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Abstract

Neural radiance field (NeRF) shows powerful performance in novel view synthesis
and 3D geometry reconstruction, but it suffers from critical performance degrada-
tion when the number of known viewpoints is drastically reduced. Existing works
attempt to overcome this problem by employing external priors, but their success
is limited to certain types of scenes or datasets. Employing monocular depth esti-
mation (MDE) networks, pretrained on large-scale RGB-D datasets, with powerful
generalization capability would be a key to solving this problem: however, using
MDE in conjunction with NeRF comes with a new set of challenges due to various
ambiguity problems exhibited by monocular depths. In this light, we propose a
novel framework, dubbed DäRF, that achieves robust NeRF reconstruction with a
handful of real-world images by combining the strengths of NeRF and monocular
depth estimation through online complementary training. Our framework imposes
the MDE network’s powerful geometry prior to NeRF representation at both seen
and unseen viewpoints to enhance its robustness and coherence. In addition, we
overcome the ambiguity problems of monocular depths through patch-wise scale-
shift fitting and geometry distillation, which adapts the MDE network to produce
depths aligned accurately with NeRF geometry. Experiments show our framework
achieves state-of-the-art results both quantitatively and qualitatively, demonstrating
consistent and reliable performance in both indoor and outdoor real-world datasets.
Project page is available at https://ku-cvlab.github.io/DaRF/.

1 Introduction

Neural radiance field (NeRF) [27] has gained significant attention for its powerful performance in
reconstructing 3D scenes and synthesizing novel views. However, despite its impressive performance,
NeRF often comes with a considerable limitation in that its performance highly relies on the presence
of densely well-calibrated input images which are difficult to acquire. As the number of input images
is reduced, NeRF’s novel view synthesis quality drops significantly, displaying failure cases such as
erroneous overfitting to the input images [15, 29], artifacts clouding empty spaces [29], or degenerate
geometry that yields incomprehensible jumble when rendered at unseen viewpoints [16]. These
challenges derive from its under-constrained nature, causing it to have extreme difficulty mapping
a pixel in input images to a correct 3D location. In addition, NeRF’s volume rendering allows the
model to map a pixel to multiple 3D locations [11], exacerbating this problem.

Previous few-shot NeRF methods attempt to solve these issues by imposing geometric regulariza-
tion [29, 16, 20] or exploiting external 3D priors [11, 37] such as depth information extracted from
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Figure 1: Overview. DäRF shows robust optimization of few-shot NeRF through MDE’s geometric
prior, removing inherent ambiguity from MDE through novel patch-wise distillation loss and MDE
adaptation. Unlike existing work [45] that distills depths by applying pretrained MDE to NeRF at
seen view only, our DäRF fully exploits the ability of MDE by jointly optimizing NeRF and MDE at
a specific scene, and distilling the monocular depth prior to NeRF at both seen and unseen views.

input images by COLMAP [39]. However, these methods have weaknesses in that they use 3D priors
extracted from a few input images only, which prevents such guidance from encompassing the entire
scene. To effectively tackle all the issues mentioned above, pretrained monocular depth estimation
(MDE) networks with strong generalization capability [35, 34, 4] could be used to inject an additional
3D prior into NeRF that facilitates robust geometric reconstruction. Specifically, geometry prediction
by MDE can constrain NeRF into recovering smooth and coherent geometry, while their bias towards
predicting smooth geometry helps to filter out fine-grained artifacts that clutter the scene. More
importantly, NeRF’s capability to render any unseen viewpoints enables fully exploiting the capability
of the MDE, as MDE could provide depth prior to the numerous renderings of unseen viewpoints as
well as the original input viewpoints. This allows injecting additional 3D prior to effectively covering
the entire scene instead of being constrained to a few input images.

