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Abstract

Lexica—words and associated scores—are
widely used as simple, interpretable, general-
izable language features to predict sentiment,
emotions, mental health, and personality traits.
Applying different feature importance meth-
ods to different predictive models yields lexica
of varying quality. In this paper, we train
diverse sequence classification models, includ-
ing context-oblivious (SVMs, Feed-forward
neural networks) and context-sensitive
(RoBERTRa, DistilBERT) models, and generate
lexica based on different feature importance
measurements, including attention, masking,
and SHAP (SHapley Additive exPlanations)
values. We evaluate the generated lexica
on their predictive performance on test sets
within the same corpus domain and on their
generalization to different but similar domains.
We find that simple context-oblivious models
produce lexica of similar accuracy within do-
main and of better accuracy across domains to
those from complex context-sensitive models.
Based on human evaluator ratings of these
lexica, we also find that context-oblivious
models generate similar lexica that are more
aligned with human judgments.

1 Introduction

Lexica - sets of words, often with associated
weights - are commonly used to characterize text
with respect to features such as emotion (Moham-
mad et al., 2018; KusSen et al., 2017; Bandhakavi
et al., 2017; Goel et al., 2017) style (Danescu-
Niculescu-Mizil et al., 2013; Pavlick and Tetreault,
2016), political orientation, and attributes of the
writer such as age, gender, happiness, and per-
sonality (Alm et al., 2005; Eichstaedt et al., 2018;
Plank and Hovy, 2015; Preotiuc-Pietro et al., 2016;
Schwartz et al., 2013). Such lexica are often man-
ually created using Amazon Mechanical Turk or
similar crowd workers (Dodds et al., 2015; Haral-
abopoulos and Simperl, 2017), and are widely used

in fields such as psychology and political science.
The most popular lexicon used in psychology, Lin-
guistic Inquiry and Word Count (LIWC), has been
cited over ten thousand times and translated into
many different languages (Pennebaker et al., 2001).
Other lexica, such as the NRC ones for predicting
sentiment and emotion (SM Mohammad, 2013),
are learned using linear regression on large data
sets of labeled text or by computing similarities
of vector embeddings of words (Sap et al., 2014;
Sedoc et al., 2017).

Lexica are widely used in the social sciences
both because they are easy to use—psychologists
and political scientists are generally more comfort-
able with linear regression than with deep learning—
and, more importantly, because they are easy to
interpret. Social scientists are generally more in-
terested in understanding phenomena than in maxi-
mizing predictive accuracy; to that end, they con-
tinue to develop and use a wide variety of lex-
ica, ranging from broad-coverage psychology lex-
ica such as LIWC (Pennebaker, 2011) (with over
70 categories including affiliation, achievement,
and drive as well as syntactic categories such as
pronouns and interrogatives) to specialized lexica
such as those for word concreteness and familiarity
(Brysbaert et al., 2014; Paetzold and Specia, 2016).

Closely related to lexica is "feature importance",
which also computes a strength of association be-
tween words and an outcome of interest to support
interpretation. A variety of methods are used to ex-
tract feature importance from neural networks and
other machine-learned models (Kim et al., 2020a;
Li et al., 2017a; Lundberg and Lee, 2017). One of
the most popular feature importance measures is
SHAP (Lundberg and Lee, 2017), a mathematically
principled way of computing feature importances
based on Shapley values.

Feature importances serve different functions,
such as to "explain the model" (i.e. to understand
why the model makes given predictions), versus to



"explain the world" (i.e. to provide insight into the
data on which the model is trained) (Chen et al.,
2020). For example, when extracting feature impor-
tance from the sentence, "The food was beautiful
and delicious!", an attentional model might show
that the highest attention was given to the word
"and", the words with the highest Shapley values
in a deep learned network might be "food" and "!",
while a hand-compiled list of positive and nega-
tive words might select "beautiful" and "delicious".
Lexica are generally designed to explain the world,
and we focus on that use case.

We know that more sophisticated context-
sensitive models (e.g., BERT) tend to make more
accurate predictions than simpler ones (e.g., SVMs
or simple neural networks using context-free word
embeddings). However, sophisticated models are
also often more difficult to explain and hence might
yield less understandable lexica.

Good lexica should also generalize well from
one domain (e.g., food reviews on Yelp) to another
(e.g., student recommendations). It is not obvious
whether using sequence information and context
will yield lexica that generalize better, or merely
that fit better within domain.

Since lexica are context-free language models,
deriving them from sophisticated context-sensitive
NLP models may or may not yield lexica that are
better within or across domains. Thus, we want to
know how much of a performance drop one should
expect when replacing sophisticated models with
easily interpretable lexica, both for within domain
and across domains.

The paper contains three closely related sets of
analyses:

e We compare a range of models (SVM, FNN,
LSTM, BERT-related ones) on different pre-
diction tasks and assess how well the models
generalize to different corpus domains.

e We generate lexica from each of these models
using a several feature importance measures,
and assess how accurately they perform on the
same domain, and how well they generalize
to other domains.

o We show the extracted lexica to human evalu-
ators to assess how well the extracted words
correspond with human intuition.

