I

Therefore, the problem can be reformulated as

maximize
{(xi, yi)}i∈I

∥xk − yk − v∥2

subject to (∃H)
(
xi, yi ∈ H, ∀ i ∈ I

)
∥yi − yj∥2 ≤ ∥xi − xj∥2, ∀ i, j ∈ I, i ̸= j

v = x⋆ − y⋆

⟨xi − yi, v⟩ ≥ ∥v∥2, ∀ i ∈ I

xn+1 =
n+ 1

n+ 2
yn +

1

n+ 2
x0, n = 0, 1, . . . , k − 1

∥x0 − x⋆∥2 ≤ 1

However, this problem is still intractable in a sense that the iterates {(xi, yi)}i∈I needs to be searched within any choice of
real Hilbert space H. We remove such dependency using the semidefinite formulation of PEP.

Consider a gram matrix Z ∈ Sk+3 defined as

Z =



∥v0∥2 ⟨v0, v1⟩ · · · ⟨v0, vk⟩ ⟨v0, v⟩ ⟨v0, x0 − x⋆⟩
⟨v1, v0⟩ ∥v1∥2 · · · ⟨v1, vk⟩ ⟨v1, v⟩ ⟨v1, x0 − x⋆⟩

...
...

. . .
...

...
...

⟨vk, v0⟩ ⟨vk, v1⟩ · · · ∥vk∥2 ⟨vk, v⟩ ⟨vk, x0 − x⋆⟩
⟨v, v0⟩ ⟨v, v1⟩ · · · ⟨v, vk⟩ ∥v∥2 ⟨v, x0 − x⋆⟩

⟨x0 − x⋆, v
0⟩ ⟨x0 − x⋆, v

1⟩ · · · ⟨x0 − x⋆, v
k⟩ ⟨x0 − x⋆, v⟩ ∥x0 − x⋆∥2


=
[
v0 v1 · · · vk v x0 − x⋆

]⊺ [
v0 v1 · · · vk v x0 − x⋆

]
where vi = xi − yi for i ∈ I \ {⋆} and v = x⋆ − y⋆. Let G denote the horizontal stack of vectors

G =
[
v0 v1 · · · vk v x⋆ x0 − x⋆

]
,

then Z = G⊺G. From
xn+1 =

n+ 1

n+ 2
yn +

1

n+ 2
x0, n = 0, 1, . . . , k − 1

being equivalent to

xn+1 = x0 −
n∑

i=0

i+ 1

n+ 2
vi, n = 0, 1, . . . , k − 1, (2)

and we use this fact for our semidefinite PEP formulation.

For notational simplicity, let ei ∈ Rk+3 denote the i-th canonical basis vector, i.e., only the i-th entry of (k+3)-dimensional
real vector is 1 and all the other entries are 0, and let a⊙ b = 1

2 (ab
⊺ + ba⊺).

(i) Objective function.

∥xk − yk − v∥2 = ∥vk − v∥2

= (G(ek+1 − ek+2))
⊺
(G(ek+1 − ek+2))

= tr ((ek+1 − ek+2)(ek+1 − ek+2)
⊺Z)

Letting Ck = (ek+1 − ek+2)(ek+1 − ek+2)
⊺, ∥xk − yk − v∥2 = tr(CkZ).
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(ii) Interpolation condition on nonexpansiveness.

Using (2),

∥xi − xj∥2 − ∥yi − yj∥2

= 2⟨(xi − yi)− (xj − yj), xi − xj⟩ − ∥(xi − yi)− (xj − yj)∥2

= 2⟨vi − vj , xi − xj⟩ − ∥vi − vj∥2

= 2

〈
G(ei+1 − ej+1), G

(
−

i−1∑
l=0

l + 1

i+ 1
el+1 +

j−1∑
m=0

m+ 1

j + 1
ej+1

)〉
− (G(ei+1 − ej+1))

⊺
(G(ei+1 − ej+1))

= tr

[{
−2(ei+1 − ej+1)⊙

(
i−1∑
l=0

l + 1

i+ 1
el+1 −

j−1∑
m=0

m+ 1

j + 1
ej+1

)
+ (ei+1 − ej+1)(ei+1 − ej+1)

⊺

}
Z

]

Letting

Ai,j = −2(ei+1 − ej+1)⊙

(
i−1∑
l=0

l + 1

i+ 1
el+1 −

j−1∑
m=0

m+ 1

j + 1
ej+1

)
+ (ei+1 − ej+1)(ei+1 − ej+1)

⊺,

the inequality condition ∥yi − yj∥2 ≤ ∥xi − xj∥2 for i, j ∈ I \ {⋆} is equivalent to tr(Ai,jZ) ≥ 0.

Also,

∥xi − x⋆∥2 − ∥yi − y⋆∥2

= 2⟨(xi − yi)− (x⋆ − y⋆), x
i − yi⟩ − ∥(xi − yi)− (x⋆ − y⋆)∥2

= 2⟨vi − v, xi − x⋆⟩ − ∥vi − v∥2

= 2

〈
G(ei+1 − ek+2), G

(
ek+3 −

i−1∑
l=0

l + 1

i+ 1
el+1

)〉
− (G(ei+1 − ek+2))

⊺
(G(ei+1 − ek+2))

= tr

[{
−2(ei+1 − ek+2)⊙

(
i−1∑
l=0

l + 1

i+ 1
el+1 − ek+3

)
− (ei+1 − ek+2)(ei+1 − ek+2)

⊺

}
Z

]
.

Letting

Ai,⋆ = −2(ei+1 − ek+2)⊙

(
i−1∑
l=0

l + 1

i+ 1
el+1 − ek+3

)
− (ei+1 − ek+2)(ei+1 − ek+2)

⊺,

the inequality condition ∥yi − y⋆∥2 ≤ ∥xi − x⋆∥2 is equivalent to tr(Ai,⋆Z) ≥ 0.

(iii) Interpolation condition on infimal displacement vector.

