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ABSTRACT

Change detection (CD) in heterogeneous images is a hot but highly challenging
topic in the field of remote sensing. However, the significant imaging differ-
ences and varying visual appearances of heterogeneous images complicate the
accurate detection of changes occurring on the land surface through direct com-
parison. To overcome this challenge, this paper proposes a self-supervised net-
work based on bidirectional graph comparison (SBGC) for unsupervised hetero-
geneous CD, which exploits modality-independent structural relationships. First,
pseudo-Siamese networks are established to extract discriminative and robust fea-
tures from bi-temporal heterogeneous images based on self-supervised contrastive
learning. Then, these learned features are utilized to construct graph structures
that represent structural relationships. Second, we introduce bidirectional graph
comparison to fully exploit the graph structures for exploring comprehensive
change information. Specifically, we map the graph structures to their opposite
image modality and perform a bidirectional comparison between the original and
mapped graph structures to generate a difference image. Finally, the change map
is obtained by applying the Otsu segmentation algorithm to the difference image.
Experimental results on three public heterogeneous datasets with different modal-
ity combinations show that the proposed method achieves superior performance
compared to seven state-of-the-art methods, achieving the best performance with
an average overall accuracy of 96.69%.

1 INTRODUCTION

Change detection (CD) utilizes remote sensing imagery captured at different times to analyze
changes in ground objects within the same geographical area (Wen et al., 2021), which facilitates
various applications, such as disaster assessment (Qing et al., 2022), and environmental monitoring
(Kalinaki et al., 2023).

CD techniques can be categorized into two types based on the data sources of the images: homoge-
neous CD and heterogeneous CD. Homogeneous CD, which employs images captured by the same
sensor, is an intuitive approach that has succeeded in various applications (Du et al., 2019; Zhan
et al., 2023; Ma et al., 2023; Fang et al., 2024; Cui et al., 2024; Ding et al., 2024). However, its
practicality is limited in some extreme scenarios, such as rapid responses to severe natural disas-
ters, where timely images from the same sensor may not be available, rendering it ineffective for
detecting changes in ground objects. In contrast, heterogeneous CD, which utilizes images from
different sensors, can effectively overcome this limitation. In recent years, advancements in re-
mote sensing technology have increased the availability of remote sensing images from different
sources, providing valuable data support for heterogeneous CD (Liu et al., 2024). These images can
be captured using different sensors, including synthetic aperture radar (SAR), optical, and hyper-
spectral sensors. Generally, detecting changes in ground objects between heterogeneous images is
more challenging than between homogeneous images, because heterogeneous CD should consider
not only the challenges such as noise and illumination that homogeneous CD faces, but also the
modality discrepancy.
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Heterogeneous CD, where pre-event and post-event images are captured by different sensors, has be-
come popular due to the complementary strengths of heterogeneous images, thereby enhancing the
response efficiency and accuracy of CD. Nonetheless, heterogeneous images exhibit distinct imag-
ing mechanisms and varied depictions of the same land cover, rendering direct comparison through
pixel/object difference measurement for CD impractical (Zhan et al., 2017; Caye Daudt et al., 2018).
To address this challenge, researchers have been exploring the modality-independent structural rela-
tionships within heterogeneous images. Wan et al. (L. Wan & You, 2018) utilized sorted histograms
to capture the local internal layout of the image and then computed the differences between the
sorted bins to detect changes. Luppino et al. (Luppino et al., 2019) represented structural relation-
ships by constructing local affinity matrices, subsequently calculating the differences between these
matrices. In (Sun et al., 2021b; 2022), structural relationships were represented through the con-
struction of nonlocal graph structures, and the structural differences between heterogeneous images
were then computed using graph mapping. Sun et al. (Sun et al., 2021a) further introduced an iter-
ative robust graph and Markovian co-segmentation framework (IRG-McS) that utilizes superpixels
to represent ground object information, treating them as nodes for graph construction. In (Jimenez-
Sierra et al., 2022), a framework based on nonlocal graph structures driven by signal smoothness
representation was proposed. This nonlocal graph-based approach (Sun et al., 2021b; 2022; 2021a;
Jimenez-Sierra et al., 2022) constructs nonlocal k-nearest neighbors (KNN) graphs and computes
the similarity levels of these graph structures to detect changes. However, there are two main is-
sues with this approach. First, this approach relies solely on original pixel information in images,
which lacks robustness in complex scenes with diverse land cover types and varying sizes. Second,
concerning mapping the graph structure from the pre-event image to the post-event image, for in-
stance, the approach uses a one-way graph comparison, focusing solely on the comparison between
the mapped and the post-event image’s graph structure. However, it neglects the original pre-event
graph structure and fails to fully utilize all the graph structure information, leading to more false
detections.