The main findings are:

e Within the training corpus domain, although
the context-sensitive models outperforms the
context-oblivious ones, both types of models

produce lexica with similar predictive perfor-
mance.

e Lexica generated from simpler context-
oblivious models have better across-domain
generalization performance than those from
more complex context-sensitive models.

e Lexica generated from different context-
oblivious models are correlated and align bet-
ter with human intuitions than those from
context-sensitive models.

The code and data for all experiments available

on GitHub.!

2 Related Work and Research Goals

We define a lexicon as a list of words along with
associated scores, where higher scores correspond
to some notion of word importance.

Lexicon creation was traditionally done manu-
ally. In psychology, lexica such as LIWC were cre-
ated based on judgements of expert annotators (Pen-
nebaker, 2011). LIWC is unweighted, and can
be viewed as having a weight of 1 for all words
in the lexicon. More rigorously weighted lexica
have been created using crowd-sourced annotations,
such as 1labMT (Garcia et al., 2015).

Recent work in computer science induces lex-
ica using computational approaches (Pryzant et al.,
2018). Lexica can be generated by methods ranging
from using linear regression coefficients to com-
puting word scores by "inverting" feed forward
network (Sedoc et al., 2020). The word-wise score
can also be obtained using attention distributions
or word frequency vectors. The extracted lexica
have been applied to many tasks, including feature
extraction (Mohammad et al., 2018), emotion pre-
diction (Sedoc et al., 2020), linguistic analysis, or
causal domain theories (Pryzant et al., 2018).

Although the term "lexicon" is often not explic-
itly mentioned, methods that compute the feature
importance of words in machine-learned models
produce lexica. These approaches generally use
coefficients from linear models or explain by ana-
lyzing the inputs and outputs of the models using
methods such as Shapley values (Ribeiro et al.,
2016; Lundberg and Lee, 2017)

For linear models, lexica can be constructed by
directly using the coefficients or weights in the
model. Similarly, attention weights in more com-
plex neural networks can serve as lexica (Bahdanau

"https://github.com/xxx/lexica_
creation Code and data will be released upon acceptance.
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etal., 2016; Luong et al., 2015). Attention provides
some insights into certain types of models and tasks
(Vashishth et al., 2019), but it is less clear whether
it produces useful lexicon weights or faithful ex-
planations (Jain and Wallace, 2019; Serrano and
Smith, 2019; Wiegreffe and Pinter, 2019).

With the introduction of transformers (Vaswani
et al., 2017), more complex context-sensitive mod-
els such as BERT(Devlin et al., 2019) (and vari-
ations such RoBERTa (Liu et al., 2019) and Dis-
tilBERT(Sanh et al., 2020)) often provide signifi-
cantly better predictive performance.

Understanding these more complex models by
inspection is infeasible. Instead, by observing the
effect on the output of carefully designed perturba-
tions of each word (e.g., via removal or masking),
we can compute its importance (Kim et al., 2020b).

Shapley values and their many variations and
approximations are a key example of such input
perturbations (Lundberg and Lee, 2017). Among
them, deepSHAP is designed based on DeepLIFT
for deep networks and partitionSHAP computes
Shapley value for clustered features, which is equiv-
alent to computing the Owen values and provides a
contextualized understanding of the input.

Many feature importance methods, such as
marginal Shapley values are designed to "explain
the model." The generated lexica thus contain
words that are important to the models, which are
not necessarily the words that are important for
understanding the world. For example, attention
weights may focus on the word *and’, rather than
adjacent words. We seek feature importance such
as conditional Shapley values that seek to *explain
the world’; similarly, psychologists want to answer
questions like "What words typify empathetic peo-
ple?"(Buechel et al., 2018) and "What does Twitter
language of people with ADHD reveal about how
they perceive the world?" (Guntuku et al., 2019)

To date, there is no broad assessment of the abil-
ity of generated lexica to ’explain the world’. Our
goal is assess this. Previous research compares
the lexica created by different models and different
metrics in respect of similarities of the most impor-
tant features obtained from each approaches. (Lai
et al., 2019) compares feature importances across
different models and different feature importance
metrics. However, the comparisons do not judge
the relative quality of the lexica either subjectively
or by their generalization accuracy.

Bearing in mind how social scientists actually

use lexica, we focus on evaluating the interpretabil-
ity and generalizability of the lexica generated by
different approaches. (Lai et al., 2019) show that
some models provide similar explanations regard-
less of the feature importance metric used. We
therefore choose a set of popular models with dif-
fering levels of complexity, along with the suitable
interpretation for each, and test them on diverse
sentiment and emotion datasets. The generaliz-
ability of the lexica are evaluated both within and
across these datasets. Finally, human evaluations
are used to assess the quality of lexica-produced
interpretation.

