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Abstract

In offline reinforcement learning (RL), RL agents learn to solve a task using only a
fixed dataset of previously collected data. While offline RL has proven to be a vi-
able method for learning real-world robot control policies, it typically requires large
amounts of expert-quality data to learn effective policies that generalize to out-
of-distribution states. Unfortunately, such data is often difficult and expensive to
acquire in real-world tasks. Several recent works have leveraged data augmentation
(DA) to inexpensively generate additional data, but most DA works apply augmen-
tations in a random fashion and ultimately produce highly suboptimal augmented
data. In this work, we propose Guided Data Augmentation (GuDA), a human-
guided DA framework that generates expert-quality augmented data. The key in-
sight behind GuDA is that while it may be difficult to demonstrate the sequence of
actions required to produce expert data, a user can often easily characterize when an
augmented trajectory segment represents progress toward task completion. Thus, a
user can restrict the space of possible augmentations to automatically reject subop-
timal augmented data. To extract a policy from GuDA, we use off-the-shelf offline
reinforcement learning and behavior cloning algorithms. We evaluate GuDA on a
physical robot soccer task as well as simulated D4RL navigation tasks, a simulated
autonomous driving task, and a simulated soccer task. Empirically, GuDA enables
learning given a small initial dataset of potentially suboptimal experience and out-
performs a random DA strategy as well as a model-based DA strategy. We include
videos and code at https://nicholascorrado.github.io/projects/GuDA/.

1 Introduction

Offline reinforcement learning (RL) is a learning paradigm in which RL agents learn to solve a task
using only a static dataset of previously collected data. While offline RL algorithms can produce
effective real-world robot control policies without the expense or danger of active task interac-
tion (Levine et al., 2020), their performance and generalization capabilities depend greatly on the
size and quality of the provided dataset. Ideally, we would provide large amounts of high-coverage,
near expert-quality trajectories, but acquiring such data in real-world tasks is often challenging: the
expense of data collection often limits us to just a few trajectories, and their quality depends on
the performance of the data collection policy. Although prior works have shown that offline RL
algorithms can perform well even with highly suboptimal data (Kumar et al., 2019; Fujimoto et al.,
2019; Kumar et al., 2020; Fujimoto & Gu, 2021), these same works show that these algorithm learn
far more effective policies with expert-quality data. As such, we focus on developing methods that
produce expert-quality data without requiring a human to demonstrate expert behavior.

To improve performance and generalization of RL agents, a number of works have leveraged data
augmentation (Laskin et al., 2020) (DA), a technique in which agents generate additional synthetic
experience without the expense of task interaction by applying transformations to previously col-
lected experience. These transformations – or data augmentation functions (DAFs) – often leverage
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Figure 1: An overview of GuDA applied to a parking task given DAFs that translate and rotate a
trajectory segment τ . A user first defines a sampling procedure describing how to translate and rotate
τ to produce expert-quality data: translate τ so that the agent’s final position is at the parking spot,
and then rotate τ such that the agent is aligned with the parking spot. We augment our dataset
using this sampling procedure and then learn a policy with offline RL or imitation learning.

task-specific invariances and symmetries inherent to many real-world tasks (e.g. translational in-
variance (Pitis et al., 2020; 2022), gait symmetry (Abdolhosseini et al., 2019; Mikhail Pavlov & Plis,
2018)). Viewing DA as a means to improve dataset coverage, most prior works generate highly
diverse augmented data by sampling data uniformly at random from a DAF (Sinha et al., 2022a;
Pitis et al., 2020; Joo et al., 2022; Cho et al., 2022; Lu et al., 2020) or from a learned dynamics
model (Hepburn & Montana, 2022; Wang et al., 2022; Han & Kim, 2022). However, these ran-
dom DA strategies generally produce highly suboptimal experience. Thus, we aim to develop a DA
strategy that produces both high-coverage and high-quality augmented data.

We propose Guided Data Augmentation (GuDA), a human-guided DA framework that generates
large amounts of expert-quality data from a limited set of potentially suboptimal data. The key
insight behind GuDA is that a human can often determine if an augmented trajectory segment
resembles expert data by simply checking if its sequence of states brings the agent closer to solving
the task. Thus, a user can restrict the space of DAF transformations to only generate augmented
data that represents progress toward task completion. To make this concept more concrete, imag-
ine training an autonomous vehicle to park in a parking lot given a single suboptimal trajectory
(Fig. 1). Since a parking lot has a relatively uniform surface, we can generate augmented experience
by translating and rotating the agent. Sampling augmented data uniformly at random will most
often produce data in which the agent drives away from the parking spot or approaches it at an
unfavorable angle. However, we can generate expert-quality augmented data by translating and
rotating trajectory segments such that the agent successfully parks.

