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ABSTRACT

Animals are able to rapidly infer, from limited experience, when sets of state-action
pairs have equivalent reward and transition dynamics. On the other hand, modern
reinforcement learning systems must painstakingly learn through trial and error
that sets of state-action pairs are value equivalent—requiring an often prohibitively
large amount of samples from their environment. MDP homomorphisms have
been proposed that reduce the observed MDP of an environment to an abstract
MDP, which can enable more sample efficient policy learning. Consequently,
impressive improvements in sample efficiency have been achieved when a suitable
MDP homomorphism can be constructed a priori—usually by exploiting a prac-
titioner’s knowledge of environment symmetries. We propose a novel approach
to constructing a homomorphism in discrete action spaces, which uses a partial
model of environment dynamics to infer which state-action pairs lead to the same
state—reducing the size of the state-action space by a factor equal to the cardinality
of the action space. We call this method equivalent effect abstraction. On MDP
homomorphism benchmarks, we demonstrate improved sample efficiency over pre-
vious attempts to learn MDP homomorphisms, while achieving comparable sample
efficiency to approaches that rely on prior knowledge of environment symmetries.

1 INTRODUCTION

Modern reinforcement learning (RL) agents outperform humans in previously impregnable bench-
marks such as Go (Silver et al., 2016) and Starcraft (Vinyals et al., 2019). However, the computational
expense of RL hinders its deployment in promising real world applications. In environments with
large state spaces, RL agents demand hundreds of millions of samples (or even hundreds of billions)
to learn a policy—either within an environment model (Hafner et al., 2020) or by direct interaction
(Mnih et al., 2013). Function approximation can enable some generalisation within a large state space
but still most RL agents struggle to extrapolate value judgements to equivalent states.

In contrast, animals can easily abstract away details about states that do not effect their values. For
example, a foraging mouse understands that approaching a goal state (shown as a piece of cheese in
Figure 1) while travelling east will have the same value as approaching the same goal state from the
west. These sort of state abstractions have been defined in RL as Markov decision process (MDP)
homomorphisms Ravindran & Barto (2001); van der Pol et al. (2020b). MDP homomorphisms reduce
large state-action spaces to smaller abstract state-action spaces by collapsing equivalent state-action
pairs

::::::::::
state-actions

:
in an observed MDP onto a single abstract state-action pair in an abstract MDP

van der Pol et al. (2020b).

Given a mapping between an abstract MDP and an experienced MDP, policies can be learned effi-
ciently in the smaller abstract space and then mapped back to the experienced MDP when interacting
with the environment (Ravindran & Barto, 2001). However, obtaining mappings to and from the ab-
stract state-action space is challenging. Success has been achieved by hard coding homomorphisms
into policy networks

:::::::
Previous

::::::
works

::::
hard

:::::
code

::::::::::::::
homomorphisms

:::
into

::
a
::::::
policy (van der Pol et al.,

2020b) but learning homomorphic mappings online is an unsolved problem.

We develop equivalent effect abstraction, a method that constructs MDP homomorphisms from
experience via a dynamics model—leveraging the fact that state-action pairs leading to the same next
state usually have equivalent value. Consider the example of a gridworld maze, moving to a given
cell has the same value whether you approached from the right or the left. Therefore, if we know the
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Figure 1: State-action pairs that lead to the same state often have equivalent values (shown by
the purple arrows). Instead of learning these equivalent values individually through reinforcement,
we instead learn the value of one abstract action that represents both purple arrows. These values
are looked up and learned with a backwards dynamics model during training—meaning no prior
knowledge is required from a practitioner.

value for approaching from the right then we also know the value of moving the approaching from
the left. By extrapolating value judgements between equivalent state-action pairs we can use this
equivalence to reduce the amount of experience required to learn a policy.

An important distinction from previous works is that we do not use environment symmetries to reduce
the size of the state-action space. We exploit a separate redundancy common to many MDPs—for a
given state there are often multiple state-action pairs that also lead to that state. While we do use a
partial model in our approach, equivalent effect abstraction is different to model based RL because
we focus on reducing the size of the state-action space rather than augmenting experience with
predicted trajectories. Additionally, unlike model-based RL, equivalent abstraction can be plugged
into model-free algorithms without a reward model. Our contributions are as follows:

1. We develop a novel approach for constructing MDP homomorphisms (equivalent effect
abstraction) that requires no prior knowledge from a practitioner

2. In the tabular setting, we show equivalent effect abstraction can improve the planning
efficiency of model-based algorithms and the sample efficiency of model-free algorithms

3. In the deep RL setting, we show equivalent effect abstraction can be learned from experience
and then leveraged to improve sample efficiency

In Section 2 we formally describe the MDP homomorphism framework
::::
MDP

::::::::::::::
homomorphisms

:
and

then introduce equivalent effect abstraction in Section 3. In Section 4 we empirically validate our
approach using benchmarks from the MDP homomorphism literature. An overview of related work is
found in Section 5 and we finish with limitations in Section 6 as well conclusions in Section

::::::
Related

:::::
work,

:::::::::
limitations

:::
and

::::::::::
conclusions

:::
are

::
in

:::::::
Sections

::
5,

::
6

:::
and

:
7.

2 MDP HOMOMORPHISMS

Using the definition from (Silver, 2015), an MDP M can be described by a tuple ⟨S,A,P,R, γ⟩
where S is the set of all states, A is the set of all actions, R = E[Rt+1|St = s,At = a] is the reward
function that determines the scalar reward received at each state, P = P[St+1 = s′|St = s,At = a]
is the transition function of the environment describing the probability of moving from state to another
for a given action and γ ∈ [0, 1] is the discount factor describing how much an agent should favour
immediate rewards over those in future states. An agent interacts with an environment through its
policy π(a|s) = P[At = a|St = s] (Silver, 2015) which maps the current state to a given action.
To solve an MDP, an RL agent must develop a policy that maximises the return G, which is equal
to the sum of discounted future rewards G =

∑T
t=0 γ

tRt+1 (where t is the current timestep and
T is the number of timesteps in a learning episode). It is worth briefly mentioning that equivalent
effect abstraction assumes an MDP definition where the reward function is defined by a given state
rather than how an agent travels to that state (i.e. reward functions are defined as R(s′) rather than
R(s, a, s′)—in the vast majority of RL benchmarks this is a safe assumption.

(Ravindran & Barto, 2001) introduced the concept of a homomorphism which, using the notation and
definitions from (van der Pol et al., 2020b), is a homomorphism h = ⟨σ, {αs|s ∈ S⟩} from an agent’s

2



Under review as a conference paper at ICLR 2023

Figure 2: We find equivalent states by moving forward and then backwards through a model of the
environment. Unlike previous approaches to homomorphisms in MDPs (van der Pol et al., 2020b),
we are not exploiting the horizontal symmetry of the environment. In contrast, we take advantage of
the fact that state-action pairs that lead to the same state usually have equivalent values.

experienced MDP M to an abstract MDP M̄ =
〈
S̄, Ā, P̄, R̄, γ

〉
, which satisfies the following.

P̄(σ(s′)|σ(s), αs(a)) =
∑

s′′∈σ−1(s′)

P(s′′|s, a), ∀s, s′ ∈ S, a ∈ A (1)

R̄(σ(s), αs(a)) = R(s, a), ∀s ∈ S, a ∈ A (2)

Where σ is a mapping from experienced states to abstract states, while αs is a state dependent mapping
between experienced and abstract actions. Equations (1) and (2) demonstrate that a homomorphic map
of states and actions must maintain the transition dynamics and reward functions of the experienced
MDP within the constructed abstract MDP. As proved in (Ravindran & Barto, 2001) and leveraged
more recently by (van der Pol et al., 2020b), if the true Q-values in the abstract MDP are known —
Q̄∗(σ(s), αs(a)) —then equipped with a homomorphism h, the true Q-values in the experienced
MDP can be “lifted” (Ravindran & Barto, 2001) from their abstract counterparts.