3 Datasets

Our experiments use a mixture of common broad-
coverage datasets such as Yelp, Amazon reviews,
and NRC Emotion; and relatively tailored datasets
such as EmoBank, Daily Dialog, and Song Lyrics.
For large datasets, we use their balanced subsets.
Table 1 shows Dataset references and basic statis-
tics. These datasets are from a variety of sources
including Twitter, song lyrics, newswire, online
reviews, and crowd-sourced writing. They vary by
size, average length, and vocabulary size. This vari-
ety of datasets ensures more robust and fair compar-
isons between the lexica generalization methods.

Labels of all datasets are processed so that
they could be used for binary classifications. The
datasets can be divided into two categories. The
Yelp and Amazon datasets are for sentiment clas-
sification: the models classify reviews as being
positive or negative. For these datasets, we are in-
terested in both the "head’ and ’tail’ of the resulting
lexica, as they indicate positivity and negativity,
respectively. For datasets including NRC, Dialog,
and Song Lyrics, models do binary classification
for five different emotions (joy, fear, anger, sadness,
and surprise). In these cases, we are only interested
in the "head’ of the lexica, because those are the
words most closely associated with the correspond-
ing emotion.

To allow easy comparison, this work is done
entirely in English; non-English words in the NRC
datasets are removed.

4 Lexicon Generation Methods

A lexicon generation method consists of a predic-
tive model, based on context-oblivious or context-
sensitive embeddings and an associated means of
computing feature importance.



Datasets | Training/Validation Size | Test Size | Mean Seq Length |
Yelp_Subset
[www.yelp.com/dataset] 27592/3398 3426 132.8
Amazon_FineFood_Subset
(McAuley and Leskovec, 2013) 2579413258 3188 96.3
Amazon_Toys_Subset
(He and McAuley, 2016) 17666/2094 2158 125.9
Joy 12646/1576 1548 18.3
NRC Fear 4046/510 578 19.1
Anger 23907270 322 19.2
(SM Mohammad, 2013) Sadness 57807780 662 183
Surprise 4886/600 606 18.2
Joy 202 55.8
Song Fear 262 56.0
. Anger 284 56.4
(Mihalcea and Strapparava, 2012) Sadnoss 703 553
Surprise 302 55.6
Joy 8134 14.5
Dialog Fear 314 15.8
. Anger . 1872 15.9
(Li et al., 2017b) Sadness Only Used for Evaluation 2150 150
Surprise 3134 13.6
Joy 3420 10.2
Emotionlines Fear 492 11.3
Anger 1518 10.8
(Hsu et al., 2018) Sadness 996 18
Surprise 3314 9.8
Emobank_Valence
(Buechel and Hahn, 2017) 7410 18.0

Table 1: Datasets Information

4.1 Feature Importance Measurements

We explore several feature importance measure-
ments, including uni-variant, "Single-Token Impor-
tance" (computing model outputs for embeddings
of single words), attention weights, masking, and
partitionSHAP.

Uni-variant The most easy-to-apply method for
lexicon generation is to calculate the correlation
between word frequencies and sentence scores.
Specifically, for one word, we count its frequen-
cies of occurrence in every sentence in the dataset,
and calculate the Pearson correlation between the
word’s counts and sentence labels, i.e. scores, as
the word’s score for the lexicon.

Single-token Importance (STI) Bag-of-Word
models like SVMs and FFNs allow us to feed
in text data as vector embeddings. In our exper-
iments, we average FastText embeddings of all
the tokens in each text. The averaging results in
context-oblivious text embeddings that lie in the
same embedding space as tokens. We can thus
compute feature importances for tokens by feed-
ing their embeddings directly into models trained

on text embeddings. Then the outputs of the mod-
els serve as their relative importance. We call this
’Single-Token Importance’ (STI) measurement.

Attention weights Attention has been used for
model interpretation, with focus on the interme-
diate outputs of the encoder used to measure the
relative importance of the token. However, there
is still ongoing debate about what such measure-
ment is actually explaining. Some authors claim
that attention weights do not explain the reasoning
behind model predictions (Jain and Wallace, 2019;
Serrano and Smith, 2019), while others claim that
attention weights do capture linguistic insights and
can explain the models’ decisions (Vashishth et al.,
2019; Wiegreffe and Pinter, 2019). Others argue
that attention often have little function, since a ran-
dom permutation of the attention coefficients does
not significantly affect the predictions. (Vashishth
et al., 2019)

Masking The importance of a token can be mea-
sured by the change in the model output that results
when the token is preplaced with a special mask
token. This allows us to explain sophisticated mod-
els by simple input perturbation without having to
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make sense of millions of model parameters (Li
etal., 2017a).

PartitionSHAP SHAP (SHapley Additive ex-
Planations) values allow more sophisticated ways
of evaluating the contributions of features to the
model prediction, enabling the replacement of a to-
ken and associated tokens with words drawn from a
background distribution. As described above, some
Shapley values (marginal) explain the model; we
prefer conditional ones that attempt to explain the
word by taking account of the correlation between
words in each sentence. PartitionSHAP is a varia-
tion of SHAP that uses a hierarchical clustering of
the features. As a result, it is essentially computing
the Owen values from the game theory. Partition-
SHAP assumes independence between groups of
features instead of individual ones. The feature
clustering can be done based on correlations, or
any distance metric, or predefined rules (e.g., to-
kens in a cluster must be adjacent). PartitionSHAP
attributes to the clusters instead of individual fea-
tures in the clusters.

