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Abstract

Recent developments in 3D Gaussian Splatting have sig-
nificantly enhanced novel view synthesis, yet generating
high-quality renderings from extreme novel viewpoints or
partially observed regions remains challenging. Mean-
while, diffusion models exhibit strong generative capabili-
ties, but their lack of awareness of specific scene informa-
tion hinders accurate 3D reconstruction tasks. To address
these limitations, we introduce GSFix3D, a novel frame-
work that improves the visual fidelity in under-constrained
regions by distilling prior knowledge from diffusion mod-
els into 3D representations, while preserving consistency
with observed scene details. At its core is GSFixer, a
latent diffusion model obtained via our customized fine-
tuning protocol that can leverage both mesh and 3D Gaus-
sians to adapt pretrained generative models to a variety of
environments and artifact types from different reconstruc-
tion methods, enabling robust novel view repair for un-
seen camera poses. Moreover, we propose a random mask
augmentation strategy that empowers GSFixer to plausi-
bly inpaint missing regions. Experiments on challenging
benchmarks demonstrate that our GSFix3D and GSFixer
achieve state-of-the-art performance, requiring only min-
imal scene-specific fine-tuning on captured data. Real-
world test further confirms its resilience to potential pose
errors. Our code and data are publicly available: https :
//github.com/GSFix3D/GSFix3D.

1. Introduction

3D Gaussian Splatting (3DGS) [9] has recently emerged as
an efficient and expressive explicit representation that mod-
els scenes using a set of 3D Gaussian primitives and enables
photorealistic rendering through differentiable rasterization.
Compared to previous Neural Radiance Fields (NeRF) [16]
approaches, it achieves faster convergence and significantly
higher rendering speeds. However, a key limitation persists
in those optimization-based representations as they heav-
ily rely on meticulously curated and densely sampled in-
put views to achieve high visual fidelity near the training
camera poses. In regions with sparse observations or from
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viewpoints that deviate substantially from the training data,
3DGS struggles to infer plausible geometry and appearance,
often producing artifacts such as incomplete surfaces, un-
natural geometry, or visible holes that severely degrade im-
age quality. Moreover, obtaining sufficient coverage and
accurate measurements often requires labor-intensive data
collection, costly high-end 3D scanners, and skilled opera-
tors, which largely limits the accessibility of such methods
for casual users with only mobile devices.

In parallel, text-to-image generative models based on
latent-space denoising diffusion, such as Stable Diffu-
sion [25], have shown the remarkable ability to synthe-
size diverse and photorealistic images. Trained on large-
scale, captioned images from the internet, those models
effectively gain a deep understanding of 2D visual con-
cepts. To obtain greater control over diffusion model out-
puts, a variety of techniques, such as ControlNet [40], T2I-
Adapters [17], and LoRA [5], have been proposed. Though
powerful, these methods are primarily designed for image
generation rather than repairing, and thus often lack input-
output consistency, making them unsuitable for direct inte-
gration into 3D reconstruction pipelines where spatial and
visual fidelity are critical.

To combine the strengths of diffusion models with ex-
isting 3D reconstructions, we introduce a novel view re-
pair framework, GSFix3D, tailored for 3D Gaussian Splat-
ting. Our method renders novel view images from initial
reconstructions and refines them using a scene-adapted la-
tent diffusion model by removing rendering artifacts and
completing missing content. These enhanced images are
then treated as pseudo-inputs and lifted back into 3D space
to improve the underlying reconstruction. The key to our
pipeline is a dedicated fine-tuning strategy that enables the
pretrained diffusion model to internalize scene-specific pri-
ors, model artifact patterns, and develop inpainting capa-
bilities using our proposed random mask augmentation. In
contrast to DIFIX [35], which relies on large-scale curated
real image pairs for training yet still lacks inpainting ca-
pabilities and struggles with unseen artifacts, our method
requires only a one-time pretraining on two small synthetic
datasets [1, 24] to obtain a general base model. This base
model can then be efficiently fine-tuned on the same cap-
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tured data used for initial reconstruction, enabling adap-
tation to diverse scenes. The resulting module, GSFixer,
acts as a plug-and-play image enhancer, transforming im-
perfect renderings into high-quality, photorealistic images.
Our main contributions are as follows:

* We propose GSFix3D, a new pipeline for repairing novel
views in 3DGS reconstructions that leverages the diffu-
sion model, GSFixer, to enhance under-constrained re-
gions. We exploit the complementary properties be-
tween 3DGS and traditional mesh representations to fur-
ther boost repairing performance.

