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Abstract

Lexica–words and associated scores–are001
widely used as simple, interpretable, general-002
izable language features to predict sentiment,003
emotions, mental health, and personality traits.004
Applying different feature importance meth-005
ods to different predictive models yields lexica006
of varying quality. In this paper, we train007
diverse sequence classification models, includ-008
ing context-oblivious (SVMs, Feed-forward009
neural networks) and context-sensitive010
(RoBERTa, DistilBERT) models, and generate011
lexica based on different feature importance012
measurements, including attention, masking,013
and SHAP (SHapley Additive exPlanations)014
values. We evaluate the generated lexica015
on their predictive performance on test sets016
within the same corpus domain and on their017
generalization to different but similar domains.018
We find that simple context-oblivious models019
produce lexica of similar accuracy within do-020
main and of better accuracy across domains to021
those from complex context-sensitive models.022
Based on human evaluator ratings of these023
lexica, we also find that context-oblivious024
models generate similar lexica that are more025
aligned with human judgments.026

1 Introduction027

Lexica - sets of words, often with associated028

weights - are commonly used to characterize text029

with respect to features such as emotion (Moham-030

mad et al., 2018; Kušen et al., 2017; Bandhakavi031

et al., 2017; Goel et al., 2017) style (Danescu-032

Niculescu-Mizil et al., 2013; Pavlick and Tetreault,033

2016), political orientation, and attributes of the034

writer such as age, gender, happiness, and per-035

sonality (Alm et al., 2005; Eichstaedt et al., 2018;036

Plank and Hovy, 2015; Preotiuc-Pietro et al., 2016;037

Schwartz et al., 2013). Such lexica are often man-038

ually created using Amazon Mechanical Turk or039

similar crowd workers (Dodds et al., 2015; Haral-040

abopoulos and Simperl, 2017), and are widely used041

in fields such as psychology and political science. 042

The most popular lexicon used in psychology, Lin- 043

guistic Inquiry and Word Count (LIWC), has been 044

cited over ten thousand times and translated into 045

many different languages (Pennebaker et al., 2001). 046

Other lexica, such as the NRC ones for predicting 047

sentiment and emotion (SM Mohammad, 2013), 048

are learned using linear regression on large data 049

sets of labeled text or by computing similarities 050

of vector embeddings of words (Sap et al., 2014; 051

Sedoc et al., 2017). 052

Lexica are widely used in the social sciences 053

both because they are easy to use–psychologists 054

and political scientists are generally more comfort- 055

able with linear regression than with deep learning– 056

and, more importantly, because they are easy to 057

interpret. Social scientists are generally more in- 058

terested in understanding phenomena than in maxi- 059

mizing predictive accuracy; to that end, they con- 060

tinue to develop and use a wide variety of lex- 061

ica, ranging from broad-coverage psychology lex- 062

ica such as LIWC (Pennebaker, 2011) (with over 063

70 categories including affiliation, achievement, 064

and drive as well as syntactic categories such as 065

pronouns and interrogatives) to specialized lexica 066

such as those for word concreteness and familiarity 067

(Brysbaert et al., 2014; Paetzold and Specia, 2016). 068

Closely related to lexica is "feature importance", 069

which also computes a strength of association be- 070

tween words and an outcome of interest to support 071

interpretation. A variety of methods are used to ex- 072

tract feature importance from neural networks and 073

other machine-learned models (Kim et al., 2020a; 074

Li et al., 2017a; Lundberg and Lee, 2017). One of 075

the most popular feature importance measures is 076

SHAP (Lundberg and Lee, 2017), a mathematically 077

principled way of computing feature importances 078

based on Shapley values. 079

Feature importances serve different functions, 080

such as to "explain the model" (i.e. to understand 081

why the model makes given predictions), versus to 082
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"explain the world" (i.e. to provide insight into the083

