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ABSTRACT

We introduce a principled way of computing the Wasserstein distance between two
distributions in a federated manner. Namely, we show how to estimate the Wasser-
stein distance between two samples stored and kept on different devices/clients
whilst a central entity/server orchestrates the computations (again, without having
access to the samples). To achieve this feat, we take advantage of the geomet-
ric properties of the Wasserstein distance – in particular, the triangle inequality
– and that of the associated geodesics: our algorithm, FedWaD (for Federated
Wasserstein Distance), iteratively approximates the Wasserstein distance by ma-
nipulating and exchanging distributions from the space of geodesics in lieu of the
input samples. In addition to establishing the convergence properties of FedWaD,
we provide empirical results on federated coresets and federate optimal transport
dataset distance, that we respectively exploit for building a novel federated model
and for boosting performance of popular federated learning algorithms.

1 INTRODUCTION

Context. Federated Learning (FL) is a form of distributed machine learning (ML) dedicated to train
a global model from data stored on local devices/clients, while ensuring these clients never share
their data (Kairouz et al., 2021; Wang et al., 2021). FL provides elegant and convenient solutions
to concerns in data privacy, computational and storage costs of centralized training, and makes it
possible to take advantage of large amounts of data stored on local devices. A typical FL approach to
learn a parameterized global model is to alternate between the two following steps: i) update local
versions of the global model using local data, and ii) send and aggregate the parameters of the local
models on a central server (McMahan et al., 2017) to update the global model.

Problem. In some practical situations, the goal is not to learn a prediction model, but rather to
compute a certain quantity from the data stored on the clients. For instance, one’s goal may be to
compute, in a federated way, some prototypes of client’s data, that can be leveraged for federated
clustering or for classification models (Gribonval et al., 2021; Phillips, 2016; Munteanu et al., 2018;
Agarwal et al., 2005). In another learning scenarios where data are scarce, one may want to look
for similarity between datasets in order to evaluate dataset heterogeneity over clients and leverage
on this information to improve the performance of federated learning algorithms. In this work,
we address the problem of computing, in a federated way, the Wasserstein distance between two
distributions µ and ν when samples from each distribution are stored on local devices. A solution
to this problem will be useful in the aforementioned situations, where the Wasserstein distance is
used as a similarity measure between two datasets and is the key tool for computing some coresets
of the data distribution or cluster prototypes. We provide a solution to this problem which hinges
on the geometry of the Wasserstein distance and more specifically, its geodesics. We leverage the
property that for any element ξ⋆ of the geodesic between two distributions µ and ν, the following
equality holds, Wp(µ, ν) = Wp(µ, ξ

⋆) +Wp(ξ
⋆, ν), where Wp denotes the p-Wasserstein distance.

This property is especially useful to compute Wp(µ, ν) in a federated manner, leading to a novel
theoretically-justified procedure coined FedWaD, for Federated Wasserstein Distance.

Contribution: FedWaD. The principle of FedWaD is to iteratively approximate ξ⋆ – which, in
terms of traditional FL, can be interpreted as the global model. At iteration k, our procedure consists
in i) computing, on the clients, distributions ξkµ and ξkν from the geodesics between the current
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approximation of ξ⋆ and the two secluded distributions µ and ν – ξkµ and ξkν playing the role of the
local versions of the global model, and ii) aggregating them on the global model to update ξ⋆.

Organization of the paper. Section 2 formalizes the problem we address, and provides the
necessary technical background to devise our algorithm FedWaD. Section 3 is devoted to the depiction
of FedWaD, pathways to speed-up its executions, and a theoretical justification that FedWaD is
guaranteed to converge to the desired quantity. In Section 4, we conduct an empirical analysis of
FedWaD on different use-cases (Wasserstein coresets and Optimal Transport Dataset distance) which
rely on the computation of the Wasserstein distance. We unveil how these problems can be solved in
our FL setting and demonstrates the remarkable versatility of our approach. In particular, we expose
the impact of federated coresets. By learning a single global model on the server based on the coreset,
our method can outperform personalized FL models. In addition, our ability to compute inter-device
dataset distances significantly helps amplify performances of popular federated learning algorithms,
such as FedAvg, FedRep, and FedPer. We achieve this by clustering clients and harnessing the power
of reduced dataset heterogeneity.

2 RELATED WORKS AND BACKGROUND

2.1 WASSERSTEIN DISTANCE AND GEODESICS

Throughout, we denote by P(X) the set of probability measures in X . Let p ≥ 1 and define Pp(X)
the subset of measures in P(X) with finite p-moment, i.e., Pp(X)

.
=

{
η ∈ P(X) : Mp(η) < ∞

}
,

where Mp(η)
.
=

∫
X
dpX(x, 0)dη(x) and dX is a metric on X often referred to as the ground cost. For

µ ∈ Pp(X) and ν ∈ Pp(Y ), Π(µ, ν) ⊂ P(X × Y ) is the collection of probability measures or
couplings on X × Y defined as

Π(µ, ν)
.
=

{
π ∈ P(X × Y ) : ∀A ⊂ X,B ⊂ Y, π(A× Y ) = µ(A) and π(X ×B) = ν(B)

}
.

The p-Wasserstein distance Wp(µ, ν) between the measures µ and ν —assumed to be defined over
the same ground space, i.e. X = Y — is defined as

Wp(µ, ν)
.
=

(
inf

π∈Π(µ,ν)

∫
X×X

dpX(x, x′)dπ(x, x′)

)1/p

. (1)

It is proven that the infimum in (1) is attained (Peyré et al., 2019) and any probability π which
realizes the minimum is an optimal transport plan. In the discrete case, we denote the two marginal
measures as µ =

∑n
i=1 aiδxi

and ν =
∑m

i=1 biδx′
i
, with ai, bi ≥ 0 and

∑n
i=1 ai =

∑m
i=1 bi = 1.

The Kantorovitch relaxation of (1) seeks for a transportation coupling P that solves the problem

Wp(µ, ν)
.
=

(
min

P∈Π(a,b)
⟨C,P⟩

)1/p

(2)

where C
.
= (dpX(xi, x

′
j)) ∈ Rn×m is the matrix of all pairwise costs, and Π(a,b)

.
= {P ∈

Rn×m
+ |P1 = a,P⊤1 = b} is the transportation polytope (i.e. the set of all transportation plans)

between the distributions a and b.

Property 1 (Peyré et al. (2019)). For any p ≥ 1, Wp is a metric on Pp(X). As such it satisfies the
triangle inequality:

∀µ, ν, ξ ∈ Pp(X), Wp(µ, ν) ≤ Wp(µ, ξ) +Wp(ξ, ν) (3)

It might be convenient to consider geodesics as structuring tools of metric spaces.

Definition 1 (Geodesics, Ambrosio et al. (2005)). Let (X , d) be a metric space. A constant speed
geodesic x : [0, 1] → X between x0, x1 ∈ X is a continuous curve such that ∀s, t ∈ [0, 1],
d(x(s), x(t)) = |s− t| · d(x0, x1).

Property 2 (Interpolating point, Ambrosio et al. (2005)). Any point xt from a constant speed geodesic
(x(t))t∈[0,1] is an interpolating point and verifies, d(x0, x1) = d(x0, xt)+ d(xt, x1), i.e. the triangle
inequality becomes an equality.
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iterate of the geodesic element ξ1

• The process is repeated until convergence
to obtain ξK and we define Wp(µ, ν) =
Wp(µ, ξ
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K).

Figure 1: The Wasserstein distance between µ and ν which are on their respective clients can be
computed as Wp(µ, ν) = Wp(µ, ξ

⋆) +Wp(ν, ξ
⋆) where ξ⋆ is an element on the geodesic between

µ and ν. FedWaD seeks at estimating ξ⋆ with ξK using an iterative algorithm and plugs in this
estimation to obtain Wp(µ, ν). Iterates of ξi are computed on the server and sent to clients in order
to compute measures ξiµ and ξiν that are on geodesics of µ and ξi and ν and ξi respectively.

These definitions and properties carry over to the case of the Wasserstein distance:
Definition 2 (Wasserstein Geodesics, Interpolating measure, Ambrosio et al. (2005); Kolouri et al.
(2017)). Let µ0, µ1 ∈ Pp(X) with X ⊆ Rd compact, convex and equipped with Wp. Let γ ∈
Π(µ0, µ1) be an optimal transport plan. For t ∈ [0, 1], let µt

.
= (πt)#γ where πt(x, y)

.
= (1− t)x+

ty, i.e. µt is the push-forward measure of γ under the map πt. Then, the curve µ̄
.
= (µt)t∈[0,1] is a

constant speed geodesic between µ0 and µ1; we call it a Wasserstein geodesics between µ0 and µ1.

Any point µt of the geodesics is an interpolating measure between µ0 and µ1 and, as expected:

Wp(µ0, µ1) = Wp(µ0, µt) +Wp(µt, µ1). (4)

In the discrete case, and for a fixed t, one can obtain such interpolating measure µt given the optimal
transport map P⋆ solution of Equation (2) as follows (Peyré et al., 2019, Remark 7.1):

µt =

n,m∑
i,j

P⋆
i,jδ(1−t)xi+tx′

j
(5)

where P⋆
i,j is the (i, j)-th entry of P⋆; as an interpolating measure, µt obviously complies with (4).