* We introduce a customized fine-tuning protocol for pre-
trained diffusion models tailored to the novel view re-
pair task. This protocol efficiently adapts the model to
diverse scenes and reconstruction pipelines and enables
it to internalize scene-specific priors, learn artifact pat-
terns, and develop strong inpainting capabilities through
our proposed random mask augmentation.

* Experiments on challenging benchmarks demonstrate
state-of-the-art performance under extreme novel view-
points, with only a few hours of fine-tuning on the same
captured data used for reconstruction using a single con-
sumer GPU. Additional tests on self-collected real-world
data further validate its robustness to pose inaccuracies.
We will release the real-world data and selected extreme
novel views from the Replica dataset [29].

2. Related Work
2.1. 3D Reconstruction and Mapping

Traditional dense reconstruction methods, such as Kinect-
Fusion [18], fuse per-frame depth maps into a volumetric
grid. Follow-up work improves scalability by using effi-
cient data structures like octrees [28, 31] and voxel hash-
ing [20, 21]. Though the reconstructed geometry suffices
for robotics tasks such as navigation, it often lacks re-
alism in visualization. Recently, NeRF [16] represents
scenes as implicit neural functions. Several NeRF-based
SLAM systems combine tracking and mapping within this
framework [30, 43]. Despite producing high-quality ren-
derings, NeRF methods are computationally expensive and
struggle with real-time applications. 3DGS [9] addresses
these limitations by representing scenes with explicit, dif-
ferentiable Gaussian primitives, enabling faster rendering
and optimization. This has led to several 3DGS-based
SLAM systems: GS-SLAM [37] uses opacity thresholds
to drive adaptive Gaussian insertion, SplaTAM [8] em-
ploys a densification mask based on rendered silhouettes
and depth, while MonoGS [15] relies on monocular depth
estimates with variable uncertainty. To improve efficiency,
RTG-SLAM [23] categorizes Gaussians as either opaque
or transparent and updates only unstable ones, whereas
GSFusion [33] integrates Truncated Signed Distance Field

(TSDF) [2] and 3DGS in a hybrid framework and employs
a quadtree-based image segmentation strategy to reduce re-
dundant splats. Despite these advances, challenges persist
in handling under-constrained areas and achieving artifact-
free reconstruction. We build our approach on 3DGS recon-
structions due to their real-time performance, photorealistic
rendering, and full differentiability, which make them par-
ticularly suitable for downstream repair tasks.

2.2. Novel View Repair

Although dense-view reconstruction has become increas-
ingly reliable, novel view rendering remains susceptible
to artifacts, especially in under-constrained regions. Prior
work has largely focused on sparse-view settings, where
such degradation is more obvious. [13] introduces a decep-
tive diffusion model that refines novel views rendered from
few-view reconstructions and uses an uncertainty measure
to improve consistency. RI3D [22] uses two separate dif-
fusion models for repairing visible regions and inpainting
missing areas, whereas ours integrates these tasks into a sin-
gle model. To improve temporal coherence, several meth-
ods leverage video diffusion models. 3DGS-Enhancer [14]
is the first to train a video diffusion model on a large-
scale dataset created with pairs of low and high-quality im-
ages. GenFusion [36] fine-tunes a video diffusion model on
artifact-prone RGB-D videos using a masking strategy that
simulates common view-dependent artifacts for content-
aware outpainting, while [42] uses training-free scene-
grounding guidance to steer the video diffusion model to-
ward temporally consistent synthesis. Despite promising
results, these methods rely heavily on customized prepro-
cessing steps to bootstrap initial reconstructions and care-
fully curated datasets to train diffusion models effectively.

