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ABSTRACT

This work presents a hierarchical approach to explaining poisoned artificial intelli-
gence (AI) models. The motivation comes from the use of AI models in security
and safety critical applications, for instance, the use of AI models for classification
of road traffic signs in self-driving cars. Training images of traffic signs can be
poisoned by adversaries to encode malicious triggers that change trained AI model
prediction from a correct traffic sign to another traffic sign in a presence of such
a physically realizable trigger (e.g., sticky note or Instagram filter). We address
the lack of AI model explainability by (a) designing utilization measurements of
trained AI models and (b) explaining how training data are encoded in AI models
based on those measurements at three hierarchical levels. The three levels are
defined at graph node (computation unit), subgraph, and graph representations of
poisoned and clean AI models from the TrojAI Challenge.

1 INTRODUCTION

The motivation of this work lies in the lack of interpretability and explainability of artificial intelli-
gence (AI) models in security and safety critical applications. For instance, our lack of understanding
of how classes are encoded in AI models for classifying road traffic signs poses a safety threat in
self-driving cars because AI models can contain injected triggers causing misclassification Xu et al.
(2019).

We introduce the terminology used in this paper early on due to a varying usage of published terms in
a broad spectrum of theoretical contributions to AI. We will refer to an AI model as a computation
graph that (a) is a directed graph representing a math function and (b) consists of subgraphs. A
subgraph is a subset of graph vertices (or graph nodes) connected with edges in the parent graph.
Graph nodes of a computation graph are computation units (or graph components) that perform linear
or non-linear operations on input data, (e.g., convolution, tangent hyperbolic activation function, and
maximum value operation). In our work, the names of the AI models (or architectures) are adopted
from literature since we are not creating any custom computation graphs. The input and output data
at each computation unit are multidimensional arrays denoted as tensors. When an image from a
class c flows through a computation graph, each computation unit generates real-valued tensors called
class activations. A tensor generated by each input image has dimensions reflecting channels, rows,
and columns. In our work, tensor channel values are binarized at zero and denoted as a tensor-state
with rows × columns of tensor-state values.

The objectives of this work are (1) to define utilization-based class encodings and AI model fin-
gerprints, (2) to measure class encodings in architectures beyond small models (e.g., LeNet model
with 60K parameters) and toy datasets, such as MNIST (Modified NIST dataset with 70K images
of size 28× 28 pixels), and (3) to identify encoding patterns (motifs) that discriminate AI models
without and with hidden classes (denoted as clean and poisoned AI models). By understanding
class encoding patterns, one can additionally benefit from reduced AI model storage and inference
computational requirements via more efficient network architecture search Ying et al. (2019) with
advanced hardware Justus et al. (2019). Furthermore, one can improve expressiveness of AI model
architectures via design Lu et al. (2017) and efficiency measurements Schaub & Hotaling (2020) or
one can assist in diagnosing failure modes Bontempelli et al. (2021).

This work addresses the problems of (a) designing utlization measurements of trained AI models and
(b) explaining how poisoned training data are encoded in AI models based on those measurements.
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Figure 1: A high-level workflow for identifying utilization patterns in an AI computation graph of
ResNet18 architecture for clean and poisoned classes

Table 1: Problems and their complexity challenges for AI models available from TrojAI Challenge,
Rounds 1-4 IARPA (2020)

Problems Complexity Challenges

How to define AI model utilization? tensor-states in AI models
with ≈ 1012 parameters

How to characterize class encoding of
each class via utilization of

AI model computation units?

≈ 105 inferences
per AI model

What AI model computation units
are critical for

class encodings?