To overcome the issues mentioned above, we propose a Self-supervised network based on
Bidirectional Graph Comparison (SBGC) for unsupervised heterogeneous CD. First, pseudo-
Siamese networks are established for self-supervised learning (SSL), aiming to extract representative
and robust features directly from the original images. Second, to fully exploit the change information
leveraging the graph structures, we propose bidirectional graph comparison (BGC). Specifically, we
map the graph structures into their opposite image modality and subsequently conduct the bidirec-
tional comparison between the original and mapped graph structures. The main contributions of this
work are summarized as follows.

1) Efficient pseudo-Siamese networks are employed to learn robust and representative features from
original images through SSL, effectively handling complex scenes with varied land cover and sizes,
thus improving the accuracy of CD.

2) We propose BGC to fully explore the rich information within the graph structures. Specifically,
we perform a bidirectional comparison between the original and mapped graph structures to extract
difference information.

3) The impressive experimental results on three public heterogeneous datasets with different modal-
ity combinations demonstrate the superiority and practicality of SBGC in comparison with seven
state-of-the-art (SOTA) unsupervised heterogeneous CD methods.

The rest of this article is structured as follows. Section 2 presents the proposed method in detail,
followed by the experimental results and discussions in Section 3, and finally, the conclusion of our
work is provided in Section 4.

2 METHODOLOGY

2.1 OVERALL FRAMEWORK

The framework of the proposed SBGC for unsupervised heterogeneous CD is shown in Fig. 1,
consisting of three key steps: (1) image patches guided SSL; (2) graph construction and BGC;
and (3) generation of the change map. We consider bi-temporal heterogeneous images, denoted as
X ∈RH×W×CX with modality X and Y ∈RH×W×CY with modality Y covering the same geographical
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Figure 1: The framework of the proposed SBGC. (Here, for simplicity, we only present the SSL
process associated with X , noting that the learning process associated with Y is identical to that of
X , with the only difference being the input channel dimension of the image patches x and y)

area at times t1 and t2. Here H, W , and CX (CY ) denote the height, width, and the corresponding
channels. First, we divide X and Y into overlapping image patches to serve as our training samples.
Subsequently, data augmentation is applied to these patches to generate two different views. The
augmented patches are then input into pseudo-Siamese networks, which learn discriminative and
robust features by optimizing a contrastive loss function. Next, the learned features are utilized to
capture the structural relationship through graph construction. Thereafter, BGC is employed to the
constructed graphs to fully exploit the graph information, resulting in DIX and DIY . Finally, DIX

and DIY are fused to generate the final difference image, which can be thresholded to obtain the
change map.

2.2 IMAGE PATCHES GUIDED SSL

Following (Sun et al., 2022), both images are divided into overlapping square patches denoted as
xi ∈ Rp×p×CX and yi ∈ Rp×p×CY using a sliding window approach, where the patch size is set to p
with a step length of ⌈p/2⌉. Here, i ∈ {1, . . . ,M}, where M represents the number of patches.

In the community of remote sensing, particularly for heterogeneous CD task, supervised feature
learning usually requires sufficient labeled samples, which are difficult to obtain in real applications.
In contrast, SSL is able to learn useful feature representations from raw data without manually label-
ing samples. Consequently, we employ SSL to extract more representative features from the original
images, thereby enhancing the accuracy of CD by leveraging more representative information rather
than relying solely on original pixel data. As depicted in Fig. 1, we build pseudo-Siamese networks
for SSL, comprising two branches. The lower branch comprises one encoder, and one predictor,
while the upper branch shares the same network architecture, excluding the predictor. Here, we use
a sub-ResNet18 (He et al., 2016) as the encoder, modifying the stride of the first layer from 1 to 2
and removing the third and fourth layers to adapt to relatively small input patch size. The predictor
is composed of fully connected layers with the structure 512-128-512.