In this paper, we focus on novel view repair for recon-
structions where artifacts still persist despite extensive cov-
erage. SGD [39] introduces a tailored diffusion pipeline
for autonomous driving scenarios, using adjacent frames as
conditioning inputs and leveraging LiDAR point cloud to
train a ControlNet for explicit depth control. DIFIX [35]
takes a step toward general view repair by training a single-
step diffusion model on a large curated dataset of real
noisy—clean image pairs, created via handcrafted corrup-
tion strategies. However, its performance drops when ex-
posed to unseen artifacts and it struggles with inpainting.
In contrast, our GSFixer is obtained through a lightweight
fine-tuning protocol. With minimal pretraining on synthetic
data and fine-tuning on captured reconstruction data, GS-
Fixer achieves robust artifact removal, adapts to diverse
pipelines and scenes, and exhibits strong inpainting capa-
bilities, all within a single model that runs efficiently on
consumer hardware.
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Figure 1. System overview of the proposed GSFix3D framework for novel view repair. Given initial 3D reconstructions in the form of mesh
and 3DGS, we render novel views and use them as conditional inputs to GSFixer. Through a reverse diffusion process, GSFixer generates
repaired images with artifacts removed and missing regions inpainted. These outputs are then distilled back into 3D by optimizing the

3DGS representation using photometric loss.

3. Method

Our goal is to enhance the photorealism of novel views in
reconstructed 3DGS scenes, especially for viewpoints dis-
tant from the original camera trajectories and suffer from
limited observations. We present a customized fine-tuning
protocol to adapt a pretrained diffusion model for artifact re-
moval and view inpainting (Sec. 3.1). We then describe our
inference scheme (Sec. 3.2), and how the fine-tuned model
integrates into the full pipeline to improve the visual quality
of novel views (Sec. 3.3). An overview of our method is
illustrated in Fig. 1.

3.1. Fine-Tuning Protocol

Given a reconstructed 3DGS scene, we formulate the image
repair task as a conditional generation problem and fine-
tune a pretrained latent diffusion model, i.e. Stable Diffu-
sion v2 [25], to learn the conditional distribution p(79*|1¢)
where 19t € RTXWX3 denotes the ground truth RGB im-
age and I¢ € RHXWx3 ig the condition image rendered
from the imperfect reconstruction.

In our approach, we further extend the conditioning input
to two rendered images: one from the 3D Gaussian Splat-
ting representation (/9°) and another from a mesh repre-
sentation (I™°"). Thus, the actual conditional distribution
becomes p(I9¢|I™e" [9%). This dual-conditioning strat-
egy is motivated by the complementary strengths of 3DGS
and traditional mesh-based reconstructions. 3DGS, as an
optimization-based method, tends to suffer in regions with
sparse observations, often leading to visible artifacts such
as holes or incomplete geometry. Mesh reconstructions,
though usually less photorealistic at lower resolutions, of-
fer more coherent geometry and stronger spatial priors in
under-constrained areas. By jointly leveraging both rep-
resentations, we aim to provide the diffusion model with
richer appearance cues for image refinement. To ensure
that the mesh input remains geometrically consistent yet in-
dependent from the 3DGS optimization process, we obtain

the mesh and the 3DGS map simultaneously using GSFu-
sion [33], an online RGB-D mapping system. This avoids
directly extracting the mesh from the 3DGS representation,
as done in prior works [3, 6], which could introduce corre-
lated artifacts. The overall fine-tuning protocol is presented
in Fig. 2. We conduct an ablation study in Sec. 4.4 com-
paring the performance of using both inputs versus 3DGS
alone, validating the effectiveness of our design choice.