GuDA enables practitioners to generate expert data from potentially suboptimal experience without
the expense of task interaction. Additionally, instead of requiring that an expert provide an optimal
sequence of actions solving a task, GuDA simply requires the user to characterize when an augmented
trajectory segment represents progress toward task completion. We evaluate GuDA with off-the-shelf
offline RL algorithms on simulated navigation, autonomous driving, and soccer tasks as well as a
physical robot soccer task. Since GuDA is also compatible with imitation learning algorithms (which
require expert data), we also evaluate GuDA with behavior cloning. Empirically, GuDA produces
effective policies given a small amount of data – even highly suboptimal data – while a model-
based DA strategy often fails due to poor model generalization. Moreover, polices trained under
GuDA achieve larger returns than policies trained under a DA strategy that samples augmented
data uniformly at random, emphasizing the importance of generating high-quality augmented data.
In summary, our core contributions are

1. We demonstrate how a human can guide data augmentation to inexpensively produce expert-
quality data from potentially suboptimal experience.

2. We show that GuDA yields effective policies even when provided a small initial dataset.

3. We show that GuDA outperforms the most widely used DA strategy of sampling augmented
data randomly, highlighting the benefits of generating expert-quality augmented data.



RLJ | RLC 2024

2 Related Work

2.1 Data Augmentation

Data augmentation (DA) refers to techniques that generate synthetic data by transforming pre-
viously collected experience and has been applied a variety of tasks, including algorithm discov-
ery (Fawzi et al., 2022), locomotion (Mikhail Pavlov & Plis, 2018; Abdolhosseini et al., 2019), and
physical robot manipulation (George et al., 2023; Mitrano & Berenson, 2022).

DA is often used to generate perturbed data with the same semantic meaning as the original data.
Many vision-based RL works have trained agents to be robust to visual augmentations (Laskin et al.,
2020; Guan et al., 2021; Wang et al., 2020; Yarats et al., 2021; Raileanu et al., 2021; Hansen & Wang,
2021; Hansen et al., 2021), and similar approaches have been applied to non-visual tasks (Sinha et al.,
2022b; Weissenbacher et al., 2022; Qiao et al., 2021). These approaches are orthogonal to GuDA;
they use DA to improve policy robustness, while GuDA uses DA to improve dataset coverage and
quality. Perturbation-based DA methods more closely relate to domain randomization (Sadeghi &
Levine, 2016; Tobin et al., 2017; Peng et al., 2018) which also aims for policy robustness.

Other works exploit invariances and symmetries in a task’s dynamics to generate data that is seman-
tically different from the original data. Hindsight experience replay (HER) (Andrychowicz et al.,
2017; Fang et al., 2018) counter-factually relabels a trajectory’s goal. Counterfactual Data Augmen-
tation (CoDA) (Pitis et al., 2020) and Model-based CoDA (MoCoDA) (Pitis et al., 2022) exploit
local causal independence in a task’s dynamics to generate additional data. Several works use a
learned model to generate augmented data (Lu et al., 2020; Wang et al., 2022; Hepburn & Montana,
2022; Sutton, 1990; Gu et al., 2016; Venkatraman et al., 2016; Racanière et al., 2017). Most of
these works focus on developing new DAFs and simply generate augmented experience in a random
fashion. In contrast, GuDA focuses on the importance of sampling expert-quality augmentations.

Two prior works closely relate to GuDA in that they aim to sample task-relevant augmented data:
EXPAND (Guan et al., 2020), which applies visual augmentations to image regions identified by
human feedback, and MoCoDA (Pitis et al., 2022), which generates augmented data by sampling
(s, a) pairs from a user-defined parent distribution P (s, a) and then computes s′ from a learned
dynamics model. GuDA differs from EXPAND in that GuDA focuses on non-visual tasks with
DAFs more relevant to robotics. While MoCoDA can in principle generate expert data using an
appropriately defined parent distribution, the user must specify the distribution over expert actions.
In contrast, GuDA requires no knowledge of the expert actions and simply requires the user to
characterize data that represent task progress. Moreover, GuDA is a model-free DA framework and
can be used when data is too scarce to model the task’s dynamics, as is common in physical tasks.

2.2 Offline Reinforcement Learning

Offline RL (Levine et al., 2020) methods learn a reward-maximizing policy from reward labels
provided with a fixed dataset of task interactions. These methods are designed such that, in principle,
they can learn even with suboptimal data, though they are generally far more successful with expert
data (Kumar et al., 2019; Fujimoto et al., 2019; Kumar et al., 2020; Fujimoto & Gu, 2021).

One core challenge with offline RL is extrapolation error: state-action pairs outside of the dataset’s
support can attain arbitrarily inaccurate state-action values during training, causing learning in-
stabilities and poor generalization during deployment (Gulcehre et al., 2020). This challenge is
especially problematic for real-world robotics tasks in which offline data is scarce. Offline RL al-
gorithms typically mitigate extrapolation error with policy parameterizations that only consider
state-action pairs within the dataset (Fujimoto et al., 2019; Ghasemipour et al., 2021; Zhou et al.,
2021) or with behavioral cloning regularization (Nair et al., 2020; Fujimoto & Gu, 2021; Xu et al.,
2021). GuDA, like other DA strategies, can be viewed as a technique to mitigate extrapolation
error by simply generating more data to improve dataset coverage without further task interaction.
However, GuDA also improves dataset quality by generating expert-quality augmented data.
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3 Preliminaries

