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Abstract
The rapid evolution of Large Language Models
(LLMs), epitomized by architectures like GPT-4,
has reshaped the landscape of natural language
processing. This paper introduces a pioneering
approach to address the efficiency concerns asso-
ciated with LLM pre-training, proposing the use
of knowledge distillation for cross-architecture
transfer. Leveraging insights from the efficient
Hyena mechanism, our method replaces atten-
tion heads in transformer models by Hyena, of-
fering a cost-effective alternative to traditional
pre-training while confronting the challenge of
processing long contextual information, inherent
in quadratic attention mechanisms. Unlike con-
ventional compression-focused methods, our tech-
nique not only enhances inference speed but also
surpasses pre-training in terms of both accuracy
and efficiency. In the era of evolving LLMs, our
work contributes to the pursuit of sustainable AI
solutions, striking a balance between computa-
tional power and environmental impact.

1. Introduction
In recent years, the field of natural language processing
(NLP) has been revolutionized by the advent of Large Lan-
guage Models (LLMs), with the transformer architecture,
introduced in 2017 by Vaswani et al., marking a significant
turning point in the literature. Despite the lack of a uni-
versally accepted definition for LLMs, they can be broadly
conceptualized as robust machine learning models capable
of executing a multitude of natural language processing
tasks simultaneously. As delineated by Yang et al. in 2023,
these tasks encompass:

1. Natural language understanding

2. Natural language generation
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3. Knowledge-intensive tasks

4. Reasoning ability

Our work investigates distilling the knowledge of an LLM
that uses traditional, quadratic multi-headed attention into
an equivalent model that uses sub-quadratic Hyena operators
instead (Poli et al., 2023). It then proceeds to compare the
results of the distillation to training that latter model from
scratch. Our work also addresses the need for models to
efficiently process long context lengths, as a longer context
length correlates to larger model memory and more complex
model reasoning (Ding et al., 2023).

Thus we propose a novel approach using knowledge dis-
tillation methods to efficiently transfer knowledge from
existing transformers into long convolution models, cre-
ating a model that exhibits improved scaling concerning
context length as well as reduced training costs when
compared with the standard pre-training approach. The
following points describe the main approaches towards
achieving the desired efficiency:

• Knowledge Distillation for Cross-Architecture Trans-
fer: Our research pioneers a novel approach by em-
ploying knowledge distillation techniques not only for
model compression but also for transferring knowledge
from existing transformers to long convolution models.

• Knowledge Distillation Surpassing Pre-training Effi-
ciency: Our research establishes a superior distillation
paradigm, outperforming traditional pre-training both
in terms of accuracy and efficiency.

2. Background
2.1. Self Attention Mechanism

In transformers, for a length-L sequence u ∈ RL×D, the
scaled self-attention mechanism involves three learnable lin-
ear projections Mq,Mk,Mv ∈ RD×D. These projections
are applied to the input sequence u to compute Query (Q),
Key (K), and Value (V ) matrices:

Q = u ·Mq, K = u ·Mk, V = u ·Mv.

1
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Distilling Transformers into Long Convolution Models

The attention operation is defined as follows:

A(u) = softmax

(
QKT

√
D

)
,

where SoftMax is applied row-wise. The output of self-
attention y is obtained by multiplying the attention weights
A(u) with the Value matrix V :

y = SelfAttention(u) = A(u) · V.

This mechanism enables the model to capture dependencies
among elements in the input sequence, assigning varying
importance to different elements during computations. By
learning to attend to relevant parts of the sequence, self-
attention enhances the model’s ability to process sequential
data efficiently.

2.2. Subquadratic Attention Replacements

The challenge with standard attention (Vaswani et al., 2017)
lies in its quadratic scaling with input length N , prompting
the exploration of subquadratic alternatives. Notable exam-
ples include the Attention Free Transformer (Zhai et al.,
2021) and linear attention (Katharopoulos et al., 2020),
where the time complexity is reduced while maintaining
the overall integrity of the transformer architecture.