≈ 103 AI model
fingerprints

Conceptually, utilization of any computation unit is related to a ratio of the number of different
outputs (tensor-state values) activated by all training data points over the maximum number of
possible outputs by the computation unit. Such utilization-based class encodings are useful as
statistical representations of complex trained AI models for (a) classifying a large number of AI
models as clean or poisoned, and (b) reducing the search space for understanding class’s unique and
overlapping patterns. We use a set of tensor-states at each graph node and for each training image
as a baseline representation of one trained AI model. With such a baseline representation, one can
visually validate correctness of any conclusions derived from utilization-based class encodings for
varying class characteristics, application-specific datasets, and AI model architectures.

Figure 1 shows a high-level workflow for identifying discriminating patterns of class encodings in
clean and poisoned AI models. The left side in Figure 1 illustrates ”Training Dataset” consisting of
clean (Class A) and poisoned (Class B) training images with a small red polygon denoted as a trigger
(or poison). Training images representing each class are inferenced. During the inference of images
from the same class, a vector of utilizations over all graph computation units is recorded and denoted
as a class encoding. Differences in class encodings can be visualized by color-coded AI computation
graphs to contrast class encodings (e.g., clean and poisoned or clean Class A and Class B - see the
right side of Figure 1).

The key challenges are enumerated for AI models from TrojAI Challenge IARPA (2020) and
summarized in Table 1. The challenges arise as AI architectures are (a) very complex in terms of
the number of parameters (from 60K parameters in LeNet model Khan et al. (2020), to common
networks having millions and billions of parameters, such as 160 billion reported by Trask et al. Trask
et al. (2015), and bleeding-edge networks with trillion-parameters in AI language models Fedus et al.
(2021)), (b) very heterogeneous in terms of types of computation units in computational AI graphs,
and (c) high dimensional in terms of data tensors generated by AI graph computation units.

The underlying assumption of our approach is that the tensor-state statistics at each graph node reveal
a presence or absence of hidden classes (triggers or backdoor attacks). The assumption is supported
by a successful defense against backdoor attacks by graph pruning Liu et al. (2018) and the fact that
encoding a hidden class will increase the utilization of some graph nodes as measured by tensor-state
statistics. Furthermore, although symbolic representations of subgraphs are still under investigation
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Olah et al. (2020), we also assume that the utilization-based characterization of subgraphs may have
a relationship with symbolic descriptions of image parts (e.g., subgraphs encode a traffic sign shape)
and hence presence or absence of trojans can be detected by finding patterns in utilization-based
color-coded graphs and subgraphs.

The main novelties of this work are in the definition, measurement design, and pattern searching
in utilization-based clean and poisoned class encodings. The main contributions are in utilization
measurement placements for a variety of AI architectures, and in explainable clean and poisoned AI
models at the granularity levels of AI model graphs, subgraphs and tensor-states. Our work leveraged
interactive Trojan and AI efficiency simulations enabled by the Neural Network Calculator tool
Bajcsy et al. (2021) and web-accessible AI models generated for the TrojAI Challenge computer
vision rounds IARPA (2020).

2 RELATED WORK

The problem of explainable AI is very broad and the term explainable is still debated in philosophical
texts Gilpin et al. (2018) (“What is an Explanation?”). A comprehensive survey of explainable AI
has been published by Arrieta et al. Barredo Arrieta et al. (2020) and extensive teaching materials
have been made available by Lakkaraju et al. Lakkaraju et al. (2020). Our approach can be related to
“Explanation of Deep Network Representation” (roles of layers, individual units, and representation
vectors) according to the Deep Learning-specific taxonomy presented in Barredo Arrieta et al. (2020),
Fig. 11. Our utilization-based approach is inspired by exploring relationships between biological
neural circuits and AI model computation graphs as discussed in Olah et al. (2020). Next, the related
work is presented with respect to the three formulated problems.