3.1 Offline Reinforcement Learning

We consider finite-horizon Markov decision processes (MDPs) (Puterman, 2014) defined by
(S,A, p, r, d0, γ) where S and A denote the state and action space, respectively; p(s′ | s, a) de-
notes the probability density of the next state s′ after taking action a in state s; and r(s, a) denotes
the reward for taking action a in state s.1 We write d0 as the initial state distribution, γ ∈ [0, 1) as
the discount factor, and H the episode length. We consider stochastic policies πθ : S × A → [0, 1]
parameterized by θ. The RL objective is to find a policy that maximizes the expected sum of dis-
counted rewards J(θ) = E

[∑H−1
t=0 γtr(st, at)

]
. In the offline RL paradigm, the agent cannot collect

data through environment interaction and must instead learn from a static dataset D of transitions
collected by a different policy.

3.2 Data Augmentation Functions

In this section, we introduce a general notion of a data augmentation function (DAF). At a high
level, a DAF generates augmented data by applying transformations to an input trajectory segment.
More formally, let T denote the set of all possible trajectory segments and let ∆(T ) denote the set of
distributions over T . A DAF is a stochastic function f : T → ∆(T ) mapping a trajectory segment
((si, ai, ri, s′

i))k
i=1 of length k to an augmented trajectory segment ((s̃i, ãi, r̃i, s̃′

i))k
i=1. In this work,

we focus on dynamics invariant DAFs which produce realistic data that respect the task’s dynamics
and reward function, i.e. p(s̃′ | s̃, ã) > 0, and r̃ = r(s̃, ã) (Corrado & Hanna, 2024). As in most
prior works, we assume a user can specify a DAF f for a given domain (Pitis et al., 2020).

4 Guided Data Augmentation

Figure 2: GuDA translates trajectory seg-
ments τup, τright to demonstrate the agent
walking to the goal. A random translation
(bottom right) may be highly suboptimal.

In this section, we introduce Guided Data Augmenta-
tion (GuDA), a DA framework that automatically gen-
erates expert-quality augmented data. We provide a
high-level overview of GuDA in Section 4.1, and then
describe how we implement GuDA in Section 4.2.

4.1 Method Overview

We assume access to a dataset D of task interactions
and DAFs f1, . . . , fm. Prior to offline training, GuDA
generates an augmented dataset D̃ consisting of the orig-
inal dataset plus n augmented samples generated from
the composition of DAFs f = f1 ◦ · · · ◦ fm. Afterwards,
an agent learns from D̃ using an off-the-shelf offline RL
or imitation learning algorithm. The core difference be-
tween GuDA and previous DA works lies in how GuDA
samples augmented data from f . Prior works typically
sample augmented data uniformly at random, but most
transformations under f produce highly suboptimal ex-
perience. However, a user can often easily character-
ize when an augmented trajectory segment represents
progress toward task completion. Thus, to generate aug-
mented data that closely resembles expert data, GuDA
has the user define a sampling procedure that describes how to sample augmentations from f to
produce data in which the agent makes task progress.

1If a reward function is unavailable, GuDA can be used with imitation learning methods such as behavior cloning
which only assume access to expert data and do not require access to a reward function.
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To illustrate how a user might identify a sampling procedure, consider a maze navigation task in
which a legged robot must reach a fixed goal state from a fixed initial position (Fig. 2). We assume
access to a DAF that translates the agent to a new position. While it is difficult to demonstrate the
precise sequence of leg movements required to optimally solve the maze, we can easily identify when
a trajectory segment progresses the agent toward its goal. A randomly sampled augmentation from
our DAF will most likely have the agent visit maze regions that an expert would never visit and may
even show the agent moving away from the goal rather than toward it. To ensure we generate expert
augmented data, we can simply restrict our DAF to only sample new positions near the shortest
path to the goal (green region) for which the agent’s displacement is closely aligned with the shortest
path (orange arrows). This approach shifts the burden from the user having to demonstrate optimal
actions to the user simply having to understand when augmented data represent progress toward
task completion. In the next section, we describe the DAFs we use and the sampling procedures we
define to generate augmented data that shows task progress.

4.2 Implementation

GuDA’s sampling procedures are domain-specific and depend on which DAFs are available as well as
what task progress looks like in a given domain. In this work, we consider four DAFs that transform
an input trajectory segment τ using invariances and symmetries common to many physical tasks:

1. Translate(τ ;P): Since the dynamics of agents and objects are often independent of their
position, we can translate them to a new position (x, y) sampled from a distribution P.

2. Rotate(τ ; Θ): Since the dynamics of agents and objects are often independent of their
orientation, we can rotate the direction the agent and/or object faces by an angle θ sampled
from a distribution Θ to produce motion in a different direction.

3. Reflect(τ ;R): An agent that moves to the left often produces a mirror image of an agent
moving to the right, so we can reflect the agent’s left-right motion with probability R(τ).

4. RelabelGoal(τ ;G): In goal-conditioned tasks, dynamics are generally independent of the
desired goal state (Andrychowicz et al., 2017). Thus, we can replace the true goal with a
new goal g sampled from the task’s goal distribution G.