Another alternative to attention is the use of state space mod-
els where we capture the dynamics of the system through
difference equations. These models use linear mappings
from an input signal to an output signal where the output
signal y[n] is a function of the input signal u[n] and a state
variable x[n]:

x[n+ 1] = Ax[n] +Bu[n]

y[n] = Cx[n] +Du[n]

The state space representation provides a direct means of
computing the output through the recurrence relationship.
Enforcing linearity and time variance allows us to equiva-
lently compute the output y[n] through a convolution with
the system’s impulse response h[n]:

y[n] = u[n] ∗ h[n] = u[n] ∗ (CAnB +Dδ[n])

where ∗ denotes the convolution operation, and δ the Kro-
necker delta function. This convolution view lets us ef-
ficiently compute the output in O(N(logN)2) through
the fast Fourier transform algorithm (Brigham & Mor-
row, 1967). Consequently, one can opt to parameterize
A,B,C,D directly as structured matrices, as demonstrated
in (Fu et al., 2022). Alternatively, Hyena (Poli et al., 2023)
introduces a novel approach with the parametrization of
an implicit long convolution, which can then be distilled
into a state space representation for constant time inference
(Massaroli et al., 2023).

2.3. Distillation

Knowledge distillation in neural networks (Hinton et al.,
2015) involves transferring information from a larger, more
complex model to a smaller one while minimizing infor-
mation loss. This method extends to both compressing a
single larger model and consolidating insights from multiple
models (ensemble) into a singular one.

Distillation, a knowledge transfer method in neural net-
works, leverages temperature-adjusted softmax probabili-
ties. Initially, the cumbersome model generates soft targets
by applying a higher temperature in its softmax, aiding the
training of a smaller distilled model. Besides mimicking soft
targets, optimizing the distilled model with correct labels
further enhances learning.

The training involves a weighted average of two objective
functions: the first part is the Kullback–Leibler divergence
with the soft targets (at higher temperature). The second part
is the cross entropy loss with correct labels (at temperature
1).

This methodology allows the distilled model to effectively
learn from both the nuanced information present in the soft
targets generated by the larger model and the precise ground
truth labels, resulting in a more compact yet knowledgeable
model.

One notable example of distillation in LLMs is the Distil-
BERT model: DistilBERT is 40% smaller than its parent
model BERT, 60% faster than its parent model, and yet
retains 97% of BERT’s language capabilities. (Sanh et al.,
2020)

2.4. Progressive Knowledge Transfer.

When distillation is implemented on large models, there is a
risk that knowledge transfer is not optimally passed on from
the teacher model to the student model due to differences
between the architectures of the teacher and student models.
One approach to maximize knowledge transfer is progres-
sive knowledge transfer: the student model is first trained
only on the inputs and outputs of the first encoder block,
and the student model then subsequently trains the output of
the next encoder block while freezing the previous trained
blocks. (Sun et al., 2020) In our case, encoder blocks are
replaced by decoders as the architecture is autoregressive.
(Fig. 2)

3. Methods
3.1. Hyena Operator

Hyena (Poli et al., 2023) proposes the use of implicit long
convolutions as a subquadratic replacement for the attention
operator. Instead of parametrizing the state space coeffi-
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Distilling Transformers into Long Convolution Models

cients as in other state space models such as H3 (Fu et al.,
2022), it chooses to directly parametrize filters h : N → Rd

— equivalent to an LTI system’s impulse response. The
filter is obtained by first applying a positional embedding
Pe : N → Rdf — where df is the embedding dimension
— to the time indices. We then apply a feed forward neural
network FFN : Rdf → Rdm — where dm is the model’s di-
mension — and multiply by a windowing function to obtain
the filter.

h[n] := Window(FFN(Pe[n]))

The hyena operator H : Rdm → Rdm uses one such filter h
to aggregate context over a long context window and adds
non-linearity through a multiplicative gating mechanism.
The first step is to obtain three projections q, k, v through
the projection operation P (x, θ) with parameters θ. The
projection operations consist of a linear projection Wθ fol-
lowed by a short depth-wise convolution with a short filter
kθ for local information exchange. We then use an element
wise multiplication followed by a convolution and a second
element wise multiplication to compute the output of the
hyena operator:

Pθ(x) := kθ ∗ (x ·Wθ)

H(x) := P (x; θq)⊙ (h ∗ (P (x; θk)⊙ P (x; θv)))

where ∗ is the convolution operation and ⊙ is the element-
wise multiplication. Note that the operator can be further
generalized by using different numbers of projections (Poli
et al., 2023).

3.2. Model

In terms of the model used to conduct our experiments, we
opted for the 70M parameter version of GPT-NeoX (Black
et al., 2022), which is a decoder-only transformer model
whose architecture closely matches that of GPT-3, except
for a few key differences:

• The positional embeddings traditionally found in GPT
models are swapped for rotary positional embeddings
(RoPE), which encode the positional information of
tokens using a rotation matrix.