2.2 PROBLEM STATEMENT

Our goal is to compute the Wasserstein distance between two data distributions µ and ν on a global
server with the constraint that µ and ν are distributed on two different clients which do not share any
data samples to the server. From a mathematical point of view, our objective is to estimate an element
ξ⋆ on the geodesic of µ and ν without having access to them by leveraging two other elements ξµ
and ξν on the geodesics of µ and ξ⋆ and ν and ξ⋆ respectively.

2.3 RELATED WORKS

Our work touches the specific question of learning/approximating a distance between distributions
whose samples are secluded on isolated clients. As far as we are aware of, this is a problem that
has never been investigated before and there are only few works that we see closely connected to
ours. Some problems have addressed the objective of retrieving nearest neighbours of one vector
in a federated manner. For instance, Liu et al. (2021) consider to exchange encrypted versions
of the dataset on client to the central server and Schoppmann et al. (2018) consider the exchange
of differentially private statistics about the client dataset. Zhang et al. (2023) propose a federated
approximate k-nearest approach based on a specific spatial data federation. Compared to these works
that compute distances in a federated manner, we address the case of distances on distributions
without any specific encryption of the data and we exploit the properties of the Wasserstein distances
and its geodesics, which have been overlooked in the mentioned works. If these properties have been
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relied upon as a key tool in some computer vision applications (Bauer et al., 2015; Maas et al., 2017)
and trajectory inference (Huguet et al., 2022), they have not been employed as a privacy-preserving
tool.

3 COMPUTING THE FEDERATED WASSERSTEIN DISTANCE

In this section, we develop a methodology to compute, on a global server, the Wasserstein distance
between two distributions µ and ν, stored on two different clients which do not share this information
to the server. Our approach leverages the topology induced by the Wasserstein distance in the space
of probability measures, and more precisely, the geodesics.

Outline of our methodology. A key property is that Wp is a metric, thus satisfies the triangle
inequality: for any µ, ν, ξ ∈ Pp(X),

Wp(µ, ν) ≤ Wp(µ, ξ) +Wp(ξ, ν) , (6)

with equality if and only if ξ = ξ⋆, where ξ⋆ is an interpolating measure. Consequently, one can
compute Wp(µ, ν) by computing Wp(µ, ξ

⋆) and Wp(ξ
⋆, ν) and adding these two terms. This result is

useful in the federated setting and inspires our methodology, as described hereafter. The global server
computes ξ⋆ and communicate ξ⋆ to the two clients. The clients respectively compute Wp(µ, ξ

⋆) and
Wp(ξ

⋆, ν), then send these to the global server. Finally, the global server adds the two received terms
to return Wp(µ, ν).

The main bottleneck of this procedure is that the global server needs to compute ξ⋆ (which by
definition, depends on µ, ν) while not having access to µ, ν (which are stored on two clients). We
then propose a simple workaround to overcome this challenge, based on an additional application of
the triangle inequality: for any ξ ∈ Pp(X),

Wp(µ, ν) ≤ Wp(µ, ξ) +Wp(ξ, ν) = Wp(µ, ξµ) +Wp(ξµ, ξ) +Wp(ξ, ξν) +Wp(ξν , ν) , (7)

where ξµ and ξν are interpolating measures respectively between µ and ξ and ξ and ν. Hence,
computing ξ⋆ can be done through intermediate measures ξµ and ξν , to ensure that µ, ν stay on their
respective clients. To this end, we develop an optimization procedure which essentially consists in
iteratively estimating an interpolating measure ξ(k) between µ and ν on the server, by using ξ

(k)
µ

and ξ
(k)
ν which were computed and communicated by the clients. More precisely, the objective

is to minimize (7) over ξ as follows: at iteration k, the clients receive current iterate ξ(k−1) and
compute ξ

(k)
µ and ξ

(k)
ν (as interpolating measures between µ and ξ(k−1), and between ξ(k−1) and ν

respectively). By the triangle inequality,

Wp(µ, ν) ≤ Wp(µ, ξ
(k)
µ ) +Wp(ξ

(k)
µ , ξ(k−1)) +Wp(ξ

(k−1), ξ(k)ν ) +Wp(ξ
(k)
ν , ν) , (8)

therefore, the clients then send ξ
(k)
µ and ξ

(k)
ν to the server, which in turn, computes the next iterate

ξ(k) by minimizing the left-hand side term of (8), i.e.,

ξ(k) ∈ argmin
ξ

Wp(ξ
(k)
µ , ξ) +Wp(ξ, ξ

(k)
ν ) . (9)

Our methodology is illustrated in Figure 1 and summarized in Algorithm 1. It can be applied to
continuous measures as long as an interpolating measure between two distributions can be computed
in closed form. Regarding communication cost, at each iteration, the communication cost involves
the transfer between the server and the clients of four interpolating measures: ξ(k−1) (twice), ξ(k)µ ,
ξ
(k)
ν . Hence, if the support size of ξ(k−1) is S, the communication cost is in O(4SKd), with d the

data dimension and K the number of iterations.

Reducing the computational complexity. In terms of computational complexity, we need to
compute three OT plans per iteration which single cost, based on the network simplex is O((n +
m)nmlog(n + m)). More importantly, consider that µ and ν are discrete measures, then, any
interpolating measure between µ and ν is supported on at most on n+m+ 1 points. Hence, even if
the size of the support of ξ(0) is small, but n is large, the support of the next interpolating measures
may get larger and larger, and this can yield an important computational overhead when computing
Wp(µ, ξ

(k)) and Wp(ξ
(k), ν).
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Algorithm 1 FedWaD
Input: µ and ν, initialisation of ξ(0), function Interp-

Meas that computes an interpolating measure be-
tween two measures using Equation (5) or Equa-
tion (10) for any 0 < t < 1.

1: for k = 1 to K do
2: // Send ξ(k−1) to clients
3: // Compute on clients with optional return of dis-

tances
4: ξ

(k)
µ , [Wp(µ, ξ

(k))]←InterpMeas(µ, ξ(k−1))

5: ξ
(k)
ν , [Wp(ξ

(k), ν)]←InterpMeas(ν, ξ(k−1))

6: // Send ξ
(k)
µ and ξ

(k)
ν to server

7: ξ(k) ← InterpMeas(ξ(k)µ , ξ
(k)
ν )

8: end for
9: // SendWp(µ, ξ

(K)),Wp(ξ
(K), ν) to server

10: Wp(µ, ν) =Wp(µ, ξ
(K)) +Wp(ξ

(K), ν)
Output: return dµ,ν on server

To reduce this complexity, we resort to approx-
imations of the interpolating measures which
goal is to fix the support size of the interpolating
measures to a small number S. The solution we
consider is to approximate the McCann’s inter-
polation equation which formalizes geodesics
ξt given an optimal transport map between two
distributions,say, ξ and ξ′, based on the equation
ξt = ((1 − t)Id + tT )#ξ Peyré et al. (2019).
Using barycentric mapping approximation of
the map T (Courty et al., 2018), we propose to
approximate the interpolating measures ξt as

ξt =
1

n

n∑
i=1

δ(1−t)xi+tn(P⋆X′)i (10)

where P⋆ is the optimal transportation plan be-
tween ξ and ξ′, xi and x′

j are the samples from
these distributions and X′ is the matrix of sam-
ples from ξ′. Note that by choosing the appro-
priate formulation of the equation, the support size of this interpolating measure can be chosen as
the one of ξ or ξ′. In practice, we always opt for the choice that leads to the smallest support of the
interpolating measure. Hence, if the support size of ξ(0) is S, we have the guarantee that the support
of ξ(k) is S for all k. Then, for computing Wp(µ, ξ

(k)) using approximated interpolating measures,
it costs O(3 ∗ (Sn2 + S2n)log(n+ S)) at each iteration and if S and the number of iterations K are
small enough, the approach we propose is even competitive compared to exact OT. Our experiments
reported later that for larger number of samples (≥ 5000), our approach is as fast as exact optimal
transport and less prone to numerical errors.

Mitigating privacy issues. As for many FL algorithms, we do not provide or have a formal guarantee
of privacy. However, we have components of the algorithm that helps mitigate risks of privacy leak.
First, the interpolating measures can be computed for a randomized value of t; second, distances
are not communicated to the server until the last iteration, and finally the use of the approximated
interpolating measures in Equation (10) helps in obfuscation since interpolating measure supports
depend on the transport plan which is not reveal to the server. If a formal differential privacy guarantee
is required, one need to incorporate an (adapted) differentially private version of the Wasserstein
distance (Lê Tien et al., 2019; Goldfeld & Greenewald, 2020).

Theoretical guarantees. We discuss in this section some theoretical properties of the components
of FedWaD. At first, we show that the approximated interpolating measure is tight in the sense that
there exists some situations where the resulting approximation is exact.

Theorem 1. Consider two discrete distributions µ and ν with the same number of samples n and
uniform weights, then for any t, the approximated interpolating measure, between µ and ν given by
Equation (10) is equal to the exact one Equation (5).

Proof is given in Appendix A. In practice, this property does not have much impact, but it ensures us
about the soundness of the approach. In the next theorem, we prove that Algorithm 1 is theoretically
justified, in the sense that its output converges to Wp(µ, ν).

Theorem 2. Let µ and ν be two measures in Pp(X), ξ(k)µ , ξ(k)ν and ξ(k) be the interpolating
measures computed at iteration k as defined in Algorithm 1. Denote as

A(k) = Wp(µ, ξ
(k)
µ ) +Wp(ξ

(k)
µ , ξ(k)) +Wp(ξ

(k), ξ(k)ν ) +Wp(ξ
(k)
ν , ν)

Then the sequence (A(k))k is non-increasing and converges to Wp(µ, ν).