However, applying MDE to few-shot NeRF is not trivial, as there are ambiguity problems that hinder
the monocular depth from serving as a good 3D prior. Primarily, relative depths predicted by MDEs
are not multiview-consistent [5]. Moreover, MDEs perform poorly in estimating depth differences
between multiple objects: this prevents global scale-shift fitting [55, 26] from being a viable solution,
as alignment to one region of the scene inevitably leads to misalignment in many other regions.
There also exists a convexity problem [26], in which the MDE has difficulty determining whether the
surface is planar, convex, or concave, are also present. To overcome these challenges, we introduce
a novel method to adapt MDE to NeRF’s absolute scaling and multiview consistency as NeRF is
regularized by MDE’s powerful 3D priors, creating a complementary cycle.

In this paper, we propose DäRF, short for Monocular Depth Adaptation for boosting Radiance Fields
from Sparse Input Views, which achieves robust optimization of few-shot NeRF through MDE’s
geometric prior, as well as MDE adaptation for alignment with NeRF through complementary training
(see Fig. 1). We exploit MDE for robust geometry reconstruction and artifact removal in both unseen
and seen viewpoints. In addition, we leverage NeRF to adapt MDE toward multiview-consistent
geometry prediction and introduce novel patch-wise scale-shift fitting to more accurately map local
depths to NeRF geometry. Combined with a confidence modeling technique for verifying accurate
depth information, our method achieves state-of-the-art performance in few-shot NeRF optimization.
We evaluate and compare our approach on real-world indoor and outdoor scene datasets, establishing
new state-of-the-art results for the benchmarks.

2 Related Work

Neural radiance field. Neural radiance field (NeRF) [27] represents photo-realistic 3D scenes with
MLP. Owing to its remarkable performance, there has been a variety of follow-up studies [2, 51, 25].
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These studies improve NeRF such as dynamic and deformable scenes [31, 44, 33, 1], real-time
rendering [51, 36, 28], unbounded scene [3, 42, 48] and generative modeling [40, 30, 7]. However,
these works still encounter challenges in synthesizing novel views with a limited number of images
in a single scene, limiting their applicability in real-world scenarios.

Few-shot NeRF. Numerous few-shot NeRF works attempted to address few-shot 3D reconstruction
problem through various techniques, such as pretraining external priors [52, 9], meta-learning [43],
regularization [15, 29, 16, 20] or off-the-shelf modules [15, 29]. Recent approaches [29, 16, 20]
emphasize the importance of geometric consistency and apply geometric regularization at unknown
viewpoints. However, these regularization methods show limitations due to their heavy reliance on
geometry information recovered by NeRF. Other works such as DS-NeRF [11], DDP-NeRF [37]
and SCADE [45] exploit additional geometric information, such as COLMAP [39] 3D points or
monocular depth estimation, for geometry supervision. However, these works have critical limitations
of only being able to provide geometry information corresponding to existing input viewpoints.
Unlike these works, our work demonstrates methods to provide geometric prior even at unknown
viewpoints with MDE for more effective geometry reconstruction.

Monocular depth estimation. Monocular depth estimation (MDE) is a task that aims to predict a
dense depth map given a single image. Early works on MDE used handcrafted methods such as MRF
for depth estimation [38]. After the advent of deep learning, learning-based approaches [14, 17, 21]
were introduced to the field. In this direction, the models were trained on ground-truth depth maps
acquired by RGB-D cameras or LiDAR sensors to predict absolute depth values [24, 23]. Other
approaches trained the networks on large-scale diverse datasets [8, 22, 34, 35], which demonstrates
better generalization power. These approaches struggle with depth ambiguity caused by ill-posed
problem, so the following works LeRes [50] and ZoeDepth [4] opt to recover absolute depths using
additional parameters.

Incorporating MDE into 3D representation. As both NeRF and monocular depth estimation are
closely related, there have been some works that utilize MDE models to enhance NeRF’s performance.
NeuralLift [49], MonoSDF [53] and SCADE [45] leverage depths predicted by pretrained MDE for
depth ordering and detailed surface reconstruction, respectively. Other works optimize scene-specific
parameters, such as depth predictor utilizing depth recovered by COLMAP [47] or learnable scale-
shift values for reconstruction in noisy pose setting [6]. However, these previous approaches were
limited in that MDEs were used to provide prior to only the input viewpoints, which constrains their
effectiveness when input views are reduced, e.g., in the few-shot setting.