Our work on defining utilization is related to the past work on measuring neural network efficiency
Schaub & Hotaling (2020), Bajcsy et al. (2021), which is rooted in neuroscience and information
theory. In the work of Schaub and Hotaling Schaub & Hotaling (2020), neural efficiency and artificial
intelligence quotient (aIQ) are used to balance neural network performance and neural network
efficiency while inspired by the neuroscience studies relating efficiency of solving Tetris task and
brain metabolism during the task execution Haier et al. (1992). In the work Bajcsy et al. (2021), an
online simulation framework is used to simulate efficiencies of small-size neural networks with a
variety of features derived from two-dimensional (2D) dot pattern data. In contrast to the previous
work Schaub & Hotaling (2020), Bajcsy et al. (2021), our theoretical framework defines and reasons
about class encodings, AI model fingerprints, and metrics for finding class encoding patterns for
much more complex AI models and training datasets.

Following the categorization in the survey on interpreting inner structures of AI models Räuker et al.
(2022), the utilization measurements can be related to concept vectors whose goal is to associate
directions in latent space with meaningful concepts. In the works Fong & Vedaldi (2018)(Network
2 Vector) and Bau et al. (2017) (Network Dissection), the distribution of activation maps at each
convolutional unit as inputs pass through is used to determine a threshold. Threshold-based segmented
activation maps are compared across concepts. In contrast to the previous work Fong & Vedaldi
(2018),Bau et al. (2017), our utilization measurements are computed at all computation units in an AI
model, the activation maps are binarized at zero, and statistics are computed over a distribution of
tensor-states (including the binarized activation maps from convolutional units). Our approach does
not use any inserted modules like in concept whitening Chen et al. (2020) to align the latent space
with concepts. Furthermore, our approach does not project class activation maps to create saliency
maps Selvaraju et al. (2019), Adebayo et al. (2018) in the input spatial domain, but, rather, it analyzes
class activations in the tensor-state space.

Finally, following the categorization of approaches to understanding community (group or cluster)
structure in AI models presented in Watanabe et al. (2018), our overarching approach to finding class
encoding patterns falls into the category “Analysis of trained layered neural networks” and combines
two subcategories: analysis of unit outputs and their mutual relationships and analysis of the influence
on neural network inference by data. Overall, our approach can be related to modular partitioning
Hod et al. (2021), Filan et al. (2021), and unsupervised disentanglement of a learned representation
Locatello et al. (2018), Locatello et al. (2020). In contrast to Hod et al. (2021), Filan et al. (2021), our
clustering of computation units does not use ”strong” and ”weak” structural undirected connectivity
of neurons as in spectral clustering, but, rather, repetitive co-occurrence patterns of utilization values
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Figure 2: The process of creating training data with traffic signs. An example of a simulated triangular
traffic sign and polygon or filter types of triggers.

in connected computation units. While we tacitly assume that high-dimensional data can be explained
by lower dimensional semantically meaningful latent variables as in Locatello et al. (2018), Locatello
et al. (2020), we do not attempt to fully automate finding subgraphs (i.e., a human is always in the
loop) to follow the published conclusions. In addition, we do not aim at fully partitioning all AI model
computation graphs into poly-semantic and mono-semantic subgraphs based on the poly-semantic
and mono-semantic classification of neurons in subgraphs according to Olah et al. (2020) and Räuker
et al. (2022).

3 METHODS

In this section, utilization-based class encodings are defined by addressing the three key challenges
listed in Section 1: (1) AI graph size and connectivity complexity, (2) component (graph node)
heterogeneity, and (3) tensor dimensionality and real-value variability. The utilization measurements
of class encodings are defined by introducing tensor-states measured at the output of each component
in AI computation graphs as training data points pass through the AI graph. The process of creating
clean and poisoned training datasets is described next.

Creation of clean and poisoned training datasets: The training images for each class in TrojAI
challenge (Rounds 1-4) are created according to Figure 2 by fusing and post-processing foreground
and background images. Images of foreground traffic signs are constructed from images of real
and simulated traffic signs. The background images are retrieved from existing road and city video
sequences (e.g., citiscapes Cordts et al. (2016), KITTI 360 by Karlsruhe Institute of Technology
and Toyota Technological Institute at Chicago Menze & Geiger (2015), and others Bruno et al.
(2022)). A variety of images per traffic sign class is accomplished by changing parameters of crop,
transformation, fusion, and post-processing operations as shown in Figure 2.