Q̄∗(σ(s), αs(a)) = Q∗(s, a) ∀s ∈ S, a ∈ A (3)

Where Q is the value of observing state s and selecting action a and ∗ signifies the value function
is optimal (van der Pol et al., 2020b). This is useful because the

:::
The

:
size of abstract state-action

space S̄ × Ā is usually much
::::
often smaller than the size of the experienced state-action space S ×A.

Consequently, if an agent is equipped with a homomorphic map, a policy can be learned efficiently in
the reduced abstract state-action space and then “lifted” to the experienced state-action space when
interacting with the environment (Ravindran & Barto, 2001). Unfortunately, without knowing an
environment’s symmetries,

::::::::::::::::::::::
(Ravindran & Barto, 2001).

:::
In

:::::::
general, obtaining a homomorphic map

is difficult. In the next section
::::
Next,

:
we present a novel method for inferring a homomorphic map

from experience.

3 EQUIVALENT EFFECT ABSTRACTION

Equivalent effect abstraction is based on a few simple observations that are guaranteed to be true
::
in

::::
most

:::
RL

:::::
tasks

:
if R and P are deterministic. Firstly, state-action pairs that lead to the same

next state have equivalent reward functions (by definition).
::
in

:::
the

:::::::
majority

:::
of

:::
RL

::::::::::
benchmarks

::::
(e.g.

:::::::::
Deepmind

::::::
control

:::::::::::::::
Tassa et al. (2018)

:
,
::::
gym

::::::
control

::::::::::::
environments

::::::::::::::::::::
Brockman et al. (2016)

::
and

::
the

:::::
Atari

:::::::
learning

:::::::::::
environment

:::::::::::::::::::
Bellemare et al. (2013)

:
).
:::::::

While
:::::::
common

:::::
MDP

:::::::::::
formulations

::::
(like

::
the

::::
one

::::
used

::
in
:::::::

Section
::
2)

::::::
define

::::::
reward

::::::::
functions

::
as

:::::::::
depending

:::
on

:::
the

::::::
current

::::
state

::::
and

::::::
previous

:::::
action,

::
in
:::::
many

::::::::::::
environments

:
it
::
is

:::::::
possible

::
to

::::
drop

:::
the

::::::::::
dependence

::
on

:::
the

::::::::
previous

:::::
action.

:
Secondly,

state-action pairs that lead to the same next state also have equivalent transition functions under an
unknown state homomorphism function σ. To leverage these properties to learn policies in an abstract
MDP, we must develop a method to learn the mapping σ between state-action pairs that lead to the
same state.

Consider the normal RL scenario
:
,
:
where an agent takes an action a in a state represented

by a vector s and ends up in state s′. Once in state s′, how can we infer what other
state-action pairs could also lead to state s′? We could make this inference if we had

3



Under review as a conference paper at ICLR 2023

Algorithm 1
::::::::
Equivalent

::::::
Action

::::::::::
Abstraction

::::::::::
Q-Network

class EquivalentEffectQNetwork(nn.Module):
def __init__(self, forward_model, backward_model, num_of_actions, canonical_action):

self.forward_model = forward_model # pretrained forward model
self.backward_model = backward_model # pretrained backward model
self.number_of_actions = num_of_actions
self.canonical_action = canonical_action
self.q_net = nn.Sequential(nn.Linear(2, 250), nn.ReLU(), nn.Linear(250, 1))

def forward(self, state):
values = [] # list to store q−values for each action
for i, an_action in enumerate(self.number_of_actions):

next_state = self.forward_model(state, an_action)
equivalent_state = self.backward_model(state, canonical_action)
value_for_ith_action = self.q_net(equivalent_state)
values.append(value_for_ith_action)

return values

Figure 3:
:::::::
Pytorch

:::::::::::::::::
(Paszke et al., 2017)

:::::
style

::::::::::::
pseudo-code

:::
for

::::::::::
equivalent

:::::
effect

::::::::::
abstraction

:::::::::
Q-network.

::::
Our

:::::::::
Q-network

::::
only

::::
has

::
an

::::::
output

:::
for

:::
one

::::::::::
action—the

::::::::
canonical

::::::
action.

:::
To

::::::::
transform

::::
input

:::::
states

:::
into

:::
the

::::::::
canonical

::::::::
reference

:::::
frame

:::
we

:::::
move

:::::::
forwards

::::
and

:::::::::
backwards

::::::
through

:
a
::::::::
dynamics

::::::
model,

:::::
with

:::
the

:::::
input

::::::
action

:::
on

:::
the

::::::::
forwards

:::::
model

::::::
giving

::::
the

:::::
order

::
of

:::
the

:::::::::
equivalent

:::::::
Q-value

::::::
outputs.

a forwards and backwards model of the environment. To train our forward model F
and backwards model B, we collect experience tuples ⟨s, a, r′, s′⟩ from the environment
and then optimise the parameters of our models θ and ϕ with an MSE loss function.

argmin
θ

∥Fθ(s, a)− s′∥22 (4) argmin
ϕ

∥Bϕ(s
′, a)− s∥22 (5)

With a learned forwards model Fθ and backwards model Bϕ we are ready to reduce the size of our
MDP. First, we select an action ā to be our canonical action. Next for a given state-action pair (s, a)
the equivalent (canonical) state-action pair can be computed by moving forwards through our model
and then backwards with the canonical action ā.

s̄=
:
σ(s,ā) = =Bϕ(Fθ(s, a), ā) (6)

:::
We

:::::::
describe

:::
the

::::::::::
combination

::
of

:::
the

::::::::
forwards

:::
and

:::::::::
backwards

::::::
model

::
as

:
σ
::::::
solely

::
to

::
be

::::::::
consistent

::::
with

::
the

::::::::
previous

:::::::
literature

:::::::::::::::::::::
van der Pol et al. (2020b)

::::
(i.e.

:
it
::
is

:
a
::::
state

:::::::::::::::
homomorphism).

::
In

::::::
simple

:::::
terms,

:
σ

:
is
::
a

:::::::
mapping

::
to

::::::
another

::::
state

::::::
action

:::
pair

::::
that

::::
leads

::
to

:::
the

:::::
same

:::
next

:::::
state.

:::
To

:::::::
construct

::
σ,

:::
we

:::::::
combine

:
a
::::::::
forwards

:::::
model

:::::::::
prediction

::::
and

::
a

:::::::::
backwards

::::::
model

:::::::::
prediction.

:::::
The

:::
first

::::::
model

::
is
::::::::::

conditioned
::
on

:::
the

:::::
action

::
a

:::
you

::::::
would

:::
like

::
to

:::::
know

:::
the

::::
value

:::
for

:::
and

:::
the

:::::::
reverse

:::::
action

:̄
a
::
is

:::
the

::::::::
canonical

::::::
action.

::
In

::::::
theory,

::::
one

::::::
could

::::::::
calculate

::::::::
multiple

:::::::::
equivalent

::::::::::
state-action

:::::
pairs

::::
for

::
a
:::::
given

::::::::::
state-action

:::::::
pair—by

::::::::
querying

:::
the

:::::::::
backwards

::::::
model

::::
with

::::::::
multiple

:::::::
different

:::::::
actions.