⟨vi, v⟩ − ∥v∥2 = ⟨vi − v, v⟩
= ⟨G(ei+1 − ek+2), Gek+2⟩
= tr [((ei+1 − ek+2)⊙ ek+2)Z]

Therefore, letting Bi = (ei+1 − ek+2)⊙ ek+2, the inequality condition ⟨vi, v⟩ ≥ ∥v∥2 is equivalent to tr(BiZ) ≥ 0.

(iv) Initial point condition.

∥x0 − x⋆∥2 = (Gek+3)
⊺
(Gek+3)

= tr (ek+3ek+3
⊺Z)

so if D0 = ek+3ek+3
⊺, the inequality condition ∥x0 − x⋆∥2 ≤ 1 is equivalent to tr(D0Z) ≤ 1.
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Gathering all these facts, the problem at hand can be reformulated into the semidefinite program

maximize
Z∈S

k+3
+

tr(CkZ)

subject to tr(Ai,jZ) ≥ 0, ∀ i, j ∈ I \ {⋆}, i ̸= j
tr(Ai,⋆Z) ≥ 0, ∀ i ∈ I \ {⋆}
tr(BiZ) ≤ 0, ∀ i ∈ I \ {⋆}
tr(D0Z) ≤ 1

Here, the condition on which real Hilbert space H and that the iterates xi’s and yi’s must be defined can be ignored, and this
problem indeed can be solved with numerical solvers. The equivalence of the last reformulation comes from Lemma 42.

Lemma 42. If dimH ≥ k + 3, Z is a positive-semidefinite (k + 3)× (k + 3) matrix if and only if there exist x0 − x⋆, v,
and vi = xi − yi for i = 0, 1, . . . , k in H such that G is defined as in (1) and Z = G⊺G.

C.3. Numerical result of PEP

We numerically solved the SDP formulated in Section 4.2 to obtain a numerical guarantee on the rate of convergence to
∥xk − 𝕋xk − v∥2 for (Halpern) with λk = 1

k+1 . We used MOSEK (ApS, 2019) with k = 1, 2, . . . , 100. We observe that
the numerical solution of PEP to indicate an optimal rate of Õ(1/k2) but not O(1/k2).
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‖ x
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O(1/k 2)

PEP

100 101 102

Iteration number k

1.4 × 101

1.6 × 101

1.8 × 101
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+
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2
×
‖ x

k
−

x
k
−
v‖

2
/
‖x

0
−
x
‖2

O(logk)

PEP

Figure 2. We solved the problem for iteration numbers k = 1 through k = 100. (Left) Plot of ∥xk − 𝕋xk − v∥2/∥x0 − x⋆∥2 for
k = 1, . . . , 100. (Right) Plot of (k + 1)2 · ∥xk − 𝕋xk − v∥2/∥x0 − x⋆∥2 for k = 1, . . . , 100.

D. Omitted proofs of Section 5
We use following lemma in the proof of Theorem 11 and Theorem 12.

Lemma 43. Consider any orthogonal matrix U : Rm → Rn such that m ≤ n and U⊺U = Im. For any nonexpansive
operator 𝕋 : Rm → Rm and any x0 ∈ Rn, define 𝕋U : Rn → Rn as 𝕋U (·) = U𝕋U⊺(· − x0) + x0. Then,

(i) ∥Ux∥ = ∥x∥ for any x ∈ Rm and ∥U⊺x∥ ≤ ∥x∥ for any x ∈ Rn.

(ii) 𝕋U : Rn → Rn is a nonexpansive operator.

(iii) U⊺R(𝕀− 𝕋U ) = U⊺UR(𝕀− 𝕋) = R(𝕀− 𝕋)

(iv) ṽ = ΠR(𝕀−𝕋)
(0) if and only if v = Uṽ = ΠR(𝕀−𝕋U )

(0). If there exists x⋆ ∈ H1 such that ṽ = x⋆ − 𝕋x⋆, then
y⋆ = x0 + Ux⋆ implies v = y⋆ − 𝕋Uy⋆. If there exists y⋆ ∈ H2 such that v = y⋆ − 𝕋Uy⋆, then x⋆ = U⊺(y⋆ − x0)
implies x⋆ − 𝕋x⋆ = ṽ. This implies Fix𝕋 = ∅ if and only if Fix𝕋U = ∅ as well.
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Proof. From orthogonality of U , U⊺U = Im and UU⊺ is an orthogonal projection onto the range of U .

∥Ux∥2 = ⟨Ux,Ux⟩ = ⟨x, U⊺Ux⟩ = ⟨x, x⟩ = ∥x∥2, ∀x ∈ Rm

and
∥U⊺x∥2 = ∥UU⊺x∥2 ≤ ∥x∥2, ∀x ∈ Rn.

Also,

∥𝕋Uy − 𝕋Uz∥ = ∥U(𝕋U⊺(y − x0)− 𝕋U⊺(z − x0))∥
= ∥𝕋U⊺(y − x0)− 𝕋U⊺(z − x0)∥
≤ ∥U⊺(y − x0)− U⊺(z − x0)∥
≤ ∥y − z∥, ∀ y, z ∈ Rn

so 𝕋U is a nonexpansive operator.

Finally,
U(x− 𝕋x) = Ux− U𝕋x = Ux− U𝕋U⊺Ux = (𝕀− 𝕋U )(Ux+ x0), ∀x ∈ Rm,

so UR(𝕀− 𝕋) ⊆ R(𝕀− 𝕋U ), and U⊺UR(𝕀− 𝕋) = R(𝕀− 𝕋) ⊆ U⊺R(𝕀− 𝕋U ).

U⊺(y − 𝕋Uy) = U⊺y − U⊺U𝕋U⊺y = (𝕀− 𝕋)(U⊺y + x0), ∀ y ∈ Rn,

so U⊺R(𝕀− 𝕋U ) ⊆ R(𝕀− 𝕋) and (iii) holds true.