data on which the model is trained) (Chen et al.,084

2020). For example, when extracting feature impor-085

tance from the sentence, "The food was beautiful086

and delicious!", an attentional model might show087

that the highest attention was given to the word088

"and", the words with the highest Shapley values089

in a deep learned network might be "food" and "!",090

while a hand-compiled list of positive and nega-091

tive words might select "beautiful" and "delicious".092

Lexica are generally designed to explain the world,093

and we focus on that use case.094

We know that more sophisticated context-095

sensitive models (e.g., BERT) tend to make more096

accurate predictions than simpler ones (e.g., SVMs097

or simple neural networks using context-free word098

embeddings). However, sophisticated models are099

also often more difficult to explain and hence might100

yield less understandable lexica.101

Good lexica should also generalize well from102

one domain (e.g., food reviews on Yelp) to another103

(e.g., student recommendations). It is not obvious104

whether using sequence information and context105

will yield lexica that generalize better, or merely106

that fit better within domain.107

Since lexica are context-free language models,108

deriving them from sophisticated context-sensitive109

NLP models may or may not yield lexica that are110

better within or across domains. Thus, we want to111

know how much of a performance drop one should112

expect when replacing sophisticated models with113

easily interpretable lexica, both for within domain114

and across domains.115

The paper contains three closely related sets of116

analyses:117

• We compare a range of models (SVM, FNN,118

LSTM, BERT-related ones) on different pre-119

diction tasks and assess how well the models120

generalize to different corpus domains.121

• We generate lexica from each of these models122

using a several feature importance measures,123

and assess how accurately they perform on the124

same domain, and how well they generalize125

to other domains.126

• We show the extracted lexica to human evalu-127

ators to assess how well the extracted words128

correspond with human intuition.129

The main findings are:130

• Within the training corpus domain, although131

the context-sensitive models outperforms the132

context-oblivious ones, both types of models133

produce lexica with similar predictive perfor- 134

mance. 135

• Lexica generated from simpler context- 136

oblivious models have better across-domain 137

generalization performance than those from 138

more complex context-sensitive models. 139

• Lexica generated from different context- 140

oblivious models are correlated and align bet- 141

ter with human intuitions than those from 142

context-sensitive models. 143

The code and data for all experiments available 144

on GitHub.1 145

2 Related Work and Research Goals 146

We define a lexicon as a list of words along with 147

associated scores, where higher scores correspond 148

to some notion of word importance. 149

Lexicon creation was traditionally done manu- 150

ally. In psychology, lexica such as LIWC were cre- 151

ated based on judgements of expert annotators (Pen- 152

nebaker, 2011). LIWC is unweighted, and can 153

be viewed as having a weight of 1 for all words 154

in the lexicon. More rigorously weighted lexica 155

have been created using crowd-sourced annotations, 156

such as labMT (Garcia et al., 2015). 157

Recent work in computer science induces lex- 158

ica using computational approaches (Pryzant et al., 159

2018). Lexica can be generated by methods ranging 160

from using linear regression coefficients to com- 161

puting word scores by "inverting" feed forward 162

network (Sedoc et al., 2020). The word-wise score 163

can also be obtained using attention distributions 164

or word frequency vectors. The extracted lexica 165

have been applied to many tasks, including feature 166

extraction (Mohammad et al., 2018), emotion pre- 167

diction (Sedoc et al., 2020), linguistic analysis, or 168

causal domain theories (Pryzant et al., 2018). 169

Although the term "lexicon" is often not explic- 170

itly mentioned, methods that compute the feature 171

importance of words in machine-learned models 172

produce lexica. These approaches generally use 173

coefficients from linear models or explain by ana- 174

lyzing the inputs and outputs of the models using 175

methods such as Shapley values (Ribeiro et al., 176

2016; Lundberg and Lee, 2017) 177

For linear models, lexica can be constructed by 178

directly using the coefficients or weights in the 179

model. Similarly, attention weights in more com- 180

plex neural networks can serve as lexica (Bahdanau 181

1https://github.com/xxx/lexica_
creation Code and data will be released upon acceptance.
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et al., 2016; Luong et al., 2015). Attention provides182