During the SSL process, data augmentation is initially applied to xi to generate two distinct views:
xi

1 and xi
2, which are then regarded as a positive sample pair. Here, we follow the reference augmen-

tations in (Grill et al., 2020), including horizontal flipping and vertical flipping. Subsequently, xi
1

and xi
2 are input into the respective branches of the pseudo-Siamese network to obtain feature vec-
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A A

B B

(a) (b)

Figure 2: Structural relationship in heterogeneous images. (a) Pre-event image. (b) Post-event
image. The thickness of the dashed lines represents the similarity between regions, with thicker
lines indicating greater similarity.

tors zxi and pxi . A cosine similarity function dθ(·) is then employed to assess the similarity between
the positive sample pairs. The pseudo-Siamese network associated with X is trained to minimize the
contrastive loss LX

CL, which is defined as follows:

LX
CL =−

M

∑
i=1

log
dθ(zxi , pxi)

∑
M
j=1 dθ(zx j , px j)

(1)

where positive sample pairs are assigned a higher value representing a close distance, thereby facil-
itating the extraction of discriminative features from the original images. Similarly, the above step
can also be performed to optimize the network associated with Y using the corresponding contrastive
loss LY

CL. Then the final loss can be written as

LCL =
1
2
(LX

CL +LY
CL) (2)

After the networks are trained, all the image patches from X and Y are fed into the respective encoder
to obtain the deep feature representations, which can be denoted as {FX

x1 , ...,FX
xM}. Similarly, we can

get {FY
y1 , ...,F

Y
yM} from Y .

2.3 GRAPH CONSTRUCTION AND BGC

In this work, we construct KNN graphs to capture the structural relationships for change measure-
ment. For instance, as depicted in Fig. 2, the unchanged region A maintains the KNN graph structure
formed by A and its similar regions, exhibiting minimal changes after the event. In contrast, the KNN
graph structure formed by the changed region B cannot maintain consistency due to the occurrence
of changes. We define this relationship as the structural relationship, which is established through
the construction of KNN graphs for the image regions.

For every patch xi from X , we construct its KNN graph GX
xi = {V X

xi ,EX
xi ,W X

xi }, i = 1,2, . . . ,M by
finding its K most similar patches based on their feature similarity. The graph structure is then
represented as follows: 

V X
xi = {FX

xi ,FX
xk |k = 1,2, . . . ,K}, |V X

xi |= K +1

EX
xi = {(FX

xi ,FX
xk ) | FX

xk ∈ V X
xi }

W X
xi = {dist(FX

xi ,FX
xk ) | (FX

xi ,FX
xk ) ∈ EX

xi }

(3)

where xk denotes the kth patch most similar to xi, V X
xi represents the vertex set of the graph, EX

xi

denotes the edge set, and each edge connects two vertices. W X
xi measures the weight of the edges,

calculated using the formula dist(FX
xi ,FX

xk ), where dist(·) denotes the squared Euclidean distance.

Similarly, we can construct a graph GY
yi = {V Y

yi ,E
Y
yi ,W

Y
yi } of yi. Following the approach in (Sun

et al., 2021a), we set an adaptive K as ⌈(
√

M+
√

M
10 )/2⌉.
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Table 1: Description of the three heterogeneous datasets.
Dataset Sensor Size Location Date Change Event
Sardinia Landsat-5/Google Earth 300×412×1(3) Sardinia, Italy Sep. 1995/Jul. 1996 Lake expansion

Shuguang Radarsat-2/Google Earth 593×921×1(3) Shuguang Village, China Jun. 2008/Sep. 2012 Building construction and river expansion
California Landsat-8/Sentinel-1A 875×500×11(3) Sutter County, USA Jan. 2017/Feb. 2017 Flooding