• The attention and feed-forward layers that are usually
found in series in traditional GPT models are instead
computed in parallel for efficiency purposes.

• All feed-forward layers are dense, contrary to the alter-
nance of dense and sparse layers in GPT-3.

It is useful to note that the GPT-NeoX architecture closely
matches that of GPT-J. Figure 1 displays a detailed diagram
of the architecture of the model. For the purposes of this
paper, the goal was to replace the attention mechanism with

a Hyena mechanism, as displayed in Figure 1. It is, how-
ever, important to note that the Hyena version of the model
does not incorporate rotary positional embeddings due to
the fact that the Hyena operator already retains positional
information about its input tokens. Finally, we used the
Pythia (Biderman et al., 2023) implementation of the afore-
mentioned model, trained on the open-sourced Pile (Gao
et al., 2020) dataset.

3.3. Distillation Procedure

We opt for Progressive Knowledge Transfer (Sun et al.,
2020) to progressively train the student model S(·; Θs).
For each layer, we first do inference on the teacher model
M(·; Θt) over a token dataset X to obtain a distillation
dataset D = {(x, yim)|x ∈ X} where x is sequence of
token indices and yi is the teacher model’s output at layer
i. Subsequently, we minimize the mean squared error loss
with yis—the student model’s output at layer i one layer at
a time. For the last layer, we can additionally fine tune the
model by doing unsupervised training on textual data.

Li(M(·; Θm), S(·; Θs)) = E(x,yi)∼D[MSE(yim, yis)]

3.4. Training Dataset and Procedure

We use OpenWebText (Gokaslan & Cohen, 2019) for all
language modeling experiments. A tokenized pre-training
dataset was obtained by randomly sampling 2M examples
from OpenWebText with each pre-training example having
a context length of 1024. The dataset was separated into a
training set and a validation set with 0.1% being reserved
for validation. For distillation experiments, the same 40M
tokens were sampled from the training set to obtain the
distillation datasets used to train each layer.

All experiments use the same 6-layer GPTNeoX style ar-
chitecture with the same dimensions as in the 70M teacher
model. We first pre-train the model from scratch on 1B
tokens based on the hyperparameters for Pythia (Biderman
et al., 2023) and Hyena models (Poli et al., 2023). We define
pre-training as the process of doing unsupervised learning
on textual data starting with a randomly initialized model.
As well, we define unsupervised-tuning (CE-tinetune) as
the process of doing unsupervised learning on textual data
starting with a model checkpoint. In our pre-training phase,
we implement a linear warm-up spanning 300 training steps,
followed by a learning rate decrease using cosine decay over
2000 iterations. This decay continues until we reach 10% of
the maximum learning rate, at which point the learning rate
remains constant. Similarly, in the distillation process, we
incorporate a linear warm-up over 2.5% of the total training
steps, followed by a decay over the entire set of steps until
we hit 10% of the maximum learning rate. We try only do-
ing distillation (MSE) as well as fine-tuning (CE-tinetune)
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Distilling Transformers into Long Convolution Models

Figure 1. (A) GPT NEO X Layer Architecture: 6 layers of stacked Attention and MLPs in the 70M GPT NEO X. (B) Hyena-Distilled NEO
GPT X Layer Architecture: Replacement of attention heads by the Hyena operator for the distillation task. (C) A visual representation of
the attention operator, adapted from (Vaswani et al., 2017). (D) A visual representation of the Hyena operator, adapted from (Poli et al.,
2023).

.All experimment are designed to run in 5 hours on a RTX
3090.

4. Language Modeling Results
4.1. Perplexity Scores

For OpenWebText, the validation set obtained in the same
way as the pre-training dataset was used to compute per-
plexity for all models. The same procedure was used on the
test split of WikiText (Merity et al., 2016). The perplexity
scores for both WikiText and OpenWebText were obtained
over a context length of 1024 tokens.

Table 1. Perplexity scores of Pythia 70M teacher model, pre-
trained Hyena model, Hyena student model distilled with MSE
loss, and Hyena student model finetuned after distillation from top
to bottom respectively.