PartitionSHAP is a model-agnostic evaluation.
However, it is much faster than other model-
agnostic SHAP methods such as kernelSHAP
(Lundberg and Lee, 2017), as the complexity of
partition SHAP is quadratic in the number of input
features while the other methods are exponential in
theory .

4.2 Lexicon Generation Models

Most feature importance measurements can be used
with most models to create lexica. We analyze va-
riety of representative models, ranging from tradi-
tional context-oblivious models like support vector
machines (SVM) and feed-forward neural networks
(FFN) to modern context-sensitive models like vari-
ations of BERT.

SVM and FFN: Context-Oblivious Bag-of-
Word Models SVM and FFN are used for Bag-
of-Word models, as they are popular and repre-
sentative choices for linear and non-linear models.
SVM is a simple model which we use to explore
how model complexity affects lexicon generation.
FFN, as one of the simplest deep networks, also
makes a good comparison with more complicated
context-sensitive neural networks. In both models,
we use context-oblivious FastText embeddings and
generate lexica using STIL.

LSTM: Context-Oblivious Model with Local
Sequence Information We choose LSTM as a
representative example of the models explained by
inspection. Although LSTM is based on context-
oblivious embeddings (FastText embeddings are
context-free), it differs from the SVM and FFN
as it takes advantage of the local sequence infor-
mation. The inputs to the LSTM are sequence of
FastText embeddings and retain their structural in-
formation.

A recent paper investigated the contradictory
claims about the quality of attention as a feature
importance method, and proposed techniques to
improve the interpretability of the attention weights
(Mohankumar et al., 2020). They report that high
similarities among LSTM encoders across time
impair the interpretability of the attention weights
and that by reducing such similarities using the
diversity LSTM they proposed, attention weights
can be more interpretable. The diversity LSTM
minimizes the conicity (similarity) of the hidden
states while maximizing the log-likelihood of the
training data.

We include the diversity LSTM from Mohanku-
mar et al. (2020) in our comparison, as the au-
thors showed it to be the most interpretable LSTM
model. Following this prior work, We use the dif-
ference between the attention weights of a token
in positively-labelled and negatively-labelled data
as the metric to build the lexicon. To elaborate, in
order to compute a score for a token, we compute
an average attention weight for that token in all
input data that are labelled positive and another for
that token in all input data that are labelled negative.
The reason for computing the two average scores is
that attention weights do not have signs and do not
distinguish between ’important to form a positive
text’ and “important to form a negative text’. The
difference of the two attention scores is then used
as the final importance score.

DistilBERT and RoBERTa: Context-Sensitive
Models BERT (Devlin et al., 2019) and variants
like RoBERTa (Liu et al., 2019) produce state-of-
the-art results on many natural language process-
ing tasks, including sequence classification tasks
in this paper. However, BERT models often have
several hundred million parameters; it is contro-
versial whether larger models necessarily lead to
better performances on downstream tasks. Sanh
et al. (2020) reach similar performances on many
downstream tasks using much smaller language



models pretrained with knowledge distillation.

DistilBERT (Sanh et al., 2020), with a triple
loss, shows that a 40% smaller network pretrained
through distillation via the supervision of a big-
ger transformer-based language model can achieve
similar performance on a variety of downstream
tasks.

On the other hand, RoBERTa is a BERT model
pretrained with careful choice of hyperparame-
ters. With well-made design choices, ROBERTa im-
proves the performance of original BERT (Devlin
et al., 2019) and achieves similar performance as
many state-of-the-art models published after BERT.

We use distilbert-base-uncased and roberta-base
as pretrained models and fine-tune them on bi-
nary emotion or sentiment sequence classification
tasks. We used the last layer of BERT, following
the standard approach in the RoBERTa (Devlin
et al., 2019). Then we adopt both masking and par-
tionSHAP to generate lexica from the fine-tuned
models.

5 Results and Discussion

Our aims were the following: 1) to understand how
well different models and lexica perform in predic-
tive tasks within the same domain as the training
data and how well they generalize to datasets across
different corpus domains and 2) to understand how
humans rate the lexica.

5.1 Predictive Performance

We establish baselines for the models and lexica
by assessing the models and lexica on a test set
of the same dataset. Logistic regression is used
as a calibration for both models and lexica, with
prediction accuracy and F1 score as outputs. We
conduct the same assessments for datasets across
different corpus domains.

To elaborate, the logistic regression is used
to find the threshold between binary predictions.
Specifically, to use lexica for classification, the
score for each sentence is obtained by averaging
the lexical scores of words in that sentence. A lo-
gistic regression model takes these sentence scores
as input and outputs binary classification results.
Therefore, the regression model learns the sentence
score distribution of the dataset we aim to evalu-
ate on; thus, it serves as a calibration on the entire
evaluation dataset. To make it a fair comparison
between models and lexica, we did the same cali-
bration using logistic regression models when eval-

uating model performance. In this case, we used
the model outputs (logits) as the input of a logistic
regression model and obtained the final predictions
rather than directly using the model logits for clas-
sification.