We can also construct a KNN graph GY
xi = {V Y

xi ,E
Y
xi ,W

Y
xi } to map GX

xi from modality X to modality
Y . This graph is constructed using the spatial coordinates of the K patches most similar to xi. Most
methods (Sun et al., 2021b; 2022; Chen et al., 2022; Sun et al., 2021a) derive change information by
comparing the differences between GY

xi and GY
yi . However, these methods only perform one-way dif-

ference calculations, emphasizing changes in modality Y while neglecting the differences between
GY

xi and GX
xi , thus not fully utilizing all graph information. Therefore, we propose BGC to fully use

the information from GX
xi , GY

xi , and GY
yi , resulting in richer change information and achieving better

CD performance. Specifically, we calculate the differences of (GX
xi ,GY

xi) and (GY
xi ,G

Y
yi ) for change

measurement, obtaining difference information dX
i computed as

dX
i =

1
K

K

∑
k=1

∣∣∣||FX
xi −FX

xk ||22 −||FY
xi −FY

xk ||22
∣∣∣+∣∣∣||FY

xi −FY
xk ||22 −||FY

yi −FY
yk ||22

∣∣∣ (4)

The above step can also be performed to obtain GX
yi for GY

yi . Similar to dX
Ωi

, we can obtain dY
i .

Additionally, we can derive DIX and DIY , denoted as

DIX (h,w) = dX
i (5)

DIY (h,w) = dY
i (6)

where (h,w) denote the spatial coordinates of patches xi and yi, and i = 1,2, . . . , |M|.

2.4 GENERATION OF THE CHANGE MAP

The generated DIX and DIY can only capture change information within their respective modalities,
lacking the capability to account for the global change information. Therefore, these two difference
images should be fused to produce a more robust difference image DIfinal. Specifically, we utilize a
direct averaging operation for this fusion, as follows:

DIfinal = (DIX/max(DIX )+DIY/max(DIY ))/2 (7)

During the difference image analysis stage, the CD problem can be treated as an image segmentation
problem, which can be solved by using threshold-based (Otsu, 1979; Moser & Serpico, 2006) or
clustering-based (Krinidis & Chatzis, 2010; Gong et al., 2012) approaches employed in traditional
homogeneous CD. Here, we directly utilize a simple threshold segmentation algorithm, Otsu (Otsu,
1979), to classify each pixel in DIfinal into changed class or unchanged class, which is given by

CM(i, j) =

{
1,DIfinal(i, j)> T

0,DIfinal(i, j)≤ T
(8)

where T is a threshold value, CM is the binary change map, in which the labels of changed and
unchanged locations are labeled as “1” and “0”, respectively.

3 EXPERIMENTS

3.1 DATASETS

To evaluate the effectiveness of SBGC, we conduct experiments on three public heterogeneous
datasets, as shown in Fig. 3(a)-(c). The first dataset (Touati et al., 2020) was collected in Sardinia,
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(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k)

Figure 3: Experimental results of different methods over three datasets. From top to bottom are
the Sardinia, Shuguang, and California datasets, respectively. (a) Pre-event image X ; (b) Post-event
image Y ; (c) Ground truth; (d) CCLMRF; (e) X-Net; (f) ACE-Net; (g) PMBCN; (h) NPSG; (i)
INLPG (j) SRGCAE; (k) SBGC. (The changed and unchanged parts are shown in white and black,
whereas FP and FN are shown in red and green)

Italy, including a near-infrared (NIR) image and a three-band multispectral image acquired in 1995
and 1996 using Landsat-5 and Google Earth sensors. These images are sized at 300 × 412 pixels
and depict the changes resulting from lake expansion; (2) the Shuguang dataset (Liu et al., 2018)
consists of a SAR image and a multispectral image, both 593 × 921 pixels, collected in 2008 and
2012, showing the changes of a piece of farmland in Shandong Province, China; and (3) the last
dataset is the California dataset (Luppino et al., 2019), consisting of a pair of multispectral and SAR
images taken before and after a flood in 2017, with a size of 875 × 500 pixels. Comprehensive detail
regarding these datasets is summarized in Table 1.

