
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXTENDING FOURIER NEURAL OPERATORS FOR PA-
RAMETERIZED AND COUPLED PDES

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameterized and coupled partial differential equations (PDEs) are central to
modeling phenomena in science and engineering, yet neural operator methods that
address both aspects remain limited. We extend Fourier neural operators (FNOs)
with minimal architectural modifications along two directions. For parameter-
ized dynamics, we propose a hypernetwork-based modulation that conditions the
operator on physical parameters. For coupled systems, we conduct a systematic
exploration of architectural choices, examining how operator components can be
adapted to balance shared structure with cross-variable interactions while retain-
ing the efficiency of standard FNOs. Evaluations on benchmark PDEs, including
the one-dimensional capacitively coupled plasma equations and the Gray–Scott
system, show that our methods achieve up to 55∼72% lower errors than strong
baselines, demonstrating the effectiveness of principled modulation and system-
atic design exploration.

1 INTRODUCTION

Numerical simulation has long served as a cornerstone of scientific and engineering inquiry, under-
pinning advances in areas ranging from fluid dynamics (Ferziger et al., 2019) and climate model-
ing (Bauer et al., 2015) to material science (Rappaz et al., 2003) and structural analysis (Macneal
& Harder, 1985). High-fidelity simulations, while indispensable, often entail substantial computa-
tional cost. These costs become especially significant when conducting parameter studies, uncer-
tainty quantification, and real time decision making. As a result, surrogate modeling has emerged as
an essential tool to expedite simulation workflows, enabling rapid approximations that preserve first-
order fidelity while dramatically reducing computational burden. Recently, deep learning techniques
have gained increasing traction in this domain. Methodologies such as physics-informed neural net-
works (PINNs) (Raissi et al., 2019; Karniadakis et al., 2021) and neural operators (NOs) (Li et al.,
2020a;b; Lu et al., 2021) offer flexible, data-driven approximations of parametrized partial differen-
tial equations (PDEs), often delivering orders-of-magnitude speedups over traditional solvers while
maintaining acceptable accuracy.

Despite significant progress in NO, most existing studies have considered scenarios with both vary-
ing initial conditions and parameter regimes, yet they often overlook the particular, yet prevalent
case of parameterized dynamics with fixed initial conditions, typified by equations of the form
ut = f(u;µ) with u(0) = u0. Such settings are ubiquitous in engineering, where model dynamics
depend on physical parameters (e.g., forcing terms in inviscid Burgers’ equation (Rewieński, 2003;
Carlberg et al., 2013), diffusivity/reaction constants in chemically reacting flows (Buffoni & Will-
cox, 2010; Lee & Carlberg, 2020), and Reynolds number and viscosity in fluid dynamics (Stabile &
Rozza, 2018)) while initial states remain unchanged across simulations. Studying this regime is im-
portant for practical applications, for example, to understand how variations in material properties,
operating conditions, or control parameters affect system behavior from a fixed, well-defined state.

In this work, we focus specifically on NOs for parameterized coupled PDEs in fixed-initial-condition
settings. To facilitate this exploration, we build upon Fourier neural operators (FNOs) (Li et al.,
2021), a method now well-established in the community for its expressive parametric kernel in
Fourier space. Our approach is designed to remain general and modular, making it adaptable to
both FNO variants and other neural operator frameworks. To incorporate parameterized dynam-
ics effectively, we introduce an architectural modification in which the meta-physics-knowledge

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

encoded in the governing equations is captured by a larger set of shared base parameters, while
parameter-specific variations are represented through a smaller set of task-dependent model param-
eters (with a task being associated a specific physical parameter). To ensure the overall model
remains lightweight, we implement this design using a compact hypernetwork, enabling parameter-
ization while retaining a model size comparable to standard, non-parameterized FNOs.