We provide hereafter a sketch of the proof, and refer to Appendix B for full details. First, we show
that the sequence (A(k))k is non-increasing, as we iteratively update ξ(k+1)

µ , ξ(k+1)
ν and ξ(k+1) based

on geodesics (a minimizer of the triangle inequality). Then, we show that the sequence (A(k))k is
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Figure 2: Analysis of the different Wasserstein distance computation methods (most-left panels) for
varying support size of the approximated FedWaD and (most-right panels) for varying sample ratio
in the two distributions and fixed support size. For each couple of panels, for increasing number of
samples, we report the running time and the relative error of the Wasserstein distance (WD), our
exact FedWaD (FedWad-e) and our approximate FedWaD (FedWad-a) with a support size of 2, 10
and 100. For the most-right panels, we have set the support size of the interpolating measure to 10.
For a sample ratio (1:3), the first distribution has a number of samples N and the second ones N/3.

bounded below by Wp(µ, ν). We conclude the proof by proving that the sequence (A(k))k converges
to Wp(µ, ν).

In the next theorem, we show that when µ and ν are Gaussians then we can recover some nicer
properties of our algorithm and provide a convergence rate (proof in Appendix C).

Theorem 3. Assume that µ, ν and ξ(0) are three Gaussian distributions with the same covariance
matrix Σ ie µ ∼ N (mµ,Σ), ν ∼ N (mν ,Σ) and ξ(0) ∼ N (mξ(0) ,Σ). Further assume that we are
not in the trivial case where mµ, mν , and mξ(0) are aligned. Applying our Algorithm 1 with t = 0.5
and the squared Euclidean cost, we have the following properties:

1. all interpolating measures ξ(k)µ ,ξ(k)ν , ξ(k) are Gaussian distributions with the same covari-
ance matrix Σ,

2. for any k ≥ 1, W2(µ, ν) = ∥mµ −mν∥2 = 2∥m
ξ
(k)
µ

−m
ξ
(k)
ν

∥2 = 2W2(ξ
(k)
µ , ξ

(k)
ν )

3. W2(ξ
(k), ξ⋆) = 1

2W2(ξ
(k−1), ξ⋆)

4. W2(µ, ξ
(k)) +W2(ξ

(k), ν)−W2(µ, ν) ≤ 1
2k−1W2(ξ

(0), ξ(⋆))

Interestingly, this theorem also says that in this specific case, only one iteration is needed to recover
W2(µ, ν)

4 EXPERIMENTS

This section presents numerical applications, where FedWaD can successfully be used and show how
it can boost performances of federated learning algorithms. The code for reproducing part of the
results is available at https://github.com/arakotom/fedwad and is built on top of the
Python Optimal Transport library (Flamary et al., 2021). Full details are provided in Appendix D.
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Figure 3: (left) Evolution of the interpolating mea-
sure ξ(k) - in blue - (right) the estimated Wasser-
stein distance between two Gaussian distributions
µ and ν.

Toy analysis. We illustrate the evolution of
interpolating measures using FedWaD for cal-
culating the Wasserstein distance between two
Gaussian distributions. We sample 200 points
from two 2D Gaussian distributions with differ-
ent means and the same covariance matrix. We
compute the interpolating measure at t = 0.5
using both the analytical formula (5) and the
approximation (10). Figure 3 (left panel) shows
how the interpolating measure evolves across
iterations. We also observe, in Figure 3 (right
panel), that the error on the true Wasserstein dis-
tance for the approximated interpolating measure reaches 10−3, while for the exact interpolating
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measure, it drops to a minimum of 10−4 before increasing. This discrepancy occurs as the support
size of the interpolating measure expands across iterations leading to numerical errors when com-
puting the optimal transport plan between ξ(k) and ξ

(k)
µ or ξ(k)ν . Hence, using the approximation

Equation (10) is a more robust alternative to exact computation Equation (5).

We also examine computational complexity and approximation errors for both methods as we increase
sample sizes in the distributions, as displayed in Figure 2. Key findings include: The approximated
interpolating measure significantly improves computational efficiency, being at least 10 times faster
with sample size exceeding 100, especially with smaller support sizes. It also achieves a similar
relative approximation error as FedWaD using the exact interpolating measure and true non-federated
Wasserstein distance. Importantly, it demonstrates greater robustness with larger sample sizes
compared to true Wasserstein distance for such a small dimensional problem.

Wasserstein coreset and application to federated learning. In many ML applications,
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Figure 4: Examples of the 10 coreset we
obtained, with for each panel (top-row)
the exact Wasserstein and (bottow-row)
FedWaD for the MNIST dataset. Differ-
ent panels correspond to different num-
ber of classes K on each client: (top)
K = 8, (middle) K = 2, (bottom) sup-
port of the interpolating measure varying
from 10 to 100.

summarizing data into fewer representative samples is
routinely done to deal with large datasets. The notion
of coreset has been relevant to extract such samples and
admit several formulations (Phillips, 2016; Munteanu
et al., 2018). In this experiment, we show that Wasser-
stein coresets (Claici et al., 2018) can be computed in
a federated way via FedWaD. Formally, given a dataset
described by the distribution µ, the Wasserstein coreset
aims at finding the empirical distribution that minimizes
minx′

1,··· ,x′
K
Wp

(
1
K

∑K
i=1 δx′

i
, µ

)
. We solve this prob-

lem in the following federated setting: we assume that
either the samples drawn from µ are stored on an unique
client or distributed across different clients, and the objec-
tive is to learn the coreset samples {x′

i} on the server. In
our setting, we can compute the federated Wasserstein dis-
tances between the current coreset and some subsamples
of all active client datasets, then update the coreset given
the aggregated gradients of these distances with respect
to the coreset support. We sampled 20000 examples ran-
domly from the MNIST dataset, and dispatched them at
random on 100 clients. We compare the results we obtained with FedWaD with those obtained with
exact non-federated Wasserstein distance The results are shown in Figure 4. We can note that when
classes are almost equally spread across clients (with K = 8 different classes per client), FedWaD
is able to capture the 10 modes of the dataset. However, as the diversity in classes between clients
increases, FedWaD has more difficulty to capture all the modes of the dataset. Nonetheless, we also
observe that the exact Wasserstein distance is not able to recover those modes either. We can thus
conjecture that this failure is likely due to the coreset approach itself, rather than to the approximated
distance returned by FedWaD. We also note that the support size of the interpolating measure has
less impact on the coreset. We believe this is a very interesting result, as it shows that FedWaD can
provide useful gradient to the problem even with a poorer estimation of the distance.

Federated coreset classification model Those federated coresets can also be used for classifi-
cation tasks. As such, we have learned coresets for each client, and used all the coresets from
all clients as the examples for a one-nearest neighbor global classifier shared to all clients. Note
that since a coreset computation is an unsupervised task, we have assigned to each element of a
coreset the label of the closest element in the client dataset. For this task, we have used the MNIST
dataset which has been autoencoded in order to reduce its dimensionality. Half of the training
samples have been used for learning the autoencoder and the other half for the classification task.
Those samples and the test samples of dataset have been distributed across clients while ensuring
that each client has samples from only 2 classes. We have then computed the accuracy of this
federated classifier for varying number of clients and number of coresets and compared its perfor-
mance to the ones of FedRep (Collins et al., 2021) and FedPer (Arivazhagan et al., 2019). Results
are reported in Figure 5. We can see that our simple approach is highly competitive with these
personalized FL approaches, and even outperforms them when the number of users becomes large.
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Figure 6: Comparison of the matrix of distances between digits datasets computed by FedWaD and
the true OTDD distance between the same datasets. (left) OTDD, (middle-left) FedWaD with 20
epochs and 1000 support points, (middle-right) FedWaD with 500 epochs and 1000 support points,
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Figure 5: Nearest neighbor classifier
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compared to the performance of two per-
sonalized FL algorithms.

Geometric dataset distances via federated Wasserstein
distance. Our goal is to improve on the seminal algo-
rithm of Alvarez-Melis & Fusi (2020) that seeks at comput-
ing distance between two datasets D and D′ using optimal
transport. We want to make it federated. This extension
will pave the way to better federated learning algorithms
for transfer learning and domain adaptation or can simply
be used for boosting federated learning algorithms, as we
illustrate next. Alvarez-Melis & Fusi (2020) considers
a Wasserstein distance with a ground metric that mixes
distances between features and tractable distance between
class-conditional distributions. For our extension, we will
use the same ground metric, but we will compute the
Wasserstein distance using FedWaD. Details are provided
in Appendix D.5.

We replicated the experiments of Alvarez-Melis & Fusi
(2020) on the dataset selection for transfer learning: given
a source dataset, the goal is to find a target one which is
the most similar to the source. We considered four real
datasets, namely MNIST, KMNIST, USPS and FashionMNIST and we have computed all the
pairwise distance between 5000 randomly selected examples from each dataset using the original
OTDD of Alvarez-Melis & Fusi (2020) and our FedWaD approach. For FedWaD, we chose the
support size of the interpolating measure to be 1000 and 5000 and the number of epochs to 20 and
500. Results, averaged over 5 random draw of the samples, are depicted in Figure 6. We can see that
the distance matrices produced by FedWaD are semantically similar to the ones for OTDD distance,
which means that order relations are well-preserved for most pairwise distances (except only for two
pairs of datasets in the USPS row). More importantly, running more epochs leads to slightly better
approximation of the OTDD distance, but the exact order relations are already uncovered using only
20 epochs in FedWaD. Detailed ablation studies on these parameters are provided in Appendix D.6.

