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Abstract
Large Language Models (LLMs) have shown001
impressive reasoning capabilities in well-002
defined problems with clear solutions, such as003
mathematics and coding. However, they still004
struggle with complex real-world scenarios like005
business negotiations, which require strategic006
reasoning—an ability to navigate dynamic envi-007
ronments and align long-term goals amidst un-008
certainty. Existing methods for strategic reason-009
ing face challenges in adaptability, scalability,010
and transferring strategies to new contexts. To011
address these issues, we propose explicit policy012
optimization (EPO) for strategic reasoning, fea-013
turing an LLM that provides strategies in open-014
ended action space and can be plugged into015
arbitrary LLM agents to motivate goal-directed016
behavior. To improve adaptability and policy017
transferability, we train the strategic reason-018
ing model via multi-turn reinforcement learn-019
ing (RL) using process rewards and iterative020
self-play, without supervised fine-tuning (SFT)021
as a preliminary step. Experiments across so-022
cial and physical domains demonstrate EPO’s023
ability of long-term goal alignment through en-024
hanced strategic reasoning, achieving state-of-025
the-art performance on social dialogue and web026
navigation tasks. Our findings reveal various027
collaborative reasoning mechanisms emergent028
in EPO and its effectiveness in generating novel029
strategies, underscoring its potential for strate-030
gic reasoning in real-world applications1.031

1 Introduction032

Recent advances in LLMs have significantly033

enhanced their reasoning capabilities on static034

problem-solving with well-defined solutions, such035

as mathematics, coding, and logical reasoning (An-036

thropic, 2024; OpenAI, 2024b; Qwen, 2024;037

Google, 2024; Guo et al., 2025). However, these038

tasks, governed by fixed rules and deterministic039

outcomes, fail to capture the complexity of real-040

world scenarios such as business negotiations or041

1We will release our models, code and data soon.

policy design, where success hinges on navigating 042

dynamic environments with no predefined solu- 043

tions. Such scenarios demand strategic reason- 044

ing2 (Zhang et al., 2024b): the ability to align 045

long-term goals, manage uncertainty, and adapt 046

to changing conditions. Despite progress in narrow 047

domains, current LLMs have difficulty in integrat- 048

ing these capabilities, exposing a critical gap in 049

human-like behaviors in interactive contexts. 050

Prior work improving strategic reasoning in 051

LLMs falls into three categories: iterative prompt- 052

ing that decomposes long-term goals into stepwise 053

plans, such as recursive self-improvement (Madaan 054

et al., 2023; Shinn et al., 2024) or extended chain- 055

of-thought (CoT) reasoning (Wei et al., 2022; Yao 056

et al., 2023b); post-training LLMs through imita- 057

tion learning (IL) or RL (Chen et al., 2023; Song 058

et al., 2024); inference scaling that searches multi- 059

ple reasoning paths toward goals, such as Best-of- 060

N or Monte Carlo Tree Search (MCTS) (Yu et al., 061

2023; He et al., 2024; Putta et al., 2024). While 062

these methods show promise, they face critical lim- 063

itations: (1) prompting methods are limited by the 064

inherent reasoning abilities of LLMs and struggle 065

with real-time adaptation; (2) IL or RL approaches 066

face challenges in generalizing reasoning skills to 067

unseen domains (Patil, 2025), as fine-tuning on spe- 068

cific reasoning datasets may hinder transferability 069

due to over-optimization (Bakhtin et al., 2022; Li 070

et al., 2024); and (3) search algorithms suffer from 071

computational inefficiency and poor scalability to 072

open-ended action space in real-world scenarios. 073

To tackle these challenges, we introduce a 074

method concerning explicit policy optimization 075

for strategic reasoning and leverage RL to learn to 076

reason for optimial strategies. Our method EPO, 077

features an LLM dedicated to strategic reasoning, 078

providing real-time strategies and can be seam- 079

2See Appendix A for the comparison between strategic
reasoning and static problem-solving.
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Figure 1: EPO incentivizes goal-directed behavior from LLM agents in interactive scenarios. In such scenarios,
each participant’s goals and strategies remain private to themselves. Notably, our strategic reasoning model can
assist all involved parties, enabling to increase the overall average payoff for all participants.

lessly integrated with LLM agents to incentivize080

goal-directed behavior. As shown in Figure 1, our081

reasoning model can assist arbitrary LLM agents082

in achieving long-term goals across multiple inter-083

action turns. To enhance adaptability and policy084

transferability, we optimize the reasoning model085

purely through multi-turn RL without SFT as a086

preliminary step. For simplicity and ease of im-087

plementation, we employ a REINFORCE (Sutton088

et al., 1999) policy gradient RL objective for train-089

ing, enabling the reasoning model to learn optimal090

strategies. Additionally, we utilize a process reward091

model (PRM) to assess the effectiveness of gener-092

ated strategies and incorporate iterative self-play to093

scale up RL training.094

Our method, leveraging the features of EPO, ad-095

dresses the limitations of prior work from several096

perspectives. Firstly, unlike previous multi-agent097

frameworks that are limited to prompting engineer-098

ing (Gandhi et al., 2023; Duan et al., 2024), EPO099

is capable to enhance strategic reasoning capabil-100

ities via RL. This allows our reasoning model to101

adapt to real-time environment feedback. More-102

over, EPO allows LLM agents interacting with en-103

vironments to remain unchanged, preserving their104

ability to generalize to new domains and avoids105

over-optimization issues common in IL or RL meth-106

ods. Meanwhile, our reasoning model can be seam-107

lessly plugged into these LLM agents, regardless108

of their openness or inherent capabilities. Finally,109

the reasoning model, being an LLM, can formulate 110

strategies in the vast, open-ended language space 111

without high computational costs. 112

Experiments across social and physical domains 113

demonstrate that EPO is able to align long-term 114

goals with enhanced strategic reasoning via RL, 115

achieving state-of-the-art performance on social di- 116

alogue and web navigation tasks. Results and anal- 117

ysis show that our strategic reasoning model learns 118

to reason for optimal strategies through multi-turn 119

RL, transferring its policy to diverse scenarios. We 120

also discover various collaborative mechanisms be- 121

tween the reasoning model and LLM agents for in- 122

teracting, and uncover creative strategies produced 123

by the model. Our contributions are threefold: 124

• We propose explicit policy optimization for 125

strategic reasoning, featuring a strategic rea- 126

soning model (LLM) providing real-time 127

strategies for arbitrary LLM agents to incen- 128

tivize goal-directed behavior in dynamic inter- 129

active environments. 130

• We develop a lightweight multi-turn RL 131

pipeline for training the reasoning model with 132

process rewards and iterative self-play, im- 133

proving its policy transferability to unseen 134

scenarios without SFT as a preliminary step. 135

• Results and analysis in diverse domains 136

demonstrate the superior performance of EPO 137

over baselines in long-term goal alignment. A 138
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variety of collaborative reasoning mechanisms139