:::::::::
However,

:::
our

::::
aim

::
is
::
to

:::::::
simplify

:::
the

::::::::::
state-action

:::::
space

:::
that

::::
our

:::::
policy

::::::
learns

::
in,

:::
so

::::::
instead

:::
we

:::::
select

::::
one

:::::
action

:::
to

::
be

::::
our

:::::::::
“canonical”

::::::
action

:::
and

:::
all

:::::
other

:::::::::
state-action

:::::
pairs

:::
are

:::::::
mapped

:::
into

:::
its

::::::::
reference

:::::
frame.

:::
In

::::::
Figure

::
2,

::
the

:::::::::
canonical

:::::
action

::
is

::::::
moving

::::::::::::::
right—meaning

:::
our

:::::::::
Q-network

::::
only

:::
has

::
to

:::::
learn

:::::
about

::::::
moving

::::
right

:::
and

:::
we

:::
can

:::::
map

::
all

:::::
right

::::::
values

::
to

::::
their

:::::::::
equivalent

:::
left

::::::
values

::::
with

::::
our

::::::::
forwards

:::
and

:::::::::
backwards

::::::
models.

:::::
The

::::::::
canonical

::::::
action

::
is

:
a
::::::::::::::

hyperparameter.
:::

In
:::::
some

:::::::::::
environments

:::::
such

::
as

::::::::
Cartpole,

:::
the

::::::::
canonical

:::::
action

::::
can

:::
be

:::::::
selected

:::::::::
randomly.

::::::::::
However,

:::
in

:::::
other

:::::::::::
environments

::::::::::
backwards

::::
state

:::::::::
predictions

:::
are

:::
not

::::::
always

::::::::
possible

::
for

::
a
:::::
given

::::::::::
state-action

::::::::::::
pair—meaning

:::::::::
canonical

::::::
actions

::::
need

::
to

::
be

:::::::
selected

:::::
more

::::::::
carefully.

:::::
Next,

:::
we

:::::::
discuss

::::::::
situations

:::::
where

::::::::::
backwards

:::::::::
predictions

::::::
cannot

::
be

:::::
made.

4
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By finding an equivalent canonical state-action pair for each experienced state-action pair we reduce
the number of state-action pairs that an off-policy algorithm must learn to estimate—effectively
reducing

::::::::::::::::
estimate—reducing

:
the size of the space of values from S ×A to S × 1.

:::::::::
S × 1 +N ,

:::::
where

::::::::::
N ∈ S ×A

:::
are

:::
the

:::::
states

:::::
where

:::
the

:::::::::
canonical

:::::
action

::
is

:::
not

::::::::::
computable

:::::::
because

::
of

:::
the

:::::
edge

::::
cases

::::::::
described

::
in

::::::
Section

::
2

::::
(e.g.

::::::::
stochastic

::::::::::::
environments,

:::
no

::::::
unique

:::::::::
backwards

:::::
action

::
or

:::::::::
transitions

:::
that

::
do

:::
not

::::
exist

::
in
:::
the

:::::::::::
environment

::::
such

::
as

::::::::
traveling

:::
left

::
to

:
a
::::
state

:::::
with

:
a
::::::
border

::
to

::
its

::::::
right).

:
It
::
is

::::::::
important

::
to

:::::
stress

:::
that

::::
with

::::::::
forwards

:::
and

:::::::::
backwards

::::::
models

:::
we

::::
have

::::::::
obtained

:
a
:::::::
mapping

::
σ
:::
that

::::::
satisfies

::::::::
Equation

::
3.

::::
This

::::::::
mapping

::::::
σ(s, ā)

:::
can

::::
map

::::
any

::::::::::
state-action

:::
pair

::::
into

:
a
:::::::
smaller

:::::::::
state-action

::::::::::::::
space—matching

::
it

::::
with

:
a
::::::::::
state-action

:::
pair

::::
that

:::
has

:::::::::
equivalent

:::::
value

:::::::::::::::::::::
Ravindran & Barto (2001)

:
.
::
As

:::
our

:::::::
mapping

:::::::
satisfies

::::::::
Equation

::
3,

:
it
::::
also

:::::::
assumes

:::
the

:::::
MDP

:::::::::::::
homomorphism

::::::::
properties

:::::::::
developed

:::
by

:::::::::::::::::::::
Ravindran & Barto (2001)

:
,
:::::::
meaning

:::
the

:::::
policy

:::
we

:::::
learn

::::
with

:::
our

::::::::
canonical

::::
state

::::::
action

::::
pairs

:::
can

::
be

::::::
“lifted”

:::::::::::::::::::::
van der Pol et al. (2020b)

:::
and

::::
used

::
as
::
a
:::::
policy

::
in
::
a
:::::
given

::::::::::
experienced

:::::::::::
environment.

To leverage this property in Q-learning, for every state-action pair we want to know a value for we
simply apply Equation (6) to find the equivalent state and always use the canonical action as our
equivalent action (i. e. αs = {ā,∀a ∈ A}). Algorithm ?? describes the full modified Q-learning
algorithm.

::::
then

::::::
predict

::
its

:::::
value

::::
with

::
a

:::::::::
Q-network.

:
Our definition of an MDP homomorphisms is

slightly different from that introduced by (Ravindran & Barto, 2001). Equivalent effect abstraction
considers equivalent transitions that collide into the same future state with the same reward. This
means it is difficult to map equivalent effect abstraction onto the definitions in Equations (1) and (2).
Nevertheless, the most pertinent property of MDP homomorphisms introduced by (Ravindran &
Barto, 2001) is that the state-action homomorphism is invariant to value (see Equation (3)), which we
demonstrate with our empirical results.

Lastly, we
::
We

:
have assumed that for every state-action pair,

:
at least one equivalent canonical state-

action exists, which
::
can

:::
be

:::::::::
computed.

:::::
Given

::
a

:::::
model

::
of

:::
the

:::::::::::
environment,

::::
this is often true but not

guaranteed
:
it

::
is

:::
not

:::::::::
guaranteed

:::
for

::
a
::::::
variety

::
of

:::::::
reasons. For example, near borders in a grid world

there is no way to travel left to a border state that has a border on its right—we discuss this in more
detail in Sections 4.4 and 6

::::
right. We only found this to significantly effect results in the a tabular

setting, which we mitigate by reverting to vanilla Q-learning table when necessary (that is leaned
::::::
learned in parallel).

::::::::::
Furthermore,

:::::::::::
stochasticity

:::::
could

:::
be

::::::::::
problematic

::::
with

:::
the

::::::
current

:::::::::::
formulation.

:
If
::

a
::::::::
transition

::
is
::::::::::

multimodal
::::

and
:::
the

:::::::
models

::::::
predict

:::
the

::::::
mean

::
of

:::
the

::::
two

::::::
modes

::::
then

:::
the

:::::
value

:::::::
network

:::
will

:::
be

::::::::
presented

::::
with

:::::
states

:::
that

:::
do

:::
not

:::::::
actually

::::
exist

::
in

:::
the

:::::::::::
environment.

::
In

:::::::
Section

::
6,

::
we

::::::
discuss

::::
how

::::::::
recurrent

::::
state

:::::
space

::::::
models

:::::
could

:::
be

::::
used

::
to

::::::
sample

:::::
from

:
a
::::::::::

distribution
::
of

::::::::
predicted

::::::::
transitions

:::
in

:::::
future

:::::
work

:::::::::::::::::
(Hafner et al., 2019).

