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Abstract— In this paper, we introduce a GAN-based solu-
tion for generating synthetic multispectral images from fully-
annotated RGB images for data augmentation purposes in
forestry robotics applications at ground-level. Fully-annotated
multispectral datasets are difficult to obtain with sufficient
training samples when compared to RGB-based datasets, since
annotation in this case is often very time-consuming and
expensive due to the need for expert knowledge. In this text, a
study comparing different GAN-based image translation models
designed for data augmentation is presented. Synthetic images
generated by the proposed solution are shown to be realistic
enough to yield performance ratings comparable to what is
obtained using real images.

I. INTRODUCTION

Multispectral and hyperspectral imaging (MSI/HSI) have
been extensively used in many recent applications, including
precision agriculture [1], [2], crop [3], land resource [4] and
water quality [5] monitoring, vegetation coverage [6], preci-
sion forestry [7], [8], and many others relating to promoting
sustainability and protecting the environment. For precision
forestry and forestry robotics in particular, multispectral
imaging is expected to considerably improve perceptual
capabilities compared to RGB imaging. This is due to the
use of specialised filters to implement near-infrared (NIR)
channels tuned to detecting chlorophyll, therefore enhancing
plant detection and discrimination through machine learning
and, more specifically, deep learning models [7], [8].

Unfortunately, fully-annotated multispectral datasets are
difficult to obtain with sufficient training samples when
compared to RGB-based datasets, since annotation is of-
ten time-consuming and expensive due to the need for
expert knowledge (an issue compounded even further by
the specific nature of multispectral images) [9], [10]. Two
different approaches have been adopted to solve this gap
between the significant number of training samples required
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by deep learning models and the annotated images that can
be acquired in practice:

• deep learning models for MSI/HSI classification with
few annotated samples – see [9] for an in-depth survey
on this approach;

• data augmentation solutions to increase the amount of
annotated images without the need for human expert
intervention.

In this paper, we present a GAN-based solution for gen-
erating synthetic multispectral images from fully-annotated
RGB images for data augmentation purposes, following the
latter approach. In particular, we provide proof-of-concept
showing that the synthetic images generated by this solution
yield a level of performance in the semantic segmentation
model that is being used in our application comparable to
what is obtained in validation using real images. Moreover,
we present a study comparing different GAN-based image
translation models designed to choose the most appropriate
one for this purpose. We close this text by drawing conclu-
sions on our findings and setting out future work on MSI
dataset augmentation.

II. RELATED WORK

Synthetic images for data augmentation can be generated
in various ways. Just to cite a few recent examples from
different application areas, Oksuz et al. [11] use the k-
space corruption scheme method to improve the accuracy in
detection of motion artefacts in medical images, while style
transfer methods, as presented by Mikołajczyk et al. [12],
[13], have also been adopted to create synthetic images for
data augmentation to handle the lack of sufficient amount
of the image training data and improve classification and
detection performance.

Generative Adversarial Networks (GANs) are a useful
tool to perform data augmentation when datasets are small,
fragmented, imbalanced or without labelling. Meister et al.
demonstrated that a deep convolutional GAN is able to
generate a large synthetic dataset from less than 50 input
images to improve inspection processes [14]. In [15], Bird et
al. found that the autonomous recognition ability of healthy
and unhealthy fruits in smart agriculture could be improved
when the training set was augmented with synthetic images
of fruits generated by a Conditional GAN.

In [10], Kemker et al. generated synthetic MSI for seman-
tic segmentation model training to overcome label scarcity
and to make the segmentation process less prone to overfit-
ting. Their results show that pretraining these models on syn-
thetic multispectral imagery can improve their performance.
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Fig. 1. GAN image translation training to generate corresponding NIR channels of multispectral images with an original multispectral image (left image);
a model ground truth image, which the model attempts to predict (centre, top image); a green channel image, which is part of the model input image
(centre, second image from the top); a semantic segmentation image, where its label values are part of the model input image (centre, third image from
the top) and a red channel image, which is part of the model input image (centre, last image).

The same problem, namely the lack of a large number
of samples with labels, was addressed in [16] using data
imputation and matrix completion methods to deal with
unacceptable model generalisations. According to their find-
ings, augmenting data by imputation and matrix completion
methods can increase the classification performance of mul-
tispectral images.