emerge in EPO as well as novel strategies de-140

vised by the reasoning model.141

2 Related Work142

Strategic Reasoning in LLMs. Motivated by in-143

context learning and reasoning abilities of LLMs,144

recent work utilizes LLMs for strategic reason-145

ing in dynamic environment (Zhang et al., 2024b).146

While some work employs prompting techniques147

for opponent analysis (Duan et al., 2024), theory of148

mind (Gandhi et al., 2023; Wilf et al., 2024), or in-149

context demonstrations (Fu et al., 2023; Wang et al.,150

2024b), their effectiveness is limited by inherit abil-151

ities and issues like unfaithful explanations (Turpin152

et al., 2024). Fine-tuning LLMs through IL or153

RL (Zeng et al., 2023; He et al., 2024; Putta et al.,154

2024) can help but struggles to generalize reason-155

ing skills across domains. Beyond prompting and156

fine-tuning, modular enhancements such as mem-157

ory modules, external tools (Zhu et al., 2023; Ge158

et al., 2023; Hao et al., 2023; Sun et al., 2024), and159

multi-agent systems (Bakhtin et al., 2022, 2023;160

Xu et al., 2023; Ma et al., 2024) have been ex-161

plored. Some of these work develop dialogue ac-162

tion planners via RL (Deng et al., 2023; Li et al.,163

2024) or game-theoretic algorithms (Gemp et al.,164

2024), but rely on finite, predefined action sets or165

lack interpretability. In contrast, our approach sup-166

ports open-ended action space and improves the167

interpretability of strategic reasoning by generat-168

ing strategies in natural language. Concurrent to169

our work, CoPlanner (Wang et al., 2024a) focuses170

on static reasoning with limited planning rounds,171

whereas our method enhances strategic reasoning172

for dynamic long-horizon planning.173

Reinforcement learning for LLMs. Prior RL ap-174

plications for LLMs often focus on static problem-175

solving like question answering (Liu et al., 2021;176

Suzgun et al., 2023), math problems (Lightman177

et al., 2024; Kumar et al., 2024), and preference178

alignment (Christiano et al., 2017; Guan et al.,179

2024). For example, methods in reinforcement180

learning from human feedback (RLHF) (Ouyang181

et al., 2022; Gulcehre et al., 2023; Rafailov et al.,182

2024) treat reward maximization as a one-step183

bandit problem, which prioritizes human-like re-184

sponses rather than interactive engagement. In-185

stead, numerous agent tasks require interactions186

and complex strategies, prompting the development187

of multi-turn RL algorithms (Zhou et al., 2024b;188

Shani et al., 2024) for LLMs. Our work considers 189

strategic reasoning as an RL challenge, demonstrat- 190

ing the feasibility of training LLMs for strategic 191

reasoning through a pure RL process, independent 192

of the specific RL algorithm used. 193

3 Method 194

We first provide an overview of our method EPO, 195

accompanied by a formulation of strategic reason- 196

ing process. We then introduce a multi-turn RL 197

pipeline to explicitly optimize the policy of the 198

strategic reasoning model in EPO. 199

3.1 Overview 200

Assume an interactive scenario involving an LLM 201

agent LLMd aiming to achieve a long-term goal 202

G through sequential interactions. At each turn t, 203

LLMd receives an observation xt (e.g., adversary 204

messages or environment states) and generates a 205

response yt that balances immediate context with 206

progress toward the goal G. Traditional approaches 207

model this process as P (yt|G, h1:t−1, xt), where 208

h1:t−1 = {x1, y1, ..., xt−1, yt−1} is the interaction 209

history between LLMd and an external environ- 210

ment or other agents. However, this formulation 211

does not explicitly consider the strategic reasoning 212

process in long-term goal alignment. 213

To address this, we propose EPO that introduces 214

an LLM LLMs dedicated to strategic reasoning 215

and providing strategies a to motivate goal-directed 216

behavior from LLMd. As shown in Figure 2, 217

LLMs synthesizes the goal G, interaction history 218

h1:t−1, prior strategies a1:t−1, and the latest ob- 219

servation xt to propose a strategy in open-ended 220

action space: 221

at = LLMs(ssys, G, h1:t−1, a1:t−1, xt). (1) 222

This strategy then encourages LLMd to produce 223

goal-directed behavior: 224

yt = LLMd(dsys, G, h1:t−1, a1:t, xt). (2) 225

Here, ssys and dsys are role-specific system 226

prompts, which can be combined with various 227

prompting techniques, such as CoT or Tree-of- 228

Thought (Yao et al., 2023a). Crucially, LLMd se- 229

lectively adopts at when generating its behavior, al- 230

lowing it to override suboptimal strategies while re- 231

taining domain-general linguistic skills. The exter- 232

nal environment provides feedback afterward (e.g., 233

adversary reactions or goal progress), updating ht 234
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Figure 2: Overview of EPO. The solid line shows the
RL training process of the strategic reasoning model,
while the dotted line indicates how our reasoning model
motivates goal-directed behavior from LLM agents.

for subsequent turns. With explicit policy optimiza-235

tion for strategic reasoning, EPO enables continu-236

ous strategy refinement in LLMs while maintaing237

the generalization ability of LLMd, addressing the238

over-optimization issues in prior work.239

3.2 Learning to Reason for Optimal Strategies240

To equip LLMs with adaptive strategic reasoning,241

we design a lightweight multi-turn RL pipeline that242

optimizes its policy through iterative self-play, pri-243

oritizing process rewards over terminal outcomes.244

This approach enables LLMs to learn to refine245

strategies based on real-time environmental feed-246

back rather than align to predefined solutions or247

fixed reward models as in prior RLHF methods.248

Specifically, we define the policy optimization of249

strategic reasoning model LLMs as a partially ob-250

servable Markov decision process (POMDP). The251

optimization objective is to maximize the expected252

return:253

J(θ) = Eτ∼πθ
[R(τ)] = Eπθ

[
T∑

t′=t

γT−t′rt′ ], (3)254

where R(τ) represents the long-term value of a tra-255

jectory τ = (h1, a1, r1, ..., hT , aT , rT ) generated256

by the policy πθ(at|ht) until the terminal turn T .257

γ ∈ [0, 1) is the discount factor that controls the258

model’s temporal bias and rt′ is the immediate re-259

ward at each interaction turn.260

Policy Optimization. From the POMDP formu-261
lation, we derive a REINFORCE RL objective for262
training LLMs:263

L(θ) = (4)264

− Eπθ

[
1

T

T∑
t=1

Rt
1

|kt|

kt∑
i=0

log πθ(at,i|h1:t−1, at,1:i−1, xt)