some insights into certain types of models and tasks183

(Vashishth et al., 2019), but it is less clear whether184

it produces useful lexicon weights or faithful ex-185

planations (Jain and Wallace, 2019; Serrano and186

Smith, 2019; Wiegreffe and Pinter, 2019).187

With the introduction of transformers (Vaswani188

et al., 2017), more complex context-sensitive mod-189

els such as BERT(Devlin et al., 2019) (and vari-190

ations such RoBERTa (Liu et al., 2019) and Dis-191

tilBERT(Sanh et al., 2020)) often provide signifi-192

cantly better predictive performance.193

Understanding these more complex models by194

inspection is infeasible. Instead, by observing the195

effect on the output of carefully designed perturba-196

tions of each word (e.g., via removal or masking),197

we can compute its importance (Kim et al., 2020b).198

Shapley values and their many variations and199

approximations are a key example of such input200

perturbations (Lundberg and Lee, 2017). Among201

them, deepSHAP is designed based on DeepLIFT202

for deep networks and partitionSHAP computes203

Shapley value for clustered features, which is equiv-204

alent to computing the Owen values and provides a205

contextualized understanding of the input.206

Many feature importance methods, such as207

marginal Shapley values are designed to "explain208

the model." The generated lexica thus contain209

words that are important to the models, which are210

not necessarily the words that are important for211

understanding the world. For example, attention212

weights may focus on the word ’and’, rather than213

adjacent words. We seek feature importance such214

as conditional Shapley values that seek to ’explain215

the world’; similarly, psychologists want to answer216

questions like "What words typify empathetic peo-217

ple?"(Buechel et al., 2018) and "What does Twitter218

language of people with ADHD reveal about how219

they perceive the world?" (Guntuku et al., 2019)220

To date, there is no broad assessment of the abil-221

ity of generated lexica to ’explain the world’. Our222

goal is assess this. Previous research compares223

the lexica created by different models and different224

metrics in respect of similarities of the most impor-225

tant features obtained from each approaches. (Lai226

et al., 2019) compares feature importances across227

different models and different feature importance228

metrics. However, the comparisons do not judge229

the relative quality of the lexica either subjectively230

or by their generalization accuracy.231

Bearing in mind how social scientists actually232

use lexica, we focus on evaluating the interpretabil- 233

ity and generalizability of the lexica generated by 234

different approaches. (Lai et al., 2019) show that 235

some models provide similar explanations regard- 236

less of the feature importance metric used. We 237

therefore choose a set of popular models with dif- 238

fering levels of complexity, along with the suitable 239

interpretation for each, and test them on diverse 240

sentiment and emotion datasets. The generaliz- 241

ability of the lexica are evaluated both within and 242

across these datasets. Finally, human evaluations 243

are used to assess the quality of lexica-produced 244

interpretation. 245

3 Datasets 246

Our experiments use a mixture of common broad- 247

coverage datasets such as Yelp, Amazon reviews, 248

and NRC Emotion; and relatively tailored datasets 249

such as EmoBank, Daily Dialog, and Song Lyrics. 250

For large datasets, we use their balanced subsets. 251

Table 1 shows Dataset references and basic statis- 252

tics. These datasets are from a variety of sources 253

including Twitter, song lyrics, newswire, online 254

reviews, and crowd-sourced writing. They vary by 255

size, average length, and vocabulary size. This vari- 256

ety of datasets ensures more robust and fair compar- 257

isons between the lexica generalization methods. 258

Labels of all datasets are processed so that 259

they could be used for binary classifications. The 260

datasets can be divided into two categories. The 261

Yelp and Amazon datasets are for sentiment clas- 262

sification: the models classify reviews as being 263

positive or negative. For these datasets, we are in- 264

terested in both the ’head’ and ’tail’ of the resulting 265

lexica, as they indicate positivity and negativity, 266

respectively. For datasets including NRC, Dialog, 267

and Song Lyrics, models do binary classification 268

for five different emotions (joy, fear, anger, sadness, 269

and surprise). In these cases, we are only interested 270

in the ’head’ of the lexica, because those are the 271

words most closely associated with the correspond- 272

ing emotion. 273

To allow easy comparison, this work is done 274

entirely in English; non-English words in the NRC 275

datasets are removed. 276

4 Lexicon Generation Methods 277

A lexicon generation method consists of a predic- 278

tive model, based on context-oblivious or context- 279

sensitive embeddings and an associated means of 280

computing feature importance. 281
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Datasets Training/Validation Size Test Size Mean Seq Length
Yelp_Subset

[www.yelp.com/dataset] 27592/3398 3426 132.8

Amazon_FineFood_Subset
(McAuley and Leskovec, 2013) 25794/3258 3188 96.3

Amazon_Toys_Subset
(He and McAuley, 2016) 17666/2094 2158 125.9

NRC
(SM Mohammad, 2013)

Joy 12646/1576 1548 18.3
Fear 4046/510 578 19.1
Anger 2390/270 322 19.2
Sadness 5780/780 662 18.3
Surprise 4886/600 606 18.2

Song
(Mihalcea and Strapparava, 2012)

Joy

Only Used for Evaluation

202 55.8
Fear 262 56.0
Anger 284 56.4
Sadness 298 55.8
Surprise 302 55.6

Dialog
(Li et al., 2017b)

Joy 8134 14.5
Fear 314 15.8
Anger 1872 15.9
Sadness 2150 15.0
Surprise 3134 13.6

Emotionlines
(Hsu et al., 2018)

Joy 3420 10.2
Fear 492 11.3
Anger 1518 10.8
Sadness 996 11.8
Surprise 3314 9.8

Emobank_Valence
(Buechel and Hahn, 2017) 7410 18.0

Table 1: Datasets Information

4.1 Feature Importance Measurements282

We explore several feature importance measure-283

ments, including uni-variant, "Single-Token Impor-284

tance" (computing model outputs for embeddings285

of single words), attention weights, masking, and286

partitionSHAP.287

Uni-variant The most easy-to-apply method for288

lexicon generation is to calculate the correlation289

between word frequencies and sentence scores.290

Specifically, for one word, we count its frequen-291

cies of occurrence in every sentence in the dataset,292

and calculate the Pearson correlation between the293

word’s counts and sentence labels, i.e. scores, as294

the word’s score for the lexicon.295

Single-token Importance (STI) Bag-of-Word296

models like SVMs and FFNs allow us to feed297

in text data as vector embeddings. In our exper-298

iments, we average FastText embeddings of all299

the tokens in each text. The averaging results in300

context-oblivious text embeddings that lie in the301

same embedding space as tokens. We can thus302

compute feature importances for tokens by feed-303

ing their embeddings directly into models trained304

on text embeddings. Then the outputs of the mod- 305

els serve as their relative importance. We call this 306

’Single-Token Importance’ (STI) measurement. 307

Attention weights Attention has been used for 308

model interpretation, with focus on the interme- 309

diate outputs of the encoder used to measure the 310

relative importance of the token. However, there 311

is still ongoing debate about what such measure- 312

ment is actually explaining. Some authors claim 313

that attention weights do not explain the reasoning 314

behind model predictions (Jain and Wallace, 2019; 315

Serrano and Smith, 2019), while others claim that 316

attention weights do capture linguistic insights and 317

can explain the models’ decisions (Vashishth et al., 318

2019; Wiegreffe and Pinter, 2019). Others argue 319

that attention often have little function, since a ran- 320

dom permutation of the attention coefficients does 321

not significantly affect the predictions. (Vashishth 322

et al., 2019) 323

Masking The importance of a token can be mea- 324

sured by the change in the model output that results 325

when the token is preplaced with a special mask 326

token. This allows us to explain sophisticated mod- 327

els by simple input perturbation without having to 328
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make sense of millions of model parameters (Li329