As a concurrent work, SCADE [45] utilizes MDE for sparse view inputs, by injecting uncertainty into
MDE through additional pretraining so that canonical geometry can be estimated through probabilistic
modeling between multiple modes of estimated depths. While the ultimate goal which is to overcome
the ambiguity of MDE may be similar, our approach directly removes ambiguity present in MDE
by finetuning with canonical geometry captured by NeRF, for effective suppression of artifacts and
divergent behaviors of few-shot NeRF.

3 Preliminaries

NeRF [27] represents a scene as a continuous function Fθ(·) represented by a neural network with
parameters θ. During optimization, 3D points are sampled along rays represented by r coming from
a set of input images S = {Ii}, whose ground truth camera poses are given, for evaluation by the
neural network. For each sampled point, Fθ(·) takes as input its coordinate x ∈ R3 and viewing
direction d ∈ R2 with a positional encoding γ(·) that facilitates learning high-frequency details,
and outputs a color c ∈ R3 and a density σ ∈ R such that {c, σ} = Fθ (γ(x), γ(d)). With a ray
parameterized as rp(t) = o+ tdp, starting from camera center o along the direction dp, color and
depth value at the pixel p are rendered as follows:

Ī(p) =

∫ tf

tn

T (t)σ(rp(t))c(rp(t))dt, D̄(p) =

∫ tf

tn

T (t)σ(rp(t))tdt, (1)

where Ī(p) and D̄(p) are rendered color and depth values at the pixel p along the ray rp(t) from tn
to tf , and T (t) denotes an accumulated transmittance along the ray from tn to t as follows:

T (t) = exp

(
−
∫ t

tn

σ(rp(s))ds

)
. (2)
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(a) (b) (c)

Figure 2: Effectiveness of patch-wise scale and shift adjustment: (a) input image, (b) monocular
depth with image-level adjustment, and (c) monocular depth with patch-level adjustment. We
visualize the error of adjusted monocular depth from input image compared to GT depth value.
The proposed patch-level adjustment helps to minimize the errors caused by inconsistency in depth
differences among objects.

Based on this volume rendering, Fθ(·) is optimized by the reconstruction loss Lrecon that compares
rendered color Ī(p) to corresponding ground-truth I(p), with R as a set of pixels for training rays:

Lrecon =
∑
Ii∈S

∑
p∈R

∥Ii(p)− Īi(p)∥22. (3)

Our work explores the setting of few-shot optimization with NeRF [16, 20]. Whereas the number
of input viewpoints |S| is normally higher than one hundred in the standard NeRF setting [27], the
task of few-shot NeRF considers scenarios when |S| is drastically reduced to a few viewpoints (e.g.,
|S| < 20). With such a small number of input viewpoints, NeRF shows high divergent behaviors such
as geometry breakdown, overfitting to input viewpoints, and generation of artifacts that cloud the
empty space between the camera and object, which causes its performance to drop sharply [15, 16, 29].
To overcome this problem, existing few-shot NeRF frameworks applied regularization techniques at
unknown viewpoints to constrain NeRF with additional 3D priors [37, 11] and enhance the robustness
of geometry, but they showed limited performance.

4 Methodology

4.1 Motivation and Overview

Our framework leverages the complementary benefits of few-shot NeRF and monocular depth
estimation networks for the goal of robust 3D reconstruction. The benefits that pretrained MDE can
provide to few-shot NeRF are clear and straightforward: because they predict dense geometry, they
provide guidance for the NeRF to recover more smooth geometry. In cases where few-shot NeRF’s
geometry undergoes divergent behaviors, MDE provides strong constraints to prevent the global
geometry from breaking down.