Abady et al. in [17] and Mohandoss et al. in [18] applied
GANs to multispectral satellite imagery to also cope with
the absence of a high number of samples but without
labelling. They achieved satisfactory synthetic image quality
for the data augmentation. Fawakherji et al. [19] created
semi-artificial multispectral samples by employing a GAN
to tackle the problem of label shortage for classification in
precision farming. By replacing only the objects, e.g. plants
and weeds, with synthetic objects, they enabled increased
segmentation performance of state-of-the-art semantic seg-
mentation convolutional networks with respect to common
metrics.

Despite the success of recent studies data augmentation,
and in particular synthetic image generation using GANs,
we are unaware of any solution that specifically tackles
multispectral image data for robotic forestry applications at
ground-level – most of the solutions produced for forestry
applications concern aerial and satellite MSI, as reported
above.

III. IMPLEMENTATION

A. GANs for Image-to-Image Translation

Image-to-image translation is a method for converting
an input image from a source domain to a target domain
[20]. CNN-based image-to-image translation require fully

TABLE I
SEMANTIC CLASSES AND RESPECTIVE COLOR CODING

Class Color

Background (BA) Black
Live flammable material (aka Fuel) (FU) Red
Trunks (TR) Brown
Canopies (CA) Green
Humans (HU) Yellow
Animals (AN) Purple

comprehensive datasets containing images from the source
domain as well as from the target domain in order to enable
the model to understand the relationships between the two
domains. Recent approaches for image translation include
the use of autoencoders [21] and GANs.

Arguably the most commonly used approach, GAN-based
solutions attempt to learn the recreation of specific ground
truth images by optimising loss functions [22]. This ap-
proach is useful in terms of image quality, as GAN loss
functions are designed to approximate human perception.
Moreover, when corresponding labelling is available across
domains, supervised GAN approaches yield accurate and
highly precise samples of a dataset by taking the semantic
segmentation mask and the specific channels of an input
image as conditions.

B. Synthetic Multispectral Image Generation Using GAN-
based Solutions

To generate synthetic MSI data from RGB images, given
what was explained in the previous section, we have decided
to use a GAN-based approach for image-to-image translation
from the RGB to the MSI domain.
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Fig. 2. GAN image translation generation of synthetic NIR channel and corresponding final “fake” multispectral image from a fully-annotated RGB input
image (on the left); a green channel image, which is part of the model input image and is also feed forward to be merged after generation with the synthetic
NIR channel (centre, top image and right, top image); a semantic segmentation image, where its label values are part of the model input image (centre,
second image from the top); a red channel image, which is part of the model input image and is also feed forward to be merged after generation with the
synthetic NIR channel (centre, last image and right, last image); a synthetic NIR channel image, which the model predicted and is merged afterwards with
the real red and green channels as a synthetic multispectral image (right, second image from the top).

The multispectral images used in our application consist
of red, green, and NIR (near-infrared) channels. Since our
training dataset, described in section IV-A, includes ground-
truth segmented labelling masks resulting from human expert
annotation, these data are used for supervised training of
a GAN framework to learn how to generate “fake” NIR-
channel images, thereby implementing a 3-to-1 image-to-
image translation model (Fig. 1). After the model is trained,
it is expected to be able to generate synthetic MSI data from
RGB images taken as input by only replacing the blue (B)
channel with the “fake” NIR-channel, as depicted in Fig. 2.

Since we have access to labelling across domains, we
have chosen to compare three state-of-the-art supervised
learning-based GANs for image-to-image translation. The
first solution, pix2pix GAN [23], is a conditional adversarial
network, which offers a general-purpose solution to image-
to-image translation problems. The network not only learns
the mapping from input image to the output image, but
also learns a loss function to train this mapping. This
makes it possible to apply the same generic approach to
problems that traditionally would require relatively differ-
ent loss formulations. The second solution under scrutiny,
pix2pixHD GAN [24], is an extension of pix2pix GAN. It
is a method for synthesizing high-resolution photo-realistic
images from semantic label maps using conditional GANs.
Using pix2pixHD it is possible to generate 2048 × 1024 vi-
sually satisfying results, as it consists of adapted multi-scale
generator and discriminator architectures. Finally, GauGAN
[25], the third solution we tested which is in turn based
on pix2pixHD, includes a spatially adaptive normalisation
layer called “SPADE” to synthesise photorealistic images
that specify a semantic layout.