]
,265

where at,i denotes the i-th token in strategy at, 266

at,1:i−1 represents previously generated tokens 267

within at, and kt is the total number of tokens of 268

strategy at. Rt is the cumulative discounted re- 269

wards from turn t to T , ensuring strategies align 270

with long-term goals. For each training sample, 271

we use max-absolute normalization for Rt to stabi- 272

lize policy gradients across trajectories of varying 273

lengths and reward scales. 274

Due to its simplicity and compatibility with of- 275

fline settings (e.g., pre-collected interaction data), 276

this RL objective can integrate seamlessly with 277

multi-task and cross-domain training (as demon- 278

strated in our experiments) and avoids the compu- 279

tational overhead of on-policy sampling. However, 280

our framework EPO is algorithm-agnostic. Online 281

RL methods such as PPO (Schulman et al., 2017) or 282

other offline approaches like DPO (Rafailov et al., 283

2024) could also optimize πθ. Furthermore, we 284

could improve the algorithmic stability by intro- 285

ducing baselines to reduce variance (Ahmadian 286

et al., 2024), and combine search techniques by 287

sampling serveral candidate strategies from LLMs 288

and reranking them via learned value functions. 289

Process Rewards. For RL training, we assign 290

each strategy at produced by LLMs with a process 291

(or immediate) reward rt, reflecting its criticality 292

in advancing LLMd toward its goal. Specifically, 293

rt = 1 if at is deemed critical and 0 otherwise. 294

To identify critical strategies, we employ an LLM3 295

LLMp as the PRM to output a list containing key 296

strategy indexes in a training sample: 297

[Sidx] = LLMp(psys, G, h1:T , score, a1:T ), (5) 298

where Sidx denotes the indexes of strategy a1:T crit- 299

ical in achieving the goal G. psys refers to the sys- 300

tem prompt for PRM (refer to Appendix C.2), and 301

h1:T is the full interation history until the terminal 302

turn T . score represents the final goal completion 303

rate for corresponding sample. By integrating pro- 304

cess rewards into policy optimization, our method 305

enables the strategic reasoning model to generate 306

strategies that are both tactically sound in the short 307

term and coherent over extended horizons. 308

Iterative Self-Play. To scale up RL, we train 309

LLMs using iterative self-play, where two EPO 310

instances take turns interacting as different part- 311

ners. During self-play, each EPO instance uses 312

its LLMs to devise strategies, encouraging their 313

3We use GPT-4o.
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paired LLMd agents to behave toward their spe-314

cific goals. We record the entire trajectory data,315

including the interaction history between agents316

LLMd and the strategies proposed by LLMs. We317

then evaluate each strategy with the PRM and ob-318

tain process rewards to retrain LLMs in the next319

RL iteration based on Eq. 4, until LLMs’s pol-320

icy stabilizes. Throughout this process, LLMd’s321

weights remain unchanged to ensure it can gen-322

eralize to various domains without overfitting to323

particular behavior patterns.324

Transferability. The transferability of our325

method is mainly due to two factors: (1) the326

explicit policy optimization for strategic reasoning327

where our reaosning model LLMs can be flexibly328

plugged into any LLMd, while LLMd maintains329

its general-domain capabilities without the need330

of additional training; (2) the open-ended action331

space where LLMs produces strategies. Therefore,332

the reasoning model can undergo RL training333

across different domains, improving its policy334

transferability to novel scenarios.335

4 Experiment336

The goal of our experiments is to demonstrate the337

efficacy and justify the design of EPO in enhanc-338

ing strategic reasoning via RL. Our experiments339

address the following questions: (1) Is it necessary340

to explicitly optimize policy for strategic reasoning341

and what are the unique advantages? (2) How iter-342

ative self-play can scale RL training in EPO? (3)343

How the reasoning model in EPO affects agent’s be-344

havior and under what circumstances can optimal345

reasoning be achieved? (4) Which components of346

EPO are critical for effective strategic reasoning?347

To this end, we evaluate EPO against baselines,348

perform analysis and run ablations.349

4.1 Experimental Settings350

Environments and Datasets. We evaluate EPO351

in three distinct social and physical environments352

requiring strategic reasoning: (1) SOTOPIA (Zhou353

et al., 2024a) for social interaction with goals. A354

challenging subset of scenarios (SOTOPIA-hard)355

demands advanced strategic reasoning; (2) Web-356

Shop (Yao et al., 2022) for web navigation with357

dense final rewards (0–1); (3) ALFWorld (Shridhar358

et al., 2021) for the embodied household, compris-359

ing out-of-distribution (OOD) task variations and360

binary rewards indicating task success.361

Dataset statistics are shown in Table 5. For 362

SOTOPIA, we collect training data for the rea- 363

soning model from SOTOPIA-π (Wang et al., 364

2024c), where training scenarios are completely 365

non-overlapping with test ones to ensure general- 366

ization. We use GPT-4-Turbo to generate strate- 367

gies and dialogue histories with CoT prompting. 368

For WebShop and ALFWorld, the training data 369

follows (Song et al., 2024) where each trajectory 370

contains CoT rationales that we assume as the strat- 371

egy for each action step. See Appendix B for more 372

details of the environments and data collection. 373

Evaluation Prompts and Metrics. We evaluate 374

EPO using zero-shot prompting for SOTOPIA and 375

one-shot prompting for WebShop and ALFWorld 376

following (Song et al., 2024). For SOTOPIA, we 377

measure goal completion (0-10) and overall score 378

using GPT-4o (OpenAI, 2024a) as a proxy for hu- 379

man judgment following (Zhou et al., 2024a). For 380

WebShop and ALFWorld, we use average reward 381

as the metric. Detailed prompts are provided in 382

Appendix C.1. 383

Implementation Details. We mainly use 384

Llama3-8B-Instruct (Dubey et al., 2024) as the 385

base model for RL training. The batch size is 32 386

and the learning rate is 1e-6 with 3% warm-up and 387

a cosine scheduler. We set the learning epochs 388

to 3 and the discount factor to 0.99. The total 389

training steps are 19k in SOTOPIA and 20k in 390

cross-domain training on WebShop and ALFWorld. 391

During evaluation, we use GPT-4o or Llama3.1- 392

70B-Instruct (Meta, 2024) as the self-play dialogue 393

agent in SOTOPIA. For WebShop and ALFWorld, 394

we use GPT-4o or Llama3-8B-Instruct as the agent 395

for interating with environments. By default, our 396

reasoning model is plugged into all interacting 397

agents within an environment. On SOTOPIA, the 398

temperature of our reasoning model and LLMs 399

responsible for self-chat is set to be 0.7. For 400

WebShop and ALFWorld, LLMs responsible for 401

interacting with the environment adopt greedy 402

decoding (tempature 0). Due to computational 403

costs, we only report results in a single run. All 404

experiments are conducted on 6 NVIDIA A100 405

80G GPUs. Refer to Appendix D for more details. 406

Baselines and Comparisons. We evaluate our 407

method against several baselines: (1) Vanilla, a 408

standard prompting method; (2) ReAct (Yao et al., 409

2023b), which employs CoT reasoning within a 410

single LLM to generate rationales before actions; 411
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Method
GPT-4o Llama3.1-70B-Instruct

Hard All Hard All
Goal Overall Goal Overall Goal Overall Goal Overall

Vanilla 6.27 3.42 8.16 3.73 4.98 2.49 7.48 3.37
ReAct (Yao et al., 2023b) 6.39 3.31 8.09 3.66 5.09 2.46 7.30 3.25
PPDPP (Deng et al., 2023) 6.09 3.31 7.94 3.60 4.86 2.45 7.63 3.48
DAT (Li et al., 2024) - - - - 5.11 2.52 7.76 3.56

EPO-Claude-3.5-Sonnet 6.57 3.37 8.08 3.64 6.16 3.32 7.98 3.70
EPO-GPT-4o 6.73 3.53 8.27 3.78 6.45 3.46 8.18 3.82
EPO-Llama3-8B 6.50 3.45 8.11 3.78 5.88 3.14 8.04 3.68
EPO-Llama3-8B w/ SFT 6.76 3.42 8.28 3.75 6.96 3.23 8.29 3.66
EPO-Llama3-8B w/ RL 7.20 3.58 8.58 3.88 7.07 3.33 8.35 3.72
EPO-Llama3-8B w/ RL+Self-play 7.78 3.58 8.84 3.92 7.48 3.41 8.53 3.85

Table 1: The goal completion and overall scores on SOTOPIA. GPT-4o or Llama3.1-70B-Instruct serves as the
self-play dialogue agent. “EPO-(model)” represents the strategic reasoning model instantiated by an LLM with and
without additional training. DAT is exclusive to open-source LLMs.