In order to prove (iv), note that from (i), ∥ṽ∥2 = ∥Uṽ∥2. Suppose ṽ = ΠR(𝕀−𝕋U )
(0). Then from (iii), U⊺v ∈ R(𝕀− 𝕋).

ṽ is the minimum norm element of R(𝕀− 𝕋), so

∥Uṽ∥ = ∥ṽ∥ ≤ ∥U⊺v∥ ≤ ∥v∥.

U ṽ ∈ R(𝕀− 𝕋U ) and its norm is smaller than or equal to that of v. Therefore, Uṽ must also be the minimum norm element
of R(𝕀− 𝕋U ), which leads to Uṽ = v by the uniqueness of such element.

If x⋆ ∈ Rm is a point where ṽ = x⋆ − 𝕋x⋆, then setting y⋆ = x0 + Ux⋆ leads to

v = Uṽ = Ux⋆ − U𝕋x⋆ = (Ux⋆ + x0)− 𝕋U (Ux⋆ + x0) = y⋆ − 𝕋Uy⋆.

Now, if y⋆ ∈ Rn is a point where v = y⋆ − 𝕋Uy⋆, then setting x⋆ = U⊺(y⋆ − x0) leads to

x⋆ − 𝕋x⋆ = U⊺(y⋆ − x0)− U⊺U𝕋U⊺(y⋆ − x0)

= U⊺(y⋆ − 𝕋Uy⋆) = U⊺ṽ = U⊺Uṽ = ṽ.

D.1. Fixed-Point Iteration with Span Assumption

Proof of Theorem 11. Let ei ∈ Rk+1 denote an i-th canonical basis vector whose i-th entry is 1 and the other entries are
all zero. As we discussed in the outline of proof, we only consider the case ṽ = (0, . . . , 0, ∥v∥) = ∥v∥ek+1. Define
𝕋 : Rk+1 → Rk+1 as

x− 𝕋x =



1 0 0 . . . 0 1 0
−1 1 0 . . . 0 0 0
0 −1 1 . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . 1 0 0
0 0 0 . . . −1 1 0
0 0 0 . . . 0 0 0


︸ ︷︷ ︸

=M∈R(k+1)×(k+1)

x+ αe1 − ∥v∥ek+1, ∀x ∈ H1
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for α ̸= 0. Note that M is an invertible matrix. If v = 0, 𝕋 has fixed-points of the form

−α

2

k∑
i=1

ei + (x⋆)k+1ek+1, (x⋆)k+1 ∈ R.

If v ̸= 0, 𝕋 does not have a fixed point, and its infimal displacement vector ṽ = ∥v∥ek+1 ̸= 0.

Let the iterates {xn}kn=0 satisfy the linear span assumption (span). Since x0 = 0, x0 − 𝕋x0 ∈ span{e1, ṽ} and

x1 ∈ x0 + span{x0 − 𝕋x0} ⊆ span{e1, ṽ}.

Then x1 − 𝕋x1 ∈ span{e1, e2, ṽ} and we also have

x2 = x0 + span{x0 − 𝕋x0, x1 − 𝕋x1} ∈ span{e1, e2, ṽ}.

From the observation above, we claim that

xn ∈ span{e1, e2, . . . , en, ṽ}
xn − 𝕋xn ∈ αe1 + ṽ + span{Me1,Me2, . . . ,Men} ⊆ span{e1, e2, . . . , en+1, ṽ}

for n = 1, . . . , k − 1.

We have already proven the case of n = 1. Let n < k − 1 and assume that the claim above hold for all m such that m ≤ n.
Then

xn+1 ∈ x0 + span{x0 − 𝕋x0, . . . , xn − 𝕋xn} ⊆ span{e1, . . . , en+1, ṽ}.

Also,

xn+1 − 𝕋xn+1 = Mxn+1 + αe1 + ṽ

∈ αe1 + ṽ + span{Me1, . . . ,Men+1}
⊆ span{e1, e2, . . . , en+2, ṽ}.

The claim holds for n+ 1 as well.

From above claim and its proof, we have

k−1∑
i=0

νi(x
i − 𝕋xi)− ṽ ∈ αe1 + span{Me1, . . . ,Mek−1}︸ ︷︷ ︸

=:Rk−1

,

so ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)− ṽ

∥∥∥∥∥
2

≥ ∥αe1∥2 − ∥ΠRk−1
(αe1)∥2

= α2
∥∥∥ΠR⊥

k−1
(e1)

∥∥∥2 .
Since R⊥

k−1 = span
{∑k

i=1 ei, ṽ
}

,

∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)− ṽ

∥∥∥∥∥
2

≥ α2
∥∥∥Πspan{

∑k
i=1 ei, ṽ}(e1)

∥∥∥2
= α2

∥∥∥Πspan{
∑k

i=1 ei}(e1)
∥∥∥2

= α2

∥∥∥∥∥
〈
e1,

∑k
i=1 ei

∥
∑k

i=1 ei∥

〉 ∑k
i=1 ei

∥
∑k

i=1 ei∥

∥∥∥∥∥
2

=
α2

k
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We know that the set of possible choice of x⋆ ∈ H is{
x⋆ ∈ Rk+1 | x⋆ = −α

2

k∑
i=1

ei + (x⋆)k+1ek+1, ∀(x⋆)k+1 ∈ R

}
.

As x0 = 0, ∥x0 − x⋆∥2 ≥ kα2

4 and equality holds when (x⋆)k+1 = 0.

Gathering the facts above, we may conclude that there exists 𝕋 : Rk+1 → Rk+1 with infimal displacement vector ṽ and
corresponding x⋆ ∈ Rk+1 such that x⋆ − 𝕋x⋆ = ṽ and∥∥∥∥∥

k−1∑
i=0

νi(x
i − 𝕋xi)− ṽ

∥∥∥∥∥
2

≥ 4

k2
∥x0 − x⋆∥2

for any iterates {xn}k−1
n=0 satisfying the linear span assumption, starting from x0 = 0.