However, there are difficult challenges that must be overcome if the depths estimated by MDE are
to be used as 3D prior to NeRF. These challenges, which can be summarized as depth ambiguity
problems [26], stem from the inherent ill-posed nature of the monocular depth estimation. Most
importantly, MDE networks only predict relative depth information inferred from an image, meaning
it is initially not aligned to NeRF’s absolute geometry [4]. Global scaling and shifting may seem to
be the answer, but this approach leads us to another depth ambiguity problem, as predicted scales
and spacings of each instance are inconsistent with one another, as demonstrated in (b) of Fig. 2.
Additionally, MDE’s weakness in predicting the convexity of a surface, whether it is flat, convex, or
concave - also poses a problem in using this depth for NeRF guidance.

In this light, we adapt a pre-trained monodepth network to a single NeRF scene so that its powerful
3D prior can be leveraged to its maximum capability in regularizing the few-shot NeRF. In the
following, we first explain how to distill geometric prior from off-the-shelf MDE model [35] from
both seen and unseen viewpoints (Sec. 4.2). We also provide a strategy for adapting the MDE model
to handle ill-posed problems to a specific scene, while keeping its 3D prior knowledge (Sec. 4.3).
Then, we demonstrate a method to handle inaccurate depths (Sec. 4.4). Fig. 1 shows an overview of
our method, compared to previous works using MDE prior [45, 53].
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(a) Rendered color Ī (b) Rendered depth D̄ (c) Mono-depth from Ī (d) Mono-depth from I

Figure 3: Robustness of MDE model for multi-view scale ambiguity and artifacts: (a-b) color
and depth of NeRF rendered in the early stage of the training, (c-d) monocular depths estimated
from rendered image Ī and input image I . The results show that MDE model ignores the artifacts of
rendered images by NeRF, enabling reliable supervision for seen and unseen viewpoint.

4.2 Distilling Monocular Depth Prior into Neural Radiance Field

To prevent the degradation of reconstruction quality in few-shot NeRF, we propose to distill monoc-
ular depth prior to the neural radiance field during optimization. By exploiting pre-trained MDE
networks [34, 35], which have high generalization power, we enforce a dense geometric constraint on
both seen and unseen viewpoints by using estimated monocular depth maps as pseudo ground truth
depth for training few-shot NeRF. We describe the details of this process below.

Monocular depth regularization on seen views. We leverage a pre-trained MDE model, denoted as
Gϕ(·) with parameters ϕ, to predict pseudo depth map from given seen view image Ii as D∗

i = Gϕ(Ii).
Since D∗

i is initially a relative depth map, it needs to be scaled and shifted into an absolute depth [55]
and aligned with NeRF’s rendered depth D̄ in order for it to be used as pseudo-depth D∗. However,
the scale and shift parameters inferred from the global statistic may undermine local statistic [55].
For example, as shown in Fig. 2 (b), global scale fitting tends to favor dominant objects in the image,
leading to ill-fitted depths in less dominant sections of the scene due to inconsistencies in predicted
depth differences between the objects. Naı̈vely employing such inaccurately estimated depths for
distillation can adversely impact the overall geometry of the NeRF.

To alleviate this issue, we propose a patch-wise adjustment of scale and shift parameters, reducing
the impact of erroneous depth differences, as illustrated in Fig. 2 (c). The depth consistency loss is
defined as follows:

Lseen =
∑
Ii∈S

∑
p∈P

∥(wisg (D
∗
i (p)) + qi)− D̄i(p)∥, (4)

where wi and qi denote the scale and shift parameters obtained by least square [35] between D∗
i

and D̄i, P denotes a set of pixels within a patch, and sg(·) denotes stop-gradient operation. Thus
patch-based approach also helps to overcome the computational bottleneck of full image rendering.

Monocular depth regularization on unseen views. We further propose to give supervision even
at unseen viewpoints. As NeRF has the ability to render any unseen viewpoint of the scene, we
render color Īl and depth D̄l from a sampled patch of l-th novel viewpoint. Sequentially, we extract
a monocular depth map from the rendered image as D̄∗

l = Gϕ(Īl). Then, we enforce consistency
between our rendered depth D̄l and the monocular depth D̄∗

l of l-th novel viewpoint as follows:

Lunseen =
∑
Il∈U

∑
p∈P

∥(wlsg
(
D̄∗

l (p)
)
+ ql)− D̄l(p)∥, (5)

where U denotes a set of unseen view images, wl and ql denotes the scale and shift parameters used
to align D̄∗

l towards D̄l, and P denotes randomly sampled patch.