et al., 2017a).330

PartitionSHAP SHAP (SHapley Additive ex-331

Planations) values allow more sophisticated ways332

of evaluating the contributions of features to the333

model prediction, enabling the replacement of a to-334

ken and associated tokens with words drawn from a335

background distribution. As described above, some336

Shapley values (marginal) explain the model; we337

prefer conditional ones that attempt to explain the338

word by taking account of the correlation between339

words in each sentence. PartitionSHAP is a varia-340

tion of SHAP that uses a hierarchical clustering of341

the features. As a result, it is essentially computing342

the Owen values from the game theory. Partition-343

SHAP assumes independence between groups of344

features instead of individual ones. The feature345

clustering can be done based on correlations, or346

any distance metric, or predefined rules (e.g., to-347

kens in a cluster must be adjacent). PartitionSHAP348

attributes to the clusters instead of individual fea-349

tures in the clusters.350

PartitionSHAP is a model-agnostic evaluation.351

However, it is much faster than other model-352

agnostic SHAP methods such as kernelSHAP353

(Lundberg and Lee, 2017), as the complexity of354

partition SHAP is quadratic in the number of input355

features while the other methods are exponential in356

theory .357

4.2 Lexicon Generation Models358

Most feature importance measurements can be used359

with most models to create lexica. We analyze va-360

riety of representative models, ranging from tradi-361

tional context-oblivious models like support vector362

machines (SVM) and feed-forward neural networks363

(FFN) to modern context-sensitive models like vari-364

ations of BERT.365

SVM and FFN: Context-Oblivious Bag-of-366

Word Models SVM and FFN are used for Bag-367

of-Word models, as they are popular and repre-368

sentative choices for linear and non-linear models.369

SVM is a simple model which we use to explore370

how model complexity affects lexicon generation.371

FFN, as one of the simplest deep networks, also372

makes a good comparison with more complicated373

context-sensitive neural networks. In both models,374

we use context-oblivious FastText embeddings and375

generate lexica using STI.376

LSTM: Context-Oblivious Model with Local 377

Sequence Information We choose LSTM as a 378

representative example of the models explained by 379

inspection. Although LSTM is based on context- 380

oblivious embeddings (FastText embeddings are 381

context-free), it differs from the SVM and FFN 382

as it takes advantage of the local sequence infor- 383

mation. The inputs to the LSTM are sequence of 384

FastText embeddings and retain their structural in- 385

formation. 386

A recent paper investigated the contradictory 387

claims about the quality of attention as a feature 388

importance method, and proposed techniques to 389

improve the interpretability of the attention weights 390

(Mohankumar et al., 2020). They report that high 391

similarities among LSTM encoders across time 392

impair the interpretability of the attention weights 393

and that by reducing such similarities using the 394

diversity LSTM they proposed, attention weights 395

can be more interpretable. The diversity LSTM 396

minimizes the conicity (similarity) of the hidden 397

states while maximizing the log-likelihood of the 398

training data. 399

We include the diversity LSTM from Mohanku- 400

mar et al. (2020) in our comparison, as the au- 401

thors showed it to be the most interpretable LSTM 402

model. Following this prior work, We use the dif- 403

ference between the attention weights of a token 404

in positively-labelled and negatively-labelled data 405

as the metric to build the lexicon. To elaborate, in 406

order to compute a score for a token, we compute 407

an average attention weight for that token in all 408

input data that are labelled positive and another for 409

that token in all input data that are labelled negative. 410

The reason for computing the two average scores is 411

that attention weights do not have signs and do not 412

distinguish between ’important to form a positive 413

text’ and ’important to form a negative text’. The 414

difference of the two attention scores is then used 415

as the final importance score. 416

DistilBERT and RoBERTa: Context-Sensitive 417

Models BERT (Devlin et al., 2019) and variants 418

like RoBERTa (Liu et al., 2019) produce state-of- 419

the-art results on many natural language process- 420

ing tasks, including sequence classification tasks 421

in this paper. However, BERT models often have 422

several hundred million parameters; it is contro- 423

versial whether larger models necessarily lead to 424

better performances on downstream tasks. Sanh 425

et al. (2020) reach similar performances on many 426

downstream tasks using much smaller language 427
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models pretrained with knowledge distillation.428