Further, we extend the (parameterized) FNOs to effectively model the coupled systems while being
efficient in the model size. While existing efforts (Xiao et al., 2023) introduce specialized decom-
positions stream to capture cross-field interactions, there is little systematic guidance of the design
principles that govern effective cross-variable coupling in neural operators, particularly when aim-
ing to preserve the efficiency and scalability of standard FNOs. In this paper we address that gap:
we present a principled design space for extending FNOs to coupled problems, investigate the lift,
Fourier layers, and projection operators for identifying effective locations and mechanisms for en-
abling cross-variable coupling.

In addition, we introduce a new benchmark PDE based on a simplified one-dimensional capaci-
tively coupled plasma (CCP) model. This system is of practical importance in plasma physics and
semiconductor manufacturing, and it exhibits rich parameterized dynamics that challenge existing
operator-learning methods. Our formulation provides a tractable yet representative setting for eval-
uating neural operators under coupled and parameterized conditions.

Our contributions are summarized as

• Parametric extensions of FNOs for effectively modeling parameterized dynamics,
• Systematic dissection and adaptation of FNO architecture components for coupled systems,
• Introduction of a novel benchmark problem with many physical parameters describing sim-

plified sheath dynamics governed by plasma physics, and
• Extensive experimentation with the proposed methods, comparisons with baselines, and

validation on benchmark problems.

2 TECHNICAL BACKGROUND

2.1 NEURAL OPERATORS

NOs are a type of data-driven surrogate model designed to learn mappings between functions rather
than traditional input-output pairs, making them particularly effective for problems governed by
PDEs (Lu et al., 2021; Kovachki et al., 2023; Boullé & Townsend, 2024; Azizzadenesheli et al.,
2024). By taking discrete representations of continuous functions as input, NOs produce functional
representations that can efficiently approximate and simulate complex physical systems.

Let A and U be two function spaces, and consider a nonlinear operator G : A → U mapping
between them. Neural operators are a class of machine learning methods designed to construct a
surrogate GΘ ≈ G within a trial space of neural networks. Given input-output pairs {(ai, ui)}ni=1,
where xi ∈ A and ui = G(ai) ∈ U , a neural operator can be trained in the standard supervised
manner by solving: minΘ

∑n
i=1 L

(
GΘ(a

i), ui
)
, where L denotes a loss term and Θ denotes the

parameters of the neural operator GΘ.

In practice, the functional input data ai are first discretized; for example, if a(x) and u(x) are
functions, the grid representation aaa = [a(x1), . . . , a(xm)]T ∈ Rm×da serves as input along with an
evaluation point (or set of points) D = {x1, . . . , xm} in the domain of a, and the neural operator
learns a mapping aaa 7→ GΘ(aaa) that predicts GΘ(aaa)(xp) ≈ u(xp) (Lu et al., 2021; Li et al., 2021).
With the assumption that the spatial grid where a(x) and u(x) are discretized is fixed, (D,aaa) 7→ uuu
(under G) produces a vector uuu of operator evaluations, and therefore samples (xxx,aaa,uuu) form the
training data for the NO learning problem.

2.2 FOURIER NEURAL OPERATORS

FNOs are a specific instantiation of NOs that model learnable nonlinear kernel integral operators,
with the integrals efficiently evaluated in the Fourier frequency domain. FNOs, Gθ : A → U , first
projects the input data into hidden representations via local transformation, v0(x) = P (a(x)), where
P is typically chosen as a linear projector in practice. FNOs then employ the iterative updates of

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

hidden representations vℓ 7→ vℓ+1 via

vℓ+1(x) := σ
(
Wvℓ(x) + (K(a;ϕ)vℓ) (x)

)
, ∀x ∈ D

where W is a linear transformation and K denotes a kernel integral operator. The kernel integral
operator is defined as

(K(a;ϕ)vℓ) (x) :=

∫
D

κ(x, y, a(x), a(y);ϕ)vℓ(y)dy, ∀x ∈ D (1)

where ϕ indicates the learable parameters that characterize the kernel. For efficient computation
of Eq. (1), FNOs define the kernel integral operator in Fourier space and perform a convolution
operation in that space such that