Boosting FL methods One of the challenges in FL is the heterogeneity of the data distribution
among clients. This heterogeneity is usually due to shift in class-conditional distributions or to a label
shift (some classes being absent on a client). As such, we propose to investigate a simple approach
that allows to address dataset heterogeneity (in terms of distributions) among clients, by leveraging
on our ability to compute distance between datasets in a federated way.

Our proposal involves computing pairwise dataset distances between clients, clustering them based
on their (di)-similarities using a spectral clustering algorithm (Von Luxburg, 2007), and using this
clustering knowledge to enhance existing federated learning algorithms. In our approach, we run
the FL algorithm for each of the K clusters of clients instead of all clients to avoid information
exchange between clients with diverse datasets. For example, for FedAvg, this means learning a
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Table 1: MNIST/CIFAR10 Average performances over 5 trials of three FL algorithms, FedAvg,
FedRep and FedPer. For each algorithm we compare the vanilla performance with the ones obtained
after clustering the clients using the FedWaDOTDD distance and three different setting of the spectral
clustering algorithm (details in Appendix) and for a support size of 10. The number of clients varies
from 20 to 100. Bolded number indicate the best performing approach (and clustering parameters).

Strong structure No structure

Clustering Clustering

Vanilla Affinity Sparse G. (3) Sparse G. (5) Vanilla Affinity Sparse G. (3) Sparse G. (5)

MNIST

FedAvg
20 26.3 ± 3.8 99.5 ± 0.0 99.5 ± 0.0 91.5 ± 10.3 25.1 ± 6.6 71.3 ± 7.3 59.5 ± 3.0 57.0 ± 4.4
40 39.1 ± 9.0 99.2 ± 0.1 91.1 ± 6.5 94.5 ± 9.4 42.5 ± 10.5 70.8 ± 13.5 60.0 ± 3.7 58.1 ± 6.3

100 39.2 ± 7.7 98.9 ± 0.0 95.9 ± 4.6 98.4 ± 0.8 52.6 ± 3.9 64.4 ± 9.6 76.3 ± 5.4 67.9 ± 6.0
FedRep

20 81.1 ± 8.1 99.1 ± 0.0 99.1 ± 0.0 98.2 ± 1.3 75.6 ± 9.3 87.5 ± 4.5 81.4 ± 8.6 85.3 ± 7.3
40 88.8 ± 10.4 98.9 ± 0.1 93.3 ± 7.1 96.7 ± 4.5 78.0 ± 6.3 88.0 ± 4.3 78.9 ± 7.9 76.7 ± 5.6

100 93.0 ± 3.9 98.6 ± 0.1 98.4 ± 0.1 98.5 ± 0.1 86.0 ± 4.8 91.6 ± 3.1 89.1 ± 5.0 86.3 ± 4.9
FedPer

20 94.3 ± 4.3 99.5 ± 0.0 99.5 ± 0.0 99.3 ± 0.3 90.5 ± 2.4 92.7 ± 1.5 93.0 ± 4.3 93.8 ± 2.9
40 94.7 ± 7.6 99.2 ± 0.1 99.1 ± 0.2 97.9 ± 2.7 92.3 ± 1.3 90.2 ± 4.7 87.7 ± 4.1 89.2 ± 2.3

100 98.1 ± 0.1 98.9 ± 0.0 98.8 ± 0.2 98.9 ± 0.0 96.6 ± 0.9 96.6 ± 1.6 92.1 ± 3.3 90.2 ± 4.9

Average Uplift - 26.4 ± 27.5 24.4 ± 26.5 24.4 ± 25.6 - 12.7 ± 14.6 8.7 ± 12.7 7.2 ± 11.4

CIFAR10

FedAvg
20 22.0 ± 2.6 75.1 ± 6.2 42.6 ± 4.5 52.2 ± 8.8 23.5 ± 6.9 71.4 ± 9.7 42.5 ± 4.7 49.7 ± 4.7
40 26.1 ± 7.1 65.9 ± 7.1 36.7 ± 18.3 48.8 ± 8.3 26.6 ± 5.1 73.4 ± 15.9 36.3 ± 4.5 32.3 ± 11.6

100 26.4 ± 4.3 68.0 ± 5.1 37.4 ± 11.4 39.8 ± 8.0 27.5 ± 2.0 54.6 ± 10.1 27.6 ± 4.1 29.0 ± 3.8
FedRep

20 81.8 ± 1.8 88.1 ± 2.0 84.4 ± 0.5 85.3 ± 0.5 85.3 ± 2.0 90.7 ± 2.5 87.9 ± 2.0 88.1 ± 1.4
40 80.3 ± 0.8 83.7 ± 2.0 81.0 ± 2.1 81.6 ± 1.7 84.1 ± 0.8 93.6 ± 2.9 84.8 ± 1.7 84.3 ± 0.5

100 75.0 ± 0.9 79.4 ± 2.3 75.2 ± 2.4 75.4 ± 1.5 77.9 ± 1.4 91.4 ± 2.0 77.8 ± 1.7 79.0 ± 1.1
FedPer

20 85.4 ± 2.3 91.0 ± 1.9 87.2 ± 0.5 87.8 ± 0.9 88.7 ± 1.7 92.3 ± 1.8 89.8 ± 2.0 90.1 ± 1.5
40 85.9 ± 0.8 87.2 ± 2.2 82.7 ± 2.5 84.3 ± 1.9 88.1 ± 0.7 94.8 ± 2.6 86.0 ± 2.3 84.9 ± 3.3

100 82.2 ± 0.4 85.1 ± 1.8 80.3 ± 2.0 80.9 ± 1.7 85.1 ± 0.6 94.0 ± 1.4 82.0 ± 2.4 83.0 ± 1.1

Average Uplift - 17.6 ± 19.6 4.7 ± 7.3 7.9 ± 10.9 - 18.8 ± 16.6 3.1 ± 6.6 3.7 ± 8.3

global model for each cluster of clients, resulting in K global models. For personalized models like
FedRep (Collins et al., 2021), or FedPer (Arivazhagan et al., 2019), we run the personalized algorithm
on each cluster of clients. By running FL algorithms on clustered client, we ensure information
exchange only between similar clients and improves the overall performance of federated learning
algorithms by reducing the statistical dataset heterogeneity among clients.

We have run experiments on MNIST and CIFAR10 in which client datasets hold a clear cluster
structure. We have also run experiments where there is no cluster structure in which clients are
randomly assigned a pair of classes. In practice, we used the code of FedRep Collins et al. (2021) for
the FedAvg, FedRep and FedPer and the spectral clustering method of scikit-learn (Pedregosa et al.,
2011) (details are in Appendix D.7). Results are reported in Table 1 (with details in Appendix D.7).
We can see that when there is a clear clustering structure among the clients, FedWaD is able to recover
it and always improve the performance of the original federated learning algorithms. Depending on
the algorithm, the improvement can be highly significant. For instance, for FedRep, the performance
can be improved by 9 points for CIFAR10 and up to 29 for MNIST. Interestingly, even without
clear clustering structure, FedWaD is able to almost always improve the performance of all federated
learning algorithms (except for some specific cases of FedPer). Again for FedRep, the performance
uplift can reach 19 points for CIFAR10 and 36 for MNIST. In terms of clustering, the “affinity"
parameter of the spectral clustering algorithm seems to be the most efficient and robust one.

5 CONCLUSION

In this paper, we presented a principled approach for computing the Wasserstein distance between
two distributions in a federated manner. Our proposed algorithm, called FedWaD, leverages the
geometric properties of the Wasserstein distance and associated geodesics to estimate the distance
while respecting the privacy of the samples stored on different devices. We established the conver-
gence properties of FedWaD and provided empirical evidence of its practical effectiveness through
simulations on various problems, including dataset distance and coreset computation. Our approach
shows potential applications in the fields of machine learning and privacy-preserving data analysis,
where computing distances for distributed data is a fundamental task.
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Appendices
A PROPERTY OF THE APPROXIMATING INTERPOLATING MEASURE

Theorem 1. Assume that µ and ξ(k) are two discrete distributions with the same number of samples
n and uniform weights., Then for any t, the approximating interpolating measure given by equation
Equation (10) is equal to the exact one Equation (5).

Proof. Remind that the approximating interpolating measure is defined as

ξt =
1

n

n∑
i=1

δ(1−t)xi+tn(P⋆X′)i (11)

whereas the exact interpolating measure is defined as

µt =

n,m∑
i,j

P⋆
i,jδ(1−t)xi+tx′

j
(12)

where P⋆ is the optimal transportation plan between ξ and ξ′, xi and x′
j are the samples from these

distributions and X′ is the matrix of samples from ξ′. Because µ and ξ(k) have the same number of
samples n and uniform weights, P⋆ is a weighted (by 1/n) permutation matrix Peyré et al. (2019).
Let us denote by σ the permutation associated to P⋆. Then, for the approximation, we have

ξt =
1

n

n∑
i=1

δ(1−t)xi+tn(P⋆X′)i

=
1

n

n∑
i=1

δ(1−t)xi+tx′
σ(i)

=

n∑
i=1

1

n
δ(1−t)xi+tx′

σ(i)

= µt

where the last equality comes from the fact that for each row i, P ⋆
i,j is non-zero only for σ(i) column

and P ⋆
i,σ(i) = 1/n.