Now, we may use the same operator 𝕋 to prove that(∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥

)2

≥ 1

2k2
∥x0 − x⋆∥2

for any iterates {xn}kn=0 satisfying the linear span assumption, starting from x0 = 0.

If v = 0, then ṽ = 0 so ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥ =

∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)− ṽ

∥∥∥∥∥
≥ 2

k
∥x0 − x⋆∥2

≥ 1√
2k

∥x0 − x⋆∥2

so the desired inequality (∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥

)2

≥ 1

2k2
∥x0 − x⋆∥2

holds true.

Now suppose v ̸= 0. Following the calculations above,∥∥∥∥∥
k∑

i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥ =
√
∥ṽ∥2 + ∥αe1∥2 − ∥ΠRk−1

(αe1)∥2 − ∥ṽ∥

=

√
∥ṽ∥2 + α2

∥∥∥ΠR⊥
k−1

(e1)
∥∥∥2 − ∥ṽ∥.

With a real function f(t) =
√
t defined on [0,∞), we may use the fact that f is a concave function, therefore

f(t+ h)− f(t) ≥ hf ′(t+ h) =
h

2
√
t+ h

, ∀ t, h > 0.

Substituting t and h by ∥v∥2 > 0 and α2∥ΠR⊥
k−1

(e1)∥2 > 0,∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥ ≥
α2∥ΠR⊥

k−1
(e1)∥2

2
√

∥ṽ∥2 + α2∥ΠR⊥
k−1

(e1)∥2

=
α∥ΠR⊥

k−1
(e1)∥

2
√

1 + ∥ṽ∥2

α2∥Π
R⊥

k−1
(e1)∥2

.
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α > 0 is a positive real number which was left unspecified, so we may just assign any positive value for the calculation. Let
α = ∥ṽ∥

∥Π
R⊥

k−1
(e1)∥ =

√
k∥ṽ∥ > 0, then as ∥x0 − x⋆∥ = α

2

√
k = k∥ṽ∥

2 , we get(∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥

)
/∥x0 − x⋆∥ ≥ ∥ṽ∥

2
√
2

2

k∥ṽ∥
=

1√
2k

.

so (∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥ṽ∥

)2

≥ 1

2k2
∥x0 − x⋆∥2.

We now extend the result to the arbitrarily given v, not ṽ. The case v = 0 is trivial, so suppose v ̸= 0. Let U ∈ R(k+1)×(k+1)

be an orthogonal matrix such that U⊺U = Ik+1 and Uṽ = v. Since U is a square matrix, U⊺U = UU⊺ = Ik+1 so
∥U⊺x∥ = ∥x∥ for all x ∈ Rk+1. According to Lemma 43, 𝕋U defined as 𝕋U (·) = U𝕋U⊺(· − y0) + y0 is a nonexpansive
operator with v = Uṽ = ΠR(𝕀−𝕋U )

(0). Let {yn}kn=0 is a sequence of iterates satisfying the linear span assumption (span)
with 𝕋U .

U⊺(yn − 𝕋Uy
n) = U⊺(yn − y0)− U⊺U𝕋U⊺(yn − y0)

= U⊺(yn − y0)− 𝕋U⊺(yn − y0)

and as
yn+1 ∈ y0 + span{y0 − 𝕋Uy

0, . . . , yn − 𝕋Uy
n}

implies

U⊺(yn+1 − y0) ∈ span{U⊺y0 − U⊺𝕋Uy
0, . . . , U⊺yn − U⊺𝕋Uy

n}
= span{U⊺(y0 − y0)− 𝕋U⊺(y0 − y0), . . . , U⊺(yn − y0)− 𝕋U⊺(yn − y0)},{

U⊺(yn − y0)
}k−1

n=0
satisfies linear span assumption (span) with 𝕋 where ṽ = U⊺v is an infimal displacement vector of 𝕋.

Therefore,∥∥∥∥∥
k−1∑
i=0

νi(y
i − 𝕋Uy

i)− v

∥∥∥∥∥ ≥

∥∥∥∥∥U⊺
k−1∑
i=0

νi(y
i − 𝕋Uy

i)− U⊺v

∥∥∥∥∥
=

∥∥∥∥∥
k−1∑
i=0

νi
{
U⊺(yn − y0)− 𝕋U⊺(yn − y0)

}
− ṽ

∥∥∥∥∥ (∵ U⊺v = U⊺Uṽ = ṽ)

≥ 4

k2
∥U⊺(y0 − y0)− U⊺(y⋆ − y0)∥2

=
4

k2
∥y0 − y⋆∥2.

Similarly, ∥∥∥∥∥
k−1∑
i=0

νi(y
i − 𝕋Uy

i)

∥∥∥∥∥− ∥v∥ ≥

∥∥∥∥∥U⊺
k−1∑
i=0

νi(y
i − 𝕋Uy

i)

∥∥∥∥∥− ∥v∥

=

∥∥∥∥∥
k−1∑
i=0

νi
{
U⊺(yn − y0)− 𝕋U⊺(yn − y0)

}∥∥∥∥∥− ∥ṽ∥ (∵ v = Uṽ)

≥ 1√
2k

∥U⊺(y0 − y0)− U⊺(y⋆ − y0)∥

=
1√
2k

∥y0 − y⋆∥.

Proof with real Hilbert space H can be done in the same manner as the proof of H = Rk+1. Set {ei}k+1
i=1 as a set of

orthonormal basis vectors of H where ek+1 = v
∥v∥ if v ̸= 0 and arbitrary if v = 0, and proceed with the same proof as

above.
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Remark 44. We calculate the complexity lower bound of various quantities including fixed-point residual xk − 𝕋xk and
normalized iterate (xk−x0)/αk by appropriately choosing the convex coefficients νi’s. In order to measure the lower bound
of fixed-point residual xk−1 − 𝕋xk−1 converging to v, choose νk−1 = 1 and choose all other νi’s as 0. For normalized
iterate, we use the fact that KM and Halpern choose the iterate xk to be in form of x0 +

∑k−1
i=0 λk

i (x
i − 𝕋xi). Therefore, if

we choose νi =
λk
i∑k−1

i=0 λk
i

, we obtain normalized iterates xk−x0∑k
i=1(1−λi)

for KM and xk−x0

θk
for Halpern. This scheme can be

extended to calculate the lower bound of Mann iteration as well.