3.2 IMPLEMENTATION DETAILS

In our experiments, the image patch size p is set to 9. We utilize the SGD optimizer (Sutskever
et al., 2013) with a learning rate of 5e−2 for network training. A batch size of 2048 is adopted,
and the number of epochs is set to 50. The proposed SBGC is compared with seven unsupervised
SOTA methods: CCLMRF (Mignotte, 2022), X-Net (Luppino et al., 2022), ACE-Net (Luppino
et al., 2022), PMBCN (Liu et al., 2022), NPSG (Sun et al., 2021b), INLPG (Sun et al., 2022),
and SRGCAE (Chen et al., 2022) to verify its superiority. Our experiments are conducted on a
personal computer with Python 3.7.13, PyTorch 1.12.1, and an NVIDIA GeForce RTX 3090 GPU.
To evaluate the performance of different CD methods, six common evaluation metrics are employed,
including false negative (FN), false positive (FP), overall errors (OE), overall accuracy (OA), Kappa
coefficient (KC), and computation time (CT). Then OE, OA and KC are defined as

OE = FP+FN (9)

OA =
TP+TN

TP+TN+FP+FN
(10)

PRE =
(TP+FP)(TP+FN)+(TN+FN)(TN+FP)

(TP+TN+FP+FN)2 (11)

KC =
OA−PRE
1−PRE

(12)

where TP and TN represent the values of true positives and true negatives, respectively. Lower
values for FP, FN, OE, and CT, and higher values for OA and KC indicate better CD performance.

3.3 EXPERIMENTAL RESULTS

Our proposed SBGC outperforms seven existing methods on three multimodal datasets, achieving
notable enhancements in terms of OA, KC, and CT metrics. The change maps and evaluation metrics
for different methods across three datasets are presented in Fig. 3(d)-(k) and Table 2. The Sardinia
dataset, despite its small size, contains many intricate details that challenge the network’s ability
to accurately detect changes. On this dataset, it is obviously observed that other methods shows a
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Table 2: Change detection results of different methods on the three datasets. The best results are in
bold, and the second-best results are underlined.

Dataset CCLMRF X-Net ACE-Net PMBCN NPSG INLPG SRGCAE SBGC

Sardinia

FP 2703 17188 8061 2332 5702 7403 5518 1388
FN 2716 1539 2843 3146 2293 1494 2751 2147
OE 5419 18727 10904 5478 7995 8897 8269 3535

OA(%) 95.61 84.85 91.18 95.57 93.53 92.81 93.31 97.14
KC(%) 62.10 33.19 42.26 59.71 53.78 54.35 50.59 74.09
CT(s) 92.08 497.10 348.57 101.43 79.75 23.18 288.93 74.63

Shuguang

FP 26963 12795 16641 1350 12068 6635 5506 11482
FN 5314 4593 5451 13004 4904 8226 7638 3482
OE 32277 17388 22092 14354 16972 14861 13144 14964

OA(%) 94.09 96.82 95.95 97.37 96.89 97.28 97.59 97.26
KC(%) 52.21 68.58 61.94 61.53 68.80 68.00 71.39 72.86
CT(s) 212.84 1211.23 1086.10 230.12 210.74 237.64 332.72 145.51

California

FP 20574 31133 22852 39232 17271 21080 25662 7849
FN 11960 6006 11457 4125 8756 6211 8995 10542
OE 32534 37139 34309 43357 26027 27291 34657 18391

OA(%) 92.56 91.51 92.16 89.80 93.88 93.58 91.85 95.68
KC(%) 26.82 37.60 43.29 36.70 41.26 45.22 33.01 46.12
CT(s) 140.74 812.21 751.10 318.57 198.39 420.3 136.11 124.73

K
ap
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a 

C
o
e
ff
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ie

n
t 

(%
)

Value of p

Figure 4: Relationship between the image patch size p and Kappa Coefficient (KC) values of the
proposed SBGC on diffrent datasets.