B PROOF OF THEOREM 2

Theorem 2. Let µ and ν be two measures in Pp(X). For k ∈ N, let ξ(k)µ , ξ(k)ν and ξ(k) be
interpolating measures computed at iteration k as defined in Algorithm 1. Define

A(k) = Wp(µ, ξ
(k)
µ ) +Wp(ξ

(k)
µ , ξ(k)) +Wp(ξ

(k), ξ(k)ν ) +Wp(ξ
(k)
ν , ν)

Then, the sequence (A(k)) is non-increasing and converges to Wp(µ, ν).

Proof. First, remind that ξ(k)µ and ξ
(k)
ν are the interpolating measures between µ and ξ(k−1) and

between ξ(k−1) and ν respectively, as defined in Algorithm 1. Likewise, ξ(k+1)
µ and ξ

(k+1)
ν are

interpolating measures between µ and ξ(k) and between ξ(k) and ν respectively. Hence, we have

Wp(µ, ξ
(k+1)
µ ) +Wp(ξ

(k+1)
µ , ξ(k)) ≤ Wp(µ, ξ

(k)
µ ) +Wp(ξ

(k)
µ , ξ(k))

and
Wp(ν, ξ

(k+1)
ν ) +Wp(ξ

(k+1)
ν , ξ(k)) ≤ Wp(ν, ξ

(k)
ν ) +Wp(ξ

(k)
ν , ξ(k))

These two inequalities lead to,

Wp(µ, ξ
(k+1)
µ ) +Wp(ξ

(k+1)
µ , ξ(k)) +Wp(ν, ξ

(k+1)
ν ) +Wp(ξ

(k+1)
ν , ξ(k))
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≤ Wp(µ, ξ
(k)
µ ) +Wp(ξ

(k)
µ , ξ(k)) +Wp(ν, ξ

(k)
ν ) +Wp(ξ

(k)
ν , ξ(k))

Besides, since ξ(k+1) is an interpolating measure between ξ
(k+1)
µ and ξ

(k+1)
ν , we have

Wp(ξ
(k+1)
µ , ξ(k+1)) +Wp(ξ

(k+1), ξ(k+1)
ν ) ≤ Wp(ξ

(k+1)
µ , ξ(k)) +Wp(ξ

(k), ξ(k+1)
ν )

and
A(k+1) ≤ A(k)

Hence, the sequence (A(k)) is non-increasing. Additionally, by the triangle inequality, we have for
any k ∈ N,

Wp(µ, ν) ≤ A(k)

We conclude by using the monotone convergence theorem: since (A(k)) is non-increasing and
bounded sequence below, then it converges to its infimum.

We now justify why the limit of (A(k)) is Wp(µ, ν). At convergence, we have reached a stationary
point in the (A(k)),

lim
k→+∞

A(k) = Wp(µ, ξ
(∞)
µ ) +Wp(ξ

(∞)
µ , ξ(∞)) +Wp(ξ

(∞), ξ(∞)
ν ) +Wp(ξ

(∞)
ν , ν)

and there are an infinite number of triplets (ξ(∞)
µ , ξ

(∞)
ν , ξ(∞)) that allow to reach this value A(∞) by

the nature of the algorithm. By definition, ξ(∞)
µ and ξ

(∞)
ν are interpolating measures between µ and

ξ(∞) and between ξ(∞) and ν respectively. At convergence, (ξ(∞)
µ , ξ

(∞)
ν , ξ(∞)) are fixed points of

the algorithm, and we show here that ξ(∞) is an interpolating measure of µ and ν in addition to be
an interpolating measure of ξ(∞)

µ and ξ
(∞)
ν . For any ξ(∞), ξ(∞)

µ can be chosen as any interpolating
measure between µ and ξ(∞). The same reasoning holds for ξ(∞)

ν and ν. Then since ξ(∞) is an
interpolating measure of ξ(∞)

µ and ξ
(∞)
ν and µ and ν are possible choices of interpolating measures,

it yields that ξ(∞) is indeed an interpolating measure of µ and ν. Hence, we have

lim
k→+∞

A(k) = Wp(µ, ξ
(∞)
µ ) +Wp(ξ

(∞)
µ , ξ(∞)) +Wp(ξ

(∞), ξ(∞)
ν ) +Wp(ξ

(∞)
ν , ν)

= Wp(µ, ξ
(∞)) +Wp(ξ

(∞), ν)

= Wp(µ, ν)

where the first equality results from the fact that ξ(∞)
µ and ξ

(∞)
ν are interpolating measures between µ

and ξ(∞) and between ξ(∞) and ν respectively and the second equality is obtained from the fact that
ξ(∞) is also an interpolating measure between µ and ν as belonging to the geodesic between µ and
ν.

C CONVERGENCE RATE OF THE ALGORITHM FOR GAUSSIAN DISTRIBUTIONS
WITH SAME COVARIANCE

In this section, we show that when µ and ν are Gaussians after one iteration, we can infer W (µ, nu)
and the sequence of iterates (ξ(k)) obtained for t = 0.5 converges to the ξ⋆ the interpolating measure
between µ and ν for t = 0.5

Theorem 3. Assume that µ, ν and ξ(0) are three Gaussian distributions with the same covariance
matrix Σ ie µ ∼ N (mµ,Σ), ν ∼ N (mν ,Σ) and ξ(0) ∼ N (mξ(0) ,Σ). Further assume that we are
not in the trivial case where mµ, mν , and mξ(0) are aligned. Applying our algorithm Algorithm 1
with t = 0.5 and the squared Euclidean cost, we have the following properties:

1. all interpolating measures ξ(k)µ ,ξ(k)ν , ξ(k) are isotropic Gaussian distributions with the same
covariance matrix Σ

2. for any k ≥ 1, W2(µ, ν) = ∥mµ −mν∥2 = 2∥m
ξ
(k)
µ

−m
ξ
(k)
ν

∥2

3. W2(ξ
(k), ξ⋆) = 1

2W2(ξ
(k−1), ξ⋆)

13



Published as a conference paper at ICLR 2024

4. W2(µ, ξ
(k)) +W2(ξ

(k), ν)−W2(µ, ν) ≤ 1
2k−1W2(ξ

(0), ξ(⋆))

Proof. The first point comes from the fact that Wasserstein barycenter of Gaussians are Gaussians
Agueh & Carlier (2011); Peyré et al. (2019). For isotropic Gaussians with same covariance, the
covariance matrice of the barycenter remains unchanged while the mean is the barycenter mean. So,
in our case, the interpolating measure with t = 0.5 i.e the uniform barycenter of two measures, say µ

and ξ(k−1), is ξ(k)µ ∼ N (m
ξ
(k)
µ

,Σ), where m
ξ
(k)
µ

= 1
2 (mµ +mξ(k−1)). The consequence of this first

point of the theorem is that since we are going to deal with same covariance Gaussian distributions,
then the Wasserstein distance between any pair of measures involved in our algorithm only depends
on the Euclidean distance of their means and we will use interchangeably the Euclidean distance and
the Wasserstein distance.

The second point is proven by using geometrical arguments in the plane (P ) in which the
three points, for k ≥ 1, mµ, mν , mξ(k−1) lie (note that based on our assumption, this plane always

exists). By definition of ξ(k)µ and ξ
(k)
ν and given the above point, we have

m
ξ
(k)
µ

=
1

2
(mµ +mξ(k−1)) and m

ξ
(k)
ν

=
1

2
(mν +mξ(k−1))

By using the intercept theorem, since t = 1
2 , in the plane (P ), the segment [m

ξ
(k)
µ

,m
ξ
(k)
ν

] is parallel
to the segment [mµ,mν ] and we have :

1

2
=

∥m
ξ
(k)
µ

−mξ(k−1)∥2
∥mµ −mξ(k−1)∥2

=
∥m

ξ
(k)
ν

−mξ(k−1)∥2
∥mν −mξ(k−1)∥2

==
∥m

ξ
(k)
ν

−m
ξ
(k)
µ

∥2
∥mν −mµ∥2

which gives us the second point.

For the third point, we are going to consider geometrical arguments similar as above. How-
ever, we are going to first show that for a given k, the mid point, denoted as ξ̂(k), between ξ(k−1) and
ξ⋆ is also ξ(k) as defined by our algorithm.

By definition, ξ⋆ is the mid point interpolating measure between µ and ν, whose mean is 1
2 (mµ+mν).

Since ξ̂(k) and ξ
(k)
µ are respectively the mid point measure between ξ(k−1) and ξ⋆ and µ and ξ(k−1),

we can apply the intercept theorem in the appropriate plane and get

W2(ξ̂
(k), ξ(k)µ ) =

1

2
W2(µ, ξ

⋆)

Using a similar reasoning using ν, we get

W2(ξ̂
(k), ξ(k)ν ) =

1

2
W2(ν, ξ

⋆)

Summing these two equations, we obtain

W2(ξ̂
(k), ξ(k)µ ) +W2(ξ̂

(k), ξ(k)ν ) =
1

2
W2(µ, ξ

⋆) +
1

2
W2(ν, ξ

⋆) =
1

2
W2(µ, ν) = W2(ξ

(k)
µ , ξ(k)ν )

where the second equality comes from the fact that ξ⋆ is an interpolant measure of µ and ν, while the
last equality comes from the second point of the theorem.

Hence, since we have W2(ξ̂
(k), ξ

(k)
µ ) +W2(ξ̂

(k), ξ
(k)
ν ) = W2(ξ

(k)
µ , ξ

(k)
ν ), it also mean than

ξ̂(k) ∈ argmin
ξ

1

2
W2(ξ

(k)
µ , ξ) +

1

2
W2(ξ, ξ

(k)
ν )

and ξ̂(k) is also the midpoint interpolating measure between ξ
(k)
µ and ξ

(k)
ν .