(a) (b)

Fig. 3. Example of (a) an original multispectral image and (b) its ground
truth labelling using the classes listed in Table I.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup and Metrics Definition

For training the different GANs on translating multispec-
tral images into the corresponding NIR channels, we used
the “2019 2020 quinta do bolao coimbra” dataset from the
SEMFIRE forestry robotics repository [26]. This dataset
includes MSI data obtained using a Teledyne DALSA mul-
tispectral camera at a 720p resolution, totalling 920 images.
The dataset also includes pixel-wise annotation masks result-
ing from human expert annotation according to the 6 classes
listed in Table I (see also Fig. 3 for an illustrative example).

The evaluation of the appropriateness and quality of the
synthetic images generated by the three GANs, which were
trained for 500 epochs, was performed in three steps:

• First, we performed a qualitative evaluation by exam-
ining the quality of the resulting generated synthetic
images by visual inspection.

• Then, the models were quantitatively tested by replacing
the original validation image set with the corresponding
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Fig. 4. Synthetic image generation per model for the same MSI input – first row ((a) - (d)): NIR-channels; second row ((e) - (h)): Multispectral images.
First column: ground truth for NIR-channel and original multispectral image input. Second to last column: pix2pix, pix2pixHD and GauGAN “fake”
image (i.e. prediction) generated for NIR-channel and the complete synthetic multispectral image, composed by original R- and G-channels and generated
NIR-channel.

synthetic images that were generated. Subsequently, we
compared the resulting performance of the semantic
segmentation model proposed in [8] for all methods
against the baseline represented by the original images.

• Finally, the models were benchmarked against each
other with the most commonly used image-to-image
translation metrics, which score each model according
to how realistic the synthetic images would seem to
human eyes.

The specific metrics used to evaluate semantic segmen-
tation for the first step were the F1-Score, Recall, and IoU
(Intersection over Union), in accordance with [8]. The mean
value for these metrics was calculated across all classes and
for each separate class as follows:

F1-Score =
2TP

2TP + FN + FP
; (1)

IoU =
TP

TP + FN + FP
; (2)

Recall =
TP

TP + FN
, (3)

where TP stands for True Positive, FN for False Negative,
FP for False Positive and TN stands for True Negative. To
assess the appropriateness of each method we set a target of
scoring at least 80% of the baseline performance for each
metric across all classes.

As for quantitative comparative benchmarking, we used
two of the most common metrics for evaluating how re-
alistic generated images, the Inception Score (IS) and the

Frechet Inception Distance (FID) – see [27] for an in-
depth survey. The IS [28] uses a pretrained deep learning
neural network model, the Inception v3 model [29] trained
on the ImageNet dataset [30], for image classification of
the generated images. It measures the average Kullback-
Leibler divergence (KL divergence) between the conditional
label distribution p(y—x) of samples (expected to have low
entropy for easily classifiable samples; better sample quality)
and the marginal distribution p(y) obtained from all the
samples (expected to have high entropy if all classes are
equally represented in the set of samples; high diversity). It
favors low entropy of p(y—x) but a large entropy of p(y)
[27]. The IS shows a reasonable correlation with the quality
and diversity of generated images [28]. The FID has been
proposed as an alternative or complement to the Inception
Score [31]. FID embeds a set of generated samples into a
feature space given by a specific layer (Inception v3 model
or any other CNN). Viewing the embedding layers as a
continuous multivariate Gaussian, the mean and covariance
are estimated for both the generated images and the original
images. The Frechet distance between these two Gaussians,
which is also known as the Wasserstein-2 distance [32], is
then used to quantify the quality of generated samples. FID
performs reliably in terms of discriminability, robustness and
computational efficiency. However, it assumes that features
are of Gaussian distribution which is often not guaranteed. It
has been shown that FID is consistent with human judgments
and is more robust to noise than IS. In conclusion, a lower
FID means smaller distances between synthetic and real data
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Fig. 5. Semantic segmentation using the model presented in [8] per GAN-based solution compared to (a) ground truth and (b) semantic segmentation
Reference-Training as baseline. Figures (c) - (e) represent the Replaced-Validation Subset-Training results for pix2pix, pix2pixHD and GauGAN. In each
case, the segmentation mask result is overlaid on the original multispectral images.

distributions, therefore it indicates more realistic generated
images [27].

B. Qualitative Evaluation

Fig. 4 demonstrates the outcomes of the generation of
the “fake” NIR-channel and respective synthetic MSI for
each model as comparing to the corresponding ground-truth
images. Fig. 5, shows an example of semantic segmentation
results using the model proposed by [8], with the segmenta-
tion mask overlaid on the original multispectral image after
training with the results of pix2pix, pix2pixHD and GauGAN
as follows:

• Reference-Training: with the original multispectral im-
age dataset as is.