Algorithm 1: Guided Data Augmentation
G ← distribution over task-relevant goals.
P(x, y|τ)← distribution over task-relevant
positions for trajectory segment τ .

Θ(θ|τ)← distribution over task-relevant
rotation angles for trajectory segment τ .
R(τ)← probability of reflecting τ .
function GuidedDAF(τ0)

τ ← copy(τ0)
τ ← RelabelGoal(τ ;G)
τ ← Translate(τ ;P(x, y|τ))
τ ← Reflect(τ ;R(τ))
τ ← Rotate(τ ; Θ(θ|τ))
for (s, a, r, s′) ∈ τ do

r ← r(s, a) // Recompute rewards
return τ

We focus on navigation and manipulation tasks
which have intuitive notions of task progress: an
agent makes progress if it moves closer to a goal
position (navigation) or if it moves an object closer
to a goal position (manipulation). Given these no-
tions of task progress, the user must specify how to
apply these DAFs to generate expert-quality aug-
mented data. Formally, the user specifies distribu-
tions over translations P(x, y|τ), rotations Θ(θ|τ),
and/or reflections R(τ) that produce data showing
task progress. To provide a concrete example of
one such distribution, we return to the quadruped
maze example in Fig. 2. A human can easily iden-
tify task-relevant maze positions (x, y) (green re-
gion) and a near-optimal displacement directions
θ∗(x, y) for these positions (orange arrows). Thus,
to generate expert-quality augmented data using
only the Translate DAF, we can sample new po-
sitions from P(x, y|τ) = Unif({(x, y) : |θ(τ) − θ∗(x, y)| ≤ π

4 and (x, y) is within the green region}),
a uniform distribution over task-relevant maze positions for which the agent’s original displacement
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Initial GuDA Sampling Procedures
Task Name Dataset Size (τ = input trajectory segment)

maze2d-umaze
maze2d-medium
maze2d-large

5 trajectories
5 trajectories
5 trajectories

Translate a partial trajectory τ to a random maze
position, and then Rotate τ such that the agent moves
along the shortest path to the goal. See Fig. 4a.

antmaze-umaze
antmaze-medium
antmaze-large

1 trajectory
2 trajectories
5 trajectories

Translate a partial trajectory τ to a random maze
position such that the agent moves along the shortest
path to the goal. See Fig. 2.

parking 10 trajectories

Here, τ is a full trajectory. First, use RelabelGoal to
change τ ’s goal to randomly sampled goal (parking
spot). Then, Translate τ such that the agent’s final
position is at the goal, and Rotate τ such that the car
is within the parking spot. See Fig. 1.

soccer-sim 3 trajectories
Here, τ is a full trajectory. Reflect τ with probability
0.5, Translate τ such that the ball’s final position is at
the goal, and then Rotate τ randomly. See Fig. 4b.

soccer-physical 1 trajectory See Section 5.2.

Table 1: GuDA sampling procedures for tasks in our empirical analysis. We provide task descriptions
in Appendix A and describe how we implement these sampling procedures in Appendix B.

direction θ(τ) is closely aligned with θ∗(x, y). If P(x, y|τ), Θ(θ|τ), and R(τ) are uniform distribu-
tions independent of τ over all valid position, rotations, and reflections, then GuDA reduces to the
standard DA strategy that samples augmented data uniformly at random.

Algorithm 1 provides pseudocode for our implementation of GuDA assuming access to all four DAFs.2
Table 1 describes high-level sampling procedures for tasks in our empirical analysis: D4RL maze2d
and antmaze navigation tasks (Fu et al., 2020), a parking task (Leurent, 2018), a simulated robot
soccer task, and a physical robot soccer task. Assuming access to all DAFs, the sampling procedures
generally proceed as follows. First, we randomly sample a new goal. If τ is a full trajectory, we
Translate τ such that the agent or object’s final position is at the goal, and then Reflect and/or
Rotate τ randomly about the goal. If τ is a partial trajectory, we Translate τ to a new position
that would likely be observed by an expert policy, and then Reflect and/or Rotate τ so that the
agent or object moves as close as possible to the goal. We provide task descriptions in Appendix A
and a more formal description of our sampling procedures in Appendix B.

5 Experiments

We design an empirical study to evaluate two core hypotheses:

H1: GuDA enables learning from a small dataset of potentially suboptimal data.

H2: GuDA yields larger returns than a random DA strategy.

H1 implies that GuDA is well-suited to offline learning for real-world tasks where expert data is
often scarce, and H2 emphasizes the importance of sampling expert-quality augmented data. We
note that support for H2 implicitly provides support for H1.

5.1 Simulated Experiments

We first evaluate GuDA on simulated tasks described in Table 1. In all tasks, we start with a small
initial dataset containing at least one successful – though not necessarily expert-level – trajectory

2GuDA can be implemented in many different ways and can be adapted depending on which DAFs are available.
For instance, it is possible to guide DA by applying a subset of these four DAFs in a different order.
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Figure 3: IQM normalized returns over 10 independent runs with 95% stratified bootstrap confidence
intervals for different DA strategies and algorithms. We compute normalized returns computed as
= 100 · R−Rrandom

Rexpert−Rrandom
where Rexpert and Rrandom denote the average return of the demonstrator and

a policy that chooses actions uniformly at random, respectively, computed over 100 trajectories.