Then, applying the intercept theorem with ξ(k−1), ξ(k), ξ⋆, µ and ξ
(k)
µ , we obtain the desired result

1

2
W2(ξ

(k−1), ξ⋆) = W2(ξ
(k), ξ⋆)
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Figure 7: Illustration of the geometrical interpretation of the algorithm and its convergence proof for
Gaussian distributions with same covariance, based on the intercept theorem.

Finally, given all the above, it is simple to show the convergence rate of the algorithm using simple
triangle inequalities.

W2(µ, ξ
(k)) +W2(ξ

(k), ν)−W2(µ, ν) ≤ W2(µ, ξ
⋆) +W2(ξ

⋆, ξ(k)) +W2(, ξ
(k), ξ⋆) +W2(ξ

⋆, ν)−W2(µ, ν)

= 2W2(ξ
(k), ξ⋆)

=
1

2k−1
W2(ξ

(0), ξ⋆)

D ADDITIONAL EXPERIMENTS

D.1 TOY ANALYSIS : THE IMPACT OF APPROXIMATING THE INTERPOLATING MEASURE

We propose to analyze in this section the benefits and disadvantages of approximating the interpolating
measure instead of using the exact one as given in Equation (5). For this purpose, we compare the
running time and the accuracy of the exact Wasserstein distance, our exact FedWaD, and our
approximate FedWaD for estimating the Wasserstein distance between two Gaussians distributions.
The Gaussians are different means but same covariances so that the true Wasserstein distance is
known and equal to the Euclidean distance between the means. We have considered two different
settings (d = 2 and d = 50) of Gaussians dimensionality. For the first case (d = 2), we detail the
results presented in the main paper. Note that when the dimensionality of the Gaussians are set to 50,
we do not expect the Wasserstein distance nor FedWaD to provide a good estimation of the closed
form distance between these distributions, due to the curse of dimensionality of the Wasserstein
distance (Fournier & Guillin, 2015)

As default parameter for our approximate FedWaD, we considered 20 iterations and a support of size
10, then we varied the number of samples n from 10 to 10000. We have run experiments in different
settings

• we analyzed the impact of sample ratio between the two distributions, as this may impact
the support size of the approximating interpolating measure accross FedWaD iterations.

• we made varying the support size of the approximating interpolating measure at fixed sample
ratio.

Results have been averaged over 10 runs.

Analyzing the impact of sample ratio Given the setting with uniform weights, when the sample
ratio is 1, the optimal plan is theoretically a scaled permutation matrix. Hence, the support size of
the exact interpolating measure is expected, in theory, to be fixed and equal to N . When the ratio of
samples is different to 1, the support size of the exact interpolating may increase at each iteration of
the algorithm and leads to a larger running time. Figure 8 - left panel - shows the running time of
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Figure 8: For different sample ratios, (1:3) or (1:1), in the two distributions we report the performance
of the different models. For our approximated FedWaD, we have set the support size to 10. (top)
d = 2 (bottom) d = 50. (left) running time. (right) relative error.

all compared methods as well as their relative error - right panel - compared to the true Wasserstein
distance. We note that for 2d Gaussians, both the Wasserstein distance and our approximated FedWaD
with support size of 10 the running time is increasing with a natural computational overhead for the 1:1
sample ratio (as we have more samples). For the exact FedWaD, the behavior is different. the running
time for the 1:3 sample ratio is larger than the 1:1. This is due to the optimal transportation plan
P⋆ not being exactly a scaled permutation matrix. As a result, the support size of the interpolating
measure increases with the number of samples, leading to computational overhead for the method.
For 50d Gaussians, the differences in running time between the different sample ratio are negligible.

In the case of 2d Gaussians (top row), For the relative error, for N < 1000, we note that all methods
achieve similar errors. Numerical errors start to appear for exact FedWaD and the Wasserstein
distance for respectively N ≥ 1000 and N ≥ 5000 depending on the sample ratio. Interestingly, the
approximated FedWaD is robust to large number of samples and achieves similar errors as for small
number of samples. For higher dimensions (bottom row), all the methods are not able to provide
accurate estimation of the Wasserstein distance and with the worst relative error for the approximated
FedWaD with a support size of 10. Nonetheless, we want to emphasize that despite this lack of
accuracy, the approximated FedWaD can be useful in high-dimension problems as we have shown
for the other experiments.

Analyzing the support size of approximated interpolating measure Figure 9 shows the running
time and the relative error of the different methods for a sample ratio of 1 : 3 and when the
support sizes of the approximating interpolating measure are 2,10 or 100. We clearly remark the
computational cost of a larger support size with a benefit in terms of approximation error appearing
mostly when N ≥ 1000 and for small dimension problems (top row). For higher dimension problems
(bottom row), we see again the benefit on running time of the approximated approach, yet with a
larger approximation error.
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Figure 9: For increasing number of samples, we report (top) d = 2 (bottom) d = 50. (left) Running
time of the Wasserstein distance, our exact FedWaD and our approximate FedWaD. (right) the
relative error of the different models : the computed Wasserstein distance, our exact FedWaD and
the approximated FedWad with a support size of 10 and 100. The first distribution has a number of
samples N and the second ones N/3.
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Figure 10: We illustrate here how our algorithm behaves when the distributions are continuous. (left)
we plot the distributions µ and ν as well as the interpolating measure ξ(k) (right) we plot the evolution
of the Wasserstein distance between µ and ν as computed by FedWad.

D.2 TOY ANALYSIS : CONTINUOUS DISTRIBUTIONS

Our algorithm can be applied to continuous distributions as long as it is possible to compute an
element of the geodesic between the two distributions. For multivariate Gaussian distributions, the
transport map exists and elements of the geodesics are well-defined. However, closed-form of the
mean and the covariance matrix of interpolating measures are not available except when the covariance
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Figure 11: Example of convergence of FedWad when computing the distance between two Gaussian
distributions and between two moon-shaped distributions.

matrices between µ and ν are jointly diagonalizable. Hence, as an example, we have applied our
algorithm for two continuous Gaussians distributions µ ∼ N (mµ,Σµ) and ν ∼ N (mν ,Σν) where
Σµ and Σν are diagonal matrices. ξ(0) is also defined as a diagonal Gaussian distribution. Mean and
covariance of an interpolating measures for t = 0.5 are computed as follows (say between µ and ν):

m =
1

2
(mµ +mν)

Σ =
(1
2
Σ1/2

µ +
1

2
Σ1/2

ν

)2

Figure 10 shows an example of the evolution of the Wasserstein distance between µ and ν as computed
by our algorithm as well as the interpolating measure ξ(k) for different values of k. We can see that
the Wasserstein distance converges to the true Wasserstein distance between µ and ν in about 10
iterations confirming the linear convergence rate.

D.3 COMPARING CONVERGENCE RATE

In order to gain an insight about the convergence rate of our algorithm for non-Gaussian distributions,
we have compared how fast FedWaD converges to the true Wasserstein distance when comparing
two 2D Gaussians and when comparing two 2D moon-shaped distributions. We have considered
200 samples per distribution and computed the exact FedWaD using 10 iterations. Figure 11 shows
the evolution of the Wasserstein distance between the two distributions as a function of the number
of iterations. We can see that the convergence rate for the two moon-shaped distributions is slower
than the ones of the Gaussians, which is about 1.5 order of magnitude, and it tends to decrease as
iterations increase.

D.4 DETAILS ON CORESET AND ADDITONAL RESULTS

Experimental setting We sampled 20000 examples randomly from the MNIST dataset, and dis-
patched them at random on 100 clients but such that only a subset K of the 10 classes is present
on each client. We learn 10 coresets over 1000 epochs and at each epoch, we assume that only 10
random clients are available and can be used for computing FedWaD. For FedWaD, the support size
of the interpolating measure has been set to either 10 or 100 and the number of iteration in FedWaD
to 20.

We have reproduced in here the same MNIST experiment (which results are reproduced in Figure 12)
on coreset for the FashionMNIST dataset, and we can notice, in Figure 13 that we obtain similar
results as for the MNIST dataset. When the number of shared classes K is large enough, the coreset
is not able to capture the different modes in the dataset. And again, we remark that the support
size of the approximate interpolating measure has few impacts on the result. For both datasets, the
loss landscape of the coreset learning reveals that our FedWaD-based approaches yield to a worse
minimum than the exact Wasserstein distance, which is mostly due to the interpolating measure
approximation. Figure 14 plots the performance of a nearest neighbor classifier based on the coresets
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Figure 12: Examples of the 10 coreset obtained with for each panel (top-row) the exact Wasserstein
and (bottow-row) FedWaD for the MNIST dataset. Different panels correspond to different number
of classes K on each client: (top) K = 8, (middle) K = 2, (bottom) support of the interpolating
measure varying from 10 to 100. As class diversity on each client increases, the coreset is less
effective at capturing the 10 modes of the dataset
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Figure 13: Examples of the 10 coreset obtained with for each panel (top-row) the exact Wasserstein
and (bottow-row), our FedWaD for the FashionMNIST dataset. Different panels correspond to
different number of classes K on each client: (top) K = 8, (middle) K = 2, (bottom) support of the
interpolating measure for K = 8.

learnt from each client for varying number of clients. Results show that coreset-based approaches
are competitive, especially for high number of clients, with personalized FL algorithms, which are
known to be the best performing FL algorithms in practice.