Utilization-based Class Encoding: We start with the following definitions.

Clean and Poisoned AI models: Let Fa : Rm → {1, ..., C} refer to a trained AI model with
architecture a that classifies two-dimensional m-variate images into one of C classes. When Fa is
clean (denoted as F□

a ), Fa achieves a high classification accuracy over input images x⃗i ∈ Rm; i ∈
{1, ...,M} where M is the number of pixels. When a clean Fa is poisoned by a trigger (denoted as
F■
a ), there exists a function g : Rm → Rm applied to input images from a source trigger class cs,

such that Fa(g(x⃗i)) = ct, where ct is the target trigger class and ct ̸= cs. Examples of clean images
from source class, poisoned images from source class, and clean images from target class are shown
in Figure 2. For a pair of trained clean and poisoned AI models, labels for source class cs and target
class ct are predicted with high accuracies according to the four equations below:

4



Under review as a conference paper at ICLR 2024

Figure 3: An example of measuring values of one tensor-state by placing a probe at one node of
the ResNet101 computation graph (node layer1.2.conv.weight) and recording the values for one
input image. The values of the tensor-state contribute to a histogram of states used for deriving
one utilization value per node in the class c encoding that contributes to an AI model fingerprint as
illustrated by red arrows).

F□
a (x⃗) = cs and F□

a (g(x⃗)) = cs (1)

F■
a (x⃗) = cs and F■

a (g(x⃗)) = ct (2)

AI computation graph: A computation graph of a trained AI model Fa is denoted by Ga = {V,E}
where V = {v1, v2, ..., vn(a)} are the n(a) computation units (or graph nodes or graph components)
and E ⊆ V × V are the edges. The unidirectional edges of a graph Ga are described by an adjacency
matrix A ∈ {0, 1}n(a)×n(a) with Aij = 1 for all connected nodes vi and vj , and Aij = 0 for all
other node pairs.

Tensor-state: Each input image x⃗i passes through Ga populated with trained coefficients. The input
generates a tensor of output values at each computation unit (i.e., an activation map) vj : RDIn

j →
RDOut

j , where DIn
j and DOut

j are the input and output dimensions of data at the computation unit
j. The output values are binarized by zero value thresholding to form a tensor-state sj(x⃗i) =

b(vj(x⃗i)) ∈ {0, 1}D
Out
j ; b : RDOut

j → {0, 1}D
Out
j . We refer to the graph location of vj at which

the output values are measured as a probe location. Figure 3 illustrates one tensor-state value for a
specific ResNet101 computation graph, its specific graph node named layer1.2.conv2.weight, and one
image from a predicted class c = 37. The example tensor-state (64, 56, 56) is visualized as a set of 8
images with dimensions 56× 56 pixels, and the 64 bits (binarized outputs) are represented as 8 bytes.

Tensor-state Distribution: Given a set of measured tensor-states {sj(x⃗i)} at a computation unit vj for
which Fa(x⃗i) = c, let us denote Qj(c) = {qij(c)}

nj

i=1 to be a discrete probability distribution function
(PDF) over all tensor-state values, where nj = 2D

Out
j is the maximum number of available tensor-state

values at the j-th computation unit vj . The value of qij(c) is the sum of counts of unique tensor-state
values countij invoked by all images i (

∨
i → sj(x⃗i)) and normalized by the maximum number of

available tensor values nj . Figure 3 (bottom left) shows the histogram values countij computed from
5 366 576 unique tensor-state values over all 2 500 training images of STOP pedestrian crossing
traffic signs. Based on the tensor-state dimensions (64, 56, 56), one can establish the maximum
number of predicted classes for such a node to be CMAX

layer1.2.conv2 = 264

56∗56∗2500 ≈ 2.35 ∗ 1012; a
terascale count of traffic sign classes.