:::::::
Lastly,

::
if

:::::::
forward

::::::::
dynamics

:::
are

:::::::::::
deterministic

:::
the

:::::::
previous

::::
state

:::::
could

::::
still

:::
be

:::::::::::
unpredictable

:::
as

:
a
:::::::

unique
:::::::
previous

:::::
state

:::
for

:
a
:::::
given

::::::::
previous

:::::
action

:::
may

::::
not

::::::::::
exist—again

:::
the

::::::
model

:::::
based

:::
RL

::::::::
provides

:::::
some

:::::
ideas

:::
for

:::::::::
addressing

:::
this

::
in
::::::

future
:::::
work

:::::::::::::
(Yu et al., 2021).

:

4 EXPERIMENTS

We validate
:::
test our approach on a wide range of RL tasks, from tabular reinforcement learning

:::
RL

with no function approximation to using a convolutional DQN Silver et al. (2016) to do control from
pixels. Where possible, we try to have overlap in our experiments with the MDP homomorphism
literature—using Cartpole to overlap with the well known van der Pol et al. (2020b) and van der Pol
et al. (2020a) as well as Predator Prey to overlap with van der Pol et al. (2020a). Hyperparameter
settings and sweep configurations can be found in Appendix A.1. Shaded regions indicate standard
error of the mean.

4.1 TABULAR MAZE

We begin with the maze environment from (Sutton & Barto, 2018, p. 165). The maze consists of
6 × 9 cells. The agent starts on the far West of the maze and must navigate East and find its way
around borders in the middle of the environment. After passing the borders, the agent must then
travel further East to reach a corridor, before moving North to reach a goal location. In this particular
experiment, we assume a model of the environment is known beforehand—which we move through
forwards and then backwards to create a homomorphic map.

5
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(a) (b)

Figure 4: (a), (b) In a tabular gridworld abstracting away redundancies in the Q-table improves
sample efficiency. For the vanilla Q-learning/planning baselines, an agent must learn the value of each
state-action pair for all actions in the action space. With equivalent effect abstraction, we reduce the
number of Q-values that need to be learned. This yields improvements in both model-free methods
(Q-learning) and model-based approaches (Q-planning). 50 seeds are used for Q-learning while 10
seeds are used for Q-planning.

We use an open-source Q-learning (Watkins & Dayan, 1992) implementation as a baseline1

(along with the maze code from the same authors). We then adapt the Q-learning implementation
to make use of a homomorphic map as shown in Algorithm ??.

:
1.

:
We show in Figure 4a that our

approach compares favorably to vanilla Q-learning, converging much faster to the optimal policy.
To demonstrate the potential for improved

:
In

:::
the

:::::::::
gridworld

:::::::::::
environment,

:::
we

::::::
reduce

:::
the

:::
size

::
of
:::

the
::::
state

:::::
action

:::::
space

:::
and

::::::
hence

:::
the

::::::
number

::
of

::::::::
Q-values

::::::
(when

:::::
going

::::
left)

::::
from

:::
216

:::
to

:::
67.

::
In

:::
this

:::::
case,

::
the

:::::::
number

::
of

:::::
states

::
in

:::
the

:::::::
reduced

:::::
action

:::::
space

::
is

:::
not

:::::::
reduced

::
by

:::
the

:::::::::
cardinality

::
of

:::
the

::::::
action

::::
space

::::::
exactly.

:::::
This

::
is

:::::::
because

::
of

::::
the

::
13

::::::
states

:::::
where

::
it
::
is

:::
not

::::::::
possible

::
to

:::::
reach

:::::
them

::
by

::::::::
traveling

:::
left

::::::
because

:::::
there

::
is

:
a
::::::
border

::
to

:::
the

:::::
right.

::
To

:::
test

:
planning efficiency, we performed a further experiment on the gridworld with model-based

Q-planning (Sutton & Barto, 2018, p. 161). Our Q-planning method is equivalent to the Q-learning
implementation but altered to learn by randomly sampling model transitions. At each Q-planning
update we pause training and evaluate performance in a 100 step episode. Planning performance is
shown in Figure 4b. Similarly to the Q-learning results, leveraging knowledge of equivalent actions
is able to significantly improve learning efficiency.

4.2 CARTPOLE

Next, we apply our approach to the Cartpole benchmark from
:::
test

:::
our

::::::::
approach

::
on

::::::::
Cartpole Brock-

man et al. (2016). In Cartpole,
:
an agent controls a cart with a pendulum attached to it. The goal

of the task is to learn to balance the pendulum upright by moving the cart horizontally left or right.
The environment is formulated with inputs represented by the

:::::
states

:::
are

:
a
:
four-dimensional vector

(position, velocity, angle, angular velocity) and
:::::::
Carpotle

:::
has a discrete action space of moving

:::::
(move

the cart left or right
:
). To learn a model, we use 3 episodes of learning experience at the beginning of

training . With these 3 episodes we are able to train the homomorphic map (two simple linear models,
one for each action optimised with Adam (Kingma & Ba, 2015)) to generate equivalent state-action
pairs for the opposite action to the one experienced. These initial training steps are included for
equivalent effect abstraction in Figure 5b. After these initial episodes we freeze the learned mapping.

We integrate the learned homomorphism into a DQN implementation Silver (2015) 2, with Q-values
only being learned for an arbitrarily chosen canonical action. We compare our approach to three
baselines: vanilla DQN, MDP Homomorphic Networks van der Pol et al. (2020b) and PRAE
van der Pol et al. (2020a). For this experiment and those in future sections,

::
all

::::::::::
experiments

:
we use

the baselines’ open source implementations and the libraries they build upon Stooke & Abbeel
(2019). MDP Homomorphic networks uses specially constructed weights that are equivariant to

1https://github.com/thehawkgriffith/dyna-maze
2https://gist.github.com/Pocuston/13f1a7786648e1e2ff95bfad02a51521
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(a) (b)

Figure 5: (a) In the stochastic predator preyenvironment, the homomorphic DQN is able to learn a
mapping to improve sample efficiency over vanilla DQN. Note here that unlike

::::::
Unlike in Cartpole

the experience used to train the homomorphic map is not included in the plot for both the equivalent
effect abstraction DQN. In the case of equivalent effect abstraction we reuse one set of pre-trained
backwards and forwards models for each RL training run. (b) In Cartpole, the improvement in sample
efficiency is more dramatic, with equivalent effect abstraction significantly improving convergence
speed. Equivalent effect abstraction learns a model for improved convergence very quickly (the
model is learned in the initial 3 episodes of experience that is shown on the x-axis of the plot). We
retrain this model for every repeat. For vanilla DQN and equivalent effect abstraction we use 50
seeds, 5 seeds are used for each PRAE result and 30 seeds are used for MDP homomorphic networks.
For clarity, PRAE 10 refers to using PRAE with 10 episodes of data to construct an environment
model, which it then plans in.

environment symmetries to improve sample efficiency (requiring prior knowledge of symmetries).
PRAE trains a contrastive model to learn a mapping to a latent “plannable” MDP, that satisfies
the definitions of an MDP homomorphism. PRAE then performs planning on the learned abstract
MDP. For Cartpole, we tried to learn a mapping for PRAE with datasets of 10, 100, 10000
episodes of random experience. We plot the average convergence performance of PRAE’s planning
algorithm.

::
In

:::
the

:::::::
cartpole

:::::
task,

:::
we

:::
did

::::
not

::::
need

:::
to

:::::
avoid

:::
any

:::::::::
canonical

::::
state

::::::
action

:::::
pairs

:::
that

::
are

:::
not

:::::::::::::::::::
computable—meaning

:
a
::::::::
reduction

::
of

:::
the

::::
size

::
of

:::
the

::::
state

:::::
action

:::::
space

::::
from

::::::
S ×A

::
to

::::::
S × 1.