(K(ϕ)vℓ) (x) = F−1
(
Rϕ · (Fvℓ)

)
(x), ∀x ∈ D,

where F and F−1 denote Fourier and inverse Fourier transformations, respectively, and Rϕ denotes
the Fourier transform of function κ. In practice, Rϕ is parameterized as a learnable tensor. The last
hidden representation vT (x) is then projected back to the target data space via a local transformation,
u(x) = Q(vT (x)), where Q is typically modeled as a shallow multi-layer perceptron (MLP).

3 METHODS

Our methods seek minimal yet principled architectural modifications to FNOs that enable them
to handle parameterized and coupled dynamical systems. We emphasize minimal modification as a
design principle: this ensures (i) the resulting models preserve the efficiency and scalability of FNOs
and (ii) performance gains can be attributed to structural insights rather than increased capacity.

To this end, we focus on the three core computational components of FNOs: the lift operator (input
projection), the Fourier layers (spectral updates), and the projection operator (output mapping). We
systematically explore how to adapt each component to encode parameter dependence and to capture
cross-variable interactions in coupled systems. The remainder of this section presents these exten-
sions in two parts: one subsection introduces the parameterized extensions based on hypernetwork-
driven modulation, and another subsection describes the design spaces for coupled extensions that
capture interactions among multiple PDE components.

3.1 EXTENSIONS TO PARAMETRIZED FNO

A straightforward way to extend FNOs for handling physical parameters, µ ∈ Rnµ , is input aug-
mentation. In this approach, the parameters are concatenated with the function input as [a(x);µ(x)],
where µ(x) = µ is constant across the spatial domain. The lift operator then encodes this augmented
input into a latent representation, v0(x) = P ([a(x), µ(x)]). This strategy mirrors prior work, for
example in the neural ODE community, where augmenting the input has been shown to enhance
the expressivity of the learned dynamics (Dupont et al., 2019; Massaroli et al., 2020; Lee & Parish,
2021), and physics-informed neural networks (Cai et al., 2021; Cho et al., 2024). We refer to this
variant using the prefix “p” (e.g., pFNO) to denote parameterization via input augmentation.

While simple and effective in some cases, input augmentation may not fully capture how physical
parameters influence the underlying dynamics. To address this, we draw inspiration from recent
advances in implicit neural representations (INRs) (Sitzmann et al., 2020; Fathony et al., 2020;
Dupont et al., 2022) and PINNs (Cho et al., 2023). These works demonstrate that modulation, i.e.,
adjusting network parameters conditioned on side information, provides a powerful mechanism to
encode complex dependencies without substantially increasing model size.

Following this principle, we design a hypernetwork-based modulation scheme. A compact hy-
pernetwork (Ha et al., 2017) takes the physical parameters µ as input and outputs a set of shifts,
s(x, µ) = f hyper(x, µ), where s(x, µ) = [s1(x, µ), . . . , sL(x, µ)] corresponds to layer-specific ad-
justments. These shifts are incorporated as additional biases in the Fourier layers:

vℓ+1(x) := σ
(
Wvℓ(x) + (K(a;ϕ)vℓ) (x) + sℓ(x, µ)

)
. ∀x ∈ D

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

We refer to this variant using “hp” (e.g., hpFNO) indicating the hypernetwork-based approach.

The rationale behind this design is twofold. First, modulation has already proven effective in INRs
and PINNs, where conditioning on auxiliary variables enables networks to represent rich families
of functions without retraining. Second, unlike input augmentation, modulation operates directly
on the model’s internal representations, allowing parameter dependence to influence the dynamics
at every stage of computation rather than only at the input. Together, these factors suggest that the
hp-variant should more effectively capture parameterized dynamics while remaining lightweight.