DistilBERT (Sanh et al., 2020), with a triple429

loss, shows that a 40% smaller network pretrained430

through distillation via the supervision of a big-431

ger transformer-based language model can achieve432

similar performance on a variety of downstream433

tasks.434

On the other hand, RoBERTa is a BERT model435

pretrained with careful choice of hyperparame-436

ters. With well-made design choices, RoBERTa im-437

proves the performance of original BERT (Devlin438

et al., 2019) and achieves similar performance as439

many state-of-the-art models published after BERT.440

We use distilbert-base-uncased and roberta-base441

as pretrained models and fine-tune them on bi-442

nary emotion or sentiment sequence classification443

tasks. We used the last layer of BERT, following444

the standard approach in the RoBERTa (Devlin445

et al., 2019). Then we adopt both masking and par-446

tionSHAP to generate lexica from the fine-tuned447

models.448

5 Results and Discussion449

Our aims were the following: 1) to understand how450

well different models and lexica perform in predic-451

tive tasks within the same domain as the training452

data and how well they generalize to datasets across453

different corpus domains and 2) to understand how454

humans rate the lexica.455

5.1 Predictive Performance456

We establish baselines for the models and lexica457

by assessing the models and lexica on a test set458

of the same dataset. Logistic regression is used459

as a calibration for both models and lexica, with460

prediction accuracy and F1 score as outputs. We461

conduct the same assessments for datasets across462

different corpus domains.463

To elaborate, the logistic regression is used464

to find the threshold between binary predictions.465

Specifically, to use lexica for classification, the466

score for each sentence is obtained by averaging467

the lexical scores of words in that sentence. A lo-468

gistic regression model takes these sentence scores469

as input and outputs binary classification results.470

Therefore, the regression model learns the sentence471

score distribution of the dataset we aim to evalu-472

ate on; thus, it serves as a calibration on the entire473

evaluation dataset. To make it a fair comparison474

between models and lexica, we did the same cali-475

bration using logistic regression models when eval-476

uating model performance. In this case, we used 477

the model outputs (logits) as the input of a logistic 478

regression model and obtained the final predictions 479

rather than directly using the model logits for clas- 480

sification. 481

The within-domain assessments use the test sets 482

of those lexicon-generating datasets, datasets used 483

to train the models and to create the lexica, while 484

the across-dataset assessments use all data in the 485

evaluation datasets, datasets used for evaluation 486

only. 487

We compare the lexica generation methods by 488

model and lexica predictive performance, measured 489

by F1 scores, averaged over all lexicon-generating 490

and evaluation datasets, as presented in Table 2 491

for both within-domain and across-domain perfor- 492

mance. Furthermore, we conduct one-tail paired 493

t-test to verify the significance of our observations 494

(Appendix B). 495

within-domain across-domain
Methods Model Lexi. Model Lexi.
Univariant 0.714 0.597
SVM_STI 0.791 0.779 0.68 0.677
FFN_STI 0.787 0.763 0.656 0.652
dLSTM1_Attn 0.899 0.756 0.652 0.604
DB2_Mask 0.825 0.761 0.749 0.641
DB2_SHAP 0.825 0.747 0.749 0.635
RB3_Mask 0.851 0.754 0.767 0.614
RB3_SHAP 0.851 0.774 0.767 0.646

Table 2: Mean predictive F-1 scores of models and lex-
ica within and across corpus domain(s)

The model accuracy is in line with F1 scores 496

and is included in Appendix A. Similar compar- 497

isons were also conducted for datasets with differ- 498

ent types of labels separately, which are presented 499

in the Appendix A. The comparison of the meth- 500

ods for datasets with different label types provided 501

some insights on the stability of the methods when 502

generating the lexica for different tasks. 503

Lexicon Generation Methods Comparisons 504

Modern sequence models like LSTM, RoBERTa, 505

and DistilBERT are larger and more complicated 506

networks than a simple feed-forward neural net- 507

work and certainly much more complex than SVMs. 508

Thus, these models are expected to better fit the 509

training data. With proper regularization, modern 510

sequence models performed significantly better on 511

data in the same corpus domain as the training data. 512

In terms of the generalizability, BERT-related 513

models achieve better predictive performance on 514
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data in different corpus domains than the datasets515