(Table 1). These datasets contain failures and suboptimal behaviors as well: maze2d datasets contain
data in which the agent moves away from the goal, soccer datasets contain trajectories where the
agent kicks the ball out of bounds, and parking datasets contain trajectories where the car fails to
park. For maze2d and antmaze tasks, we hand-pick a small number of trajectory segments from the
original ‘-v1’ and ‘-diverse-v1’ D4RL datasets, respectively. For the remaining tasks, we use pre-
trained policies to generate datasets. Dataset visualizations can be found in Fig. 7 of Appendix A.

(a) maze2d (b) soccer-sim

Figure 4: Example augmentations under
GuDA. The original trajectory segment
is shown in yellow.

We consider three baselines: the model-based DA strat-
egy MoCoDA (Pitis et al., 2022), a DA strategy that ran-
domly samples augmented data (Random DA), and no
augmentation (No DA). MoCoDA is a well-suited model-
based baseline for our experiments; it exploits causal in-
dependence in the task’s dynamics to efficiently learn a
dynamics model that generalizes outside of the support
of the dataset, which is particularly important when data
is scarce. To improve the quality of MoCoDA data, we
sample augmented states from a parent distribution that
closely matches the distribution of augmented states un-
der GuDA.3 We provide further details on how we ap-
ply MoCoDA to each task in Appendix C. With each DA
strategy, we generate 1 million augmented transitions and
then perform offline learning with BC, TD3+BC (Fujimoto & Gu, 2021), and AWAC (Nair et al.,
2020) for 1 million policy updates. We tune hyperparameters for each algorithm and DA strategy
separately using a hyperparameter sweep described in Appendix D. We report the inter-quartile
mean (IQM) return with 95% bootstrap confidence intervals over 10 independent runs.4

Fig. 3 shows IQM normalized returns for each algorithm in each task. GuDA almost always outper-
forms all baselines – and often by a large margin (supporting H1). For instance, in antmaze-medium,
GuDA yields returns 3x larger than the next best strategy for all algorithms. GuDA with TD3+BC
is also the only strategy that can solve antmaze-large with significance. Moreover, we emphasize
that BC often achieves much larger returns with GuDA than with Random DA or MoCoDA, in-
dicating that GuDA indeed generates expert data. MoCoDA is unable to solve the more complex
antmaze, parking, and soccer-sim tasks because it does not have enough data to learn an accurate,
generalizable dynamics model, emphasizing the utility of GuDA in data-scarce settings.

3Since we cannot identify expert state-action pairs, we only specify a parent distribution over task-relevant states.
4We choose to report the IQM because it is less biased and more statistically efficient than the median, and it is

more robust to outliers than the mean (Agarwal et al., 2021).
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(a) Easy initialization (b) Hard initialization (c) Initial dataset (d) Example GuDA data

Figure 5: (5a, 5b) Task initializations. (5c) Initial data with relevant segments τ1 and τ2. (5d) An
illustration of GuDA data generated by translating, rotating, and/or reflecting τ1 and τ2.

While Random DA is often beneficial in maze2d and soccer-sim tasks, it often performs worse than
No DA in other tasks. For instance, Random DA harms performance with all algorithms in antmaze-
umaze, with BC and AWAC in antmaze-medium, and with BC and TD3+BC in parking. Since BC
mimics the provided data, it is understandable that Random DA may harm performance with BC.
However, since offline RL algorithms can learn from suboptimal data, these findings emphasize the
importance of generating expert augmented data even for offline RL (supporting H2).

5.2 Physical Experiments

Method Easy Hard
GuDA 8/10 7/10

MoCoDA 0/10 0/10
Random DA 4/10 0/10

No DA 4/10 0/10
Demonstrator 9/10 2/10

Table 2: Success rates for our phys-
ical robot soccer experiments.

We further evaluate GuDA in a physical robot soccer task in
which a NAO V6 robot must dribble a ball to the goal from
the Easy and Hard initializations shown in Fig. 5a and 5b.
The agent observes its position and orientation as well as the
ball’s position using vision-based state estimation. The ball’s
dynamics depend on how the robot’s feet contact the ball, and
since foot positions are not observed, the ball’s dynamics ap-
pear highly stochastic to the agent. This stochasticity coupled
with noisy state estimation makes this task notably difficult.
We collect data using a policy pre-trained in a low-fidelity soc-
cer simulator with simplified dynamics and perfect state esti-
mation (soccer-sim, Fig. 4b). Our dataset contains a single physical trajectory of the agent dribbling
the ball from the center of the field to the goal (Fig. 5c). This data is highly suboptimal for two
reasons: (1) we trained the demonstrator in a low-fidelity simulator, and (2) the robot fumbled the
ball and had to take an indirect route to the goal.