The within-domain assessments use the test sets
of those lexicon-generating datasets, datasets used
to train the models and to create the lexica, while
the across-dataset assessments use all data in the
evaluation datasets, datasets used for evaluation
only.

We compare the lexica generation methods by
model and lexica predictive performance, measured
by F1 scores, averaged over all lexicon-generating
and evaluation datasets, as presented in Table 2
for both within-domain and across-domain perfor-
mance. Furthermore, we conduct one-tail paired
t-test to verify the significance of our observations
(Appendix B).

within-domain | across-domain
Methods Model | Lexi. | Model | Lexi.
Univariant 0.714 0.597
SVM_STI 0.791 | 0.779 | 0.68 | 0.677
FEN_STI 0.787 | 0.763 | 0.656 | 0.652
dLSTM'_Attn | 0.899 | 0.756 | 0.652 | 0.604
DB?_Mask 0.825 | 0.761 | 0.749 | 0.641
DB?_SHAP 0.825 | 0.747 | 0.749 | 0.635
RB’?_Mask 0.851 | 0.754 | 0.767 | 0.614
RB’_SHAP 0.851 | 0.774 | 0.767 | 0.646

Table 2: Mean predictive F-1 scores of models and lex-
ica within and across corpus domain(s)

The model accuracy is in line with F1 scores
and is included in Appendix A. Similar compar-
isons were also conducted for datasets with differ-
ent types of labels separately, which are presented
in the Appendix A. The comparison of the meth-
ods for datasets with different label types provided
some insights on the stability of the methods when
generating the lexica for different tasks.

Lexicon Generation Methods Comparisons
Modern sequence models like LSTM, RoBERTa,
and DistilBERT are larger and more complicated
networks than a simple feed-forward neural net-
work and certainly much more complex than SVMs.
Thus, these models are expected to better fit the
training data. With proper regularization, modern
sequence models performed significantly better on
data in the same corpus domain as the training data.

In terms of the generalizability, BERT-related
models achieve better predictive performance on



data in different corpus domains than the datasets
they are fine-tuned on (e.g., fine-tuning using Yelp
comments and evaluating on song lyrics). On the
other hand, LSTM does not generalize well out-
side of its training data domain. Unlike BERT-
related models, LSTM models are limited to local
sequence information.

The lexicon performance does not necessarily
agree with the model performance. We can see
from Table 2 that compared to the complex context-
sensitive models, simple context-oblivious models
can generate lexica with comparable if not better
predictive performance within the same corpus do-
main as the training data. Meanwhile, the lexica
generated from context-oblivious models also gen-
eralize better across other corpus domains than
those from complex context-sensitive models.

This is reasonable since lexica are context-
oblivious language models. When generating
lexica, we lose the sequence information in the
context-sensitive models.  Although complex
context-sensitive models generalize well to dif-
ferent domains, the lexica generated by them are
not superior to those generated by simpler context-
oblivious models.

It is worth noting that simpler models do not
guarantee more generalizable lexica. Although the
model complexity does not contribute to lexica gen-
eralizability, we still need a model sufficient to cap-
ture the correlations. In Table 2, it can be observed
that the the lexica generated using SVM with STI
measurement generalize significantly better that
those generated using uni-variant correlation.

Meanwhile, different interpretation methods do
not impact lexica generalizability as much as ex-
pected. SHAP yields better lexica than masking
method for ROBERTa, but performs similarly as
masking for DistilBERT.

5.2 Human Evaluation

Besides comparing generalization metrics from the
model side, we also conduct the human evaluation
for the created lexica. First, we split our lexica into
two sets: one consists of words appearing only once
in the training corpus, and the other includes the
rest (words appearing at least five times). We group
the words in both sets by seven different predictive
labels: two sentiments (positive, negative) and five
emotions (joy, fear, anger, sadness, and surprise).
To obtain words describing positive and nega-
tive sentiments, we select the top and bottom 100

words (words with the most positive and the most
negative scores), respectively, from each lexica gen-
erated for sentiment classification tasks. The words
describing emotions are drawn from each lexica
generated for emotion classification tasks (top 100
words). Then we form multiple questionnaires for
each one of seven labels.

Evaluators are required to choose from four cat-
egories for each word in the questionnaire (e.g., to
evaluate the words in ’joy’ lexica, four categories
are Describes Joy, Related to Joy, Not Related to
Joy and Do Not Know). Further details can be
found in Appendix C.

We combine the responses of the questionnaires
to determine whether a word is considered reason-
able for the lexica. If 80% responses classify a
word to either one of the first two categories, we
say that it is considered a reasonable candidate for
the lexica by human evaluators.

For each lexicon generation methods, we then
report the proportion of the reasonable words aver-
aged across sentiments and emotions, respectively.
Table 3. The detailed results for each sentiment
and emotion are presented in Appendix C.