3.2 EXTENSIONS TO COUPLED FNO

We now turn to extending FNOs for coupled systems, where multiple interdependent variables
evolve under shared dynamics. For the simplicity of exposition, we focus on the case of two variables
and differentiate each component by superscript, z□ with a generic variable z, where □ ∈ {α, β}.
Our design philosophy follows the same principle outlined at the beginning of this section: to re-
tain the minimal and scalable structure of standard FNOs while introducing only the modifications
necessary to capture cross-variable interactions. To this end, we investigate two main questions: (1)
within the core computational components of FNOs (the lift operator, P , Fourier layers, and projec-
tion operator, Q), should the transformations be shared across variables or separate for each? and
(2) at what stages, and in what form, should information mixing occur between variables to most
effectively model their coupling?

Before expanding on the design exploration, we first define the setup. Our neural operator is trained
to learn a mapping (uα(x), uβ(x) = GΘ(a

α(x), aβ(x)), where (aα, aβ) denote the inputs associ-
ated with the two variables and (uα, uβ) denote their corresponding outputs.

Lift operator, P The local transform, (Pa)(x) = v0(x) ∈ Rdv takes a discrete representation
of the input function. In the coupled setting, we consider two main design choices that differ in
whether the operator is shared or individual across the two variables.

P1 The lift operator P : R1 → Rdv is shared across the two input components, so that both variables
are mapped into the latent space using the same transformation.
P2 Alternatively, the lift operator consists of two separate mappings, P = (Pα, P β), each specific
to one input component, allowing the two variables to have independent latent representation.

Fourier layers The Fourier layer largely consists of two components where we can make design
choices: the point-wise linear map Wvℓ(x) and global spectral convolution Kvℓ(x).
L1 and L2: The point-wise linear map can be implemented either as a single operator shared by both
variables (L1) or as two separate operators (Wα and W β) (L2).

G⃝ For coupled systems, we define the global spectral convolution to perform coupling only in
Fourier space. Specifically, each variable is first transformed independently, ṽ□(k) = Fv□ℓ (k),
for □ = {α, β}. Their spectral representations are then combined through a shallow en-
coder network f enc(ṽα(k), ṽβ(k)), followed by the usual mode-wise kernel multiplication ˜̃v(k) =
Rϕ(k)ṽ(k). The result is decomposed into variable-specific coefficients using another shallow net-
work, (˜̃vα(k), ˜̃vβ(k) = f dec(˜̃v(k), and finally mapped back to the data space via the inverse Fourier
transform, v□ℓ+1(k) = F−1(˜̃v□(k)), for □ = α, β.

A key design choice here is that coupling is introduced only in Fourier space, after the individual
Fourier transforms. This has several benefits compared to approaches that use entirely separate con-
volution operators and exchange hidden representations across variables. First, it preserves the core
structure of FNOs, keeping the model lightweight and scalable. Second, the Fourier domain nat-
urally captures long-range correlations, making it a well-suited location for cross-variable mixing.
Finally, by avoiding repeated exchanges of hidden states in the spatial domain, this design reduces
computational overhead while maintaining symmetry between the two variables.

Projection operator, Q The local transform, (QvT)(x) = u(x), resembles with that of the lift
operator P and, thus, similar choices apply. We focus here on the single-channel output format for
each variable, which is the natural setting for coupled systems.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Q1 The projection operator is shared across both output components, Q : Rdv → R1.
Q2 The projection operator is defined separately for each output component, Q = (Qα, Qβ), with
Q□ : Rdv → R1 for □ ∈ α, β.

To refine the design space under Q2 , we adopt the adaptive basis viewpoint (Cyr et al., 2020),
which interprets the last hidden activation as a set of adaptive basis functions, Ψ(a(x)) =
[ψ1(a(x)), . . . , ψnq

(a(x))]T, and the weight of the output layer as coefficients, Ξ = [ξ1, . . . , ξnq
]T:

u(x) =
∑nq

i=1 ξiψi(x). In practice, Q is parameterzed as a shallow MLP, (QvT)(x) =
W2σ(W1vT (x) + b1) + b2 and the adaptive basis corresponds to Ψ(a(x)) = σ(W1vT (x) + b1)
and the coefficients to Ξ =W2. The shared/separate choices are then realized by sharing or splitting
the weight matrices and biases.