To apply GuDA, we first identify two task-relevant behaviors in our initial dataset (Fig. 5c): the
robot executing a tight turn to the ball (τ1), and the robot scoring with the ball away from the
sideline (τ2). We then define a sampling procedure to generate augmented trajectories that trace
out the path an expert might take to successfully score (Fig. 5d): we Translate and Rotate τ1 to
demonstrate the agent approaching the ball at a favorable angle, and then we Translate, Rotate,
and Reflect τ2 to demonstrate the agent scoring with the ball away from the sideline.

We generate 1 million augmented samples using GuDA, MoCoDA, and Random DA, and we train
agents using IQL (Kostrikov et al., 2021) for 1 million policy updates. We also compare agents to
the demonstrator we used to collect our physical trajectory. Table 2 and Fig. 6 show the success
rate and IQM time to score for each agent over 10 attempts at each initialization. With the Easy
initialization, GuDA scores faster and more frequently than MoCoDA, Random DA, and No DA.
GuDA and the demonstrator policy have similar success rates, but GuDA scores significantly faster
than the demonstrator as well. We attribute this speedup to how the GuDA policy trained on
augmented data that matches the physical world’s dynamics (since our DAFs are dynamics-invariant)
whereas our demonstrator policy trained in a low-fidelity simulator. With the Hard initialization,
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only the GuDA agent can consistently score; MoCoDA, Random DA, No DA policies always kick
the ball out of bounds. Even the demonstrator policy almost always fails. Our results show that
GuDA not only outperforms MoCoDA and Random DA (H2) but also enables an agent to surpass
its demonstrator in a difficult physical task with just a single suboptimal trajectory (H1).

6 Conclusion

Figure 6: IQM time to score over 10 attempts
with 95% stratified bootstrap confidence intervals.
Lower times are better. GuDA’s confidence inter-
val in Hard is wide because of a single trial in
which the agent scored after an unusually hard
kick moved the ball to the opposite end of the
field. Since MoCoDA failed to score in both tasks,
we exclude it from this figure.

In this work, we introduced Guided Data
Augmentation (GuDA), a human-guided data
augmentation (DA) framework that generates
expert-quality augmented data without the ex-
pense of real-world task interaction. In GuDA,
a user imposes a series of simple rules on
the DA process to automatically generate aug-
mented samples that approximate expert be-
havior. GuDA serves as a intuitive way to
integrate human expertise into offline RL; in-
stead of requiring that an expert demonstrate a
near-optimal sequence of actions to solve a task,
GuDA simply requires the user to understand
what augmented data represents progress to-
ward task completion. Empirically, we demon-
strate that GuDA outperforms a widely-applied
random DA strategy as well as a model-based
DA strategy and enables offline learning from a
limited set of potentially suboptimal data. Furthermore, we show how GuDA yields an effective
policy in a physical robot soccer task when given a single highly suboptimal trajectory. Our findings
emphasize how a more intentional approach to DA can yield substantial performance gains.

The core limitation of GuDA is that it requires domain knowledge to specify sampling procedures.
Since the sampling procedures required to generate expert augmented data are task dependent,
GuDA must be implemented separately for each task. In many navigation and object manipulation
tasks, these rules can be derived from basic intuitions on what task progress looks like and are
simple to implement. However, GuDA is less applicable to tasks in which it is difficult to assess
the quality of a trajectory segment (e.g. chess). While our empirical analysis focuses on offline RL
and behavior cloning, GuDA can in principle be applied to other learning methods – both offline
and online. Future work should study how GuDA interacts with other learning methods such as
inverse RL and online RL. Furthermore, a broader analysis investigating the the most effective way
to integrate augmented data into offline RL – similar to the analysis of Corrado & Hanna (2024) for
online RL – would further strengthen the effectiveness of GuDA as well as other DA techniques.

Broader Impact Statement

Our work focuses on fundamental RL research, and we thus see no direct negative societal conse-
quences. In this work, we propose a data augmentation framework (GuDA) that generates expert-
quality augmented data and improves the performance of offline RL and behavior cloning methods.
Since GuDA outperforms existing data augmentation methods on both simulated and physical tasks
and yields effective policies even when given a small amount of suboptimal data, it can be applied
to real-world tasks (where expert data is often scarce) and positively impact society.
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(a) maze2d-umaze (b) maze2d-medium (c) maze2d-large

(d) antmaze-umaze (e) antmaze-medium (f) antmaze-large

(g) parking (h) soccer-sim (i) soccer-physical

Figure 7: Visualizations of initial datasets. In maze2d and antmaze tasks, gold indicate data points
for which the agent receives a nonzero reward. In soccer-sim and soccer-physical tasks, red denotes
the agent and black denotes the ball.

A Task Descriptions

In this section, we describe each task in our empirical analysis. Fig. 7 visualizes the initial datasets
used in each task.

A.1 Maze2d

A force-actuated point-mass must navigate to a fixed goal from a random initial position. The agent
observes its position (x, y) and velocity (vx, vy), and the agent’s actions take the form a = (fx, fy)
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where fx and fy are linear forces applied to the agent in the x and y directions, respectively. The
agent receives +1 reward for being in positions within a disk of radius 0.5 centered at the the goal
and 0 reward otherwise.