Sentiment Emotion
Methods Once | Freq | Once | Freq
Univariant 7 32.9 2.2 13
SVM_STI 312 | 595 | 164 | 22.6
FFN_STI 37.2 | 63.7 | 16.6 22
dLSTM™_Attn || 115 | 597 | 114 21
DB?_Mask 175 | 562 | 142 | 224
DB?_SHAP 10.2 | 35.5 4.8 15.2
RB?_Mask 122 | 354 94 19.6
RB’_SHAP 89 | 347 11 19.8

Table 3: Human evaluation results:
words annotated as describing or related

percentage of

It can be observed in Table 3 that the signifi-
cantly more words, both rare ones and frequent
ones, in lexica from context-oblivious models are
considered reasonable by annotators than those in
lexica from context-sensitive models. This is more
obvious for sentiment tasks, where the amount of
‘reasonable words’ in lexica from context-oblivious
models is almost twice as the amount in lexica from
context-sensitive models.

Such good performance, however, cannot simply
resort to the uncomplicated model structures since
we also find that lexica generated by uni-variant
method, the simplest one in all our methods, are
usually not consistent with the human understand-
ing.



By investigating the correlations between the
lexica (Table 17 in Appendix B), we notice that
context-oblivious methods generate similar lexica
(with average correlation 0.88), while lexica gen-
erated by other methods differ from each other a
lot (with average correlation ranging from 0.11 to
0.63), even for lexica generated by the same model
using different interpretations or the ones generated
using the same interpretation for the models of the
same type. Such an observation is consistent with
human evaluation results, where the lexica gen-
erated by context-oblivious models always have
similar proportions.

6 Conclusion

Comparing lexicon generation methods, which are
based on various models, interpreted by different
feature importance measures, and tested on a large
range of datasets, yields insights into what works
better or worse for lexicon development and for
model interpretation.

Context-sensitive models perform better than
context-oblivious models within corpus domains
and generalize better to other domains, but such
an advantage is not observed for the predictive per-
formance and generalizability of the produced lex-
ica. The simpler context-oblivious models produce
lexica that have similar or better predictive perfor-
mance than those generated from more complex
context-sensitive models, both within the corpus
domain of the training data and across different
domains.

Lexica are context-oblivious language models,
so it is plausible that the sequence information
learned by context-sensitive models is largely lost
when generating the lexica, removing the advan-
tage on across-domain generalizability that we ob-
serve for models.

Context-oblivious models do not only generate
lexica that generalize better but also align better
with human intuition. Human evaluation shows that
much more words in lexica from context-oblivious
models are considered reasonable than those in
lexica from context-sensitive models and such ob-
servation is consistent for both rare and frequent
words.

What is more, the lexica generated from differ-
ent context-oblivious models are correlated, while
lexica generated from different context-sensitive
are quite different.
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A Generalization Results for Sentiment
and Emotion Classifications

Table 4 - 9

Model Lexicon
Method Acc | F1 Acc [F1
Univariant 0.783 | 0.776
SVM_STI 0.855 | 0.853 | 0.852 | 0.851
FFEN_STI 0.856 | 0.852 | 0.834 | 0.832
dLSTM'_Attn | 0.881 | 0.879 | 0.837 | 0.825
DBZ Mask 0.9 0.9 | 0.841 | 0.838
DB?_SHAP 0.9 0.9 | 0.841 | 0.832
RB3_Mask 0.918 | 0.919 | 0.825 | 0.826
RB’_SHAP 0.918 | 0.919 | 0.847 | 0.841

Table 4: Within-domain performance of models and
lexica for sentiment classification task

Model Lexicon
Method Acc | F1 Acc [ F1
Univariant 0.636 | 0.622
SVM_STI 0.716 | 0.714 | 0.713 | 0.712
FFN_STI 0.696 | 0.678 | 0.692 | 0.688
dLSTM' _Attn | 0.688 | 0.671 | 0.673 | 0.638
DB?_Mask 0.788 | 0.784 | 0.682 | 0.671
DBZ_SHAP 0.788 | 0.784 | 0.68 | 0.661
RB?_Mask 0.809 | 0.808 | 0.646 | 0.644
RB’_SHAP 0.809 | 0.808 | 0.686 | 0.673

Table 5: Across-domain performance of models and
lexica for sentiment classification task

Model Lexicon
Method Acc | F1 Acc [F1
Univariant 0.674 | 0.66
SVM_STI 0.734 | 0.733 | 0.716 | 0.714
FEN_STI 0.73 | 0.728 | 0.698 | 0.698
dLSTM'_Attn | 0.887 | 0.887 | 0.702 | 0.695
DBZ_Mask 0.759 | 0.76 | 0.71 0.694
DB?_SHAP 0.759 | 0.76 | 0.703 | 0.677
RB?_Mask 0.787 | 0.788 | 0.699 | 0.689
RB>_SHAP 0.787 | 0.788 | 0.722 | 0.715

Table 6: Within-domain performance of models and
lexica for emotion classification task