3.1.1 Network Architecture

Diffusion models [19, 25, 27] are a class of generative
frameworks that generate data by learning to invert a pro-
gressively noised process. We use a frozen Variational Au-
toencoder (VAE) [10] to encode all images into a latent
space, enabling diffusion-based learning in a more compact
domain. For a given image I, its latent code is obtained
via the encoder £ : z = £(I). This results in a latent
triplet (z™°%", 9% z9%). To train the denoising model, we
follow the standard Denoising Diffusion Probabilistic Mod-
els (DDPM) [4] formulation and incrementally add standard
Gaussian noise € ~ N (0, I) to the clean ground-truth latent
7o = z9% over T discrete timesteps, producing a sequence
{z;}1_,. The noisy latent at timestep ¢ is then given by:

Zt =\ uzo + V1 — Que, (D

where a; denotes the cumulative product of noise sched-
ule coefficients [4, 26]. Following [7], we repurpose the
U-Net backbone from the pretrained diffusion model into
a conditional denoiser for image repair. We concatenate
the latent codes along the feature dimension to form the
input z; = concat(z™°*" z9% z;). To accommodate the
increased channel count, we expand the first layer of the
U-Net by duplicating the original weight tensor and divid-
ing its values by three. This design choice maintains the
original weight distribution and prevents excessive activa-
tion scaling, allowing us to preserve the initialization be-
havior of the pretrained model while enabling conditional
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Figure 2. Illustration of the customized fine-tuning protocol for
adapting a pretrained diffusion model into GSFixer, enabling it to
handle diverse artifact types and missing regions.

inputs. The conditional U-Net ¢ is then trained to predict
the added noise by minimizing a standard DDPM objective:

L =Ky cnN(0,1),t~U[1,T] [HG - é||2] ) 2

where é = €y(Z¢, t) is the predicted noise.

3.1.2 Data Augmentation

To construct our training set, we render each captured view
using both the mesh and the 3DGS map, resulting in paired
triplets (1", 9% I9t), where I9! is the original captured
RGB image, 19° is the image rendered from 3DGS via
a-blending, and I™¢*" is obtained via ray-casting on the
mesh. This process requires no additional data beyond the
original captured RGB images, their corresponding camera
poses, and the reconstructed maps.

Direct fine-tuning on these triplets can already help the
diffusion model adapt to the scene and learn to remove spe-
cific artifacts in the 3DGS rendering. However, one major
challenge remains: the model’s ability to inpaint missing
regions, which usually appear as black holes in novel views
due to under-constrained geometry or occlusions. Since
all training images are rendered from the original captured
viewpoints, they are mostly complete in appearance and fail
to expose the model to such corner cases.

To explicitly train the model to handle incomplete ren-
derings, we introduce a masking-based data augmentation
scheme. For each training triplet, we randomly select a se-
mantic mask from a set of annotated real-image masks [32].
The key intuition is to leverage the diverse mask shapes de-
rived from real-world object semantics, which not only en-
hances the realism of the masked regions but also eliminates
the need for manually designing complex rules to simulate
missing areas caused by various factors such as occlusion
or under-constrained observations. This mask is applied in
two distinct ways: (1) the same mask is overlaid on both
I™mesh and 9%, simulating occlusions that might occur in
novel views; and (2) an additional, independent mask is ap-
plied solely to 79° to simulate the common degradation of

3DGS renderings in regions with limited observations. To
better approximate the soft boundaries in 3DGS renderings,
we further apply a small amount of Gaussian blur to the
mask used on 9. We evaluate the impact of this augmenta-
tion strategy in Sec. 4.4, where we compare models trained
with and without random masks and show its importance in
improving the inpainting ability for novel views.

3.2. Inference with GSFixer

At inference time, we freeze the fine-tuned U-Net param-
eters and apply the model to novel views, as illustrated in
Fig. 1. We begin by encoding the conditional inputs, i.e.,
the rendered images from novel viewpoints, into the latent
space using the frozen VAE encoder. The latent for the
target image to be generated, z;, is initialized as standard
Gaussian noise. We then concatenate these latent codes in
the same order used during fine-tuning to form the diffu-
sion model input: Z; = concat(z™**" 29 z;). To generate
the fixed image, we iteratively denoise z; using the deter-
ministic Denoising Diffusion Implicit Model (DDIM) [26]
schedule to perform efficient non-Markovian sampling. The
update at each timestep is as follows:

zi1 = Q120 + /1 — ay_1€9(24, 1), (3)
where the clean latent z is estimated as:

. 1 —

20 = —= (2 = V1= aueo(@,1)) . “)
derived directly from the forward diffusion formulation in
Eq. (1). After completing the denoising process, the final
fixed image is obtained by decoding the predicted clean la-
tent using the VAE decoder D : [/%¢d = D(z).