D.2. General Fixed-Point Iterations

We follow the general complexity lower bound result of Park & Ryu (2022) for operators with fixed points, and extend their
result to the case where fixed point might not exist.

Definition 45 (Section D.2,& D.4, Park & Ryu (2022)). Let H be a real Hilbert space and 𝕋 : H → H be a nonexpansive
operator. Let {ei}i∈I with index set I denote a set of orthonormal basis of H.

A deterministic fixed-point iteration 𝔽 is defined as a mapping of the point x0 ∈ H and an operator 𝕋 to sequences of
iterates {xk}k∈N and {x̄k}k∈N. Here, xk is the k-th query point and x̄k is the k-th approximation point, and we consider the
setup with xk = x̄k so we omit x̄k. Actually, 𝔽 is defined as a sequence of mappings {𝔽k}k∈N, where xk is an output of 𝔽k

given the point x0 and the operator 𝕋 where

xk = 𝔽k[x
0,𝕋] = 𝔽k[x

0,O𝕋(x
0),O𝕋(x

1), . . . ,O𝕋(x
k−1)]

for any k ∈ N. Here, {xk}k∈N only depends on x0 and 𝕋 via the fixed-point residual oracle O𝕋(x) = x − 𝕋x. 𝔽 is
deterministic in a sense that, when provided with the same point x0 and the same oracle queries O𝕋(x

k) = xk − 𝕋xk for
k ∈ N, 𝔽 will give the same sequence of iterates {xk} as an output of 𝔽.

For z ∈ H, denote by supp{z} the support of z, i.e.,

supp{z} = {i ∈ I | ⟨z, ei⟩ ≠ 0} .

We say a sequence {zt}t∈N∪{0} is zero-respecting with respect to 𝕋 if

supp{zt} ⊆
⋃
s<t

supp{zs − 𝕋zs}

If {zt}t∈N∪{0} is a zero-respecting sequence with respect to 𝕋, then by the definition, supp{z0} ⊆ ∅ so z0 = 0.

As we did for fixed-point iterations with linear span assumption (span), from now on, we prove the result for Euclidean
spaces, since the proof naturally extends to Hilbert spaces H with dimH ≥ 2k − 1 and its set of orthonormal vectors
{ei}2k−1

i=1 .

Lemma 46. Given k ∈ N and v ∈ Rk+1, let 𝕋 : Rk+1 → Rk+1 be the worst-case operator defined in the proof of
Theorem 11, along with its infimal displacement vector v and x⋆. If the iterates {xn}k−1

n=0 are zero-respecting with respect to
𝕋, ∥∥∥∥∥

k−1∑
i=0

νi(x
i − 𝕋xi)− v

∥∥∥∥∥ ≥ 2

k + 1
∥x0 − x⋆∥

and ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥v∥ ≥ 1√
2(k + 1)

∥x0 − x⋆∥

for any choice of real numbers {νi}k−1
i=0 such that

∑k−1
i=0 νi = 1.

Proof. We claim that any zero respecting sequence {xn}k−1
n=0 satisfies

xn ∈ span{e1, . . . , en}
xn − 𝕋xn ∈ span{e1, . . . , en+1}
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for n = 0, . . . , k. If this holds, then the proof of Theorem 11 is still applicable to zero-respecting sequences, leading to the
desired result.

If n = 0, x0 = 0 and x0 − 𝕋x0 ∈ span{e1}, so the case of n = 0 holds true. Now, suppose that n < k − 1 and
the claim above holds for all m such that m ≤ n. Since the iterates form a zero-respecting sequence with respect to 𝕋,
supp{xn+1} ⊆ ∪m≤nsupp{xm − 𝕋xm} and therefore xn+1 ∈ span{e1, . . . , en+1}. Using this fact, xn+1 − 𝕋xn+1 ∈
span{e1, . . . , en+2} easily follows.

Lemma 47. Let 𝔽 be a general deterministic fixed-point iteration and 𝕋 : Rn+1 → Rn+1 be a nonexpansive operator
defined as in the proof of Theorem 11. For any arbitrary x0 ∈ Rd and v ∈ Rd with d ≥ n+N , there exists an orthogonal
matrix U ∈ Rd×(n+1) and the iterates {xk}Nk=1 = 𝔽[x0,𝕋U ] such that x(k) = U⊺(xk − x0),

{
x(k)

}N
k=0

is zero-respecting
with respect to 𝕋, and v becomes an infimal displacement vector of 𝕋U .

Proof. We prove the existence of an orthogonal matrix U ∈ Rd×n such that
{
xk
}N
k=1

= 𝔽[x0, 𝕋U ], x(k) = U⊺(xk − x0)
and v becomes an infimal displacement vector of 𝕋U . Constructing such orthogonal matrix is equivalent to choosing
appropriate set of orthonormal vectors {ui}n+1

i=1 , whose i-th vector ui becomes an i-th column of matrix U , i.e.,

U =

 | . . . |
u1 . . . un

| . . . |

 .

We modify the proof of (Park & Ryu, 2022, Lemma D.4(i)) to cover the case when v ̸= 0, as the original proof is restricted
to the case where the fixed point exists, or in other words, the case where v = 0.

We provide the scheme which inductively finds the column ui’s, given an arbitrary nonzero vector v ∈ Rd. Define the set of
indices St for t ∈ {1, . . . , N} as

St =
⋃
s<t

supp
{
x(s) − 𝕋x(s)

}
⊆ {1, 2, . . . , n+ 1}

and note that S0 = ∅ ⊆ S1 ⊆ · · · ⊆ St. As v ̸= 0, x(0) − 𝕋x(0) ̸= 0, and S1 ̸= ∅. Choose a set of vectors {ui}i∈S1 to be
any unit vectors which are orthonormal to each other. The precise choice of {ui}i∈S1 will be later specified, and it will
make v to be an infimal displacement vector of 𝕋U .