Method
GPT-4o Llama3-8B-Instruct

WebShop ALFWorld WebShop ALFWorld

Seen Unseen Seen Unseen

ReAct (Yao et al., 2023b) 61.9 38.6 38.1 58.2 4.3 3.0

EPO-Llama3-8B w/ SFT 67.1 45.9 44.1 64.4 12.1 10.5
EPO-Llama3-8B w/ RL 68.1 47.2 46.6 66.9 14.3 14.5

Table 2: The average reward on WebShop and ALFWorld. GPT-4o or Llama3-8B-Instruct serves as the LLM
agent interacting with the environment. “Seen” refers to the test set with task types seen during training and “Unseen”
denotes the test set with OOD task variations.

(3) PPDPP (Deng et al., 2023), a dialogue ac-412

tion planning method that uses a policy planner413

to predict annotated dialogue acts; (4) DAT (Li414

et al., 2024), which predicts continuous action vec-415

tors through a small planner to control LLM out-416

puts. To validate our RL-driven reasoning model,417

we introduce additional baselines: EPO-Claude-418

3.5-Sonnet, EPO-GPT-4o and EPO-Llama3-8B419

that use off-the-shelf LLMs for strategy generation420

without additional training. We also compare to421

supervised fine-tuning for policy optimization of422

our reasoning model. Details of implementation423

can be found in Appendix D.424

4.2 Results and Analysis425

Q1: Effectiveness and Advantages of EPO. Re-426

sults in Table 1 and 2 show EPO’s superior per-427

formance over baselines, highlighting the effec-428

tiveness of explicit policy optimization for strate-429

gic reasoning via RL. As shown in Table 1, meth-430

ods such as EPO-Claude-3.5-Sonnet, EPO-GPT- 431

4o, and EPO-Llama3-8B outperform prompting 432

methods or domain-specific planners, despite that 433

the strategic reasoning model is simply a stan- 434

dard LLM without additional training. With post- 435

training particularly through RL, the reasoning 436

model’s abilities can be signicantly improved and 437

iterative self-play further amplifies its performance, 438

exceeding state-of-the-art results (Zhang et al., 439

2024a) on SOTOPIA. The design of EPO can be 440

further underscored when compared to training a 441

single LLM to output both strategy and behavior for 442

each interaction turn (see results in Appendix E). 443

Our reasoning model trained with RL plugged 444

into GPT-4o even exceeds state-of-the-art result on 445

WebShop that involves optimizing an LLM agent 446

via step-wise RL (Deng et al., 2024). This demon- 447

strates that explicitly optimizing an LLM for strate- 448

gic reasoning and plugged into a frozen LLM agent 449

is crucial, as it prevents overfitting in behavior and 450
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Figure 3: Iterative self-play RL scaling in EPO. Left:
The goal completion in test scenarios from SOTOPIA
where we use GPT-4o as the self-play dialogue agent.
Right: The goal completion of training data for each
iteration of RL training. GPT-4-Turbo serves as the dia-
logue agent for self-play in scenarios from SOTOPIA-π.

allows focus on enhancing strategic reasoning via451

RL.452

EPO offers unique advantages arising from ex-453

plicit policy optimization for strategic reasoning.454

Firstly, our strategic reasoning model, being an455

LLM, is capable of generating open-domain strate-456

gies instead of predefined, domain-specific actions,457

such as those in PPDPP. This attibute allows us458

to train the model on multi-task and cross-domain459

scenarios through RL, enhancing its policy transfer-460

ability and adaptability to new scenarios. For exam-461

ple, in Table 2, our RL-trained reasoning model can462

even assist a less capable LLM agent (Llama3-8B-463

Instruct) in achieving long-term goals, obtaining a464

significant improvement over ReAct (+11.5%) in465

ALFWorld-Unseen tasks. Secondly, our reasoning466

model can be seamlessly integrated with differ-467

ent advanced LLM agents for navigating complex468

environments. The LLM agents for interacting re-469

main unchanged, preserving their general-domain470

capabilities. This flexibility not only enhances per-471

formance but also maintains adaptability and gen-472

eralizability, making EPO a versatile method for473

dynamic interactive environments.474

Q2: RL Scaling with Iterative Self-Play. To475

scale up RL training, we investigate if EPO can be476

improved through iterative self-play. Figure 3(a)477

shows that performance steadily improves as RL478

training iteration increases, though gains diminish479

after the fifth round, indicating a gradual process to-480

ward an optimized policy of the strategic reasoning481

model. This improvement is because the strategies482

generated by our RL-trained reasoning model are483

more effective than those from the initial CoT data.484

In addition, the strategy data for training is evalu-485

ated by the PRM, refining policy optimization for486

Figure 4: Collaborative Reasoning Mechanisms in
EPO. We evaluate four configurations in SOTOPIA: (1)
“ReAct”, where both dialogue parties generate strate-
gies before responses; (2) “EPO-RL vs. ReAct”, with
one party using an RL-trained reasoning model and the
other using ReAct; (3) “EPO-RL vs. EPO-Llama3”,
comparing RL-trained and vanilla (Llama3-8B-Instruct)
reasoning models; and (4) “EPO-RL”, where both par-
ties employ RL-trained reasoning model. “Avg Goal”
measures the average success in achieving social goals.
(a) and (c) show GPT-4o self-play, while (b) and (d)
involve GPT-3.5-Turbo and GPT-4o as the dialogue part-
ners.

subsequent RL training rounds. Consequently, as 487

shown in Figure 3(b), the quality of training data 488

improves until the policy converges, demonstrated 489

by increased goal completion rates. Overall, iter- 490

ative self-play effectively scales RL training and 491

enhances performance, mirroring real-world dy- 492

namics and enabling the reasoning model to adapt 493

strategies for unpredictable adversary behavior. 494

Q3: Collaborative Reasoning Mechanisms in 495

EPO. To understand how our strategic reason- 496

ing model incentivizes goal-directed behavior from 497

LLM agents, we analyze the collaborative mech- 498

anisms between the reasoning model and LLM 499

agents as illustrated in Figure 4. The results 500

show that the bidirectional EPO-RL configuration 501

achieves the highest average goal, whether in sym- 502

metric self-play (GPT-4o vs. GPT-4o) or asymmet- 503

ric interactions (GPT-3.5-Turbo vs. GPT-4o). This 504

demonstrates that mutual strategic reasoning fos- 505

ters win-win outcomes by aligning long-term goals. 506

With our RL-trained reasoning model, LLM agents 507

in a dialogue tend to identify opportunities for mu- 508
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Method Hard (Goal) All (Goal)

EPO-Llama3-8B 6.50 8.11
w/ RL 6.95 8.50
w/ RL + PRM 7.20 8.58
w/ RL + PRM + Self-play 7.78 8.84
EPO-Mistral-7B w/ RL+PRM 7.03 8.47

Table 3: Ablation studies on EPO components. Exper-
iments are conducted on SOTOPIA with GPT-4o acting
as the self-play dialogue agent. In “EPO-Llama3-8B w/
RL”, we only use the final goal completion score as the
reward for RL training.