B Statistical Comparison of Lexica

t-Test for Comparison between Models and
Corresponding Lexica We conduct paired t-test
on f-1 scores of models and lexica generated from
them. We test on emotion tasks, sentiment tasks
and all the tasks together. The null hypothesis is
that the model has the same generalization perfor-
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Model Lexicon
Method Acc [ F1 Acc [ FI
Univariant 0.582 | 0.546
SVM_STI 0.622 | 0.616 | 0.615 | 0.612
FFN_STI 0.598 | 0.591 | 0.584 | 0.577
dLSTM'_Attn | 0.611 | 0.605 | 0.576 | 0.537
DBZ_Mask 0.68 | 0.672 | 0.614 | 0.578
DBZ _SHAP 0.68 | 0.672 | 0.608 | 0.578
RB3_Mask 0.684 | 0.683 | 0.591 | 0.557
RB?_SHAP 0.684 | 0.683 | 0.621 | 0.601

Table 7: Across-domain performance of models and
lexica for emotion classification task

Model Lexicon
Method Acc | F1 Acc [ F1
Univariant 0.726 | 0.714
SVM_STI 0.792 | 0.791 | 0.781 | 0.779
FFEN_STI 0.79 | 0.787 | 0.764 | 0.763
dLSTM'_Attn | 0.899 | 0.899 | 0.764 | 0.756
DB?_Mask 0.825 | 0.825 | 0.772 | 0.761
DB?_SHAP 0.825 | 0.825 | 0.766 | 0.747
RB3_Mask 0.85 | 0.851 | 0.759 | 0.754
RB>_SHAP 0.85 | 0.851 | 0.78 | 0.774

Table 8: Within-domain averaged performance of mod-
els and lexica over both sentiment and emotion classifi-
cation tasks

mance with the lexicon. Results can be found in
Table 10 - 12.

t-Test for Model and Lexicon Comparison Sep-
arately We conduct paired t-tests on models and
lexica’s f-1 scores for different datasets separately.
As former, we test on within-domain and across-
domain datasets separately. Results are in the Table
13 - 16. The null hypothesis is the models or meth-
ods have the same generialization performance..

Pearson Correlation between lexica We calcu-
late pearson correlation coefficient between every
two lexica generated from different methods and
put the results in Table 17.

C Human Evaluation

We ran out human evaluations of Amazon Mechan-
ical Turk. Our HITs were in batches of 50 words
with 10 attention checks per HIT. Five crowdwork-
ers evaluated each HIT. The compensation for each
HIT was $1.00 or $0.02 per word rated. The me-
dian time for each HIT depended on the task but
was slightly less than 5 minutes. Figure 1 shows
the first page of the HIT for positive sentiment.



Model Lexicon

Method Acc | F1 Acc [ F1

Univariant 0.619 | 0.597
SVM_STI 0.683 | 0.68 | 0.679 | 0.677
FEN_STI 0.668 | 0.656 | 0.657 | 0.652

dLSTM'_Attn | 0.664 | 0.652 | 0.641 | 0.604
DB?_Mask 0.753 | 0.749 | 0.66 | 0.641
DB?_SHAP 0.753 | 0.749 | 0.657 | 0.635
RB’_Mask 0.767 | 0.767 | 0.628 | 0.614
RB’_SHAP 0.767 | 0.767 | 0.663 | 0.646

y [ FFN [ dLSTM' | DB” | RB’ |

Table 9: Across-domain averaged performance of mod- SVM 0.549 0.014 0.002 | de-5
els and lexica over both sentiment and emotion classifi- FEN 0.017 0.003 | 7e-5
cation tasks dLSTM! 0.095 | 0.220

DB? 7e-5

within-domain | across-domain Table 13: p-Values of paired t-tests for within-domain

Methods Acc | F1 Acc | F1

model f-1 scores
SVM_STI 0.483 | 0.444 | 0.185 | 0.327
FFN_STI 0.065 | 0.089 | 0.305 | 0.173

dLSTM!_Attn || 0.026 | 0.019 | 0.007 | 0.001
DB?_Mask 0.016 | 0.014 | Se-14 | 3e-11
DB?_SHAP 0.006 | 0.004 | 6e-13 | 2e-10
RB’_Mask 0.012 | 0.011 | 4e-17 | le-14
RB’_SHAP 0.005 | 0.003 | 5e-13 | 8e-11

Table 10: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over sentiment classification

tasks

within-domain | across-domain
Methods Acc | F1 Acc | FI
SVM_STI 0.028 | 0.025 | 0.084 | 0.307
FFN_STI 0.101 | 0.114 | 0.293 | 0.383
dLSTM!_Attn || 0.017 | 0.013 | 0.005 | 0.017
DBZ Mask Se-4 0.003 Te-4 3e-4
DB?_SHAP 0.004 | 0.015 | 0.006 | 0.003
RB?_ Mask 3e-4 Te-4 2e-5 8e-5
RB’_SHAP Te-4 0.002 | 0.005 | 0.002