Now, suppose that for t ≥ 2, {ui}i∈St−1 is already chosen. Choose a set of unit vectors {ui}i∈St\St−1
from the orthogonal

complement of
Wt := span

(
{x1 − x0, · · · , xt−1 − x0} ∪ {ui}i∈St−1

)
⊆ Rd

and let them be orthogonal to each other. When t = N and SN ̸= {1, . . . , n+ 1}, choose any {ui}i∈{1,...,n+1}\SN
which

makes U orthogonal. Above scheme is well-defined if

dimW⊥
t ≥ |St \ St−1|,

and this is guaranteed from the fact that d ≥ n+N and t ≤ N since

dimW⊥
t = d− dimWt ≥ d− {(t− 1) + |St−1|} ≥ (n+ 1)− |St−1| ≥ |St \ St−1|.

Since ⟨ui, yt − y0⟩ for i /∈ St for t = 1, . . . , N ,

x(t) = U⊺(xt − x0) ∈ span{ei}i∈St

leads to supp{x(t)} ⊆ St. This proves that there exists an orthogonal matrix U ∈ Rd×(n+1) such that {xk}Nk=1 = 𝔽[x0,𝕋U ]
and x(k) = U⊺(xk − x0) for all k = 1, . . . , N .

Now, it remains to show that certain choice of {ui}i∈S1 implies that 𝕋U has v as its infimal displacement vector. First,
observe that for any arbitrary choice of {ui}i∈S1 ,

S1 = supp
{
x(0) − 𝕋x(0)

}
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and
x(0) − 𝕋x(0) = 0− 𝕋0 = −αe1 + ∥v∥en

so S1 = {1, n}. Note that the infimal displacement vector of 𝕋 is ṽ = ∥v∥en+1. From Lemma 43, Uṽ = ∥v∥ · Uen+1 =
∥v∥un is an infimal displacement vector of 𝕋U . As n + 1 ∈ S1, we may choose un+1 = v

∥v∥ so that v is an infimal
displacement vector of 𝕋U .

Lemma 48. Consider the setup of Lemma 47 with U ∈ Rm×n and the iterates {xk}Nk=1 = 𝔽[x0,𝕋U ]. Then∥∥∥∥∥
k∑

i=0

νi(x
(i) − 𝕋x(i))− ṽ

∥∥∥∥∥ ≤

∥∥∥∥∥
k∑

i=0

νi(x
i − 𝕋Ux

i)− v

∥∥∥∥∥
and ∥∥∥∥∥

k∑
i=0

νi(x
(i) − 𝕋x(i))

∥∥∥∥∥− ∥ṽ∥ ≤

∥∥∥∥∥
k∑

i=0

νi(x
i − 𝕋Ux

i)

∥∥∥∥∥− ∥v∥

for any νi ∈ R such that
∑k

i=0 νi = 1, where v is an infimal displacement vector of 𝕋U and ṽ is an infimal displacement
vector of 𝕋.

Proof. According to Lemma 43, v = Uṽ.

∥∥∥∥∥
k∑

i=0

νi(x
(i) − 𝕋x(i))− ṽ

∥∥∥∥∥ =

∥∥∥∥∥
k∑

i=0

νi
(
U⊺(xi − x0)− 𝕋U⊺(xi − x0)

)
− U⊺v

∥∥∥∥∥
=

∥∥∥∥∥U⊺
k∑

i=0

νi
(
(xi − x0)− U𝕋U⊺(xi − x0)

)
− U⊺v

∥∥∥∥∥
=

∥∥∥∥∥U⊺
k∑

i=0

νi(x
i − 𝕋Ux

i)− U⊺v

∥∥∥∥∥
≤

∥∥∥∥∥
k∑

i=0

νi(x
i − 𝕋Ux

i)− v

∥∥∥∥∥ .
Note that ∥ṽ∥ = ∥Uv∥ = ∥v∥. Therefore,∥∥∥∥∥

k∑
i=0

νi(x
(i) − 𝕋x(i))

∥∥∥∥∥− ∥ṽ∥ =

∥∥∥∥∥U⊺
k∑

i=0

νi(x
i − 𝕋Ux

i)

∥∥∥∥∥− ∥v∥

≤

∥∥∥∥∥
k∑

i=0

νi(x
i − 𝕋Ux

i)

∥∥∥∥∥− ∥v∥.

We now prove the main result.
Theorem 49. Let d ≥ 2k − 1 for k ∈ N. For any deterministic fixed-point iteration 𝔽, any initial point x0 ∈ Rd and any
vector v ∈ Rd, there exists a nonexpansive operator 𝕋 : Rd → Rd such that∥∥∥∥∥

k−1∑
i=0

νi(x
i − 𝕋xi)− v

∥∥∥∥∥
2

≥ 4

k2
∥x0 − x⋆∥2

and (∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕋xi)

∥∥∥∥∥− ∥v∥

)2

≥ 1

2k2
∥x0 − x⋆∥2

where v = x⋆ − 𝕋x⋆ = ΠR(𝕀−𝕋)
(0) and νi ∈ R with

∑k−1
i=0 νi = 1.
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Proof. Let 𝕊 : Rk+1 → Rk+1 be a worst-case operator in the proof of Theorem 11. From Lemma 47, there exists an
orthogonal matrix U ∈ Rd×(k+1) such that d ≥ k + (k − 1) = 2k − 1,

{
x(t)
}k−1

t=0
a sequence of iterates defined as

x(t) = U⊺(xt − x0) is zero-respecting with respect to 𝕊,∥∥∥∥∥
k−1∑
i=0

νi(x
(i) − 𝕊x(i))− ṽ

∥∥∥∥∥ ≤

∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕊Ux

i)− v

∥∥∥∥∥ ,
∥∥∥∥∥
k−1∑
i=0

νi(x
(i) − 𝕊x(i))

∥∥∥∥∥− ∥ṽ∥ ≤

∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕊Ux

i)

∥∥∥∥∥− ∥v∥

for any νi ∈ R such that
∑k−1

i=0 νi = 1, and v = Uṽ or ṽ = U⊺v by Lemma 43.