tual benefit, even without knowing the other’s goal509

or strategies. This promotes better coordination510

and reduces misaligned behavior toward their re-511

spective goals.512

However, Figure 4(a) shows that the dialogue513

party guided by the RL-trained reasoning model514

achieves lower goal completion compared to its515

partner using ReAct prompting or a non-trained516

reasoning model like vanilla Llama3-8B-Instruct.517

This may be because the strategies from the RL-518

trained reasoning model are implicit in the dia-519

logue history, which are exploited by the partner520

to prioritize its own goals without considering the521

mutual benefit of both parties. This trend is espe-522

cially noticeable in competitive scenarios such as523

negotiations, the Prisoner’s Dilemma, and resource524

allocation. Similar observations have been made525

in previous research (Hua et al., 2024). Overall,526

collaborative reasoning mechanisms in EPO show527

a nuanced interplay between strategic reasoning528

and agent’s behavior. Optimal reasoning occurs529

when both LLM agents are equipped with our RL-530

trained reasoning model, enabling them to make531

well-informed strategic behavior.532

Q4: Ablation Studies. We present results of ab-533

lation experiments in Table 3 to validate the ne-534

cessity of EPO’s key components for strategic rea-535

soning. First, performance drops sharply without536

RL-based optimization, demonstrating its impor-537

tance in cultivating adaptive strategies to handle538

dynamic environments. Second, eliminating pro-539

cess rewards provided by the PRM degrades perfor-540

mance, which confirms their role in incentivizing541

intermediate milestones that align with long-term542

goals, such as maintaining negotiation rapport or543

balancing competing objectives. Third, incorporat-544

ing iterative self-play further boosts performance,545

suggesting its effectiveness in scaling RL efforts.546

Finally, switching the base model to Mistral-7B-547

Instruct (Jiang et al., 2023) leads to a minor per- 548

formance decline, indicating that while model ca- 549

pacity affects reasoning quality, EPO maintains ro- 550

bustness across model architectures. Overall, these 551

results underscore the value of RL training, pro- 552

cess rewards and iterative self-play in advancing 553

strategic reasoning in EPO. 554

4.3 Case Studies 555

We show a negotiation example in Table 10 to 556

demonstrate EPO’s ability to convert strategic rea- 557

soning into goal-directed behavior and enhanced 558

strategic reasoning through RL. Particularly, strate- 559

gies produced by ReAct remain static and my- 560

opic: the buyer rigidly anchors to her initial of- 561

fer, while the seller relies on generic value claims. 562

EPO-Llama3-8B trained with SFT introduces more 563

structured strategies (e.g., phased concessions) but 564

remains constrained by supervised patterns, lack- 565

ing innovation and variation. In contrast, the RL- 566

trained reasoning model generates creative and flex- 567

ible strategies such as urgency creation and value- 568

based persuasion, which are refined through multi- 569

turn RL. The divergence stems from explicit policy 570

optimization for strategic reasoning and the ability 571

to reason for optimal strategies through RL. 572

5 Conclusion 573

We propose EPO, an explicit policy optimization 574

method for strategic reasoning in LLMs via RL. 575

By training a strategic reasoning model through 576

pure RL, our method can flexibly assist arbitrary 577

LLM agents to motivate their goal-directed behav- 578

ior when navigating in dynamic environments. Par- 579

ticularly, we develop a multi-turn RL pipeline to 580

optimize the policy of the reasoning model, uti- 581

lizing process rewards and iterative self-play and 582

eliminating the need for SFT as a preliminary step. 583

This method allows the reasoning model to trans- 584

fer its policy to various scenarios. Meanwhile, the 585

LLM agent for interacting with environments re- 586

mains unchanged, maintaining its ability to gener- 587

alize across domains. Our results demonstrate that 588

EPO achieves superior performance in long-term 589

goal alignment with enhanced strategic reasoning 590

via RL. Further analysis reveal diverse collabora- 591

tive reasoning mechanisms emergent in EPO as 592

well as novel strategies devised by our reasoning 593

model, advancing LLM’s strategic reasoning to 594

handle complex real-world scenarios. 595
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Limitations596

Despite EPO shows promise in advancing strategic597

reasoning in LLMs, this work has several limita-598

tions that provide avenues for future work. First,599

the social and physical environments tested in this600

paper involve maximumly two agents, and EPO’s601

performance on more complex multi-agent settings602

such as Diplomacy and Hanabi is also interesting.603

Second, due to the computational constraints, we604

focus on 8B/7B models and do not scale up the605

multi-turn RL training to a large scale. It would be606

an important direction for future work to train our607

strategic reasoning model with larger base models608

on more domains. Third, we employ an off-the-609

shelf LLM as the process reward model for RL610

training, while a more reliable process-supervised611

reward model can be learned in the future work.612

Finally, we rely on the final goal completion score613

to evaluate the reasoning model’s performance. Fu-614

ture research could design evaluation metrics tai-615

lored to assess the quality and diversity of strategies616

devised by this model.617
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A Strategic Reasoning vs. Static Problem-Solving 958

Aspect Static Problem-Solving Strategic Reasoning

Environment Fixed rules, known variables Dynamic, evolving conditions

Solutions Single correct answer Multiple vaible paths with trade-offs

Information Complete and observable Partial, ambiguous, or delayed

Interactions None (isolated problem-solving) Multi-agent or environmental dynamics

Feedback Immediate and deterministic Delayed, probabilistic, or indirect

Goals Short-term, well-defined Long-term, abstract

Risk Predictable High-stakes, irreversible consequences

Table 4: Challenges of Strategic Reasoning vs. Static Problem-Solving.

B Environments and Datasets 959

Dataset Train Test Max Turns

SOTOPIA 2050 450/50 20
WebShop 1938 200 10
ALFWorld 3321 140/134 40

Table 5: Dataset Statistics. “Train” and “Test” denote the number of scenarios for training and evaluation,
respectively. Test scenarios in SOTOPIA (left) and SOTOPIA-hard (right) as well as test sets with seen (left) and
unseen (right) scenarios in ALFWorld are separated. “Max Turns” is the maximum turns in an interaction.

Imagine you are <Agent>, your task is to act/speak as <Agent> would, keeping in
mind <Agent>’s goal.
You can find <Agent>’s goal (or background) in the “Here is the context of the
interaction” field.
Note that <Agent>’s goal is only visible to you.
You should try your best to achieve <Agent>’s goal in a way that align with their
character traits.
While trying to achieve <Agent>’s goal, you should also follow the following
principles as much as possible:
1. Maintain the conversation’s naturalness and realism is essential (e.g., do
not repeat what other people has already said before).
2. Preserve or enhance <Agent>’s personal relations with the other agent(s)
during the interaction. The relations may encompass family ties, friendships,
romantic associations and etc.
3. Attempt to gain more new and important information during the interaction.
4. Try to keep <Agent>’s secrets, private information, or secretive intentions.
5. Do not violate any moral rules or laws in the interactions.
6. Attempt to contribute towards financial and material benefits during the
interaction. The financial and material benefits include short-term ones, such
as monetary rewards and food, and long-term ones, such as employment opportunities
and stock.
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You are at Turn <turn number>.
The dialogue history until now is: <history>.
You should first provide a reasoning for your action and argument to align with
<Agent>’s social goal based on the dialogue history.
The reasoning process for the action should be logical, considering the context
of the conversation, <Agent>’s goal, and <Agent>’s character traits.
You can reason step by step, starting from the current dialogue turn, and then
consider the long-term effects of the dialogue turn.
Remember that the reasoning should mainly focus on how <Agent>’s argument can
help to achieve <Agent>’s goal in the long term.
Note that the reasoning should not be redundant or too long and it is only visible
to you.
Based on the reasoning process and dialogue history, you should then generate a
corresponding dialogue policy for current dialogue turn to steer the conversation
towards <Agent>’s goal.
You can use different types of dialogue, communication or social strategies.
For example, given a scenario where a persuader attempts to persuade a persuadee
to donate to a charity, you can generate dialogue policies for the persuader
such as "elicit empathy by telling personal stories" and "provide social proof
to show the benefits of donating", etc.
The types of dialogue policies are not restricted to examples above.
You can even generate new policies as long as the policies can help you to achieve
<Agent>’s goal smoothly and quickly.
But remember to keep the dialogue policy concise and strictly limit it to be a
single phrase or sentence within 10 words.
Note that the dialogue policy is only visible to you.
Then based on the reasoning, dialogue policy and dialogue history, you should
select the action type. Your available action types are <action list>.
Note: You can "leave" this conversation if 1. you have achieved your social goals,
2. this conversation makes you uncomfortable, 3. you find it uninteresting/you
lose your patience, 4. or for other reasons you want to leave.
Finally, you should generate the argument following the action type.
The argument should be generated based on the dialogue history and aligned with
the dialogue policy you have generated.
Remember that the argument should not be too short, and one or two sentences are
recommended.
Please only generate a JSON string including the reasoning, the dialogue policy,
the action type and the argument.
Your response should follow the given format:
<format instructions>