A valid concern regarding this approach is that monocular depth obtained from noisy NeRF rendering
may be affected by fine-grained rendering artifacts that frequently appear in unseen viewpoints
of few-shot NeRF, resulting in noisy and erroneous pseudo-depths. However, we demonstrate in
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Fig. 3 that a strong geometric prior within the MDE model exhibits robustness against such artifacts,
effectively filtering out the artifacts and thereby providing reliable supervision for the unseen views.

It should be noted that our strategy differs from previous methods [11, 37, 53, 45] that exploit
monocular depth estimation [34] and external depth priors such as COLMAP [39]. These methods
only impose depth priors upon the input viewpoints, and thus their priors only influence the scene
partially due to self-occlusions and sparsity of known views. Our method, on the other hand, enables
external depth priors to be applied to any arbitrary viewpoint and thus allows guidance signals to
thoroughly reach every location of the scene, leading to more robust and coherent NeRF optimization.

4.3 Adaptation of MDE via Neural Radiance Field

Although the patch-wise distillation of monocular depth provides invariance to depth difference
inconsistency in MDE, the ill-posed nature of monocular depth estimation often introduces additional
ambiguities, such as the inability to distinguish whether the surface is concavity, convexity, or planar
or difficulty in determining the orientation of flat surfaces [26]. We argue that these ambiguities
arise due to the MDE lacking awareness of the scene-specific absolute depth priors and multiview
consistency. To address this issue, we propose providing the scene priors optimized NeRF to MDE,
whose knowledge of canonical space and absolute geometry helps eliminate the ambiguities present
within MDE. Therefore, we propose to adapt the MDE to the absolute scene geometry, formally
written as:

LMDE =
∑
Ii∈S

∑
p∈P

{
∥sg

(
D̄i(p)

)
−D∗

i (p)∥+ ∥(wisg
(
D̄i(p)

)
+ qi)−D∗

i (p)∥
}
. (6)

In addition to the patch-wise loss in Eq. 4, we add an l-1 loss without scale-shift adjustment to adapt
the MDE with absolute depth prior. We also introduce a regularization term to preserve the local
smoothness of MDE, given by:

Lreg =
∑
Ii∈S

∑
p∈P

∥(wisg
(
D∗,init

i (p)
)
+ qi)−D∗

i (p)∥, (7)

where D∗,init
i denotes monocular depth map of Ii extracted from MDE with initial pre-trained weight.

4.4 Confidence Modeling

Our framework must take into account the errors present in both few-shot NeRF and estimated monoc-
ular depths, which will propagate [41] and intensify during the distillation process if left unchecked.
To prevent this, we adopt confidence modeling [20, 41] inspired by self-training approaches [41], to
verify the accuracy and reliability of each ray before the distillation process.

The homogeneous coordinates of a pixel p in the seen viewpoint are transformed to p′ at the target
viewpoint using the viewpoint difference Ri→l and the camera intrinsic parameter K, as follows:

p′ ∼ KRi→lDi(p)K
−1p. (8)

We generate the confidence map Mi by measuring the distance between rendered depth of the unseen
viewpoint and MDE output of seen viewpoint such that

Mi(p) =
[
∥(wiD

∗
i (p) + qi)− D̄l(p

′)∥ < τ
]
, (9)

where τ denotes threshold parameter, [·] is Iverson bracket, and Dl(p
′) refers to depth value of the

corresponding pixel at l-th unseen viewpoint for reprojected target pixel p of i-th seen viewpoint. We
fit D∗

i to absolute scale, where scale and shift parameters, wi and qi, are obtained by least square [35]
between D∗

i and D̄i.