D.5 DETAILS ON FEDERATED OTDD EXPERIMENTS

Geometric dataset distances via federated Wasserstein distance. Transfer learning and domain
adaptation are important ML paradigms, which aim at transferring knowledge across similar domains.
The main underlying concept in these approaches is the notion of distance or similarity between
datasets. Transferring knowledge between comparable domains is typically simpler than between dis-
tant ones. In certain applications, it is relevant to find datasets from which one can transfer knowledge
from without disclosing the target dataset. This may be the case, for instance, in applications with
low-resource clients storing sensitive data. In this case, the practitioner may want to find a dataset
similar enough to the client’s dataset, in order to transfer knowledge from it. In practice, a server
would train a classifier on a dataset that is similar to the client dataset, and the client would then use
this classifier to perform inference on its own data.

In that context, our goal is to propose a distance between datasets that can be computed in a federated
way based on FedWaD. We leverage the distance proposed in Alvarez-Melis & Fusi (2020), which
is based on the Wasserstein distance between two labeled datasets D and D′. The ground metric is
defined by,

dD((x, y), (x
′, y′)) ≜ (d(x, x′) +W2

2 (αy, α
′
y))

1/2 (13)
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Figure 14: FashionMNIST performance of a nearest neighbor classifier based on the coresets learnt
from each client for varying number of clients and number of coresets per clients We have compared
to the performance of two personalized FL algorithms.

where d is a distance between two features x and x′, and αy is the class-conditional distribution of
x given y. In order to reduce computational complexity, Alvarez-Melis & Fusi (2020) assume the
class-conditionals are Gaussian, so that W2 boils down the 2-Bures-Wasserstein distance, which is
available in closed form:

W2
2 (αy, αy′) = ∥my −my′∥22 + ∥Σy − Σy′∥2F (14)

where mz and Σz denote the mean and covariance of αz .

FedWaD needs vectorial representations of the data to compute intermediate measures. The Bures-
Wasserstein distance allows us to conveniently represent αy as the concatenation of the mean my and
vectorized covariance Σy. Hence, we can compute the distance between two datasets D and D′ by
augmenting each example from those datasets with the corresponding class-conditional mean and
vectorized covariance, and using the ℓ2 norm as the ground metric in the Wasserstein distance. One
can eventually reduce the dimension the augmented representation by considering only the diagonal
of the covariance matrix.

D.6 FEDERATED OTDD ANALYSIS

To evaluate our procedure, we replicated the experiments of Alvarez-Melis & Fusi (2020) on the
dataset selection for transfer learning: given a source dataset, the goal is to find a target one which is
the most similar to the source. We considered four real datasets, namely MNIST, KMNIST, USPS
and FashionMNIST. We first analyze the impact of two hyperparameters, the number of epochs
and the number of support points in the interpolating measure, on the distance computation between
5000 samples from MNIST and KMNIST, Figure 15 shows the evolution of the distance between
MNIST and KMNIST as well as the running time for varying values of hyperparameters. The number
of epochs has a very small impact on the distance and using 10 epochs suffices to get a reasonably
accurate approximation of the distance. On the other hand, the number of support point seems more
critical, and we need at least 5000 support points to obtain a very accurate approximation, although
we have a nice linear convergence of the distance with respect to support size.

We also analyzed the impact of the dataset size on the distance computation and running time:
Figure 16 shows the evolution of the distance and the running time with respect to the the sample size
in the two distributions. We note that the order relation is preserved between the two distances for all
possible range of sample size. Another interesting observation is that as long as the sample size is
smaller than the support size of the interpolating measure, FedWaD provides an accurate estimation
of the distance. When the sample size is larger then the distance is overestimated. This is due to a
less accurate estimation of an exact interpolating measure (which is supported on 2n + 1 points).
Regarding computational efficiency, we observe that for small support size of the interpolating
measure, the running time increases at the same rate as the sample size, whereas for larger support
size, the running time increases 10-fold for an 100-fold increase in sample size.
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Figure 15: FedWaD and OTDD distances on MNIST-KMNIST and its running time against (left) the
number of epochs and (right) the number of support points in the interpolating measure. For each
plot, the left and right y-axis report the distance and the running time respectively.
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Figure 16: (left) Distance and (right) running time against the dataset size for the MNIST-KMNIST
an MNIST-USPS distances, for varying number of support points |S|

D.7 BOOSTING FL METHODS

We provide here more detailed results about our experiments on boosting FL methods. Figure 17
shows the distance matrices obtained for MNIST and CIFAR10 when the number of clients is 20 for
different structures on the clients datasets. We can clearly see the cluster structure on the MNIST
dataset when it exists, but when there is no structure, the distance matrix is more uniform yet show
some variations For CIFAR10, no clear structure is visible on the distance matrix as the dataset is
more complex. Nonetheless, our experiments on boosting FL methods show that even in this case,
clustering c lients can help improve the performances of federated learning algorithms.

Those distance matrices are the one we use as the input of the spectral clustering algorithm. We used
the spectral clustering algorithm of scikit-learn (Pedregosa et al., 2011) with the following setting::

• we denoted as “affinity", the setting in which the distance matrix, after rescaling, is used
as affinity matrix, where larger values indicate greater similarity between instances. (see
affinity parameter set to ‘precomputed’ In scikit-learn)

• we denote as Sparse G. (3) and Sparse G. (5) the setting in which the distance matrix is
interpreted as a sparse graph of distances, and construct a binary affinity matrix from the (3
or 5) nearest neighbors of each instance. matrix is computed

Details on the cluster structure We have built this cluster structure on the client datasets by assign-
ing to each client one pair of classes among the following 5 ones : [(0, 1), (2, 3), (4, 5), (6, 7), (8, 9)].
When the number of clients in equal to 10, each cluster is composed of 2 clients. For a larger number
of clients, each cluster is of random size with a minimum of 2 clients.
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Figure 17: (left) MNIST and (right) CIFAR10 distance matrices for 20 clients computed using our
Federated OTDD . On the top row, we have imposed a cluster structure on client datasets while on
the bottom row, there is no specific sructure. We can note that this structure is clearly visible on the
MNIST dataset but less on CIFAR10. Eventhough, clustering clients will help improve federated
learning algorithm performances.

Practical algorithmic details In practice, we used the code of FedRep Collins et al. (2021) for
the FedAvg, FedRep and FedPer and the spectral clustering method of scikit-learn Pedregosa et al.
(2011). The federated OT distance dataset has been computed on the original data space while for
CIFAR10, we have worked on the 784-dimensional code obtained from an (untrained) randomly
initialized autoencoder. We have also considered the case where the there is no specific clustering
structure on the clients as they randomly select a pair of classes among the 10 ones.

Extra results Performance results on federated learning are reported below for different settings.
Table 2 and Table 3 show the results for MNIST respectively with and without client structure. Table 4
and Table 5 report similar results for CIFAR10.
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Clustered

Affinity Sparse G. (3) Sparse G. (5)
Vanilla 10 100 10 100 10 100

FedAvg
10 19.6 ± 0.9 99.6 ± 0.0 99.6 ± 0.0 90.5 ± 8.7 91.8 ± 9.6 84.5 ± 8.0 85.2 ± 5.7
20 26.3 ± 3.8 99.5 ± 0.0 99.5 ± 0.0 99.5 ± 0.0 99.5 ± 0.0 91.5 ± 10.3 96.5 ± 6.0
40 39.1 ± 9.0 99.2 ± 0.1 99.2 ± 0.1 91.1 ± 6.5 99.2 ± 0.1 94.5 ± 9.4 99.2 ± 0.1

100 39.2 ± 7.7 98.9 ± 0.0 98.9 ± 0.0 95.9 ± 4.6 96.7 ± 3.8 98.4 ± 0.8 98.9 ± 0.0
FedRep

10 71.6 ± 10.5 99.4 ± 0.0 99.4 ± 0.1 94.3 ± 7.7 99.0 ± 0.5 95.5 ± 5.6 90.5 ± 6.6
20 81.1 ± 8.1 99.1 ± 0.0 99.1 ± 0.1 99.1 ± 0.0 99.1 ± 0.0 98.2 ± 1.3 99.0 ± 0.2
40 88.8 ± 10.4 98.9 ± 0.1 98.9 ± 0.0 93.3 ± 7.1 99.0 ± 0.1 96.7 ± 4.5 99.0 ± 0.1

100 93.0 ± 3.9 98.6 ± 0.1 98.6 ± 0.1 98.4 ± 0.1 98.4 ± 0.1 98.5 ± 0.1 98.5 ± 0.1
FedPer

10 86.7 ± 4.3 99.6 ± 0.0 99.6 ± 0.0 99.5 ± 0.1 99.6 ± 0.1 98.4 ± 2.0 98.9 ± 1.0
20 94.3 ± 4.3 99.5 ± 0.0 99.5 ± 0.0 99.5 ± 0.0 99.5 ± 0.0 99.3 ± 0.3 99.5 ± 0.0
40 94.7 ± 7.6 99.2 ± 0.1 99.2 ± 0.1 99.1 ± 0.2 99.2 ± 0.1 97.9 ± 2.7 99.2 ± 0.1

100 98.1 ± 0.1 98.9 ± 0.0 98.9 ± 0.0 98.8 ± 0.2 98.8 ± 0.1 98.9 ± 0.0 98.9 ± 0.0

Average Uplift - 29.8 ± 28.4 29.8 ± 28.4 27.2 ± 26.6 29.0 ± 27.2 26.7 ± 25.2 27.6 ± 26.3