Reference tensor-state distribution: For a class-balanced training dataset with similar class complexi-
ties, let us refer to Pj = {pij}

nj

i=1 as the uniform (reference) PDF over all states; pij = 1

2
DOut

j
. The

probabilities pij are associated with each state (index i) and each computation unit (index j) for each
class c.
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Utilization: We can compute a scalar utilization value ηj(c) for each class label c and a computation
unit vj from the count of measured states qij(c) and the state distribution Qj(c) based on Equations 3-
5. Equation 3 defines utilization ηstatej based on a deterministic view of states. In contrast, Equations 3
and 4 define utilizations ηHj and ηKLDiv

j based on a probabilistic view of states by computing entropy
H(Qj) of a state distribution normalized by maximum entropy Hmax

j or reference distribution Pj .
The three utilization definitions yield value ranges ηstatej ∈ [0, 1], ηHj ∈ [0, 1], and ηKLDiv

j ∈ [0,∞]
per computation unit with an index j. For increasing utilization, the state- and entropy-based
measurements will increase while the Kullback–Leibler(KL) Divergence-based measurement will
decrease since it measures non-utilization (or a deviation from the reference uniform distribution of
tensor-states across all predicted classes). The KL Divergence-based measurement assumes that the
maximum number of available states nj is uniformly divided across all predicted classes (i.e., class
encodings consume an equal number of available tensor-states).

ηstatej =

nj∑
i=1

countij
nj

=

nj∑
i=1

qij ≤ 1 (3)

ηHj =
H(Qj)

Hmax
j

=
−
∑nj

i=1(qij ∗ log2 qij)
log2 nj

(4)

ηKLDiv
j = DKL(Qj ∥ Pj) =

nj∑
i=1

(qij ∗ log2
qij
pij

) (5)

The vector of utilization values for all AI computation units j ∈ {1, ..., n(a)} is referred to as a
class encoding e⃗(c) for the class c. The vector of utilization values from all classes c ∈ {1, ..., C}
is referred to as a probe encoding r⃗(j) for the computation unit j. A set of class encodings for
c ∈ {1, ..., C} ordered by the class label is denoted as an AI model utilization fingerprint Ua =
{e⃗(c = 1), ..., e⃗(c = C)}. In terms of utilization properties, the values are nondecreasing for
increasing number of training data, number of predicted classes, decreasing AI model capacity.

Class Encoding Measurements: Following the theoretical definition, the utilization measurement
workflow steps are shown in Figure 3. The workflow starts with placing multiple measurement probes
to collect the activation maps and follows the sequence of steps in Figure 3: record tensor-states,
compute a histogram of tensor-states, derive class encoding for one class, and form an AI model
utilization fingerprint. The placement of a measurement probe is after each computation unit.

The measurement involves building state histograms, computing the utilization values according to
Equations 3 - 5 per computation unit of AI computation graph, and repeating the calculations over
hundreds of computation units per graph while evaluating hundreds of thousands of images per AI
model and thousands of trained AI models. We approached the computational challenges by

• reducing the number of training images per class and building an extrapolation model,
• analyzing the AI model architecture designs to limit the number of probes, and
• modifying the KL Divergence computation to reduce computations.

Utilization values are measured by evaluating clean and poisoned trained AI models by clean and
poisoned training images.

Finding Patterns in Utilization-based Class Encoding: We search for patterns based on the fol-
lowing measurements and metrics at each granularity level:

• Graph node: spatial overlaps of semantically meaningful image regions with tensor-state
values (e.g., common blue sky in all class-specific images versus class-unique traffic sign
symbols),

• Subgraph: partial similarities of multiple class encodings in the same AI model (e.g.,
encoding of traffic sign classes utilizing similar and dissimilar AI model computation
subgraphs), and

• Graph: similarity of AI model utilization fingerprints in collections of AI models (e.g.,
common utilization of multi-class encodings in multiple AI model architectures).
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Table 2: Four trained models with the following parameters: architecture a = ResNet101, number of
predicted classes C = 17, number of trojans gi(x⃗) per AI model {0, 1, 2, 2}, and trigger functions
defined below.