4.5 Overall Training

With the incorporation of confidence modeling, the loss functions for both the radiance field and
MDE can redefined. Lseen and Lunseen can be redefined as:

Lseen =
∑
Ii∈S

∑
p∈P

Mi(p)
∥∥(wisg (D

∗
i (p)) + qi)− D̄i(p)

∥∥ , (10)

Lunseen =
∑
Il∈U

∑
p∈P

Ml(p)
∥∥(wlsg

(
D̄∗

l (p)
)
+ ql)− D̄l(p)

∥∥ . (11)
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Table 1: Quantitative comparison on ScanNet [10] and Tanks and Temples [19]. The best results
are highlighted in bold, while the second best results are underlined.

Methods Depth prior
ScanNet [10] Tanks and Temples [19]

9 - 10 views 18 - 20 views 10 views
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NerfingMVS [47] ✓ N/A N/A N/A 16.29 0.626 0.502 N/A N/A N/A
K-planes [13] ✗ 16.01 0.618 0.494 18.70 0.708 0.400 12.57 0.453 0.607

RegNeRF [29] ✗ 16.38 0.624 0.493 18.93 0.676 0.450 14.12 0.469 0.580
DS-NeRF [11] ✓ N/A N/A N/A 20.85 0.713 0.344 N/A N/A N/A
DDP-NeRF [37] ✓ N/A N/A N/A 19.29 0.695 0.368 N/A N/A N/A
SCADE [45] ✓ 18.83 0.646 0.375 21.54 0.732 0.292 13.46 0.402 0.607

DäRF (Ours) ✓ 18.29 0.690 0.412 21.58 0.765 0.325 15.70 0.514 0.583

Table 2: Evaluation of depth quality: (a) quantitative evaluation of the adapted MDE, compared
with other monocular depth estimation models and (b) visualization of depth distributions. The
adapted MDE by our method shows a similar distribution to that of the ground truth.

Methods AbsRel ↓ SqRel ↓ RMSE ↓ RMSE log ↓

LeRes [50] 0.391 0.472 0.999 0.661
MiDaS [35] 0.152 0.095 0.452 0.183
DPT [34] 0.191 0.135 0.563 0.220

DäRF (9 - 10 views) 0.154 0.074 0.361 0.171
DäRF (18 - 20 views) 0.151 0.071 0.356 0.168

(a) Quantitative comparison (b) Depth distribution comparison

In addition, the loss for the adaptation of the MDE module can be redefined considering M :

LMDE =
∑
Ii∈S

∑
p∈P

Mi(p)
(
∥sg

(
D̄i(p)

)
− D̄∗

i (p)∥+ ∥(wisg
(
D̄i(p)

)
+ qi)− D̄∗

i (p)∥
)
. (12)

With these losses, we train both NeRF and MDE simultaneously, enhancing both models by com-
plementing each other. MDE provides a strong geometric prior to NeRF while having the inherent
limitation of obliviousness to the scene-specific prior, whereas NeRF provides it with its absolute
geometry.

5 Experiments

5.1 Experimental Settings

Implementation details. DäRF is implemented based on K-planes [32] as NeRF. We use DPT-
hybrid [34] as MDE model. We use Adam [18] as an optimizer, with a learning rate of 1 · 10−2

for NeRF and 1 · 10−5 for the MDE, along with a cosine warmup learning rate scheduling. See
supplementary material for more details. The code and pre-trained weights will be made publicly
available.

Datasets. We evaluate our method in real-world scenes captured at both indoor and outdoor
locations. Following previous works [37, 45], we use a subset of sparse-view ScanNet data [10]
comprised with three indoor scenes, each consisting of 18 to 20 training images and 8 test images.
We also conduct evaluations on more challenging setting with 9 to 10 train images. For outdoor
reconstruction, we further test on 5 challenging scenes from the Tanks and Temples dataset [19]. The
scenes are real-world outdoor dataset, with a wide variety of scene scales and lighting conditions. Note
that these setups are extremely sparse compared to full image setups, where we use approximately
0.5 to 5 percent of the whole training inputs.