3.3. GSFix3D: Diffusion-Guided Novel View Repair

The final stage of our GSFix3D framework lifts the output
of the diffusion model, i.e., GSFixer, back into the 3D rep-
resentation. Thanks to the full differentiability of 3DGS, we
can continue optimizing the parameters of the initial 3DGS
reconstruction by minimizing a photometric loss between
the fixed image I7ized apd the rendered image 19°:

£pho — (1 _ )\)”ffimed _ IgsHl + )\CSSIM(ffized’Igs)’

where A is a weighting factor, and Lgspv denotes the Struc-
tural Similarity loss. We also enable adaptive density con-
trol during optimization, following [9], to fill in previously
empty or under-populated regions.

To reduce inconsistencies in the repaired images and
improve global coherence, we further append the repaired
views and their corresponding poses to the original captured
datasets and then optimize over this augmented dataset
for several iterations. Note that we use a sparse set of
keyframes recorded during the initial reconstruction phase
instead of the full dataset to avoid redundant and time-
consuming optimization.



Method ScanNet++ Replica
PSNRtT SSIMT LPIPS| | PSNRT SSIM?tT LPIPS|

SplaTAM 23.03 0.791 0.311 23.82  0.833 0.267
SplaTAM + DIFIX 23.06 0.789 0.220 22.97 0.790 0.262
SplaTAM + DIFIX-ref 22.79 0.799 0.203 22.97 0.830 0.217
SplaTAM + GSFixer 25.11 0.831 0.188 25.67 0.839 0.215
RTG-SLAM 19.54 0777 0.341 25.00 0.860 0.247
RTG-SLAM + DIFIX 19.43 0.762 0.245 24.02 0.811 0.214
RTG-SLAM + DIFIX-ref 19.29 0.769 0.223 23.89 0.834 0.193
RTG-SLAM + GSFixer 24.80 0.824 0.204 26.27 0.843 0.228
GSFusion (gs) 24.58 0.838 0.308 22.10 0.844 0.296
GSFusion (gs) + DIFIX 24.34 0.818 0.193 21.81 0.772 0.273
GSFusion (gs) + DIFIX-ref 23.83 0.822 0.184 21.91 0.821 0.224
GSFusion (gs) + GSFixer 24.79 0.833 0.196 23.87 0.830 0.251
GSFusion (mesh+gs) + GSFixer | 25.30 0.837 0.183 25.98 0.845 0.219

Table 1. Comparisons of diffusion-based repair methods on the ScanNet++ and Replica datasets. The best result is highlighted in bold,

and the second-best is underlined. The text inside ( ) indicates the

4. Experiments
4.1. Experimental Setup

Evaluation Datasets and Metrics. We compare dif-
ferent methods on two challenging benchmark datasets:
ScanNet++[38] and Replica[29]. ScanNet++ is a real-world
indoor dataset containing high-quality RGB-D data. Each
scene includes two separate camera trajectories for train-
ing and evaluation, respectively. Following [33], we se-
lect four scenes from ScanNet++: 8b5caf3398, 39f36da05b,
b20a261fdf, and f34d532901. The Replica dataset con-
sists of photorealistic synthetic indoor scenes with accurate
RGB-D imagery. We use consistent trajectories from [43]
for reconstruction and fine-tuning. To enable the quanti-
tative assessment of novel views and to evaluate inpaint-
ing capabilities, we manually render ground truth novel
views from extreme viewpoints with large unobserved re-
gions (see Sec. 6.1 in the supplementary). We use three
common metrics to measure rendering quality and fidelity:
PSNR, SSIM, and LPIPS. All reported results are averaged
over scenes within each dataset.