Since
{
x(t)
}k−1

t=0
is zero-respecting with respect to 𝕋, Lemma 46 implies∥∥∥∥∥

k−1∑
i=0

νi(x
(i) − 𝕊x(i))− ṽ

∥∥∥∥∥
2

≥ 4

k2
∥x(0) − x(⋆)∥2

and (∥∥∥∥∥
k−1∑
i=0

νi(x
(i) − 𝕊x(i))

∥∥∥∥∥− ∥ṽ∥

)2

≥ 1

2k2
∥x(0) − x(⋆)∥2

where x(⋆) ∈ H0 is a point such that x(⋆) − 𝕊x(⋆) = v. If x⋆ = x0 + Ux(⋆),

∥x(0) − x(⋆)∥2 = ∥ − x(⋆)∥2 = ∥ − Ux(⋆)∥2 = ∥x0 − x⋆∥2

so we may conclude that ∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕊Ux

i)− v

∥∥∥∥∥
2

≥ 4

k2
∥x0 − x⋆∥2

and (∥∥∥∥∥
k−1∑
i=0

νi(x
i − 𝕊Ux

i)

∥∥∥∥∥− ∥v∥

)2

≥ 1

2k2
∥x0 − x⋆∥2.

Therefore, 𝕋 = 𝕊U is our desired worst-case operator.

Proof of Theorem 12. Use the worst-case nonexpansive operator of Theorem 49 and construct the nonexpansive operator
with the orthonormal basis set {ei}2k−1

i=1 of H with dimH = 2k − 1.

E. Details of experiment in Section 6
Consider a semidefinite problem (SDP)

minimize
x∈Rd

∑p
i=1 c

⊺
i x

subject to Ai[x] =
∑d

j=1 A
j
ixj ⪯ Bi, 1 ≤ i ≤ p,

and PG-EXTRA applied on this problem.

Uk+1
i = Π−Sn

+

(
Uk
i + β(Bi −Ai[x

k])
)

wk+1= wk +
1

2
(I −W )xk (PG-EXTRA)

xk+1
i = xk

i − αβ(2wk+1
i − wk

i ) + α
(
A∗

i [2U
k+1
i − Uk

i ]− ci
)
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E.1. Deriving PG-EXTRA for SDP

Consider
minimize

x∈Rm

∑p
i=1⟨ci, x⟩Rm

subject to
∑m

j=1 xjA
j
i ⪯Sn

+
Bi, i = 1, · · · , p

or in other words,
minimize

xi∈Rn

∑p
i=1⟨ci, xi⟩Rm

subject to Li(xi) := Bi −
∑m

j=1(xi)jA
j
i ⪰Sn

+
0, i = 1, · · · , p

(I −W )x = 0 ⇔ Ux = 0

.

Defining Lx = (L1(x1)−B1, · · · , Lp(xp)−Bp, Ux), which is a linear map from Rp×m to (Sn)p ×Rp×m,

minimize
xi∈Rn

∑p
i=1⟨ci, xi⟩Rm + δ(Sn

+)p×{0}(Lx+B)

Corresponding Lagrangian is

L(x,u) =

p∑
i=1

⟨ci, xi⟩Rm︸ ︷︷ ︸
:=⟨c,x⟩

Rp×m

+⟨u, Lx+B⟩(Sn)p×Rp×m −
(
δ(Sn

+)p×{0}

)∗
(u)

where u = (u1, · · · , up,y) ∈ (Sn)p ×Rp×m and its saddle subdifferential is

∂L(x,u) =

[
c+ L∗u

−Lx−B+ ∂
(
δ(Sn

+)p×{0}

)∗
(u)

]

where

c =

c
⊺
1
...
c⊺p

 ∈ Rp×m.

Note that from

Lx =

−
m∑
j=1

(x1)jA
j
1, · · · , −

m∑
j=1

(xp)jA
j
p, Ux

 ,

L∗ : (Sn)p ×Rp×m → Rp×m is

L∗(y1, · · · , yp, z) = U⊺z−

(A
∗
1y1)

⊺

...
(A∗

pyp)
⊺

 .

Then

∂L(x,u) =


c− Uy +

(A
∗
1u1)

⊺

...
(A∗

pup)
⊺


−Lx−B+ ∂

(
δ(Sn

+)p×{0}

)∗
(u)


=

[
c

−B

]
︸ ︷︷ ︸
=:ℍ(x,u)

+

[
0 L∗

−L ∂
(
δ(Sn

+)p×{0}

)∗] [x
u

]
︸ ︷︷ ︸

=:𝔽(x,u)

.

Note that
δ∗{0}(x) = sup

y

(
⟨x, y⟩ − δ{0}(y)

)
= 0.
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and

δ∗Sn
+
(X) = sup

Y

(
⟨X,Y ⟩ − δSn

+
(Y )
)
= sup

Y ∈Sn
+

⟨X,Y ⟩ =

{
0 −X ∈ Sn

+

∞ o.w.
= δ−Sn

+
(X).