A.2 Antmaze

This task is essentially the same as the maze2d task except the agent is replaced with a quadruped
“ant”. The agent must navigate to a fixed goal from a fixed initial maze position. The agent observes
its position (x, y), its height above the ground z, its orientation expressed as a quaternion, as well
as the angle and angular velocities or all eight of its joints. The agent’s action consists of torques
to apply to each of the agent’s joint. The agent receives +1 reward for being in positions within a
disk of radius 0.5 centered at the the goal and 0 reward otherwise.

A.3 Parking

An autonomous vehicle must park front-first into a designated parking spot. The agent observes it’s
current position (x, y), velocity (vx, vy), as well as the sin and cos of its heading θ (i.e. the direction
the front of the car is facing). The agent’s state is thus

sagent = (x, y, vx, vy, sin θ, cos θ).

The agent also observes a goal g consisting of the (xg, yg) position of the parking spot, the desired
velocity (vg,x, vg,y) at the parking spot (which is always set to (0, 0)), as well as the sine and cosine
of car’s desired heading θg at the parking spot (which is either θg = +π/2 or θg = −π/2) :

g = (xg, yg, 0, 0, sin θg, cos θg).

The full state is s = (sagent, g). The agent selects actions a = (aacc, asteer) where aacc is the agent’s
acceleration in direction θ and asteer controls the agent’s change in direction.

The agent receives a dense reward based on its distance to the parking spot and how closely the
car aligns with the spot. If the agent crashes into one of the walls surrounding the parking lot, it
receives a −5 reward penalty:

r = −
√
|s− g| − 5 · 1crash (1)

A.4 Soccer-sim

A robot (agent) must kick a ball to a fixed goal location. Robot and ball positions are initialized
uniformly at random across the entire field. The observation contains the the following features:

• (xrobot to ball, yrobot to ball) = (xrobot − xball, yrobot − yball), the vector difference between the
robot and ball positions.

• (xball to goal, yball to goal) = (xball− xgoal, yball− ygoal), the vector difference between the ball
and goal positions.

• (sin(θrobot to ball), cos(θrobot to ball)), where θrobot to ball denotes the angle between the direc-
tion the robot is facing and the ball.

• (sin(θball to goal), cos(θball to goal)), where θball to goal denotes the angle between the ball and
the goal.

The action a = (aθ, ax, ay) has three components: aθ rotates the direction the robot is facing,
and (ax, ay) controls the robot’s change in (x, y) position. The agent receives reward based on its
distance to the ball and the ball’s distance to the goal:
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(a) An illustration of the near-optimal displacement
directions θ∗(x) in the maze2d-umaze-v1 task. Near
the goal, (red ball), we sample rotation angles uni-
formly at random.

(b) An illustration of the near-optimal displacement
directions θ∗(x) in the maze2d-umaze-v1 task. Near
the goal, (red ball), we sample rotation angles uni-
formly at random.

r =
{

0.9
dagent to ball

+ 0.1
dball to goal

+ 1ball at goal, if the agent is facing the ball
1ball at goal, if the agent is not facing the ball

(2)

where dagent to ball is the Euclidean distance between the agent and the ball, dball to goal is the Eu-
clidean distance between the ball and the goal, and 1ball at goal is an indicator function that returns
1 when ball is at the goal and 0 otherwise. We say the agent is facing the ball if |θrobot to ball| < 30◦

A.5 Soccer-physical

An agent must kick a ball to a fixed goal location. Agent and ball positions are initialized as shown
in Fig. 5a and Fig. 5b. The agent receives reward based on its distance to the ball and the ball’s
distance to the goal. This task uses the same observation space, action space, and reward function
used in the soccer-sim task.

B Sampling Procedures

In this appendix, we provide a formal description of the sampling procedures we use to guide DA in
our empirical analysis. More concretely, we define distributions over translations P(x, y|τ), rotations
Θ(θ|τ), and reflections R(τ) for each task. We refer the reader to Table 1 for a high-level description
of guided data augmentations for each task. In all descriptions, we let τ denote an input trajectory
to be augmented.

B.1 Maze2d

In this task, we use the Translate and Rotate DAFs. Since the agent is initialized to a random
position in the maze, an expert policy will visit all maze position. Thus, we let P(x, y|τ) be a
uniform distribution over all valid maze positions for all τ . We note that this distribution over maze
positions is identical to the distribution used in a random DA strategy.
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Before describing how we sample rotation angles, we introduce a few relevant quantities. Let
(∆x, ∆y) denote τ ’s displacement (the difference between τ ’s final and initial positions), and let
θ(τ) = arctan ∆y

∆x be the displacement angle of the original trajectory segment. A user can easily
compute θ(τ) given τ . Additionally, let θ∗(x, y) be a function returning a near-optimal displacement
direction at position (x, y). Fig. 8a illustrates how we define θ∗(τ) in the maze2d-umaze-v1 task.
We divide the maze into cells (indicated by white dashed lines) and then label each cell with a de-
sired displacement direction (arrows). Note that for the cell containing the goal, have no preferred
displacement direction.

