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Figure 1: MMWorld covers seven broad disciplines and 69 subdisciplines, focusing on the evaluation
of multi-faceted reasoning beyond perception (e.g., explanation, counterfactual thinking, future
prediction, domain expertise). On the right is a video sample from the Health & Medicine discipline.

Abstract

Multimodal Language Language Models (MLLMs) demonstrate the emerging1

abilities of "world models"—interpreting and reasoning about complex real-world2

dynamics. To assess these abilities, we posit videos are the ideal medium, as they3

encapsulate rich representations of real-world dynamics and causalities. To this4

end, we introduce MMWorld, a new benchmark for multi-discipline, multi-faceted5

multimodal video understanding. MMWorld distinguishes itself from previous6

video understanding benchmarks with two unique advantages: (1) multi-discipline,7

covering various disciplines that often require domain expertise for comprehensive8

understanding; (2) multi-faceted reasoning, including explanation, counterfactual9

thinking, future prediction, etc. MMWorld consists of a human-annotated dataset10

to evaluate MLLMs with questions about the whole videos and a synthetic dataset11

to analyze MLLMs within a single modality of perception. Together, MMWorld12

encompasses 1,910 videos across seven broad disciplines and 69 subdisciplines,13

complete with 6,627 question-answer pairs and associated captions.14

1 Introduction15

Foundation models, such as Large Language Models (LLMs) [OpenAI, 2023b; Touvron et al., 2023;16

Jiang et al., 2023; Anil et al., 2023] and Multimodal LLMs (MLLMs) [OpenAI, 2023a; Team et al.,17

2023; Lin et al., 2023; Li et al., 2023b; Maaz et al., 2024; Chen et al., 2023], have demonstrated18

remarkable abilities in text and image domains, igniting debates about their potential pathways19



to Artificial General Intelligence (AGI). This raises a critical question: how well do these models20

understand the dynamics of the real world? Are they equipped with an inherent World Model [LeCun,21

2022; Chen et al., 2024; Ha and Schmidhuber, 2018; Xiang et al., 2024] that can understand and22

reason about the underlying principles and causalities of the dynamic, multimodal world?23

Videos, with their rich, dynamic portrayal of the real world, are ideally suited for evaluating the24

"world modeling" capabilities of MLLMs. Existing video understanding benchmarks [Li et al.,25

2023c; Ning et al., 2023; Pătrăucean et al., 2023; Li et al., 2023c], however, fall short in two key26

perspectives for such evaluations. First, as LeCun et al. [LeCun, 2022] discussed, the world model27

should be able to (1) estimate missing information about the state of the world not provided by28

perception, and (2) predict plausible future states of the world. Evaluation of such capabilities29

requires multi-faceted reasoning beyond perception level, including explaining the video dynamics,30

counterfactual thinking of alternative consequences, and predicting future activities within videos.31

Moreover, the multi-discipline nature of the multimodal world necessitates a grasp of diverse32

fundamental principles—ranging from physics and chemistry to engineering and business. Hence,33

domain expertise across a variety of disciplines is imperative for a thorough evaluation of a model’s34

world understanding towards AGI [Morris et al., 2023; Yue et al., 2023].35

Therefore, we introduce MMWorld, a multi-discipline multi-faceted multimodal video understanding36

benchmark to comprehensively evaluate MLLMs’ abilities in reasoning and interpreting real-world37

dynamics 1. MMWorld encompasses a wide range of disciplines and presents multi-faceted reasoning38

challenges that demand a combination of visual, auditory, and temporal understanding. It consists of39

1,910 videos that span seven common disciplines, including Art & Sports, Business, Science, Health40