Table 6: Prompts for training data collection from SOTOPIA-π. “<Agent>”, “<turn number>”, “<history>”,
“<action list>” and “<format instructions>” can be replaced by the participant’s name, the index of interaction turn,
the full dialogue history with the participant’s strategies, action types and output format instructions in SOTOPIA-π.

960

SOTOPIA. SOTOPIA (Zhou et al., 2024a) is an open-ended, general-domain platform designed to961

simulate goal-oriented social interactions between artificial agents. A social task in this environment962

involves a scenario, two role profiles, and private social goals to be achieved through interaction. Scenarios963

in SOTOPIA cover a wide variety of social interation types, including negotiation, exchange, collaboration,964

competition, accommodation and persuation. Each agent is characterized by detailed profiles, including965

aspects like name, gender, personality, and occupation. At the end of each episode, agents are assessed966
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based on seven dimensions: Goal Completion, Believability, Knowledge, Secret, Relationship, Social 967

Rules, and Financial and Material Benefits. These scores are then averaged to produce an overall score for 968

the agents. SOTOPIA-π (Wang et al., 2024c) is a follow-up work that leverages GPT-4 to automatically 969

construct an entirely new set of scenarios. The social tasks (a combination of scenarios, characters’ 970

profiles, and social goals) in SOTOPIA-π are guaranteed to not overlap with the ones in SOTOPIA. 971

For training data collection, we employ GPT-4-Turbo as the agent for self-chat in scenarios of SOTOPIA- 972

π and prompt it to generate reasoning and strategy before response at each dialogue turn. We show the 973

prompt in Table 6. We only use the strategy and response data for training our reasoning model. For 974

iterative self-play RL training, before each iteration, we employ our RL-trained reasoning model to 975

collect strategy data and GPT-4-Turbo to collect dialogue history data. The RL-trained reasoning model is 976

plugged into GPT-4-Turbo for self-chat. 977

WebShop. WebShop (Yao et al., 2022) is a large-scale interactive online shopping environment on an 978

e-commerce website. Agents in this environment aim to purchase a product to match the specifications 979

provided by human user instructions. Once the agent selects the “buy” action, the environment provides a 980

final reward, which is calculated using programmatic matching functions that consider the attributes, type, 981

options, and price of the chosen product. 982

We use the training data collected by (Song et al., 2024) where GPT-4 is employed as the agent to 983

explore in the WebShop environment and trajectories with a reward greater than 0.7 are selected. GPT-4 is 984

used to generate corresponing rationales for each action step within a trajectory. We consider the rationale 985

as a strategy for training our reasoning model. 986

ALFWorld (Shridhar et al., 2021). ALFWorld (Shridhar et al., 2021) features interactive TextWorld 987

environments that correspond to the embodied worlds found in the ALFRED (Shridhar et al., 2020) 988

dataset. In ALFWorld, agents are tasked with exploring these text-based environments and completing 989

high-level household instructions, assessing their abstract reasoning abilities and concrete execution skills. 990

Training data in the ALFWorld environment consists of two parts: (1) a few successful trajectories 991

collected by (Song et al., 2024) where each trajectory contains CoT information generated by GPT-4 992

for each action step; (2) failed trajectories generated by GPT-4 that contain both rationales and action 993

information via CoT prompting. 994

C Prompts 995

C.1 Evaluation Prompts 996

SOTOPIA You are a social expert with exceptional communication skills known for
helping individuals achieve their interpersonal goals through nuanced
strategies.
Your current objective is to assist <Agent1> in reaching their goal in
an interaction with <Agent2>.
You will be given the context of their interaction and can find <Agent1>’s
goal in the ’Here is the context of this interaction’ field, keeping in
mind <Agent1>’s goal.
You will also have access to the conversation between <Agent1> and
<Agent2>.
Before proposing any strategies, reason step by step to reflect on the
current state of the dialogue and consider what strategies might be most
effective for helping <Agent1> achieve their goal.
Additionally, maintaining the diversity of strategies is essential (e.g.,
do not repeat strategies that have already proposed before).
And the strategy should not be aggressive, offensive, or violate any
moral rules or laws.

15



You must generate a strategy at each dialogue turn except that any
participant has left the conversation.
Finally, provide a well-thought-out communication and social strategy
based on your reflection and the conversation history.
Your output should STRICTLY follow the format: Strategy: content (e.g,
Strategy: Elicit emphathy by telling personal stories).
Your output should ONLY contain the strategy. DO NOT include any reasoning
or argument. DO NOT generate any argument on behalf of any participant
as the strategy.
Your output should be in a natural language form.
Keep the strategy concise and limit it to be a single phrase or sentence
within 10 words.