Table 11: p-Values of paired t-tests for f-1 scores be- ’ H FEN ‘ dLSTM!' ‘ DB’ ‘ RB’ ‘

tween models and lexica over emotion classification SVM 0.005 0.012 2e-11 | Se-12
tasks FFN 0.730 9e-14 | 1e-11
dLSTM! 1le-10 | le-11
DB’ 0.007
within-domain | across-domain
Methods Acc | F1 Acc | F1 Table 14: p-Values of paired t-tests for across-domain
SVM_STI 0.051 | 0.044 [ 0.033 | 0.142 model f-1 scores
FFN_STI 0.031 | 0.040 | 0.057 | 0.548
dLSTM'_Attn || 0.008 | 0.005 2e-4 8e-5
DB?_Mask 9e-5 le-4 6e-14 | 4e-13
DB?_SHAP 6e-5 | Se-4 | 2e-11 | Se-11
RB3_Mask 2e-5 2e-5 | 2e-17 | 2e-16
RB’_SHAP 7e-6 le-5 6e-12 | T7e-12

Table 12: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over both sentiment and emo-
tion classification tasks
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[ SVM [ FEN | dLSTM'_Atn | DB”_Mask | DB’_SHAP | RB*_Mask | RB’_SHAP |

Univariant 0.001 | 0.006 8e-4 0.004 0.033 0.006 6e-6
SVM 0.006 0.008 0.065 0.064 0.044 0.550
FEN 0.364 0.857 0.344 0.363 0.199
dLSTM'_Attn 0.533 0.504 0.853 0.003
DBZ_Mask 0.116 0.349 0.163
DBZ _SHAP 0.579 0.052
RB3_Mask 0.029

Table 15: p-Values of paired t-tests for within-domain lexicon f-1 scores

y [ SVM [ FFN [ dLSTM'_Attn | DB?_Mask | DB’_SHAP | RB’_Mask | RB°_SHAP |

Univariant 3e-8 | 2e-4 0.610 4e-5 1e-8 0.095 2e-7
SVM 5e-4 2¢-8 0.002 4e-4 2e-7 0.002
FEN 7e-5 0.375 0.173 0.005 0.602
dLSTM'_Attn 4e-4 0.006 0.270 2e-4
DBZ_Mask 0.311 2e-5 0.470
DBZ_SHAP 0.019 0.067
RB3_Mask Se-5

Table 16: p-Values of paired t-tests for across-domain lexicon f-1 scores

| SVM | FFN [ dLSTM'_Attn | DB*_Mask | DB>_SHAP | RB’_Mask | RB’°_SHAP |

Univariant 027 [ 0.30 0.45 0.13 0.42 0.12 0.37
SVM 0.88 0.26 022 0.21 0.18 0.24
FFN 0.27 0.21 0.21 0.17 0.23
dLSTM™_Attn 0.18 0.28 0.15 0.29
DBZ_Mask 0.22 0.32 0.24
DBZ_SHAP 0.11 0.63
RB3_Mask 0.33

Table 17: Pearson correlation between lexica from different methods

Positive Negative
Methods One-time | Frequent | One-time | Frequent
Univariant 5.7 46 8.3 19.7
SVM_STI 20 57.3 42.3 61.7
FFN_STI 28.3 63.7 46 63.7
dLSTM' Attn 8.3 60.7 14.7 58.7
DB? Mask 10.7 50.3 24.3 62
DB?_SHAP 9.7 30.3 10.7 40.7
RB>? Mask 8 22 16.3 48.7
RB’_SHAP 6.7 28 11 413

Table 18: Percentage of words classified as pos/neg description or related word from top 100 of lexica

Joy Anger Fear Sadness Surprise
Methods Once | Freq | Once | Freq | Once | Freq | Once [ Freq | Once | Freq
Univariant 6 19 0 13 3 14 1 13 1 6
SVM_STI 16 38 15 16 35 31 8 17 8 11
FFEN_STI 21 39 19 15 28 28 6 17 9 11
dLSTM'_Attn 11 25 12 18 18 30 7 17 9 15
DB?_Mask 16 31 19 19 25 33 8 18 3 11
DB?_SHAP 12 15 6 20 2 18 2 14 2 9
RB?_Mask 18 25 3 14 14 28 8 22 4 9
RB?_SHAP 24 21 9 18 14 29 3 18 5 13

Table 19: Percentage of words classified as emotion description or related word from top 100 of lexica
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Please Note

« You have to be an English Native Speaker
« You have to complete judgments for all sentences. All fields are required.

Instructions

Some words describe sentiment, which means a positive or negative emotion while other words relate to
sentiment or emotion (eg, might cause it).

This task focuses on positive sentiment. For example, the word fantastic describes positive sentiment and the
word cake relates to positive sentiment. In this task, you will be given a set of words. For each word, you will
decide between the following choices:

a) the word describes positive sentiment

b) the word is related to positive sentiment (e.g. might cause it)
c) the word does not have any positive sentiment

d) don’t know (e.g. you don’t know the word)

Positive sentiment | Related to Unrelated Word Don’t know
Positive sentiment
great X
skiing X
deadline X
further X
the X
alsike X

Please confirm the following worker criteria:

(JT have read the instructions

(JT have read the examples

(JT am a native English speaker

(JT agree to be part of future research studies.

Positive Sentiment Rating

Figure 1: Image of the Amazon Mechanical Turk HIT
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