Baselines. We adopt the following six recently proposed methods as baselines: standard neural
radiance field method: K-planes [13], few-shot NeRF method: RegNeRF [29], and depth prior based
methods: NerfingMVS [47], DS-NeRF [11], DDP-NeRF [37], and SCADE [45].

Evaluation metrics. For quantitative comparison, we follow the NeRF [27] and report the PSNR,
SSIM [46], LPIPS [56]. We report standard evaluation metrics for depth estimation [12], absolute
relative error (Abs Rel), squared relative error (SqRel), root mean squared error (RMSE), root mean
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(a) K-planes [13] (b) DS-NeRF [11] (c) DDP-NeRF [37] (d) DäRF (e) Ground truth

Figure 5: Qualitative results of on ScanNet [10] with 18 - 20 input views.

(a) Baseline [13] (b) Baseline- Depth (c) DäRF (d) DäRF- Depth (e) Ground truth

Figure 6: Qualitative results on ScanNet [10] with 9 - 10 input views.

squared log error (RMSE log). To evaluate view consistency, we utilize a single scaling factor s for
each scene, which is the median scaling [57] value averaged across all test views.

5.2 Comparisons

(a) Frozen MDE (b) Adapted MDE

Figure 4: Error map visualization.
MDE adaptation results in a reduc-
tion of errors.

Indoor scene reconstruction. We conducted experiments
in two settings: (1) a standard few-shot setup as described
in literature [37, 45], and (2) an extreme few-shot setup with
approximately 0.5 percent of the full images. As shown in
Tab. 1, our approach outperforms the baseline methods in both
settings in most of the metrics. Additionally, we provide quan-
titative results of the adapted MDE model in ScanNet dataset
in Tab. 2, and qualitative results in Fig. 4. As shown in Fig. 5
for the setting of standard few-shot, DS-NeRF [11] and DDP-
NeRF [37] still show floating artifacts in the novel view and
show limitation in capturing details in the chair, smoothing
into nearby object. Our method shows better qualitative re-
sults compared to other baselines, showing better geometry
understanding and detailed view synthesis in the small objects
near the chair. In the extreme few-shot setup, we conducted
a visual comparison between our method and a baseline [13] in Fig. 6. This is a more complex
setting than standard, but our method outperforms most of the baselines, showing better geometric
understanding. It should be noted that SCADE [45] fine-tunes its depth network on an indoor dataset,
Taskonomy dataset [54]; whereas our model does not undergo any additional fine-tuning. More
qualitative images are included in the supplementary material.

Outdoor scene reconstruction. We conduct the qualitative and quantitative comparisons on the
Tanks and Temples dataset in Tab. 1 and Fig. 7. Since COLMAP [39] with sparse images is not
available, we provide comparisons with baselines without explicit depth prior. The quantitative results
show that our approach outperforms the baseline methods on this complex outdoor dataset in all
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(a) Baseline [13] (b) Baseline- Depth (c) DäRF (d) DäRF- Depth

Figure 7: Qualitative results on Tanks and Temples [19].

(a) Baseline [13] (b) (a) + Lseen (c) (b) + Lunseen (d) (c) + LMDE (e) (d) + M (DäRF)

Figure 8: Visualization of ablation studies on ScanNet [10].

metrics. As shown in Fig. 7, our baseline shows limited performance, despite its feasible results of
view synthesis in novel viewpoint, its depth results show that the network totally fails to understand
3D geometry. Our method shows rich 3D understanding, even in this real-world outdoor setting which
is more complicated than other scenes. More qualitative images are included in the supplementary
material.

Table 3: Comparison on In-the-wild
dataset [45].

Methods PSNR↑ SSIM↑ LPIPS↓

K-planes [13] 20.71 0.732 0.408
DDP-NeRF [37] 21.28 0.727 0.366
SCADE [45] 22.82 0.743 0.347
DäRF (Ours) 22.92 0.760 0.390

In-the-wild dataset Reconstruction. We further inves-
tigate the robustness of our method on in-the-wild dataset,
provided from SCADE [45]. This dataset was captured
using an iPhoneX, with varying intrinsic parameters for
each view. As shown in Tab. 3, our model outperforms
all other baselines and this demonstrates that our model
performs well in large scenes, such as outdoor scenes and
in-the-wild dataset.