Model ID Model Type Trigger 0 Trigger 1
142 Clean g0(x⃗) = x⃗ g1(x⃗) = x⃗
235 Poisoned g0(x⃗) = Kelvin filter g1(x⃗) = x⃗
150 Poisoned g0(x⃗) = Gotham filter g1(x⃗) = Lomo filter

250 Poisoned g0(x⃗) = 9-sided polygon
of color [200, 0, 0]

g1(x⃗) = 4-sided polygon
of color [0, 200, 200]
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Figure 4: Comparison of four ResNet101 models with zero, one, and two triggers (two replicates
denoted as R1 and R2).

4 EXPERIMENTAL RESULTS

Finding Patterns by Comparing Clean and Poisoned Classes: We started with pattern detections
in computation graphs first, next in subgraphs, and then in graph nodes. Our experiments are
motivated by (a) evaluating our hierarchical utilization-based approach to classifying a large number
of AI models and (b) understanding and validating the use of utilization measurements for this
classification task at the tensor-state (micro) levels.

Patterns detected in computation graphs: We illustrate the utilization patterns in class encodings
for four trained models in Round 4 holdout dataset of TrojAI Challenge IARPA (2020) with the
parameters summarized in Table 2. The four AI models are trained with different traffic signs,
assigned randomly to 17 classes, and placed on top of randomly chosen backgrounds from cityscapes,
kitti road, and kitti city image collections, and, therefore, the fingerprints cannot be compared by
element-to-element.

All four models have approximately the same distribution of utilization values over all encoded traffic
classes. However, as can be seen in Figure 4, there are utilization values in ranges [16.0, 18.0] ∪
[18.5, 19.0] and [29.5, 31.5] that are present in the poisoned models but are missing in the clean model.
The utilization values in [16.0, 18.0] ∪ [18.5, 19.0] are measured at the computation units labeled as
maxpool, conv1, bn1, and ReLU (maximum pooling, convolution, batch normalization, and rectified
linear unit). The utilization values in [29.5, 31.5] come from layer1.2.conv2 and layer1.2.bn2 in all
poisoned models. In addition, the values in [29.5, 31.5] are also measured in AI models poisoned
with polygon triggers at the computation units labeled as layer1.1.conv2 and layer1.1.bn2. Based on
this granularity-level analysis, one can focus on the identified subset of computation units to explain
the clean versus poisoned class encodings.

Patterns encoded for clean versus poisoned classes in computation subgraphs: Figure 5 shows
the comparison of clean class encoding c = 25 (left) and two replicate class encodings of c = 25
with Kelvin Instagram filter as a trigger (middle and right) in the ResNet101 architecture. Based on
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Figure 5: Comparison of a clean class encoding evaluated with clean images (left) and of poisoned
class encodings in two trained replicate AI models (ResNet101 architecture) evaluated with poisoned
images (middle and right). The circles show the variability of utilization in the initial graph nodes
and layer1.0 in two poisoned class encodings. The rectangles show the utilization pattern change
between clean and poisoned class encodings.

Figure 6: Visualization of tensor-state values in red for two sample clean (top two rows) and poisoned
(bottom two rows) images from the same class in layer1.2.conv2 of ResNet101 that occur more than
100 times in 2500 clean images (top two rows) or in 2500 poisoned images (bottom two rows).

the AI model fingerprint analyses in Section 4, Instagram filters and polygons as triggers present
themselves in the initial maxpool, conv1, bn1, and ReLU computation units. Varying utilization
(different from the clean class encoding) can be observed in Figure 5 with the circles enclosing
maxpool2d, ReLU, conv1.weight, layer1.0.conv1.weight, layer1.0.conv2.weight, layer1.0.bn2.weight,
and layer1.0.bn2.bias. The color coding goes from dark blue to dark red or from 1% to 31% of
entropy-based utilization (see the color legend in Figure 5).