After translating the agent, we sample rotation angles for Rotate from Θ(θ|τ) = (θ∗(x, y)+ε)−θ(τ)
where (x, y) is the agents initial position in τ , and ε is a noise parameter distributed according to
Unif([−π/6, +π/6]). We add noise to the rotation angle because offline RL methods learn to follow
expert trajectories more effectively when expert data is noisy (Kumar et al., 2022). Intuitively,
(θ∗(x, y) + ε)− θ(τ) is the rotation angle required to rotate the agent’s displacement direction from
θ(τ) to (θ∗(x, y) + ε). A visualization of this sampling procedure can be found in Fig. 8b.

B.2 Antmaze

Figure 9: Visualization of the sampling
procedure we use in soccer-sim.

In this task, we use the Translate DAF. Since the
agent is initialized to a fixed position in the maze,
an expert policy will only visit a subset of maze po-
sition near the optimal path toward the goal. Thus,
using the same notation established in the previ-
ous section for maze2d, we sample new positions
from P(x, y|τ) = Unif({(x, y) : |θ(τ) − θ∗(x, y)| <
π
4 , (x, y) is near the optimal path to the goal}), a uni-
form distribution of task-relevant maze positions for which
the agent’s original displacement angle is within π/4 of the
optimal displacement angle. Similar to maze2d, we define
θ∗(x, y) by dividing the maze into cells and then labeling
each cell with a desired displacement angle. We then fetch
all cells whose optimal displacement angle closely aligns
with the agent’s original displacement, and then randomly
sample a new position from one of these cells.

B.3 Parking

In this task, we use the Translate and Rotate DAFs. We first sample a new goal g uniformly at
random from G, and then translate τ such that its final position is a g = (xg, yg), i.e., P(x, y|τ)
places probability 1 on the goal’s position (xg, yg).

After translating, we rotate the agent such that the car’s heading at the final step in τ is closely
aligned with the parking spot’s heading θg. We sample rotation angles from Θ(θ|τ) = (θg +ε)−θ(τ),
where ε is a noise parameter distributed according to Unif([−π/6, +π/6]), and θτ is heading angle of
the last transitions in τ . Intuitively, (θg + ε)− θ(τ) is the rotation angle required to rotate agent’s
heading from θ(τ) to (θg + ε).

B.4 Soccer-sim

In this task, we first reflect τ with probability R(τ) = 0.5. Then, we translate the τ so the ball’s
final position is at the goal. Thus, we sample a new position from P(x, y|τ) = Unif({(x, y) :
(x, y) is inside the goal}). Last, we rotate τ by a rotation angle sampled uniformly at random
from while making sure the rotate trajectory remains in-bounds. A visualization of this sampling
procedure can be found in Fig. 9.
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Algorithm Hyperparameter Values

BC MLP network hidden layers (64, 64), (256, 256)
learning rate 10−3, 10−4, 10−5, 10−6

TD3+BC (Fujimoto & Gu, 2021)
MLP network hidden layers (64, 64), (256, 256)
actor/critic learning rates 10−3, 10−4, 10−5

α 2.5, 5, 7.5, 10

AWAC (Nair et al., 2020)
MLP network hidden layers (64, 64), (256, 256)
actor/critic learning rates 10−3, 10−4, 10−5

inverse advantage weight λ 0.5, 1, 2 (and 0.1 for antmaze)

IQL (Kostrikov et al., 2021)
MLP network hidden layers (64, 64)
actor/critic learning rates 10−4, 10−5, 10−6

inverse temperature β 1, 5, 10
expectile τ 0.5, 0.7, 0.9

Table 3: Hyperparameter values we considered for each algorithm.

C MoCoDA Baseline

In this section, we provide additional details regarding MoCoDA experiments. We use the author’s
original implementation pitis2022mocoda.

MoCoDA can in principle generate expert-quality augmented data if we specify a parent distribution
P (s, a) that is distributed according to the (s, a) distribution an expert might observe, but doing
so requires us to explicitly describe the distribution of expert actions. We do not have access to
this information. However, it is nevertheless fairly simple to specify a distribution P (s, ·) over task-
relevant states. In all tasks, we choose a parent distribution that is uniform over task-relevant agent
positions, corresponding to MoCoDA-U in the original paper (Pitis et al., 2022). At the implemen-
tation level, MoCoDA-U fits a Gaussian mixture model Pθ(s, a) parameterized by θ to the provided
dataset (while exploiting causal independence to generalize beyond the dataset’s support). Then,
this Pθ(s, a) is reweighed to be uniform over agent positions and used as the parent distribution. We
note that this choice of parent distribution closely aligns with our sampling procedures detailed in
Appendix B, which sample transformations uniformly at random over a small subset of task-relevant
positions.

D Hyperparameter Tuning

We tune all algorithms and DA strategies separately using a hyperparameter sweep over values listed
in Table 3. In the main paper, we report the hyperparameters yielding the largest IQM return over
10 seeds.

Since it would be time-consuming and costly to evaluate all IQL hyperperameter settings in the
physical robot soccer tasks, we first evaluate IQL hyperparameter settings in soccer-sim. We identify
four IQL policies with the largest IQM return in soccer-sim, and then evaluate each of these four
policies in the physical task. We report results for the IQL policy yielding the largest success rate
in both the Easy and Hard initializations.