Baselines. We compare our GSFixer against two variants
from [35]: DIFIX and DIFIX-ref. DIFIX is a single-step
image diffusion model trained on 80k noisy-clean image
pairs curated from real-world datasets. DIFIX-ref extends
this setup by incorporating an additional reference view as
input, introducing multi-view constraints to enhance per-
formance. In addition to GSFusion, we also include two
recent Gaussian SLAM methods, SplaTAM[8] and RTG-
SLAM][23], as alternative sources of 3D reconstructions,
each exhibiting distinct artifact patterns due to differences
in initialization and optimization strategies. We apply the
above image repair models to novel view renderings pro-
duced by each of these reconstruction methods.
Implementation Details. We adopt Stable Diffusion v2
as our base latent diffusion model, disabling text prompt
and applying the fine-tuning protocol described in Sec. 3.1.

format of the reconstruction used.

During training, we use the DDPM noise scheduler with
1000 diffusion steps. For inference, we follow the DDIM
scheduler with only 4 steps for accelerated sampling. Con-
sidering the difficulty of collecting large-scale real-world
training pairs for this task, we first pretrain the modi-
fied U-Net (see Sec. 3.1.1) for 6k iterations on two syn-
thetic datasets: Hypersim[24] for indoor scenes and Virtual
KITTI [1] for outdoor street environments. We use a batch
size of 2 and accumulate gradients over 16 steps to stabilize
training with the Adam optimizer. The learning rate is set
to 3 x 107°. We acquire the geometrically aligned mesh
and 3DGS map by running GSFusion and fine-tune the pre-
trained model separately for each scene. For real scenes
from ScanNet++, we fine-tune for 800 iterations. For syn-
thetic scenes from Replica, we fine-tune for 400 iterations.
The fine-tuning process typically takes 4 hours for Scan-
Net++ and 2 hours for Replica. As for 3DGS optimization
in GSFix3D, we perform 20 iterations for each repaired im-
age and 50 iterations over the augmented dataset. All exper-
iments are conducted on a single NVIDIA RTX 4500 Ada
GPU with 24GB VRAM.

4.2. Results

Table 1 reports quantitative results on ScanNet++ and
Replica. For SplaTAM and RTG-SLAM, which output only
3DGS maps, we fine-tune GSFixer exclusively on rendered
images from their reconstructions. Despite this constraint,
GSFixer consistently outperforms DIFIX and DIFIX-ref
across all metrics on ScanNet++, with over 5 dB PSNR
gain in the RTG-SLAM+GSFixer setting. Qualitative re-
sults in Fig. 3 show that, in the RTG-SLAM example, DI-
FIX and DIFIX-ref leave a large black hole where a win-
dow is missing, while GSFixer fills it with plausible content.
In the SplaTAM example, baselines leave colorful floaters,
whereas GSFixer learns their patterns and removes them.
For GSFusion, which provides both a mesh and a
3DGS map, we introduce a dual-input setting, GSFu-
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Figure 3. Qualitative comparisons of diffusion-based repair methods on the ScanNet++ and Replica datasets. All examples use only 3DGS
reconstructions as the input source. Our GSFixer effectively removes artifacts and fills in large holes, where both DIFIX and DIFIX-ref
fail to produce satisfactory results.
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Figure 4. Qualitative comparison between GSFixer and GSFix3D on the ScanNet++ and Replica datasets. Both mesh and 3DGS recon-
structions from GSFusion are used as input sources. The 2D visual improvements from GSFixer are effectively distilled into the 3D space
by GSFix3D.
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Figure 5. Novel view repair on self-collected ship data. Our method is robust to pose errors, effectively removing shadow-like floaters.