they are fine-tuned on (e.g., fine-tuning using Yelp516

comments and evaluating on song lyrics). On the517

other hand, LSTM does not generalize well out-518

side of its training data domain. Unlike BERT-519

related models, LSTM models are limited to local520

sequence information.521

The lexicon performance does not necessarily522

agree with the model performance. We can see523

from Table 2 that compared to the complex context-524

sensitive models, simple context-oblivious models525

can generate lexica with comparable if not better526

predictive performance within the same corpus do-527

main as the training data. Meanwhile, the lexica528

generated from context-oblivious models also gen-529

eralize better across other corpus domains than530

those from complex context-sensitive models.531

This is reasonable since lexica are context-532

oblivious language models. When generating533

lexica, we lose the sequence information in the534

context-sensitive models. Although complex535

context-sensitive models generalize well to dif-536

ferent domains, the lexica generated by them are537

not superior to those generated by simpler context-538

oblivious models.539

It is worth noting that simpler models do not540

guarantee more generalizable lexica. Although the541

model complexity does not contribute to lexica gen-542

eralizability, we still need a model sufficient to cap-543

ture the correlations. In Table 2, it can be observed544

that the the lexica generated using SVM with STI545

measurement generalize significantly better that546

those generated using uni-variant correlation.547

Meanwhile, different interpretation methods do548

not impact lexica generalizability as much as ex-549

pected. SHAP yields better lexica than masking550

method for RoBERTa, but performs similarly as551

masking for DistilBERT.552

5.2 Human Evaluation553

Besides comparing generalization metrics from the554

model side, we also conduct the human evaluation555

for the created lexica. First, we split our lexica into556

two sets: one consists of words appearing only once557

in the training corpus, and the other includes the558

rest (words appearing at least five times). We group559

the words in both sets by seven different predictive560

labels: two sentiments (positive, negative) and five561

emotions (joy, fear, anger, sadness, and surprise).562

To obtain words describing positive and nega-563

tive sentiments, we select the top and bottom 100564

words (words with the most positive and the most 565

negative scores), respectively, from each lexica gen- 566

erated for sentiment classification tasks. The words 567

describing emotions are drawn from each lexica 568

generated for emotion classification tasks (top 100 569

words). Then we form multiple questionnaires for 570

each one of seven labels. 571

Evaluators are required to choose from four cat- 572

egories for each word in the questionnaire (e.g., to 573

evaluate the words in ’joy’ lexica, four categories 574

are Describes Joy, Related to Joy, Not Related to 575

Joy and Do Not Know). Further details can be 576

found in Appendix C. 577

We combine the responses of the questionnaires 578

to determine whether a word is considered reason- 579

able for the lexica. If 80% responses classify a 580

word to either one of the first two categories, we 581

say that it is considered a reasonable candidate for 582

the lexica by human evaluators. 583

For each lexicon generation methods, we then 584

report the proportion of the reasonable words aver- 585

aged across sentiments and emotions, respectively. 586

Table 3. The detailed results for each sentiment 587

and emotion are presented in Appendix C. 588

Sentiment Emotion
Methods Once Freq Once Freq
Univariant 7 32.9 2.2 13
SVM_STI 31.2 59.5 16.4 22.6
FFN_STI 37.2 63.7 16.6 22
dLSTM1_Attn 11.5 59.7 11.4 21
DB2_Mask 17.5 56.2 14.2 22.4
DB2_SHAP 10.2 35.5 4.8 15.2
RB3_Mask 12.2 35.4 9.4 19.6
RB3_SHAP 8.9 34.7 11 19.8

Table 3: Human evaluation results: percentage of
words annotated as describing or related

It can be observed in Table 3 that the signifi- 589

cantly more words, both rare ones and frequent 590

ones, in lexica from context-oblivious models are 591

considered reasonable by annotators than those in 592

lexica from context-sensitive models. This is more 593

obvious for sentiment tasks, where the amount of 594

’reasonable words’ in lexica from context-oblivious 595

models is almost twice as the amount in lexica from 596

context-sensitive models. 597

Such good performance, however, cannot simply 598

resort to the uncomplicated model structures since 599

we also find that lexica generated by uni-variant 600

method, the simplest one in all our methods, are 601

usually not consistent with the human understand- 602

ing. 603
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By investigating the correlations between the604

lexica (Table 17 in Appendix B), we notice that605

context-oblivious methods generate similar lexica606

(with average correlation 0.88), while lexica gen-607

erated by other methods differ from each other a608

lot (with average correlation ranging from 0.11 to609

0.63), even for lexica generated by the same model610

using different interpretations or the ones generated611

using the same interpretation for the models of the612

same type. Such an observation is consistent with613

human evaluation results, where the lexica gen-614

erated by context-oblivious models always have615

similar proportions.616

6 Conclusion617

Comparing lexicon generation methods, which are618

based on various models, interpreted by different619

feature importance measures, and tested on a large620

range of datasets, yields insights into what works621

better or worse for lexicon development and for622

model interpretation.623

Context-sensitive models perform better than624

context-oblivious models within corpus domains625

and generalize better to other domains, but such626

an advantage is not observed for the predictive per-627

formance and generalizability of the produced lex-628

ica. The simpler context-oblivious models produce629

lexica that have similar or better predictive perfor-630

mance than those generated from more complex631

context-sensitive models, both within the corpus632

domain of the training data and across different633

domains.634

Lexica are context-oblivious language models,635

so it is plausible that the sequence information636

learned by context-sensitive models is largely lost637

when generating the lexica, removing the advan-638

tage on across-domain generalizability that we ob-639

serve for models.640

Context-oblivious models do not only generate641

lexica that generalize better but also align better642

with human intuition. Human evaluation shows that643

much more words in lexica from context-oblivious644

models are considered reasonable than those in645

lexica from context-sensitive models and such ob-646

servation is consistent for both rare and frequent647

words.648

What is more, the lexica generated from differ-649

ent context-oblivious models are correlated, while650

lexica generated from different context-sensitive651

are quite different.652
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A Generalization Results for Sentiment934

and Emotion Classifications935

Table 4 - 9936

Model Lexicon
Method Acc F1 Acc F1
Univariant 0.783 0.776
SVM_STI 0.855 0.853 0.852 0.851
FFN_STI 0.856 0.852 0.834 0.832
dLSTM1_Attn 0.881 0.879 0.837 0.825
DB2_Mask 0.9 0.9 0.841 0.838
DB2_SHAP 0.9 0.9 0.841 0.832
RB3_Mask 0.918 0.919 0.825 0.826
RB3_SHAP 0.918 0.919 0.847 0.841

Table 4: Within-domain performance of models and
lexica for sentiment classification task

Model Lexicon
Method Acc F1 Acc F1
Univariant 0.636 0.622
SVM_STI 0.716 0.714 0.713 0.712
FFN_STI 0.696 0.678 0.692 0.688
dLSTM1_Attn 0.688 0.671 0.673 0.638
DB2_Mask 0.788 0.784 0.682 0.671
DB2_SHAP 0.788 0.784 0.68 0.661
RB3_Mask 0.809 0.808 0.646 0.644
RB3_SHAP 0.809 0.808 0.686 0.673