Let

M =

[
(1/α)𝕀 L∗

L (1/β)𝕀

]
,

then the FPI of forward-backward splitting (xk+1, uk+1) = (M + 𝔽)−1(M −ℍ)(xk, uk) is[
(1/α)𝕀 2L∗

0 (1/β)𝕀+ ∂
(
δ(Sn

+)p×{0}

)∗] [xk+1

uk+1

]
∋
[
(1/α)xk + L∗uk − c
Lxk + (1/β)uk +B

]
⇔ xk+1 + 2αL∗uk+1 = xk + α(L∗uk − c)

uk+1 = Proxβ(δ(Sn
+

)p×{0})∗
(
uk + β(Lxk +B)

)
⇔ uk+1 = Proxβ(δ(Sn

+
)p×{0})∗

(
uk + β(Lxk +B)

)
xk+1 = xk − α(2L∗uk+1 − L∗uk + c)

⇔ uk+1
i = Π−Sn

+

(
uk
i + β(Bi − ∑n

j=1(x
k
i )jA

j
i )
)

yk+1 = yk + βUxk

xk+1 = xk − α(2L∗uk+1 − L∗uk + c)

Note that yi and y are not related to each other. If we let w0 = 0, x0 arbitrary, and

wk =
1

β
Uyk =

1

2
(I −W )

k−1∑
j=0

xj ,

then

uk+1
i = Π−Sn

+

(
uk
i + β(Bi − ∑n

j=1(x
k
i )jA

j
i )
)

xk+1 = xk − αβ(2wk+1 −wk) + α

2

(A
∗
1u

k+1
1 )⊺

...
(A∗

pu
k+1
p )⊺

−

(A
∗
1u

k
1)

⊺

...
(A∗

pu
k
p)

⊺

−

c
⊺
1
...
c⊺p




wk+1 = wk +
1

2
(I −W )xk

or

uk+1
i = Π−Sn

+

(
uk
i + β(Bi − ∑n

j=1(x
k
i )jA

j
i )
)

wk+1 = wk +
1

2
(I −W )xk

xk+1
i = xk

i − αβ(2wk+1
i − wk

i ) + α
(
A∗

i (2u
k+1
i − uk

i )− ci
)

where U and ui are irrelevant and

A∗u =

tr(A1u1)
...

tr(Anun)

 .

Above solves decentralized semidefinite problem, when α, β > 0 are chosen to define a metric on Rn×p × (Sn)p ×Rn×p.

M =

[
(1/α)𝕀 L∗

L (1/β)𝕀

]
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E.2. Measuring fixed-point residual in M -norm

Although the algorithm itself does not keep the iterate yk such that

wk =
1

β
Uyk,

we need yk-iterates in order to calculate the fixed-point residual ∥(xk,uk)∥2M where M : Rp×m × ((Sn)p × Rp×m) →
Rp×m × ((Sn)p ×Rp×m) is a linear map defined as

M =

[
(1/α)𝕀 L∗

L (1/β)𝕀

]
.

Then for any x ∈ Rp×m and u = (u1, · · · , up,y) ∈ (Sn)p ×Rp×m,

∥(x,u)∥2M =
1

α
∥x∥2Rp×m +

1

β
∥u∥2(Sn)p×Rp×m + ⟨x, L∗u⟩Rp×m + ⟨Lx, u⟩(Sn)p×Rp×m

=
1

α
∥x∥2Rp×m +

1

β

p∑
i=1

∥ui∥2Sn +
1

β
∥y∥2Rp×m + 2 ⟨Lx, u⟩(Sn)p×Rp×m︸ ︷︷ ︸

(⋆)

.

Then

(⋆) =

〈−
m∑
j=1

(x1)jA
j
1, −

m∑
j=1

(x2)jA
j
2, · · · ,−

m∑
j=1

(xp)
jAj

p, Ux

 , (u1, u2, · · · , up,y)

〉

= ⟨x, βw⟩ −
p∑

k=1

m∑
j=1

(xk)jtr(A
j
kuk),

so

∥(x,u)∥2M =
1

α
∥x∥2Rp×m +

1

β

p∑
i=1

∥ui∥2Sn +
1

β
∥y∥2Rp×m + 2β⟨x, w⟩ − 2

p∑
k=1

m∑
j=1

(xk)jtr(A
j
kuk).

Now, y can be calculated as follows. Consider a eigenvalue decomposition (I −W ) = V ΣV ⊺. Let vi be the i-th column of
V , σi be the i-th eigenvalue corresponding to vi. Suppose σp = 0 with vp = 1. As y ⊥ 1, y =

∑p−1
i=1 yivi. Then

βw = Uy = U

p−1∑
i=1

yivi.

As U = V Σ1/2V ⊺,

βw = V Σ1/2V ⊺
p=1∑
i=1

yivi = V Σ1/2


y1
y2
...

yp−1

yp = 0

 = V



√
σ1y1√
σ2y2
...√

σp−1yp−1

0

 =

p−1∑
i=1

√
σiyivi

Calculate yi from taking inner product of βw and vi.
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E.3. Experiment settings and additional plots

In this experiment, we use the parameters α = β = 0.01 with n = 10, m = 11, p = 10, and ε = 0.5. These numbers come
from the infeasible linear matrix inequality (LMI) designed for this experiment, which we state below.[

x1 x2

x2 ε

]
⪰ 0[

x2 x3

x3 ε

]
⪰ 0

...[
xk xk+1

xk+1 ε

]
⪰ 0,

with ε > 0. Then the set of inequalities above is a subset of{
(x1, x2, . . . , xk, xk+1) ∈ Rk+1 | x1

ε
≥
(xk+1

ε

)2k}
.

If we add another LMI [
−x1 x2

x2 ε

]
⪰ 0,

The feasible region is also a subset of{
(x1, x2, . . . , xk, xk+1) ∈ Rk+1 | x1

ε
≤ −

(xk+1

ε

)2k}
.

Reversing the sign of the first (1, 1)-entry of each LMI results in the only feasible region {(0, . . . , 0)}. Then, if we
additionally impose an LMI such as [

x1 0
0 xk+1

]
⪰
[
1 0
0 1

]
,

Then the origin {(0, . . . , 0)} is never in a feasible region of the set of all LMIs, so the SDP becomes infeasible. The value
of ∥v∥2 has been numerically calculated using the normalized iterate of Picard iteration after 200, 000 iterations.

Additionally, we draw plots of the difference of fixed-point residual or normalized iterate between v and −v, respectively.
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Figure 3. (Left) Squared difference between fixed-point residual and v, ∥xk−𝕋xk−v∥2. (Right) Squared difference between normalized
iterate and −v, ∥(xk − x0)/αk + v∥2.
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