sion(mesh+gs)+GSFixer, that further boosts performance
over the single-input variant. We analyze this effect in detail
in Sec. 4.4. On the more challenging Replica dataset, where
we evaluate on manually selected extreme novel viewpoints
with large unobserved regions, GSFixer again outperforms
baselines in PSNR and remains competitive in SSIM. The
strong inpainting ability of GSFixer is visually evident on
the Replica dataset in Fig. 3. Interestingly, DIFIX and
DIFIX-ref achieve lower LPIPS scores in some cases, which
we attribute to their sharp visual details. This is likely due to
their training on 80k noisy-clean image pairs curated from
real-world datasets (though the dataset is not publicly avail-
able), whereas GSFixer is only pretrained on two synthetic
datasets and fine-tuned on a limited amount of clean cap-
tured data. We explore additional comparisons in Sec. 7.1.
The overall performance of our GSFix3D framework is
reported in Tab. 2. Compared to the direct outputs from
GSFixer, lifting the repaired images back into the 3D rep-
resentation leads to improved perceptual quality thanks to
multi-view constraints, as evidenced by higher PSNR and
SSIM scores. However, due to the optimization character-
istics of the 3DGS representation, the final renderings tend
to be less smooth than the 2D generative results, which ac-
counts for the slightly higher LPIPS values. Qualitative ex-
amples are provided in Fig. 4. We further apply the full
GSFix3D framework to SplaTAM and RTG-SLAM recon-
structions in Sec. 7.3 of the supplementary material.

4.3. Real-World Evaluation in the Wild

We collect a stereo sequence inside a ship structure using an
Intel RealSense D455 camera. We compute depth maps for
the left camera using FoundationStereo [34] for improved
quality, and estimate camera poses with OKVIS2 [12].
Since no ground truth is available, the estimated poses may
contain errors. Those post-processed data are then fed into
GSFusion to obtain an initial 3DGS reconstruction. We
fine-tune a GSFixer model using 3DGS renderings as in-
put. Fig. 5 shows a novel view example where shadow-like
floaters appear near the ladder due to inaccurate poses. Our
method effectively removes these artifacts in 2D and dis-
tills the correction back into the 3D representation, demon-
strating robustness to common pose errors in real-world
data collection, particularly in uncontrolled settings with-

Dataset Method PSNRtT SSIM?T LPIPS|
GSFusion (gs) 2458  0.838  0.308
ScanNet++ | GSFusion (mesh+gs) + GSFixer 2530  0.837 0.183
GSFusion (mesh+gs) + GSFix3D | 25.63 0.845 0.238
GSFusion (gs) 22.10  0.844 0.296
Replica GSFusion (mesh+gs) + GSFixer 2598  0.845 0.219
GSFusion (mesh+gs) + GSFix3D | 26.49 0.864 0.252

Table 2. Comparisons of GSFixer and GSFix3D on the ScanNet++
and Replica datasets.

out high-end equipment or precise calibration. Additional
real-world results are provided in Sec. 7.4 of the supple-
mentary, including a test on an outdoor scene [41] using
a LiDAR-Inertial-Camera Gaussian Splatting SLAM sys-
tem [11], which further demonstrates the practical adapt-
ability of our method.

4.4. Ablation Studies

Image Conditions. To analyze the impact of different in-
put image conditions, we evaluate GSFixer under three in-
put configurations: mesh-only, 3DGS-only, and dual-input
(mesh+3DGS), with results in Tab. 3. On the synthetic
Replica, which provides highly accurate measurements,
mesh-based renderings tend to be of higher quality than
their 3DGS counterparts from novel viewpoints. As a result,
the GSFusion(mesh)+GSFixer setting achieves better ren-
dering performance than GSFusion(gs)+GSFixer. In con-
trast, on the real-world ScanNet++ dataset, 3DGS recon-
structions outperform mesh renderings due to noisy depth,
making GSFusion(gs)+GSFixer the better choice. When
both images are used together as input, we observe comple-
mentary advantages: the dual-input setup leads to improved
performance on ScanNet++ and a modest gain on Replica.
Qualitative results in Fig. 6 further highlight this bene-
fit. For example, in a ScanNet++ scene, the mesh-rendered
image suffers from geometric inaccuracies along the table
edge, while the 3DGS-rendered image shows visual gaps
on the table surface. When both are used to condition GS-
Fixer, these issues are effectively mitigated. Similarly, in a
Replica scene, the mesh-rendered image exhibits blurry tex-
tures on the pillow, and the 3DGS-rendered image contains
visible holes on the floor. Combining both inputs allows
GSFixer to resolve these artifacts by leveraging strengths
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Figure 6. Qualitative ablation of input image conditions on the ScanNet++ and Replica datasets. We compare GSFixer results using three
types of inputs rendered from GSFusion: mesh-only, 3DGS-only, and dual-input. The artifacts (highlighted by green and yellow boxes)
present in the single-input settings are effectively mitigated with the dual-input configuration.