Table 5: Across-domain performance of models and
lexica for sentiment classification task

Model Lexicon
Method Acc F1 Acc F1
Univariant 0.674 0.66
SVM_STI 0.734 0.733 0.716 0.714
FFN_STI 0.73 0.728 0.698 0.698
dLSTM1_Attn 0.887 0.887 0.702 0.695
DB2_Mask 0.759 0.76 0.71 0.694
DB2_SHAP 0.759 0.76 0.703 0.677
RB3_Mask 0.787 0.788 0.699 0.689
RB3_SHAP 0.787 0.788 0.722 0.715

Table 6: Within-domain performance of models and
lexica for emotion classification task

B Statistical Comparison of Lexica937

t-Test for Comparison between Models and938

Corresponding Lexica We conduct paired t-test939

on f-1 scores of models and lexica generated from940

them. We test on emotion tasks, sentiment tasks941

and all the tasks together. The null hypothesis is942

that the model has the same generalization perfor-943

Model Lexicon
Method Acc F1 Acc F1
Univariant 0.582 0.546
SVM_STI 0.622 0.616 0.615 0.612
FFN_STI 0.598 0.591 0.584 0.577
dLSTM1_Attn 0.611 0.605 0.576 0.537
DB2_Mask 0.68 0.672 0.614 0.578
DB2_SHAP 0.68 0.672 0.608 0.578
RB3_Mask 0.684 0.683 0.591 0.557
RB3_SHAP 0.684 0.683 0.621 0.601

Table 7: Across-domain performance of models and
lexica for emotion classification task

Model Lexicon
Method Acc F1 Acc F1
Univariant 0.726 0.714
SVM_STI 0.792 0.791 0.781 0.779
FFN_STI 0.79 0.787 0.764 0.763
dLSTM1_Attn 0.899 0.899 0.764 0.756
DB2_Mask 0.825 0.825 0.772 0.761
DB2_SHAP 0.825 0.825 0.766 0.747
RB3_Mask 0.85 0.851 0.759 0.754
RB3_SHAP 0.85 0.851 0.78 0.774

Table 8: Within-domain averaged performance of mod-
els and lexica over both sentiment and emotion classifi-
cation tasks

mance with the lexicon. Results can be found in 944

Table 10 - 12. 945

t-Test for Model and Lexicon Comparison Sep- 946

arately We conduct paired t-tests on models and 947

lexica’s f-1 scores for different datasets separately. 948

As former, we test on within-domain and across- 949

domain datasets separately. Results are in the Table 950

13 - 16. The null hypothesis is the models or meth- 951

ods have the same generialization performance.. 952

Pearson Correlation between lexica We calcu- 953

late pearson correlation coefficient between every 954

two lexica generated from different methods and 955

put the results in Table 17. 956

C Human Evaluation 957

We ran out human evaluations of Amazon Mechan- 958

ical Turk. Our HITs were in batches of 50 words 959

with 10 attention checks per HIT. Five crowdwork- 960

ers evaluated each HIT. The compensation for each 961

HIT was $1.00 or $0.02 per word rated. The me- 962

dian time for each HIT depended on the task but 963

was slightly less than 5 minutes. Figure 1 shows 964

the first page of the HIT for positive sentiment. 965
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Model Lexicon
Method Acc F1 Acc F1
Univariant 0.619 0.597
SVM_STI 0.683 0.68 0.679 0.677
FFN_STI 0.668 0.656 0.657 0.652
dLSTM1_Attn 0.664 0.652 0.641 0.604
DB2_Mask 0.753 0.749 0.66 0.641
DB2_SHAP 0.753 0.749 0.657 0.635
RB3_Mask 0.767 0.767 0.628 0.614
RB3_SHAP 0.767 0.767 0.663 0.646

Table 9: Across-domain averaged performance of mod-
els and lexica over both sentiment and emotion classifi-
cation tasks

within-domain across-domain
Methods Acc F1 Acc F1
SVM_STI 0.483 0.444 0.185 0.327
FFN_STI 0.065 0.089 0.305 0.173
dLSTM1_Attn 0.026 0.019 0.007 0.001
DB2_Mask 0.016 0.014 5e-14 3e-11
DB2_SHAP 0.006 0.004 6e-13 2e-10
RB3_Mask 0.012 0.011 4e-17 1e-14
RB3_SHAP 0.005 0.003 5e-13 8e-11

Table 10: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over sentiment classification
tasks

within-domain across-domain
Methods Acc F1 Acc F1
SVM_STI 0.028 0.025 0.084 0.307
FFN_STI 0.101 0.114 0.293 0.383
dLSTM1_Attn 0.017 0.013 0.005 0.017
DB2_Mask 5e-4 0.003 7e-4 3e-4
DB2_SHAP 0.004 0.015 0.006 0.003
RB3_Mask 3e-4 7e-4 2e-5 8e-5
RB3_SHAP 7e-4 0.002 0.005 0.002