WebShop You are a skilled buyer in an online shopping environment. Your task is
to assist Agent in navigating the platform to make purchases based on
instructions. Your primary role is to provide strategic and insightful
guidance to Agent, ensuring it successfully identifies and purchases
products based on the instruction.
- At the beginning of the interaction, you will receive an instruction
that includes the desired product’s attributes and price, which serves
as the shopping goal for Agent.
- You can find the instruction in the ’Instruction’ field, keeping in
mind the instruction.
- For each turn, you will be given an action performed by Agent and the
resulting observation from the environment.
- In each turn, your task is to analyze the given scenario and provide
thoughts that can guide Agent in its next action, ensuring it meets the
shopping goal.
Your thoughts should be based on:
1. Understanding and following the instructions for shopping.
2. Evaluating the current state of the environment.
3. Assessing the effectiveness of Agent’s last action.
4. Anticipating future actions that will lead Agent closer to achieving
the shopping goal.
The available actions for Agent are:
1. search[keywords]
2. click[value]
where [keywords] in search are up to Agent, and the [value] in click is
a value in the list of available actions given by the environment.
Note that you must generate a thought at each turn except that the task
has been finished.
Keep your thoughts focused and concise, leveraging your understanding of
online shopping dynamics to maximize the efficiency and correctness
of Agent’s actions. Use your reasoning skills to project possible
scenarios and potential obstacles Agent might face, offering solutions
or alternatives when necessary.
**Output Format:**
Keep your response to one or two sentences each turn.
Your response must strictly follow this format:
Thought: <your thoughts>
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ALFWorld You are an intelligent guide in an interactive household environment.
Your task is to assist Agent in accomplishing household tasks within the
environment. Your primary role is to provide strategic and insightful
guidance to Agent, ensuring that Agent can achieve each task goal
efficiently.
- At the beginning of your interactions, you will be given the detailed
description of the current environment and the task goal to accomplish.
- You can find the task goal in the ’Your task is to’ field, keeping in
mind the task goal.
- For each of your turn, you will receive Agent’s actions and the
corresponding environment observations. If the environment observation
is "Nothing happens", that means the previous action by Agent is invalid.
- In each turn, your task is to analyze the current situation and provide
clear, logical thoughts that will help direct Agent’s subsequent actions
toward achieving the task goal.
Your thoughts should be based on:
1. Understanding the goal of household task.
2. Breaking down a high-level house-holding instruction into manageable
sub-goals.
3. Evaluating the current state of the environment.
4. Assessing the effectiveness of Agent’s last action.
5. Anticipating future actions that will lead Agent closer to achieving
the task goal.
The available actions for Agent are:
1. go to {recep}
2. take {obj} from {recep}
3. put {obj} in/on {recep}
4. open {recep}
5. close {recep}
6. toggle {obj} {recep}
7. clean {obj} with {recep}
8. heat {obj} with {recep}
9. cool {obj} with {recep}
where {obj} and {recep} correspond to objects and receptacles.
Note that you must generate a thought at each turn except that the task
has been finished.
Keep your thoughts focused and concise, leveraging your understanding of
household dynamics to maximize the efficiency and correctness of Agent’s
actions. Use your reasoning skills to project possible scenarios and
potential obstacles Agent might face, offering solutions or alternatives
when necessary.
**Output Format:**
Keep your response to one or two sentences each turn.
Your response must strictly follow this format:
Thought: <your thoughts>

Table 7: Evaluation prompts for strategic reasoning model. "<Agent1>" and "<Agent2>" can be replaced by the
participant’s name in SOTOPIA.

997

C.2 PRM Prompts 998
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SOTOPIA Here’s a conversation in JSON format between <Agent1> and <Agent2>:
In the first response from ’human’, you can find the context of the
conversation and <Agent1>’s goal in the ’Here is the context of this
interaction’ field.
In the other responses from ’human’, you can find the conversation history
between <Agent1> and <Agent2>.
In the responses from ’gpt’, you can find communication and social
strategies that <Agent1> used for achieving <Agent1>’s goal.
In the ’score’ field, you can find a score for evaluating <Agent1>’s
goal achievement. The score ranges from 0 and 10. 0 represents minimal
goals achievement, 10 represents complete goal achievement, and a higher
score indicates that <Agent1> is making progress towards the goal.

<history>

Your task is to select top strategies <Agent1> used that were critically
important for achieving <Agent1>’s goal.

Please output the selected round indexes and the reasoning process
that led you to the selection in JSON format like this: "indexes":
, "reasoning": "".
Here is the output schema: "properties": "indexes": "description":
"the selected top strategies that are critically important for
achieving <Agent1>’s goal", "title": "indexes", "type": "list(integer)",
"reasoning": "description": "the reasoning process why you select
these strategies", "title": "reasoning", "type": "string", "required":
["indexes", "reasoning"].

WebShop Here’s a conversation in JSON format between human and gpt.
In the first response from ’human’, you can find the instructions for
gpt to help Agent interact in an online shopping environment.
In the second response from ’human’, you can find the shopping goal for
gpt and Agent to achieve.
In the responses from ’gpt’, you can find thoughts that gpt provides for
helping Agent to achieve the shopping goal.
In the other responses from ’human’, you can find the trajectories of
Agent’s actions and the resulting observations from the environment.

In the ’score’ field, you can find a score evaluating the goal achievement.
The score ranges from 0 and 1. 0 represents minimal goals achievement,
10 represents complete goal achievement, and a higher score indicates
making progress towards the goal.

<history>

Your task is to select top thoughts gpt produced that were critically
important for achieving the shopping goal.

Please output the selected round indexes and the reasoning process
that led you to the selection in JSON format like this: "indexes":
, "reasoning": "".
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Here is the output schema: "properties": "indexes": "description":
"the selected top thoughts that are critically important for achieving
the shopping goal", "title": "indexes", "type": "list(integer)",
"reasoning": "description": "the reasoning process why you select
these thoughts", "title": "reasoning", "type": "string", "required":
["indexes", "reasoning"].

ALFWorld Here’s a conversation in JSON format between human and gpt.
In the first response from ’human’, you can find the instructions for
gpt to help Agent interact in a household environment.
In the second response from ’human’, you can find the initial environment
observation and a household task for gpt and Agent to accomplish.
In the responses from ’gpt’, you can find thoughts that gpt provides for
helping Agent to accomplish the household task.
In the other responses from ’human’, you can find the trajectories of
Agent’s actions and the resulting observations from the environment.

In the ’score’ field, you can find a score specifying whether gpt has
helped Agent to successfully accomplish the household task. The score
is either 0.0 or 1.0. 0.0 represents that the task was not completed and
1.0 represents that the task was successfully accomplished.

<history>

Your task is to select top thoughts gpt produced that were critically
important for accomplishing the household task.

Please output the selected round indexes and the reasoning process
that led you to the selection in JSON format like this: "indexes":
, "reasoning": "".
Here is the output schema: "properties": "indexes": "description": "the
selected top thoughts that are critically important for accomplishing
the household task", "title": "indexes", "type": "list(integer)",
"reasoning": "description": "the reasoning process why you select
these thoughts", "title": "reasoning", "type": "string", "required":
["indexes", "reasoning"].

Table 8: Prompts for the process reward model. "<history>" can be replaced by the full interaction history with
strategies private to corresponding agents.

999

D Additional Implementation Details 1000

For SFT or RL training of our reasoning model, we use a fixed budget of gradient updates without 1001

altering hyperparameters. Final model checkpoints are selected for each run, although a small held- 1002

out validation set can be used. GPT-4o refers to GPT-4o-2024-0806 and Claude-3.5-Sonnet refers to 1003

Claude-3-5-Sonnet-20241022. 1004

Baseline Implementations: (1) ReAct: During ReAct prompting, the two parties in a conversation from 1005

SOTOPIA cannot see each other’s reasoning and strategies. During evaluation, reasoning and strategies 1006

are excluded from dialogue histories for GPT-4o to assess the agents from seven dimensions; (2) PPDPP: 1007

We adopt RoBERTa (Liu et al., 2019) as the base model for dialogue policy planner to predict five action 1008
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types in SOTOPIA: “none”, “speak”, “non-verbal communication”, “action”, and “leave”. We train the1009

policy planner via RL with supervised initialization using same hyperparameters as in (Deng et al., 2023).1010

(3) DAT: We adopt a small multi-layer perceptron (MLP) as the planner model to predict a continuous1011

action vector. We first train the planner and an up-mapping matrix with supervised fine-tuning and then1012

optimize the planner using the RL method TD3-BC (Fujimoto and Gu, 2021) with same hyperparameters1013

as in (Li et al., 2024). Note that in the original paper, DAT is trained on scenarios from SOTOPIA and1014

only 50 evaluations are conducted, while in this work, we train DAT on scenarios from SOTOPIA-π and1015

evaluate it on all the scenarios in SOTOPIA.1016

E Additional Results1017

To validate the effectivess of explicit policy optimization for strategic reasoning, we conduct comparative1018

experiments which involve fine-tuning a single LLM (Llama3-8B-Instruct) via SFT on training data1019

collected from three environments, respectively. This single model is trained to output strategy and1020

behavior simuteneously for each interaction turn. The results are shown in Table 9.1021