As shown in Figure 5b, in the low sample regime we improve upon both PRAE and vanilla
DQN—with our approach converging at around episode 12 while vanilla Q-learning takes around 16
episodes to converge—note that this improvement includes the number of episodes required to learn
our mapping. We found that in many cases MDP homomorphic networks were able to achieve good
performance but worst case runs brought down mean performance significantly. To demonstrate this,
we plot the mean and median for MDP homomorphic networks (only the mean is plotted for other
methods). The median MDP homomorphic network is also able to similarly improve upon the vanilla
DQN baseline, by leveraging a practitioner’s prior knowledge of environment symmetries.MDP
homomorphic networks are not necessarily a competing approach to equivalent effect abstraction and
future work could conceivably combine these two approaches for even greater sample efficiency.

4.3
:::::::::::
STOCHASTIC PREDATOR PREY

Following the seminal work of van der Pol et al. (2020b), we also benchmark our method on the preda-
tor prey environment, where an agent much

:::
must

:
chase a stochastically moving prey in a 2D world

van der Pol et al. (2020a). The observations are a 7× 7× 3 tensor encoding agent position and prey
position. The objective of the agent is to catch the prey in fewest steps possible. Rewards are set to
-0.1 unless the predator catches the prey, in which case the episode ends and a reward of 1 is provided.

For equivalent effect abstraction, we train an action dependent forwards and backwards
models on an experience dataset created by taking random actions in the environment for 104

environment steps (equivalent to around 170 episodes of random experience). An interesting point
to note here is that the environment is stochastic, so learning a perfect model of the environment
is impossible. We compare to the same baselines introduced in Section 4.2. For PRAE, we
benchmark with both 10000 and 100 episodes of experience data and then perform planning
to convergence. Equivalent effect abstraction delivers

::
If

:
a
::::::

model
::::
can

::
be

::::::::
obtained

::::::
before

:::::
online

7
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Figure 6: In the more challenging environment of Asterix, Equivalent effect abstraction allows DQN
to reach a return of 20 in around (3.5 × 105) frames, while vanilla DQN requires approximately
(1× 106) frames to reach this return. We run each method for five seeds. For readability, both plots
have been smoothed with a Gaussian kernel where σ = 1.

:::::
policy

::::::::
learning,

::::
then

:::::::::
equivalent

:::::
effect

:::::::::
abstraction

::::
can

::::::
deliver

:
an improvement over vanilla DQN

, consistent with the Cartpole results.
::
on

::::
the

::::::::
stochastic

:::::::
predator

:::::
prey

:::::::::::
environment.

:::::::::
However,

:::
for

:::
this

:::::::::::
environment,

:::
the

:::::::
number

:::
of

:::::::
episodes

::
to

:::::
learn

::
a

:::::
policy

::
is
:::::::::

extremely
:::::
small

::::::
(∼ 5),

::
so

:::::::
learning

:
a
::::::
model

::
of

:::
the

:::::::::::
environment

::::::
online

::
is

:::
not

::::::::
practical.

::::
As

::
a

:::::
policy

::::
can

:::
be

::::::
learned

::::
very

::::::::
quickly,

:
it

:
is
::::

not
:
a
::::::::::

particularly
::::::

useful
:::::::::::

environment
::
to
::::

test
:::::::
sample

:::::::::::
efficiency—it

:::::::
instead

::::::
serves

::
as

::
a
:::::
useful

:::::::::
benchmark

:::
(as

::::::::::::
demonstrated

::
in

:::::::::::::::::::::
van der Pol et al. (2020b)

:
)
::
to

:::::::
address

:::
the

::::::::
possible

:::::::::
limitations

::
of

::::
MDP

::::::::::::::
homomorphisms

::
in
:::::::::
stochastic

::::::::::::
environments. Again in a similar vein to Cartpole, PRAE can

be very effective, but only when a relatively large amount of model training experience is available.

4.4 MINATAR ASTERIX

MinAtar Young & Tian (2019) emulates a subset of games from the Atari learning environment
Bellemare et al. (2013) but at a lower dimensionality—allowing policies similar to those required in
the full Atari learning environment to be trained at lower computational cost. This is useful because
we

:::::::
cost—we

:
can do similar benchmarking to previous works on MDP homomorphisms (i.e. van der

Pol et al. (2020b)’s Atari experiments) but within tasks that are easy to reproduce. We use Asterix to
benchmark equivalent effect abstraction. In Asterix, the agent must explore its environment and
capture moving treasure pots, whilst avoiding being struck by moving enemies. Visualisations of the
environments can be found here3. For Asterix, the effective actions are left, right, up, down and “do
nothing”. It is important to note that Asterix has no obvious global symmetries, making it difficult for
approaches that rely on symmetries van der Pol et al. (2020b).

In this section, we assume a model of the environment is known, which we construct pro-
grammatically to perform equivalent effect abstraction (see supplementary code). Thus the question
addressed here is not about learning backwards and forwards models as we did for Cartpole (section
4.2) and Predator Prey (section 4.3). Instead we seek to understand, given a model of the environment,
what approach can we take to perform value based deep RL in the smallest number of learning steps.

We use the convolutional DQN Silver et al. (2016) implementation from the Minatar repos-
itory Young & Tian (2019) as the backbone for equivalent effect abstraction, leaving their
hyperparameters unchanged. As is the case in many games (and RL environments more generally),
MinAtar allows a “do nothing” action. Interestingly, it is always possible to construct our
homomorphism with “do nothing” as our canonical action, meaning we never have to fall back
to vanilla Q-learning (which we did previously in the tabular maze when the homomorphism was
impossible to construct).

::
In

::::::
Asterix

::
it
::
is

::::::
always

:::::::
possible

::
to

:::::
reach

:::::
every

::::
state

::
by

:::::
doing

:::
the

::::::::
canonical

::::::::::::::
action—meaning

:::
we

:::::
reduce

:::
the

::::
size

::
of

:::
the

::::::::::
state-action

:::::
space

::
by

:
a
:::::
factor

:::
of

:
6
::::
(the

::::::
number

::
of

::::::
actions

::
in

::
the

::::::
action

::::::
space).

:
We compare equivalent effect abstraction to the vanilla DQN from the MinAtar

Young & Tian (2019) repository (again leaving hyperparameters unchanged). As a further baseline,
we construct a DQN with a equivariant feature extractor, similar to the network used to learn Pong in
van der Pol et al. (2020b). We implement feature extractors that are equivariant to both horizontal

3https://github.com/kenjyoung/MinAtar/blob/master/README.md
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Figure 7:
::::::::
Equivalent

::::::
effect

:::::::::
abstraction

:::::::::
maintains

:::
its

:::::::::
advantage

::::
over

:
a
:::::::

vanilla
:::::
DQN

:::::::
network

::
in

::
the

::::::::
presence

:::
of

:::::::::
stochastic

:::::::::
transitions.

::::::::::
Following

::::::::::::::::::::
(Machado et al., 2018)

::
we

::::::::
perform

::::::::
additional

::::::::::
experiments

:::::
using

:::
the

::::::
“sticky

:::::::
actions”

::::::::
protocol.

::::
We

::::::
supply

:::
our

:::::
agent

::::
with

:
a
:::::::

perfect
:::::
model

::
in
:::

the
::::::::::::
non-stochastic

::::::
setting,

:::::::
meaning

:::::
25%

::
of

:::
the

::::
time

:::
its

:::::::::
predictions

:::
are

::::::::
incorrect

::::
(due

::
to

::::::::::::
stochasticity).