Regarding the subgraph pattern 1 shown in Figure 5, the trigger of Kelvin Instagram filter type breaks
the pattern between layer1.1 and layer1.2 as highlighted with two dash-line rectangles in Figure 5.
Since the Kelvin Instagram filter reduces the color spectrum to the earth tones of green, brown, and
orange, this will reduce the number of unique tensor-states and, hence, reduce the utilization of some
computation units.

Patterns detected in computation units: We compared the tensor-states characterizing clean and
poisoned classes in Figures 6 and 7. The comparison of clean and poisoned classes is shown for
the same STOP pedestrian crossing road sign with or without applied Kelvin Instagram filter as a
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Figure 7: Visualization of tensor-state values in red for two sample clean (top two rows) and
poisoned (bottom two rows) images from the same class (STOP pedestrian crossing road signs) in
layer1.2.conv2 of ResNet101 that occur more than 100 times in both 2500 clean and 2500 poisoned
images.

trigger. Figure 6 (top two rows) illustrates that the common tensor-state values within a clean class
correspond to sky, parts of a road without shadows, and several pixel clusters inside the traffic sign.
After applying the Kelvin Instagram filter, Figure 6 (bottom two rows), the common tensor-state
values within a poisoned class are dominated by the earth tones of green, brown, and orange, which
leads to a merger of semantically distinct regions, such as sky, parts of the road, and interior of the
traffic sign. The image in the lowest row of Figure 6 has a significant number of red pixels suggesting
that it consists of many features common across all poisoned images.

The objective of Figure 7 is to visualize with red pixels any common tensor-states across clean and
poisoned classes. All four rows in Figure 7 show almost no red pixels except from a few pixels from
the yellowish tree and from a red rim of the traffic sign in the top row left image. Since the Kelvin
Instagram filter affects every pixel in a training image, the overlap of high-frequency tensor-state
values between clean and poisoned images is only 35 tensor-state values and almost none in the area
of the STOP pedestrian crossing traffic sign. In other words, although perceptually the areas of clean
and poisoned traffic signs are very similar, the features characterizing each class as generated by
the computation unit layer1.2.conv2.weight are completely different. Furthermore, since the Kelvin
Instagram filter blurs pixel values but makes their color more similar to each other, there are less
unique tensor-state values in poisoned images than in clean images.

5 SUMMARY

We have introduced the concept of AI model utilization for the purpose of explaining clean and
poisoned AI models at graph, subgraph, and tensor-state granularity levels. We defined a mathematical
framework for computing three deterministic and statistical AI model utilization metrics. We
benchmarked the computational cost of inferencing M = 2500 images on NVIDIA Titan RTX with
n(a) = 286 probes in a =ResNet101. The computation took on average 24.46 minutes while the
memory consumption reached up to 140.6 GB for one model from the TrojAI Challenge. Furthermore,
we implemented a suite of tools for measuring utilizations of each computation unit in a computation
graph and visualized the utilization measurements as matrices (AI model fingerprints), color-coded
graphs, and a sequence of images representing a multidimensional array. Specifically, we explained
the utilization-based class encodings for clean and poisoned classes from the TrojAI Challenge
(Rounds 1-4) IARPA (2020). We concluded that while clean and poisoned images can clearly be
classified into the same semantic traffic sign category, a poisoned AI model would have completely
independent tensor-states for clean versus poisoned traffic sign images (see Figure 6 versus Figure 7).
The limitation of the current work is in visual analyses of subgraph patterns and unique graph nodes
for clean and poisoned AI models which is the topic of our future work.
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