Table 2: MNIST Average performances over 5 trials of three FL algorithms: FedAvg, FedRep
and FedPer. For each algorithm we compare the vanilla performance with the ones obtained after
clustering the clients using the FedOTDD distance, using three different parameters of the spectral
clustering algorithm and for a support size of 10 and 100. The number of clients varies from 10 to
100. For this table, datasets from clients do have a clear cluster structure

Clustered

Affinity Sparse G. (3) Sparse G. (5)
Vanilla 10 100 10 100 10 100

FedAvg
10 20.2 ± 0.6 81.0 ± 4.2 81.3 ± 4.5 78.0 ± 6.0 77.7 ± 6.6 71.5 ± 5.1 72.0 ± 6.0
20 25.1 ± 6.6 71.3 ± 7.3 72.0 ± 4.3 59.5 ± 3.0 59.5 ± 5.7 57.0 ± 4.4 60.5 ± 2.3
40 42.5 ± 10.5 70.8 ± 13.5 70.3 ± 13.3 60.0 ± 3.7 59.5 ± 10.6 58.1 ± 6.3 56.9 ± 6.1

100 52.6 ± 3.9 64.4 ± 9.6 60.4 ± 11.3 76.3 ± 5.4 68.2 ± 6.1 67.9 ± 6.0 65.4 ± 3.7
FedRep

10 54.3 ± 11.2 90.1 ± 6.7 90.1 ± 7.5 92.1 ± 4.2 91.8 ± 4.6 91.0 ± 4.4 94.0 ± 3.1
20 75.6 ± 9.3 87.5 ± 4.5 86.1 ± 2.6 81.4 ± 8.6 85.1 ± 6.3 85.3 ± 7.3 87.1 ± 5.5
40 78.0 ± 6.3 88.0 ± 4.3 85.4 ± 4.8 78.9 ± 7.9 74.9 ± 8.7 76.7 ± 5.6 79.6 ± 5.7

100 86.0 ± 4.8 91.6 ± 3.1 90.7 ± 3.7 89.1 ± 5.0 84.5 ± 2.9 86.3 ± 4.9 84.9 ± 3.6
FedPer

10 82.0 ± 10.1 98.4 ± 1.4 96.5 ± 3.5 96.4 ± 3.5 96.5 ± 3.6 98.5 ± 1.4 98.3 ± 1.3
20 90.5 ± 2.4 92.7 ± 1.5 95.4 ± 0.5 93.0 ± 4.3 96.2 ± 3.0 93.8 ± 2.9 94.5 ± 2.5
40 92.3 ± 1.3 90.2 ± 4.7 91.0 ± 4.9 87.7 ± 4.1 87.0 ± 3.7 89.2 ± 2.3 87.5 ± 5.4

100 96.6 ± 0.9 96.6 ± 1.6 96.4 ± 2.0 92.1 ± 3.3 93.0 ± 2.3 90.2 ± 4.9 86.9 ± 1.7

Average Uplift - 18.9 ± 18.9 18.3 ± 19.2 15.7 ± 18.6 14.8 ± 18.6 14.1 ± 17.1 14.3 ± 18.1

Table 3: MNIST Average performances over 5 trials of three FL algorithms: FedAvg, FedRep
and FedPer. For each algorithm we compare the vanilla performance with the ones obtained after
clustering the clients using the FedOTDD distance, using three different parameters of the spectral
clustering algorithm and for a support size of 10 and 100. The number of clients varies from 10 to
100. For this table, datasets from clients do not have a clear cluster structure
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Clustered

Affinity Sparse G. (3) Sparse G. (5)
Vanilla 10 100 10 100 10 100

FedAvg
10 17.6 ± 1.1 79.1 ± 6.3 78.6 ± 6.0 61.6 ± 2.6 69.5 ± 5.1 72.2 ± 9.4 72.3 ± 6.0
20 22.0 ± 2.6 75.1 ± 6.2 66.9 ± 9.1 42.6 ± 4.5 52.4 ± 17.0 52.2 ± 8.8 56.2 ± 13.6
40 26.1 ± 7.1 65.9 ± 7.1 70.1 ± 5.7 36.7 ± 18.3 46.2 ± 15.7 48.8 ± 8.3 49.9 ± 12.1

100 26.4 ± 4.3 68.0 ± 5.1 68.3 ± 4.7 37.4 ± 11.4 44.9 ± 13.0 39.8 ± 8.0 43.1 ± 10.4
Fedrep

10 82.4 ± 2.3 91.1 ± 1.2 90.7 ± 1.2 89.4 ± 0.8 90.3 ± 1.0 89.7 ± 2.3 90.0 ± 1.1
20 81.8 ± 1.8 88.1 ± 2.0 85.9 ± 1.4 84.4 ± 0.5 86.0 ± 2.1 85.3 ± 0.5 86.8 ± 1.4
40 80.3 ± 0.8 83.7 ± 2.0 86.2 ± 0.9 81.0 ± 2.1 82.3 ± 2.5 81.6 ± 1.7 82.1 ± 1.4

100 75.0 ± 0.9 79.4 ± 2.3 78.5 ± 1.7 75.2 ± 2.4 76.3 ± 1.6 75.4 ± 1.5 76.9 ± 1.1
FedPer

10 82.1 ± 2.3 93.2 ± 1.1 93.0 ± 0.8 91.7 ± 0.5 93.0 ± 0.8 92.3 ± 2.0 92.7 ± 1.0
20 85.4 ± 2.3 91.0 ± 1.9 89.1 ± 1.8 87.2 ± 0.5 88.7 ± 2.5 87.8 ± 0.9 89.5 ± 1.9
40 85.9 ± 0.8 87.2 ± 2.2 89.7 ± 1.4 82.7 ± 2.5 85.4 ± 2.7 84.3 ± 1.9 84.9 ± 1.6

100 82.2 ± 0.4 85.1 ± 1.8 83.4 ± 2.7 80.3 ± 2.0 81.3 ± 1.8 80.9 ± 1.7 82.5 ± 1.5

Average Uplift - 20.0 ± 21.3 19.4 ± 20.8 8.6 ± 12.5 12.4 ± 15.1 11.9 ± 16.0 13.3 ± 16.1

Table 4: CIFAR10 Average performances over 5 trials of three FL algorithms: FedAvg, FedRep
and FedPer. For each algorithm we compare the vanilla performance with the ones obtained after
clustering the clients using the FedOTDD distance, using three different parameters of the spectral
clustering algorithm and for a support size of 10 and 100. The number of clients varies from 10 to
100. For this table, datasets from clients do have cluster structure

Clustered

Affinity Sparse G. (3) Sparse G. (5)
Vanilla 10 100 10 100 10 100

FedAvg
10 18.1 ± 0.7 71.3 ± 7.3 71.0 ± 3.4 72.7 ± 6.2 72.6 ± 4.1 76.6 ± 2.6 72.4 ± 1.6
20 23.5 ± 6.9 71.4 ± 9.7 71.2 ± 7.9 42.5 ± 4.7 47.8 ± 4.8 49.7 ± 4.7 44.4 ± 8.1
40 26.6 ± 5.1 73.4 ± 15.9 71.1 ± 15.0 36.3 ± 4.5 30.9 ± 7.1 32.3 ± 11.6 30.3 ± 4.6

100 27.5 ± 2.0 54.6 ± 10.1 54.6 ± 10.2 27.6 ± 4.1 29.8 ± 6.8 29.0 ± 3.8 28.3 ± 5.6
FedRep

10 83.6 ± 2.2 90.3 ± 3.1 90.3 ± 2.4 91.2 ± 1.6 91.1 ± 1.8 91.1 ± 2.7 91.2 ± 1.7
20 85.3 ± 2.0 90.7 ± 2.5 91.5 ± 2.6 87.9 ± 2.0 88.4 ± 2.2 88.1 ± 1.4 88.6 ± 1.8
40 84.1 ± 0.8 93.6 ± 2.9 93.3 ± 2.8 84.8 ± 1.7 84.4 ± 0.7 84.3 ± 0.5 85.3 ± 1.2

100 77.9 ± 1.4 91.4 ± 2.0 91.6 ± 1.9 77.8 ± 1.7 78.0 ± 2.4 79.0 ± 1.1 79.4 ± 1.7
FedPer

10 83.1 ± 2.1 92.6 ± 2.2 92.7 ± 1.4 93.0 ± 1.4 93.1 ± 1.5 93.0 ± 2.0 93.1 ± 1.3
20 88.7 ± 1.7 92.3 ± 1.8 92.7 ± 2.4 89.8 ± 2.0 90.2 ± 1.8 90.1 ± 1.5 90.0 ± 1.2
40 88.1 ± 0.7 94.8 ± 2.6 94.6 ± 2.5 86.0 ± 2.3 86.5 ± 0.7 84.9 ± 3.3 85.7 ± 1.4

100 85.1 ± 0.6 94.0 ± 1.4 94.1 ± 1.3 82.0 ± 2.4 82.3 ± 2.2 83.0 ± 1.1 83.6 ± 1.6

Average Uplift - 19.9 ± 18.0 19.7 ± 17.5 8.3 ± 15.2 8.6 ± 15.4 9.1 ± 16.6 8.4 ± 15.1

Table 5: CIFAR10 Average performances over 5 trials of three FL algorithms: FedAvg, FedRep
and FedPer. For each algorithm we compare the vanilla performance with the ones obtained after
clustering the clients using the FedOTDD distance, using three different parameters of the spectral
clustering algorithm and for a support size of 10 and 100. The number of clients varies from 10 to
100. For this table, datasets from clients do not have a clear cluster structure
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