:::
We

:::
also

:::::::
perform

:::::
linear

:::::::::::
interpolation

::
to

::::
sync

:::::
frame

:::
and

:::::
return

:::::
points

::::
due

::
to

::::::
logging

:::::
quirk

::::
with

:::::
wandb

:::::::::::::
(Biewald, 2020),

:::
see

:::::::::
Appendix

::
B

:::
for

::::::
details.

and vertical reflections. The hyperparameter selection process for this baseline is described in A.1.4.

Asterix is a relatively complex game requiring an agent to explore for moving treasures
while simultaneously avoiding enemies(who are also moving). During this explorationfor treasure,
we show empirically that traversing the state space is much more efficient when the equivalences
between different state-action pairs are known. Equivalent effect abstraction converges 3× faster
than vanilla Q-learning, consistent with out results in previous sections. As there is no obvious
symmetry—as there is for Pong for example—homomorphic DQN does not yield an advantage over
the vanilla DQN.

4.4.1
::::::
STICKY

::::::::
ACTIONS

:::
The

:::::::
original

:::::::
Minatar

:::::::
Asterix

::::
has

:::::
some

::::::::
elements

::
of

:::::::::::
stochasticity

:::
for

::::
one

::::
step

::::::::::
predictions.

:::::
For

:::::::
example,

:::::
with

:::
one

::::
step

::::::::::
predictions

:::
one

::::::
cannot

::::::
predict

:::::
when

::::::
spirtes

::::
will

::::::
appear

::
at

:::
the

::::
side

::
of

:::
the

::::::
screen.

:::::::::::
Nevertheless,

:::::
once

:::
the

::::::
sprites

::::::
appear,

::::
their

::::::::::
movements

:::
are

::::::::::::
deterministic.

::::
This

::
is
:::
an

::::
issue

:::
also

:::::::
present

::
in

:::
the

:::
full

:::::::::::::::
high-dimensional

::::
atari

::::::::
emulator

::::::::::::::::::
Machado et al. (2018),

::::::
where

::
an

:::::
agent

:::
can

:::::
overfit

::
to
:::::

fully
:::::::::::
deterministic

::::::::::
transitions.

:::
As

::
a
::::::
result,

:::::::::::::::::::
Machado et al. (2018)

::::::::
developed

:::
the

::::::
sticky

::::::
actions

:::::::
protocol

:::::
where

::::
75%

:::
of

:::
the

::::::
actions

:::::
given

::
by

:::
the

::::::
agent’s

::::::
policy

:::
are

::::::::
delivered

::
to

:::
the

::::::::
emulator,

::::
while

:::::
25%

::
of

:::
the

:::::
time

:::
the

::::::::
emulator

::::
uses

:::
the

::::::
agents

:::::::
previous

::::::
action.

::::
We

::::::
apply

:::
this

::::::::
approach

::
to

:::
our

::::::
Asterix

:::::::::::
experiments

::
to

::::
test

::::
how

::::
well

:::::::::
equivalent

::::::
effect

:::::::::
abstraction

::::
can

::::
cope

:::::
with

::::::::
stochastic

:::::::::::
environments.

::::
We

::::
use

:::
the

:::::
same

:::::::::::
environment

:::::
model

:::
as

:::
we

:::
did

::
in

::::
the

:::::::::::
deterministic

::::::::::
environment

:::
and

:::::
show

:::
that

:::::::::
equivalent

:::::
effect

::::::::::
abstraction

:::
can

::::::::
maintain

::
its

:::::::::
advantage

::::
over

:::
the

::::::
vanilla

:::::
DQN

::::
even

::::
when

:::::::::
transitions

:::
are

::::::::::::
unpredictable.

:

5 RELATED WORK

(Ravindran & Barto, 2001) developed a theoretical framework for state-action abstraction under
symmetry, while also deriving

:::::::::
framework

:::
for

:::::::::
abstraction

::::::
under

:::::::::::::::::
symmetry—deriving

:
theoretical

guarantees when lifting abstract policies to the experienced MDPs. (Givan et al., 2003) proposed
MDP model minimisation using bisimulation (Larsen & Skou, 1991), where states could be
mapped to a common

::
an abstract state if their expected transition dynamics and reward sequences

were indistinguishable. Despite their nice theoretical properties,
:::::
These

:
early applications of

MDP homomorphisms were limited because they required
::::::
required

:::
of prior knowledge from a

practitionerand there was also no obvious method for integrating homomorphisms into function
approximation. (Biza et al., 2021) also

:
.
::::::::::::::::
(Biza et al., 2021) use bisimulation to inform structured

Hidden Markov Model priors to infer an explicit discrete reduced state space from learnt embeddings
in deep RL. They show that policies resulting from planning in

::::::
polices

::::
from

:
the reduced abstract

space are viable in the original state space.

9
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It has also been shown that bisimulation can be relaxed from a binary mapping to a similar-
ity metric in the works of (Ferns et al., 2011; Ferns & Precup, 2014)—these bisimulation metrics
have been used to condition embeddings using contrastive losses to generate invariant representations
of statesin deep RL. (Zhang et al., 2020) augment the embedding encoder of their model with an
additional contrastive loss term that, when used in conjunction with RL, results in an encoder
in which the distance between processed observations in embedding space corresponds to an
approximate bisimulation metric. This allows

::::::::::::::
metric—allowing agents to perform control tasks

in the presence of distractor cuesbeing inserted into their observations. A more general similarity
metric for conditioning embedding in deep RL was proposed in Agarwal et al. (2021), where they
outlined a new policy similarity metric. This metric is also used in conjunction with a contrastive
loss, and pulls together embeddings that result in similar policies and long term behaviours.
While using contrastive learning and bisimulations has achieved impressive results , contrastive
methods

:::::::::
Contrastice

:::::::
learning

::::::::
achieves

:::::::::
impressive

::::::
results

:::
but can be sample hungry—making their

deployment in the low sample regime difficult van der Pol et al. (2020a)).

More recently, homomorphisms in MDPs have been promoted as a means to improve sam-
ple efficiency in tasks with symmetries. PRAE (van der Pol et al., 2020a) trained a contrastive world
model and accompanying loss function that satisfies the transition dynamics definition (Equation
(1)) by design—with good results in Cartpole when 1000 episode of experience are available for
training. However, in the relatively low sample regime (e.g. 100 episodes) their homomorphism is
less effective as we show in Figure 5b. (van der Pol et al., 2020b) derived a method for learning
network weights that are equivariant to environment symmetries (which implicitly creates an MDP
homomorphism) but their algorithm requires a practitioner to hardcode symmetric groups beforehand.
Similar approaches have been adopted for environments with continuous symmetries Wang et al.
(2022). Another recent approach to using MDP homomorphisms is detailed in (Biza & Platt,
2019). Here the problem of finding MDP homomorphisms is approached using Online Partition
Iteration—the mappings from state to abstract states are learnt by predicting which partition a state
should fall into given an action, and refining the partitions through splitting.

Perhaps the most relevant related approach is the use of afterstates Sutton & Barto (2018)[p.
136]. Afterstates slightly shift an MDP out of phase with conventional state transitions—creating
environment states that are in-between the initial effect of a policy’s action and the reaction of the
environment to said action. However, applications of the afterstates framework have generally been
constrained to board games Tesauro et al. (1995) and usually focus on dealing with the stochasticity
of an opponent rather than improved sample efficiency Antonoglou et al. (2021).