Input (mesh)

Input (gs)

GSFixer (w/o mask) GSFixer (w mask)

Figure 7. Qualitative ablation of random mask augmentation on the Replica dataset. We compare GSFixer results fine-tuned with and
without our proposed augmentation strategy. The differences in inpainting quality highlight the improved ability to fill large missing

regions when augmentation is used.

from each source. Additional experiments on SplaTAM and
RTG-SLAM are presented in Sec. 7.2 of the supplementary.
Random Mask Augmentation. To validate the effective-
ness of our proposed data augmentation strategy in improv-
ing inpainting capability for novel view repair, we con-
duct an ablation study by disabling the random mask aug-
mentation during fine-tuning on the Replica dataset. We
choose Replica for this evaluation due to its challenging
novel views with extensive unobserved regions and visible
holes. As shown in Tab. 4, GSFixer fine-tuned with ran-
dom mask augmentation consistently outperforms the vari-
ant without augmentation across all metrics. It is also evi-
dent in Fig. 7. The 3DGS-rendered image contains a large
missing region on the whiteboard. Without random mask
augmentation, GSFixer struggles to inpaint the hole even
when given an additional mesh-rendered image as a condi-
tion. In contrast, our full model with augmentation success-
fully fills in the missing region with coherent and realistic
textures, demonstrating its generalization to real occlusions.

5. Conclusion

GSFix3D raises the bar for novel view repair in 3DGS
reconstructions, requiring no massive real data cura-
tion or costly pertaining, only minimal fine-tuning on a
small set of captured views. By coupling this efficient
fine-tuning protocol with a dual-input design that fuses
mesh and 3DGS cues, and empowering it with random
mask augmentation as the key to strong inpainting perfor-
mance, the resulting diffusion model, GSFixer, removes
artifacts, fills missing regions with plausible detail, and

Dataset Method PSNRtT SSIMtT LPIPS|
GSFusion (mesh) 17.87 0.750 0.358
GSFusion (mesh) + GSFixer 24.64 0.823 0.198

ScanNet++ | GSFusion (gs) 24.58 0.838 0.308
GSFusion (gs) + GSFixer 2479  0.833 0.196
GSFusion (mesh+gs) + GSFixer | 25.30  0.837  0.183
GSFusion (mesh) 23.20 0.849 0.217
GSFusion (mesh) + GSFixer 26.61 0.846  0.200

Replica GSFusion (gs) 22.10 0.844 0.296
GSFusion (gs) + GSFixer 23.87 0.830 0.251
GSFusion (mesh+gs) + GSFixer | 25.98 0.845 0.219

Table 3. Ablation of image conditions on ScanNet++ and Replica.

GSFusion (mesh+gs) PSNRtT SSIMtT LPIPS|
+ GSFixer (w/o mask) | 23.54 0.830 0.231
+ GSFixer (w mask) 25.98 0.845 0.219

Table 4. Ablation of random mask augmentation on Replica.

adapts seamlessly to different scenes and reconstruction
pipelines. Across diverse and challenging benchmarks,
our method consistently outperforms prior diffusion-based
approaches, validating its effectiveness, adaptability, and
robustness even under pose inaccuracies, underscoring its
practicality for a wide range of 3D reconstruction scenarios.
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