From the results, it can be observed that training a single LLM via SFT underperforms our reasoning1022

model trained with SFT plugged into LLM agents (GPT-4o) for navigating in SOTOPIA and WebShop, de-1023

spite that the LLM agents remain frozen without additional training. However, our method underperforms1024

the single model fined-tuned on ALFWorld, since the frozen LLM agent (GPT-4o) has poor performance1025

in this environment. Under the guidance of our reasoning model in EPO, this agent improves performance1026

in achieving long-term goals but still struggles with challenging scenarios in ALFWorld.1027

Backbone Method
SOTOPIA WebShop ALFWorld
Hard All Seen Unseen

Llama3-8B SFT 6.65 8.20 62.6 61.4 60.4
Llama3-8B EPO-SFT 6.76 8.28 67.1 45.9 44.1

Table 9: Comparative performance between training a single LLM with SFT and explicitly optimizing a
strategic reasoning model via SFT. The evaluation metric for SOTOPIA is the final goal completion score, and
average reward for WebShop and ALFWorld. Our strategic reasoning model trained with SFT is plugged into
GPT-4o.

F Case Studies1028

Scenario One person is offering a BMW Z3 for $5000, while another individual is interested in
purchasing it. The BMW Z3 is in need of a good home. It operates smoothly without
any problems and is known for its fuel efficiency and sporty appearance. The mileage is
relatively low for its age. It’s an opportunity not to be missed, so come and get it before
it’s gone. A smog certificate is readily available.

Person1 Lily Greenberg, a 45-year-old female lawyer (she/her), is a hard-working and successful
professional who values authority, loyalty, rules, and schedules. She makes rational,
practical decisions and secretly donates to charity anonymously.
Goal: You are the buyer for this item with a target price of $4600. You aim to avoid
penalties for exceeding the target and seeks bonuses for securing it below that price.

Person2 Hendrick Heinz, a 54-year-old male chef (he/him), hosts monthly wine tasting nights.
Though impulsive, he values hedonism and conformity, blending practicality with
decisiveness. Secretly, he faked his culinary credentials to secure prestigious jobs.
Goal: You are the seller to achieve a target price of $3260 for this item. Selling
significantly below may incur a penalty, while selling above could earn a bonus.

ReAct Strategy: Express interest and hint at budget constraints.
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Lily Greenberg said: "The BMW Z3 sounds great! Would you consider $4600?"
Strategy: Highlight car’s unique features and value.
Hendrick Heinz said: "The BMW Z3 is not only sporty but also fuel-efficient, a rare
find!"
Strategy: Highlight budget limits and car appeal.
Lily Greenberg said: "That’s impressive! But my budget is tight. Can we negotiate?"
Strategy: Emphasize long-term value and low maintenance costs.
Hendrick Heinz said: "While I understand budget constraints, consider the car’s long-
term value and low maintenance costs. It truly is a worthwhile investment."
Strategy: Acknowledge value but reiterate budget constraints.
Lily Greenberg said: "I completely see the long-term value, but $4600 is my max. Could
we find a middle ground?"
Strategy: Offer smog certificate as a bonus.
Hendrick Heinz said: "How about I throw in the smog certificate for $4800?"

EPO-SFT Strategy: Express interests and offer a lower price.
(Llama3-8B) Lily Greenberg said: "Hello Hendrick, I’m very interested in the BMW Z3 you’re offer-

ing. However, after considering the market and the car’s age, I feel more comfortable
with a price of $4600. Would that work for you?"
Strategy: Emphasize vehicle’s condition and counter with a higher price.
Hendrick Heinz said: "Hello Lily, it’s great to hear from you. I appreciate your offer,
but considering the condition and the low mileage of the BMW, I was hoping to get a
bit more for it. Would you consider $4800? The car really is in fantastic shape and I
think it’s worth it."
Strategy: Cite budget constraints and propose a compromise price.
Lily Greenberg said: "I understand your point, Hendrick, and I appreciate the quality of
the car. However, my budget is quite tight at the moment. Would you be able to meet
me in the middle at $4700? I’m ready to proceed with the purchase quickly if we can
agree on that price."
Strategy: Offer a near-middle compromise.
Hendrick Heinz said: "Lily, I truly value your quick decision-making and readiness to
proceed. Given the car’s excellent condition and your eagerness, let’s settle at $4750. I
believe it’s a fair compromise and it ensures the car goes to someone who appreciates
its value.
Strategy: Accepts compromise and finalize the sale.
Lily Greenberg said: "Hendrick, I appreciate your willingness to negotiate. $4750 is
a bit above what I initially planned, but considering the car’s excellent condition, I’ll
accept your offer. Let’s proceed with the paperwork!"
Strategy: Confirm agreement and outline next steps.
Hendrick Heinz said: "Fantastic, Lily! I’ll prepare the necessary paperwork and we can
finalize everything. I’m glad the BMW Z3 will be in good hands."

EPO-RL Strategy: Negotiation initiation highlighting positive factors with a concern.
(Llama3-8B) Lily Greenberg said: "The BMW Z3 sounds great, especially with low mileage and

good fuel efficiency. I am interested, but I noticed it’s a bit older. Is there any room for
negotiation on the price given its age?"
Strategy: Highlight the car’s unique aspects to justify pricing.
Hendrick Heinz said: "The BMW Z3 is indeed a classic, and its sporty appearance
combined with its low mileage makes it quite a rare find. It’s maintained its performance
quality over the years, making it a great investment. I believe the price reflects its unique
value, but I’m open to hearing your offer."
Strategy: Offer lower price citing the car’s age.
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Lily Greenberg said: "I appreciate the value of a classic car like this, but given its age,
my offer would be $4300. Would that be something you’d consider?"
Strategy: Mention recent maintenance as value justification and counteroffer.
Hendrick Heinz said: "I totally understand your point, Lily. Just to highlight, the car
recently underwent a thorough maintenance check, ensuring everything is in top-notch
condition. Considering that, I would be comfortable with $4700. What do you think?"
Strategy: Express budget constraints while proposing a middle-ground offer.
Lily Greenberg said: "I really like the car, Hendrick, and I see its value after the
maintenance. However, I have a strict budget I’m working with. Could we possibly
meet in the middle at $4500? That would really help me out."
Strategy: Create urgency and offer slight flexibility for the deal.
Hendrick Heinz said: "I completely understand, Lily. The car has attracted some interest
from other potential buyers, so I do need to finalize a deal soon. However, I want to
work with you on this. How about we settle at $4600? That way, you get a great deal,
and I can ensure the car goes to someone who truly appreciates it."

Table 10: A negotiation example from SOTOPIA. GPT-4o serves as the dialogue agent for self-chat. “ReAct”
means the two parties in a dialogue employ the ReAct prompting method to generate strategy before response
at each turn. “EPO-SFT” refers to a strategic reasoning model trained via SFT that plugged into both dialogue
agents, while “EPO-RL” represents an RL-trained reasoning model that assists both dialogue parties to incentivize
goal-directed behavior.
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