& Medicine, Embodied Tasks, Tech & Engineering, and Games, and 69 subdisciplines (see Figure 1)41

such as Robotics, Chemistry, Trading, and Agriculture, thereby fulfilling the objective of breadth in42

discipline coverage. The dataset includes a total of 1,559 question-answer pairs and video captions43

annotated and reviewed by humans. Meanwhile, for multi-faceted reasoning, MMWorld mainly44

contains seven kinds of questions focusing on explanation (explaining the phenomenon in videos),45

counterfactual thinking (answering what-if questions), future prediction (predicting future events),46

domain expertise (answering domain-specific inquiries), temporal understanding (reasoning about47

temporal information), and etc.48

2 Experiments49

2.1 Main Evaluation Results50

We show in Table 1 the main evaluation results of different MLLMs. Among these, GPT-4V emerges51

as the top performer, closely followed by Gemini Pro. Video-LLaVA also demonstrates strong results,52

primarily due to the extensive training data which consists of 558K LAION-CCSBU image-text pairs53

and 702K video-text pairs from WebVid [Bain et al., 2021]. For instruction tuning, datasets were54

gathered from two sources: a 665K image-text instruction dataset from LLaVA v1.5 and a 100K55

video-text instruction dataset from Video-ChatGPT [Maaz et al., 2024]. This superior performance56

may also be attributed to Video-LLaVA’s adoption of CLIP ViT-L/14 trained in LanguageBind [Lin57

et al., 2023] as its vision model and the inclusion of a large volume of image-video-text pairings58

within the training data. On the other hand, models like Otter and LWM perform poorly across most59

disciplines, possibly due to their weaker backbone and architecture used. Otter uses the LLaMA-7B60

language encoder and a CLIP ViT-L/14 vision encoder, both of which are frozen, with only the61

Perceiver resampler module fine-tuned, which may contribute to its lower performance. Additionally,62

some MLLMs perform even worse than random, highlighting the challenging nature of MMWorld.63

1Note that MMWorld is not a sufficient testbed for world model evaluation, but we believe overcoming the
unique challenges presented in MMWorld is essential and necessary towards comprehensive world modeling.
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Table 1: MLLM accuracy across diverse disciplines (averaging over three runs). GPT-4V and Gemini
Pro lead at most disciplines and achieve the best overall accuracy. The best open-source model
Video-LLaVA-7B outperforms them on Embodied Tasks and perform similarly on Art & Sports.

Model Art& Business Science Health& Embodied Tech& Game AverageSports Medicine Tasks Engineering
Random Choice 25.03 25.09 26.44 25.00 26.48 30.92 25.23 26.31

Proprietary MLLMs

GPT-4o [OpenAI, 2024] 47.87 ±1.47 91.14 ±0.87 73.78 ±2.88 83.33 ±1.47 62.94 ±3.47 75.53 ±2.61 80.32 ±2.05 62.54 ±0.79

Claude-3.5-Sonnet [Anthropic, 2024] 54.58 ±0.45 63.87 ±0.40 59.85 ±1.28 54.51 ±1.28 30.99 ±0.40 58.87 ±0.61 59.44 ±0.68 54.54 ±0.29

GPT-4V [OpenAI, 2023a] 36.17 ±0.58 81.59 ±1.74 66.52 ±1.86 73.61 ±0.49 55.48 ±2.70 61.35 ±1.00 73.49 ±1.97 52.30 ±0.49

Gemini Pro [Team et al., 2023] 37.12 ±2.68 76.69 ±2.16 62.81 ±1.83 76.74 ±1.30 43.59 ±0.33 69.86 ±2.01 66.27 ±2.60 51.02 ±1.35

Open-source MLLMs

Video-LLaVA-7B [Lin et al., 2023] 35.91 ±0.96 51.28 ±0.87 56.30 ±0.76 32.64 ±0.49 63.17 ±1.44 58.16 ±1.00 49.00 ±3.16 44.60 ±0.58

Video-Chat-7B [Li et al., 2023b] 39.53 ±0.06 51.05 ±0.00 30.81 ±0.21 46.18 ±0.49 40.56 ±0.57 39.36 ±0.00 44.98 ±0.57 40.11 ±0.06