:::::::::::::::
(Misra et al., 2020)

:::
use

:::::::::
contrastive

:::::::
learning

::
to

::::
learn

::
a

::::::
similar

::::::::::::::::::
abstraction—grouping

:::::::
together

:::::::::::
state-actions

:::
that

::::
will

:::
pass

::::::
through

::
or

:::::
have

:::::
passed

:::::::
through

:::::
same

::::
state.

:

More broadly, model-based RL has enabled superhuman performance in Atari with a relatively small
amount of experience (Hafner et al., 2020), but the number of planning steps required to learn a policy
is still very large. Backwards models have recently been proposed to improve sample efficiency
of world model representation learning, which would be interesting if integrated with equivalent
effect abstraction (Yu et al., 2021).

:
A

::::::
related

::::::::::
exploration

::::::
method

::::::
shows

::::::
simple

:::::::::::
autoencoders

:::
can

::::
learn

::::::
binary

:::::::
abstract

:::::::::::::
representations

:::::
useful

::::
for

::::::
logging

:::
of

:::::
what

:::::
states

:::
an

:::::
agent

:::
has

::::::::::
experienced

:::::::::::::::
(Tang et al., 2017).

:
Our work is related to approaches that learn data augmentation policies for RL

(Raileanu et al., 2021), however instead of trying to augment
::::::::::
augmenting experience with a more

diverse distribution of states, we take a different approach of
:::
are trying to learn values for a narrower

distribution of canonical states.

6 LIMITATIONS AND FUTURE WORK

Equivalent effect abstraction requires a competent model of environment dynamics
::::::::
dynamics

:::::
model.

For equivalent effect abstraction to be practical, the number of environment steps
::::::::
transitions

:
required

to learn the environment model must be smaller than the number steps needed
::::
those

:::::::
required

:
to learn

a policy—luckily this
::::::::::
policy—this is true in many environments (e.g. Cartpole) but it cannot be

:
is

:::
not guaranteed. What’s more, despite recent progress in model based learning in high dimensional
environments Hafner et al. (2019; 2020); Saxena et al. (2021); Ye et al. (2021),

:::::::
learning a dynamics

model can be difficult to learn for a number of reasons. Firstly, stochastic dynamics can make
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environment transitions multimodal, meaning point predictions of future or previous states are not
adequate. In theory, this can be dealt with using stochastic models Hafner et al. (2019) of forwards
and backwards dynamics that could be sampled when abstracting state-action pairs. Even worse,
dynamics can be completely unpredictable Kendall & Gal (2017); Mavor-Parker et al. (2021), in
which case aleatoric uncertainty predictions could be used to signal that equivalent effect abstraction
should temporarily revert to vanilla Q-learning.

Furthermore, backwards transitions could also be impossible to predict
::::
may

:::
be

:::::::::::
unpredictable

because an equivalent state does not exist—as described in
::::::::
exist—see

:
Section 1. In this case,

uncertainty predictions could also be used to avoid using mappings that are out of distribution
with the model training data (because they are not possible) Kendall & Gal (2017). Integrating the
described probabilistic transition models into equivalent effect abstraction is an interesting direction
for future work. Lastly, although the challenges surrounding model learning are significant, it is
worth mentioning that we only require one step transition models, avoiding the significant harder
challenge of learning multi-step prediction models Saxena et al. (2021).

So far, we have only formulated equivalent effect abstraction
:::::::::
Equivalent

:::::
effect

::::::::::
abstraction

::
is

:::::::::
formulated within the framework of value based RL in discrete action spaces. While value based
methods are behind

::::
using

:::::::
discrete

:::::::
actions.

:::::
While

:
many of the recent breakthroughs in deep RL

:::
RL

::
are

:::::
value

:::::
based

:
(e.g. Silver et al. (2017), Badia et al. (2020)), actor-critic approaches Schulman et al.

(2017); Mnih et al. (2016) are often the natural choice for control tasks. Embedding equivalent effect
abstraction into actor-critic architectures is a potentially fruitful avenue for future research. It is also
conceivable to formulate equivalent effect abstraction within a continuous action space by simply
discretising the action space , which has allowed discrete action space methods to obtain state of
the art performance on RL tasks Banino et al. (2021).

::::::::::::::::
Banino et al. (2021)

:
.
:::::::::::
Additionally,

::::::::
equivalent

:::::
effect

:::::::::
abstraction

:::::
could

::::
also

:::
be

::::::::
integrated

::::
into

:::::::
existing

::::::::::::
homomorphic

:::::
MDP

:::::::
methods

::::
that

::::
rely

::
on

:::::::::
symmetries

::
to

::::::
further

::::::
reduce

:::
the

::::
size

::
of

:::
the

::::::
abstract

::::::::::
state-action

:::::
space

:::::::::::::::::::::
van der Pol et al. (2020b).

::
In

:::::::
practice,

:::
this

::::::
would

::::
mean

:::::
using

::::::::::::
homomorphic

:::::::::
Q-network

:::::::::::::::::::::
van der Pol et al. (2020b)

:::
but

:::::::
modified

::
to

::::
only

::::
have

:::
one

:::::
action

::::::
output

::
as

::::::
shown

::
in

:::::::::
Algorithm

::
1.

:::::::::::
Alternatively,

::::::::
planning

::::
could

:::
be

::::
done

::::
with

::
an

::::::
abstract

::::::::::::
homomorphic

::::::::::::
representation

:::::::::::::::::::::
van der Pol et al. (2020a),

::::::
which

:
is
::::

then
:::::::

reduced
::::::
further

::::
with

::::::::
equivalent

:::::
effect

::::::::::
abstraction.

:

7 CONCLUSION

Equivalent effect abstraction is a simple method that reduces
::::::::
decreases the size of the

:
a state-action

spaceconsiderably for discrete action space MDPs. The approach .
:::

It is easy to implement and
provided with a backwards dynamics model of the environment it requires no prior knowledge of
environment symmetries from a practitioner. We have demonstrated that equivalent effect abstraction
improves sample efficiency in tabular environments, control tasks with continuous action

::::
state spaces,

stochastic deep RL environments and also within an image based game playing task. An exciting next
step should integrate equivalent effect into popular deep model-based algorithms (Hafner et al., 2020;
Yu et al., 2021) to improve planning efficiency. Additionally, equivalent effect abstraction could also
be integrated into existing homomorphic MDP methods that rely on symmetries to further reduce
the size of the abstract state-action space van der Pol et al. (2020b).
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A APPENDIX

A.1 HYPERPARAMETER SEARCH

Below we show the hyperparameters swept through for homomorphic MDP, DQN and Equivalent
Effect Abstraction agents, broken down by environment. The PRAE architectures were generally
kept the same as the hyperparameters provided in (van der Pol et al., 2020a), with the exception of
the learning rate which we evaluate at 0.0001, 0.001 and 0.1

A.1.1 SUTTON AND BARTO TABULAR GRIDWORLD

We use the hyperparameters specified in (Sutton & Barto, 2018, p. 165): namely, Learning Rate= 0.1,
γ = 0.95 and ϵ = 0.1

A.1.2 CARTPOLE

Table 1: Hyperparameters swept through for the Cartpole environment. Learning rate decay refers to
decaying the learning rate by a factor of ten at after a specified number of episodes have elapsed.