5.3 Ablation Study

Table 4: Ablation study.
Components PSNR↑ SSIM↑ LPIPS↓

(a) Baseline [13] 18.70 0.708 0.400
(b) (a) + Lseen 19.71 0.730 0.380
(c) (b) + Lunseen 21.21 0.758 0.333
(d) (c) + MDE Adapt. (LMDE) 21.39 0.763 0.327
(e) (d) + Conf. Modeling (DäRF) 21.58 0.765 0.325

Ablation on core components. In Tab. 4
and Fig. 8, we evaluate the effect of each pro-
posed component. The quantitative results
show effectiveness of each component. For
qualitative results, we found out that Lunseen

suppresses the artifacts in novel viewpoint,
compared to when only Lseen is given. With
adaptation of the MDE network to this scene, red basket in the background shows more accurate
results and artifacts near the table are removed. In our model, with confidence modeling, view
synthesis results show to be more structurally confident in the overall scene.

Table 5: Local fitting ablation.
Components PSNR↑ SSIM↑ LPIPS↓

Baseline [13] 18.65 0.706 0.502
w/ global fitting 19.05 0.698 0.399
w/ local fitting (DäRF) 19.71 0.730 0.380

Analysis of local fitting. In Tab. 5, we further inves-
tigate the effectiveness of local scale-shift fitting and
global scale-fitting. For global scale-shift fitting, we
give learnable scale and shift parameters for each input
image and convert MDE’s output to the absolute value
in a global manner. For a fair comparison, we compare
our model only with MDE distillation on seen viewpoints. The results show that our method local
scale-shift fitting is more effective on giving accurate depth supervision.
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Table 6: Ablation study on MDE Adaptation Loss.
Components PSNR↑ SSIM↑ LPIPS↓ AbsRel ↓ SqRel ↓ RMSE ↓ RMSE log ↓

scale-shift loss 21.31 0.757 0.343 0.182 0.109 0.484 0.205
l1 loss 21.48 0.758 0.337 0.157 0.079 0.386 0.176
DäRF (Ours) 21.58 0.765 0.325 0.151 0.071 0.356 0.168

Analysis of MDE Adaptation Loss. In Tab. 6, we further investigate the effectiveness of scale-shift
loss and l1 loss at MDE adaptation. Equation 6 revolves around the idea of adapting MDE toward
predicting a scene-specific absolute geometry, which is achieved by the first addend term: this first
term forces itself MDE to adapt towards multiview consistency so that its ill-posed nature is reduced
and its initial global depth prediction grows to be more in accordance with the absolute geometry
captured by NeRF. In contrast, the second addend term, which takes into account patch-wise scale-
shift fitting, is designed to aid the modeling of fine, detailed, local geometry which the model has
difficulty modeling without such local fitting. As shown in the results, when only one term is used for
optimization (scale-shift or l1), it performs worse in every metric than in both are used in conjunction
(ours). This justifies our strategy of using both losses as effective.

6 Conclusion
We propose DäRF, a novel method that addresses the limitations of NeRF in few-shot settings by fully
leveraging the ability of monocular depth estimation networks. By integrating MDE’s geometric
priors, DäRF achieves robust optimization of few-shot NeRF, improving geometry reconstruction and
artifact removal in both unseen and seen viewpoints. We further introduce patch-wise scale-shift
fitting for accurate mapping of local depths to 3D space, and adapt MDE to NeRF’s absolute scaling
and multiview consistency, by distilling NeRF’s absolute geometry to monocular depth estimation.
Through complementary training, DäRF establishes a strong synergy between MDE and NeRF,
leading to a state-of-the-art performance in few-shot NeRF. Extensive evaluations on real-world scene
datasets demonstrate the effectiveness of DäRF.
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