ChatUnivi-7B [Jin et al., 2023] 24.47 ±0.49 60.84 ±1.51 52.00 ±0.73 61.11 ±1.96 46.15 ±2.06 56.74 ±1.33 52.61 ±2.84 39.47 ±0.42

mPLUG-Owl-7B [Ye et al., 2023] 29.16 ±1.62 64.10 ±1.84 47.41 ±3.29 60.07 ±1.30 23.78 ±3.47 41.84 ±5.09 62.25 ±3.16 38.94 ±1.52

Video-ChatGPT-7B [Maaz et al., 2024] 26.84 ±0.69 39.16 ±3.02 36.45 ±1.31 53.12 ±0.00 36.60 ±3.25 41.49 ±1.74 36.55 ±2.27 33.27 ±0.97

PandaGPT-7B [Su et al., 2023] 25.33 ±0.54 42.66 ±3.02 39.41 ±2.67 38.54 ±3.07 35.43 ±0.87 41.84 ±2.79 40.16 ±4.65 32.48 ±0.45

ImageBind-LLM-7B [Han et al., 2023] 24.82 ±0.16 42.66 ±0.99 32.15 ±1.11 30.21 ±1.47 46.85 ±1.14 41.49 ±1.50 41.37 ±0.57 31.75 ±0.14

X-Instruct-BLIP-7B [Panagopoulou et al., 2023] 21.08 ±0.27 15.85 ±0.87 22.52 ±1.11 28.47 ±0.49 18.41 ±1.44 22.34 ±0.87 26.10 ±0.57 21.36 ±0.18

LWM-1M-JAX [Liu et al., 2024] 12.04 ±0.53 17.48 ±0.57 15.41 ±0.91 20.49 ±0.98 25.87 ±1.98 21.99 ±2.19 11.65 ±3.01 15.39 ±0.32

Otter-7B [Li et al., 2023a] 17.12 ±1.17 18.65 ±0.87 9.33 ±0.36 6.94 ±0.98 13.29 ±1.51 15.96 ±1.74 15.26 ±0.57 14.99 ±0.77

Video-LLaMA-2-13B [Zhang et al., 2023] 6.15 ±0.44 21.21 ±0.66 22.22 ±1.45 31.25 ±1.70 15.38 ±1.14 19.15 ±1.74 24.90 ±5.93 14.03 ±0.29

0.9

0.7

0.5

Explanation

Figure 2: Results of different MLLMs on multi-faceted reasoning. The detailed performance numbers
can be found in the Appendix.

2.2 Study on Multi-faceted Reasoning on MMWorld64

Figure 2 illustrates the multi-faceted reasoning performance for each MLLM. GPT-4V emerges as65

the strongest model across Future Prediction, Domain Expertise, and Attribution Understanding.66

Closed-source models like GPT-4V and Gemini Pro perform similarly on counterfactual thinking67

and outperform all others. However, for temporal understanding, Video-LLaVA performs the best.68

This may be due to its extensive training on large amounts of video-language data, which enhances69

its spatio-temporal reasoning abilities. This can be also observed in its high scores on the Art &70

Sports and Embodied Tasks, which involve dense spatio-temporal information, as shown in Table 1.71

Video-LLaVA’s performance is comparable to GPT-4V and Gemini on explanation tasks, likely72

because of its two-stage training process and exposure to a large amount of instruction-tuning data in73

the second stage, which includes similar instructions.74

3 Conclusion75

Our MMWorld Benchmark represents a significant step forward in the quest for advanced multi-modal76

language models capable of understanding complex video content. By presenting a diverse array77

of videos across seven disciplines, accompanied by questions that challenge models to demonstrate78

explanation, counterfactual thinking, future prediction, and domain expertise, we have created a79

rigorous testing ground for the next generation of AI. While using LLMs for data generation can80

introduce hallucination issues, these challenges are manageable and are commonly addressed [Wang81

et al., 2024; Shen et al., 2023].82
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