Table 11: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over emotion classification
tasks

within-domain across-domain
Methods Acc F1 Acc F1
SVM_STI 0.051 0.044 0.033 0.142
FFN_STI 0.031 0.040 0.057 0.548
dLSTM1_Attn 0.008 0.005 2e-4 8e-5
DB2_Mask 9e-5 1e-4 6e-14 4e-13
DB2_SHAP 6e-5 5e-4 2e-11 5e-11
RB3_Mask 2e-5 2e-5 2e-17 2e-16
RB3_SHAP 7e-6 1e-5 6e-12 7e-12

Table 12: p-Values of paired t-tests for f-1 scores be-
tween models and lexica over both sentiment and emo-
tion classification tasks

FFN dLSTM1 DB2 RB3

SVM 0.549 0.014 0.002 4e-5
FFN 0.017 0.003 7e-5
dLSTM1 0.095 0.220
DB2 7e-5

Table 13: p-Values of paired t-tests for within-domain
model f-1 scores

FFN dLSTM1 DB2 RB3

SVM 0.005 0.012 2e-11 5e-12
FFN 0.730 9e-14 1e-11
dLSTM1 1e-10 1e-11
DB2 0.007

Table 14: p-Values of paired t-tests for across-domain
model f-1 scores
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SVM FFN dLSTM1_Attn DB2_Mask DB2_SHAP RB3_Mask RB3_SHAP
Univariant 0.001 0.006 8e-4 0.004 0.033 0.006 6e-6
SVM 0.006 0.008 0.065 0.064 0.044 0.550
FFN 0.364 0.857 0.344 0.363 0.199
dLSTM1_Attn 0.533 0.504 0.853 0.003
DB2_Mask 0.116 0.349 0.163
DB2_SHAP 0.579 0.052
RB3_Mask 0.029

Table 15: p-Values of paired t-tests for within-domain lexicon f-1 scores

SVM FFN dLSTM1_Attn DB2_Mask DB2_SHAP RB3_Mask RB3_SHAP
Univariant 3e-8 2e-4 0.610 4e-5 1e-8 0.095 2e-7
SVM 5e-4 2e-8 0.002 4e-4 2e-7 0.002
FFN 7e-5 0.375 0.173 0.005 0.602
dLSTM1_Attn 4e-4 0.006 0.270 2e-4
DB2_Mask 0.311 2e-5 0.470
DB2_SHAP 0.019 0.067
RB3_Mask 5e-5

Table 16: p-Values of paired t-tests for across-domain lexicon f-1 scores

SVM FFN dLSTM1_Attn DB2_Mask DB2_SHAP RB3_Mask RB3_SHAP
Univariant 0.27 0.30 0.45 0.13 0.42 0.12 0.37
SVM 0.88 0.26 0.22 0.21 0.18 0.24
FFN 0.27 0.21 0.21 0.17 0.23
dLSTM1_Attn 0.18 0.28 0.15 0.29
DB2_Mask 0.22 0.32 0.24
DB2_SHAP 0.11 0.63
RB3_Mask 0.33

Table 17: Pearson correlation between lexica from different methods

Positive Negative
Methods One-time Frequent One-time Frequent
Univariant 5.7 46 8.3 19.7
SVM_STI 20 57.3 42.3 61.7
FFN_STI 28.3 63.7 46 63.7
dLSTM1_Attn 8.3 60.7 14.7 58.7
DB2_Mask 10.7 50.3 24.3 62
DB2_SHAP 9.7 30.3 10.7 40.7
RB3_Mask 8 22 16.3 48.7
RB3_SHAP 6.7 28 11 41.3

Table 18: Percentage of words classified as pos/neg description or related word from top 100 of lexica

Joy Anger Fear Sadness Surprise
Methods Once Freq Once Freq Once Freq Once Freq Once Freq
Univariant 6 19 0 13 3 14 1 13 1 6
SVM_STI 16 38 15 16 35 31 8 17 8 11
FFN_STI 21 39 19 15 28 28 6 17 9 11
dLSTM1_Attn 11 25 12 18 18 30 7 17 9 15
DB2_Mask 16 31 19 19 25 33 8 18 3 11
DB2_SHAP 12 15 6 20 2 18 2 14 2 9
RB3_Mask 18 25 3 14 14 28 8 22 4 9
RB3_SHAP 24 21 9 18 14 29 3 18 5 13

Table 19: Percentage of words classified as emotion description or related word from top 100 of lexica
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Please Note

You have to be an English Native Speaker
You have to complete judgments for all sentences. All fields are required.

Instructions

Some words describe sentiment, which means a positive or negative emotion while other words relate to
sentiment or emotion (eg, might cause it).

This task focuses on positive sentiment. For example, the word fantastic describes positive sentiment and the
word cake relates to positive sentiment. In this task, you will be given a set of words. For each word, you will
decide between the following choices:

a) the word describes positive sentiment
b) the word is related to positive sentiment (e.g. might cause it)
c) the word does not have any positive sentiment
d) don’t know (e.g. you don’t know the word)         

Positive sentiment Related to
Positive sentiment

Unrelated Word Don’t know

great X

skiing X

deadline X

further X

the X

alsike X

Please confirm the following worker criteria:

I have read the instructions
I have read the examples
I am a native English speaker
I agree to be part of future research studies.

Positive Sentiment Rating

Figure 1: Image of the Amazon Mechanical Turk HIT
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