• Replaced-Validation Subset-Training: retrained after
replacing the near-infrared (NIR) channels of the multi-
spectral images in the validation set with their synthetic
versions generated by each GAN-based solution.

Both figures clearly demonstrate satisfactory qualitative
results for synthetic MSI generation, with ground truth im-
ages, baseline segmentations, and model predictions nearly
indistinguishable by visual inspection.

C. Quantitative Evaluation

Using the methodology for training described in the pre-
vious section, quantitative results were also obtained, more
specifically by applying the F1-Score, IoU and Recall metrics
defined in section IV-A – these are presented in Table II. The
table indicates the absolute metrics per class, the mean value
across all classes, and the scoring percentages against the

baseline for each GAN-based solution, as defined in section
IV-A.

These results show that all solutions yield a level of per-
formance from the semantic segmentation model comparable
to what is obtained in validation using real images, as the
scoring percentages against the baseline are above the target
value of 80% for all metrics established in section IV-A.
Interestingly, the metrics scores for the “Humans” and “An-
imals” classes are furthest from the baseline scores among
all classes, which is to be expected, given that these are the
most under-represented in the dataset. In fact, it becomes
clear that if only the other four classes would contribute for
the mean values for the metrics, the performance of the GAN
solutions would be even higher.

D. Comparative Benchmarking

When comparing the GAN-based methods with one an-
other, the scoring percentages in Table II show that GauGAN
approach is marginally better than the others for the F1-Score
and IoU; however, this difference is nearly insignificant.

Table III, which compares all methods using the relative
metrics for assessing image realism defined in section IV-
A, also shows that the difference between the approaches
is close to negligible, with pix2pix coming first for IS and
pix2pixHD for FID, and GauGAN achieving in-between
results for both metrics.



TABLE II
BENCHMARKING RESULTS OF ABSOLUTE METRICS (PLEASE REFER TO TABLE I FOR MEANING OF CLASS LABELS).

Training Parameter Mean %Baseline Mean* BA FU TR CA HU AN

Reference-Training
(baseline)

F1-Score 0.822 – 0.960 0.933 0.743 0.900 0.826 0.567
IoU 0.718 – 0.923 0.875 0.591 0.819 0.704 0.395
Recall 0.946 – 0.942 0.921 0.930 0.940 0.974 0.967

pix2pix
F1-Score 0.737 89.7% 0.951 0.931 0.661 0.880 0.669 0.328
IoU 0.626 87.2% 0.907 0.871 0.494 0.786 0.503 0.196
Recall 0.778 82.2% 0.930 0.916 0.875 0.934 0.709 0.303

pix2pixHD
F1-Score 0.739 90.0% 0.953 0.934 0.664 0.886 0.671 0.324
IoU 0.629 87.6% 0.911 0.876 0.500 0.795 0.505 0.194
Recall 0.778 82.2% 0.931 0.921 0.869 0.939 0.705 0.304

GauGAN
F1-Score 0.744 90.5% 0.952 0.934 0.675 0.884 0.671 0.346
IoU 0.633 88.2% 0.909 0.877 0.509 0.792 0.504 0.209
Recall 0.777 82.1% 0.933 0.922 0.876 0.932 0.707 0.292

* The %Baseline Mean column provides the proportion of the parameter means for each model as a percentage of the baseline parameter mean.

TABLE III
BENCHMARKING RESULTS OF RELATIVE METRICS

Solution IS ↑ FID ↓

pix2pix 3.77 65.2
pix2pixHD 3.40 60.1
GauGAN 3.50 60.3

V. CONCLUSION

In this study, we investigated several solutions to generate
synthetic multispectral images for semantic segmentation in
forestry applications. These solutions were evaluated through
different metrics and discussed for decisions on which model
is the most suitable for our approach. In general, all tested
methods provide satisfactory results for the pre-established
targets. Taking into account both the absolute and compara-
tive evaluation results, GauGAN marginally offers the most
appropriate solution for future use in synthetic MSI sample
generation for data augmentation.

Future work will focus on data augmentation for semantic
segmentation by generating synthetic multispectral images
from RGB images taken from a photo-realistic forestry
simulator, which allows the capability of generating an un-
limited amount of training images with ground-truth labelling
for data augmentation. We expect, as a consequence, that
the semantic segmentation performance reported in [8] is
decisively improved.
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