MODEL WIKITEXT OPENWEBTEXT

PYTHIA-70M (TEACHER) 51.4 35.3
PRE-TRAINED 230 64.9
MSE 155.8 63.5
CE FINE-TUNE 121.2 49.6

4.2. Language Evaluation

We applied a series of natural language tasks on three mod-
els of interest: (1) a GPT model that used Hyena as a drop-in

4
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Figure 2. Progressive knowledge transfer on a Pythia model on its decoder layers. Adapted from (Sun et al., 2020).

Table 2. Evaluation of Model Performance. Joint knowledge transfer is abbreviated as JKT. All results were measured using the Language
Model Evaluation Harness (Gao et al., 2021) with 32-bit floating point precision; the first value is the accuracy, followed by the standard
deviation.

TASK METRIC GPT HYENA PYTHIA 70M TEACHER PYTHIA 70M JKT STUDENT

ARC CHALLENGE ACC 0.1775± 0.0112 0.1749± 0.0111 0.1792 ± 0.0112
ARC EASY ACC 0.3998 ± 0.0101 0.3754± 0.0099 0.3270± 0.0096
LOGIQA ACC 0.1966± 0.0156 0.2104 ± 0.0160 0.1982± 0.0156
PIQA ACC 0.5832± 0.0115 0.5985 ± 0.0114 0.5408± 0.0116
SCIQ ACC 0.5910± 0.0156 0.6400 ± 0.0152 0.3570± 0.0152
WINOGRANDE ACC 0.5004± 0.0141 0.5296 ± 0.0140 0.4886± 0.0140
WSC ACC 0.3750± 0.0477 0.3654± 0.0474 0.5865 ± 0.0485

replacement for attention, (2) a Pythia 70M teacher model
that used attention, and (3) a Pythia 70M student model
that used Hyena and was distilled via using joint knowledge
transfer (JKT).

We used the Language Model Evaluation Harness (lm eval)
(Gao et al., 2021) to benchmark these three models on mul-
tiple different natural language tasks. (Table 2) We used
32-bit floating point precision on all tests to ensure repro-
ducibility and to minimize the effect of machine error due
to low precision.

5. Discussion
5.1. Analysis

As seen in table 1, our experimental results demonstrate
the advantage of progressive knowledge transfer over tra-
ditional pre-training approaches in terms of model perfor-
mance achieved within a comparable GPU-hour budget.
Importantly, without any additional unsupervised learning,

our method yields superior performance, indicating the effi-
ciency of our progressive knowledge transfer strategy.

Furthermore, our findings reveal the potential for distillation
as an initialization step before unsupervised learning. This
approach offers increased performance at the same training
cost as conventional pre-training as well as pure knowledge
transfer. This suggests that our knowledge distillation ap-
proach not only offers improved initial performance but
also allows for additional optimization without incurring
additional training expenses.

A closer examination of our results underscores the signifi-
cant impact of knowledge distillation on model generaliza-
tion. Indeed, the increased improvements on the WikiText
perplexity scores with distillation emphasize the effective-
ness of our approach in enhancing the model’s capacity to
extrapolate on unseen data with the teacher model’s knowl-
edge. This contributes valuable insights into the broader
applicability and robustness of knowledge distillation in
machine learning scenarios, particularly when compared to
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conventional pre-training strategies.

Table 2 suggests that pre-training a GPT model with Hyena
generally yields similar yet slightly lower accuracy than a
Pythia 70M model that uses Hyena. These results suggest
that LLMs that use Hyena are generally able to perform as
well as attention-based LLM models, Hyena-based models
typically have a slightly lower measured performance. We
observe that a student Pythia 70M JKT model generally has
a slightly inferior performance compared to a pre-trained
attention-based Pythia 70M model, though model perfor-
mance is generally within a similar range, except for Sciq
where the student model’s accuracy is noticeably lower than
GPT Hyena and the teacher model. However, for the Arc
Challenge and Wsc tasks, the Pythia 70M student model
slightly outperforms and noticeably outperforms the other
two models.

Thus our results suggest that joint knowledge transfer on
a student Hyena model generally conserves the language
capabilities of its teacher model, and that the student Hyena
model can outperform its teacher model in some cases. Be-
cause Hyena is more computationally efficient than atten-
tion when compared directly, and because joint knowledge
transfer may be more computationally efficient than tra-
ditional pre-training, our results show encouraging signs
that joint knowledge transfer on a Hyena student model
offers a computationally efficient alternative to pre-training
attention-based large language models.

5.2. Limitations

Model Size: Due to time constraints and limited access
to, scaling our approach to larger models was impossible.
Consequently, the generalizability of our approach to deeper
or wider models remains unclear. Therefore, further ex-
perimentation with larger models remains to be done for
assessing the practicality of our method.