great amount of FP, misclassifying unchanged areas as changed (with large red areas ), along with
relatively low OA and KC, indicating limited accuracy and reliability. In contrast, SBGC achieves
superior performance by accurately distinguishing between unchanged and changed regions, detect-
ing more truly changed regions. This is supported by Table 2, SBGC shows an improvement in KC
of 40.90% (X-Net), 31.83% (ACE-Net), 14.38% (PMBCN), 20.31% (NPSG), 19.74% (INLPG) and
23.5% (SRGCAE). On the Shuguang and California datasets, which have more complex land cover
information, the proposed SBGC also obtains accurate change maps with only a few noisy points,
outperforming other comparative methods. Among these methods, INLPG and SRGCAE exhibit
competitive performance, with SRGCAE achieving the second highest KC value on the Shuguang
dataset, only 1.47% lower than our proposed SBGC. Although the KC values of SBGC are com-
parable to the second-best methods, it significantly reduces the time cost with the lowest CT, high-
lighting its practicality. Overall, the experimental results validate the effectiveness and practicality
of the proposed SBGC in both quantitative and qualitative evaluations.

3.4 HYPERPARAMETER ANALYSIS

In our proposed SBGC, the size of the input image patch p plays a key role in self-supervised feature
learning, which affects the final performance of CD. Here, we provide an analysis of this parameter
setting.

7
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Table 3: Ablation studies of the proposed SBGC
Components Dataset

SSL BGC Sardinia Shuguang California
OA KC OA KC OA KC

✘ ✘ 92.94 55.90 95.88 64.01 92.72 41.75
✔ ✘ 96.57 70.65 96.96 70.77 95.45 44.91
✔ ✔ 97.14 74.09 97.26 72.86 95.68 46.11

(a) (b)

Figure 5: Visual comparison of the change maps on the Sardinia dataset. (a) without BGC (b) with
BGC.

To detect changes in land cover more accurately, we set a smaller image patch size. Keeping other
settings constant, we explore the influence of p through experiments. Fig. 4 illustrates the variation
of KC values with the increase of p. It can be seen that setting p too large introduces redundant
ground object information, whereas setting it too small fails to capture accurate object information,
both of which lead to decreased CD performance. The KC value peaks at p = 9 and subsequently
declines for p > 9. Notably, the best results are obtained with p = 9 for the Sardinia and Shuguang
datasets, while p = 11 yields optimal results for the California dataset. For simplicity, we select
p = 9, as it provides relatively good performance across all three datasets.

3.5 ABLATION STUDIES

To verify the validity of SSL and BGC, we conducted ablation experiments on three datasets. Two
variants are designed for comparison: (1) a basic framework without SSL or BGC, where the orig-
inal image information replaces the features learned by SSL, and BGC is substituted with a one-
way graph comparison; (2) a framework that incorporates SSL without BGC; and (3) our complete
method with SSL and BGC.

Table 3 shows the contribution of each component in our method across three datasets. The utiliza-
tion of features extracted through SSL outperforms the use of original image information, highlight-
ing the ability of SSL to provide more representative and robust features. Moreover, incorporating
BGC enhances the OA and KC values across all datasets. This demonstrates that compared to one-
way graph comparison, BGC can capture more comprehensive change information and reduce false
alarms, thus improving CD performance. This is further supported by Fig. 5. As shown in Fig. 5(a),
the change map obtained without using BGC has more false alarms and does not sufficiently extract
change information. In contrast, our complete method with BGC improves the detection of changed
areas and reduces false alarms, as depicted in Fig. 5(b). When SSLN and BGC are used together,
the best performance can be observed (the third row of Table 3). Overall, the effectiveness of the
proposed method can be demonstrated through the analysis provided above.

4 CONCLUSION

This paper proposes a novel self-supervised network, SBGC, for heterogeneous CD in remote sens-
ing, addressing the critical challenge of detecting changes in ground objects across heterogeneous
images. Initially, we employ pseudo-Siamese networks to extract representative and robust features
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from original image regions based on SSL, thereby accurately reflecting complex land cover in-
formation. Additionally, BGC is introduced to effectively explore the change information within
the graph structures. The remarkable experimental results on three heterogeneous datasets have
validated the superiority and robustness of the proposed method over seven existing unsupervised
SOTA methods. In future work, we intend to design more powerful self-supervised learning tasks
to acquire more representative features, thereby improving the performance of heterogeneous CD in
more complex scenarios.
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