Hyperparameter Values

Learning Rate 0.00001, 0.0001, 0.001, 0.01
ϵ decay schedule No decay, exponential τ = −1

200
γ 0.8, 0.99
Activation ReLU, tanh
Learning Rate decay No decay, 5, 10, 15, 20

Homomorphic MDP best hyperparameters: Learning Rate = 0.001, ϵ decay schedule = No decay,
γ = 0.8, activation = tanh, Learning Rate decay = No decay

Equivalent Effect Abstraction best hyperparameters: Learning Rate = 0.001, ϵ decay schedule =
No decay, γ = 0.8, activation = tanh, Learning Rate decay = 10

Vanilla DQN best hyperparameters: Learning Rate = 0.001, ϵ decay schedule = No decay,
γ = 0.8, activation = tanh, Learning Rate decay = 15

A.1.3
:::::::::::
STOCHASTIC PREDATOR PREY

Table 2: Hyperparameters swept through for the Predator Prey environment.

Hyperparameter Values

Learning Rate 0.0001, 0.001, 0.01
γ 0.8, 0.99

Homomorphic MDP best hyperparameters: Learning Rate = 0.001, γ = 0.99
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Equivalent Effect Abstraction best hyperparameters: Learning Rate = 0.01, γ = 0.8

Vanilla DQN best hyperparameters: Learning Rate = 0.001, γ = 0.99

A.1.4 MINATAR

All hyperparameters were kept at the tuned DQN values provided in Young & Tian (2019). For the
Homomorphic MDP network, we use a symmetric group for reflection about the vertical axis when
training on Breakout; on Asterix we show results for both reflection about the vertical and horizontal
axes.

A.2 MODEL ARCHITECTURES

A.2.1 CARTPOLE

Listing 1 Homomorphic MDP Network (van der Pol et al., 2020b)
BasisLinear*(repr_in=4, channels_in=1, repr_out=2, channels_out=64)
ReLU() / tanh()
BasisLinear(repr_in=2, channels_in=64, repr_out=2, channels_out=64)
ReLU() / tanh()
BasisLinear(repr_in=2, channels_in=64, repr_out=2, channels_out=1)

*BasisLinear refers to the symmeterised layers used in (van der Pol et al., 2020b) to create
homomorphic networks. This network is identical to the Cartpole network presented in that paper,
but with only one output head that outputs state-action values.

Listing 2 Value Network architecture for DQN and Equivalent Effect Abstraction
Linear(input_size=4, output_size=1024)
tanh()
Linear(input_size=1024, output_size=1024)
tanh()
Linear(input_size=8, output_size=1024)
tanh()
Linear(input_size=1024, output_size=2)

Listing 3 Transition Model Architecture for Equivalent Effect Abstraction
Linear(input_size=2, output_size=2)

Listing 4 PRAE Architectures (van der Pol et al., 2020a)
# state encoder
Linear(input_size=4 ,output_size=64)
ReLU()
Linear(input_size=64, output_size=32)
ReLU()
Linear(input_size=32, output_size=50)
#action encoder
Linear(input_size=54 ,output_size=100)
ReLU()
Linear(input_size=100, output_size=2)
# reward prediction network
Linear(input_size=50 ,output_size=64)
ReLU()
Linear(input_size=64, output_size=1)
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A.2.2 PREDATOR PREY

Listing 5 Homomorphic MDP Network (van der Pol et al., 2020b)
BasisConv2d(repr_in=1, channels_in=1, repr_out=4, channels_out=4,
filter_size=(7,7), stride=2, padding=0)
ReLU()
BasisConv2d(repr_in=4, channels_in=4, repr_out=4, channels_out=8,
filter_size=(5,5), stride=1, padding=0)
ReLU()
GlobalMaxPool()
BasisLinear(repr_in=4, channels_in=8, repr_out=4, channels_out=128)
ReLU()
BasisLinear(repr_in=4, channels_in=8, repr_out=4, channels_out=128)
ReLU()
BasisLinear(repr_in=4, channels_in=128, repr_out=5, channels_out=1)

This is again the same network used in van der Pol et al. (2020b), albeit with a different output head.

Listing 6 Value Network Architecture for DQN and Equivalent Effect Abstraction
Linear(input_size=441, output_size=1024)
ReLU()
Linear(input_size=1024, output_size=8)
ReLU()
Linear(input_size=8, output_size=1024)
ReLU()
Linear(input_size=1024, output_size=5)

Listing 7 Transition Model Architecture for Equivalent Effect Abstraction
Linear(input_size=882, output_size=512)
ReLU()
Linear(input_size=512, output_size=8)
ReLU()
Linear(input_size=8, output_size=512)
ReLU()
Linear(input_size=512, output_size=441)

Listing 8 PRAE Architectures (van der Pol et al., 2020a)
# state encoder
Linear(input_size=441, output_size=64)
ReLU()
Linear(input_size=64, output_size=32)
ReLU()
Linear(input_size=32, output_size=50)
#action encoder
Linear(input_size=54, output_size=100)
ReLU()
Linear(input_size=100, output_size=2)
# reward prediction network
Linear(input_size=50, output_size=64)
ReLU()
Linear(input_size=64, output_size=1)

A.2.3 MINATAR

Listing 9 Homomorphic MDP Network (van der Pol et al., 2020b)
BasisConv2d(repr_in=1, channels_in=4, repr_out=2, channels_out=16,
filter_size=(3,3), stride=1, padding=0)
ReLU()
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Linear(input_size=1408, output_size=256)
ReLU()
Linear(input_size=256, output_size=6)

Listing 10 Value Network Architecture for DQN and Equivilent Effect Abstraction
Conv2d(channels_in=4, channels_out=16, filter_size=(3,3), stride=1, padding=0)
ReLU()
Linear(input_size=1024, output_size=128)
ReLU()
Linear(input_size=128, output_size=6)
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A.3 ADDITIONAL MINATAR RESULTS

Figure 8: Here we get similar results to van der Pol et al. (2020b) showing that homomorphisms do
not necessarily improve sample efficiency in Breakout. On this particular environment all versions of
DQN converge almost instantly to a suboptimal policy. To obtain more meaningful results, future
work should integrate equivalent effect abstraction into actor-critic methods that are able to solve
Breakout Young & Tian (2019).

B
::::::::::
SYNCING

:::::
LOG

:::::::::
ARRAYS

:::
For

:::
the

:::::
sticky

::::::::
MinAtar

::::::
results

:::
we

::::::
logged

::::::
frames

:::
and

::::::
return

::::::
values

::::
with

::::::
wandb

:::::
while

:::::::::
performing

:::
our

::::::::::
experiments

:::::::::::::
Biewald (2020)

:
.
:::
We

:::::::::
performed

::::
this

::::::
logging

::::::::::::
suboptimally

::
as

:::
we

::::::
logged

:::::
steps

:::
for

:::::
frames

::::
and

::::::
returns

:::::::::::::::::
separately—meaning

:::
we

:::::
ended

:::
up

::::
with

:::
two

:::::
arrays

::::::
where

:::
one

::::
was

::::
NaN

:::::
when

::
the

::::
other

::::
was

::::::
logging

::
a
::::
float

:::
and

::::
vice

::::::
versa.

:::
We

::::
used

:::::::
Panda’s

:::::::::::::::::::::::::::
(pandas development team, 2020)

::::::
linear

:::::::::
interpolator

:::
to

:::::::
estimate

:::
the

::::
NaN

::::::
values

::
in

:::
our

:::::
final

:::::
plots.

::::
This

:::::::
process

::::
does

:::
not

:::::
effect

::::
our

:::::
results

::::::::::
significantly

::
as

:::
the

:::::
points

:::::
were

::::::
logged

::
at

:
a
::::
very

::::
high

:::::::::
frequency.

:
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