Training Time: Similarly to the above limitation, train-
ing times for obtained reported results were limited to 5h.
Therefore, we could not determine whether there exists an
optimal duration of distillation before normal pre-training
becomes advantageous.

Benchmarking: We noticed that using different floating
point precision values for the lm eval tests would give dif-
ferent results. Thus, we opted to use 32-bit floating point
precision, though it is difficult for us to directly quantify how
much machine error is present. For the Lambada OpenAI
task, some of our models reported a very high perplexity
score and a very low accuracy score; we decided to exclude
these results from our main results, as further investigation
is needed to determine the root cause behind these outlier
results.

6. Future Work
In future investigations, we aim to explore the compressibil-
ity of the teacher model into a more compact state space
model, beyond the current literature’s focus on reducing
dimensionality and depth. This involves an inquiry into the
adaptability of attention mechanisms during compression.
Further, we plan to evaluate various distillation approaches,
analyzing how performance differences scale with distilla-
tion time and the percentage of unsupervised learning. To
address the limitations related to model size and training
time, future works will involve assessing the proposed ap-
proach on larger language models. Additionally, we aspire
to evaluate distillation on different sub-quadratic attention
replacements, paving the way for a more comprehensive
understanding of the applicability and scalability of our
knowledge distillation methodology.

7. Conclusion
We evaluated the effectiveness of using joint knowledge
transfer with Hyena operators (as a drop-in replacement for
attention) to improve the computational efficiency of LLMs
during training. As a result, we defined a Pythia 70M model
with attention as a teacher model, and performed distillation
on a Pythia 70M student model by replacing attention with
the Hyena operator. By evaluating model perplexity scores
on the OpenWebText and WikiText datasets, we observed
that a Pythia 70M Hyena model that underwent progres-
sive knowledge transfer performed better than a Pythia 70M
Hyena model that was pre-trained. In addition, we observed
that fine-tuning Pythia 70M after progressive knowledge
transfer noticeably decreases the perplexity score, thus fur-
ther improving model performance. In terms of natural
language tasks, a student Hyena model generally had slighly
lower accuracy than its teacher model, though in two in-
stances the student Hyena model was able to outperform its
teahcer model. These initial results show encouraging signs
that joint knowledge transfer on Hyena student models is ca-
pable of conserving a large proportion of a teacher model’s
langauge capabilities, thus offering a viable alternative for
training LLMs. As a result, our results show promising signs
that LLMs using Hyena as a drop-in replacement for atten-
tion, coupled with progressive knowledge transfer, are more
computationally efficient during model training, compared
to current attention-based transformers.
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A. Appendix
A.1. Hyper Parameters

Hyperparameter tuning played a pivotal role in optimizing the distillation process. Tuning focused on the learning rate and
batch size for the generated activations of the teacher model. Three values for each variable were systematically tested,
with the selection based on achieving the lowest Mean Squared Error (MSE) for the 6th layer of the distilled model. The
resulting validation and training losses are summarized in Table 3.

Table 3. Distillation hyper parameter search results

(LEARNING RATE, BATCH SIZE) TRAINING MSE VALIDATION MSE

(0.001, 60) 0.1312 0.1344
(0.0025, 60) 0.1669 0.1652
(0.0001, 60) 0.2050 0.2012
(0.001, 240) 0.3111 0.3069

Table 4. Best hyper-parameters for the 2 methods of distillation

HYPER-PARAMETER MSE CE FINE-TUNE

DISTILLATION EPOCHS 8 6
FINE-TUNING EPOCHS 0 6
WEIGHT DECAY 0.1 0.1
MAXIMUM LEARNING RATE 1 · 10−3 1 · 10−3

MINIMUM LEARNING RATE 1 ·10−4 1 ·10−4
BETAS (0.9,0.98) (0.9,0.98)
BATCH SIZE 60 60

Table 5. Best hyper-parameters for the pre-trained model

HYPER-PARAMETER VALUE

WEIGHT DECAY 0.1
MAXIMUM LEARNING RATE 1 · 10−3

MINIMUM LEARNING RATE 1 ·10−4
BETAS (0.9,0.98)
WARM-UP PERCENTAGE 2.5%
TOTAL NUMBER OF TOKENS 1B
BATCH SIZE (TOKENS) 0.5M
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