From this perspective, Q can differ in whether the basis and the coefficients are shared or sepa-
rate: Q2a Shared basis and separate coefficients, Q2b Separate basis and shared coefficients, and Q2c

Separate basis and separate coefficients.

3.3 PUTTING ALL TOGETHER

Based on our experimentation (presented in Appendix D.1.1) with the different combinations of the
design choices (further elaborated in Appendix A), we define our model, extended FNOs — FNOx,
as a realization of the combination: P1 + L2 + G⃝+ Q2c , which employs the shared lift operator, the
separate point-wise linear maps, the proposed coupled global spectral convolution layer, and the
separate sets of basis functions and separate sets of coefficients in the projection operator.

4 EXPERIMENTAL RESULTS

In this section, we present experimental results comparing the proposed methods with a range of
baseline models. All methods are implemented in PYTHON with PYTORCH (Paszke et al., 2019),
building upon the original implementation of FNOs (Li et al., 2021) and extending it to handle
coupled and parameterized settings. Each experiment is repeated five times with different random
seeds, and all computations are performed on an NVIDIA A100 GPU with 80GB memory.

4.1 SETUP

Tasks and training We consider time-dependent PDEs that generate solution trajectories
{u(x, t;µ)}Tt=0 with u(x, 0;µ) = u(0). NOs are formulated as one-step evolution maps that ap-
proximate the discrete-time flow of the underlying PDE. Specifically, given a finite history of past
solution states {u(t−τ)}Tin−1

τ=0 ∈ A, the operator predicts the next state u(t+1) ∈ U : GΘ : A → U .
Multi-step forecasts are obtained autoregressively by recursively applying the same operator. Dur-
ing training and testing, the initial input window (u(Tin − 1), . . . , u(0)) is assumed to be available,
while subsequent rollouts incorporate predicted states back into the input window.

Baselines As baselines of comparisons, we consider methods inherited from Xiao et al. (2023):

• FNOc: FNOs taking inputs as a vertical concatenation of the discretized input data,
• CFNO: Two separate FNOs sharing exchanging hidden representation in Fourier layers,
• MWTc: MWTs (Gupta et al., 2021) taking a vertically concatenated input data,
• CMWNO: Multiwavelet NOs specifically designed for coupled systems (Xiao et al., 2023),

and other relevant baselines, DeepONets (Lu et al., 2021) and U-Nets (Ronneberger et al., 2015),
modified to handle multi input:

• DONc: DeepONets extended to take a vertical concatenation of the discretized input data,
• U-Netc: U-Nets taking two-channel input.

and, finally, one variant of a certain combinations of choices from the described design choices:
• FNOm: the lift operator projects the two-channel input (aα, aβ) jointly into a shared latent

space, i.e., P : R2 → Rdv with v0(x) = P ([aα(x), aβ(x)]).

We refer to Appendix B.1 for the detailed description of the baselines.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Performance evaluation We evaluate performance using the normalized root mean square error
(nRMSE), averaged over all test trajectories:

nRMSE =
1

ntest

ntest∑
i=1

∥∥∥u(i)0:T − ũ
(i)
0:T

∥∥∥
2

/∥∥∥u(i)0:T

∥∥∥
2

where u and ũ denote the ground-truth and predicted trajectories. For coupled systems, nRMSE is
computed separately for each variable, and the final error is the sum: err = nRMSEα + nRMSEβ .

4.2 1-DIMENSIONAL CAPACITIVELY COUPLED PLASMA FLUID MODEL

In this section, we look at a 1-dimensional capacitively coupled plasma (CCP) model as an example
to demonstrate the performance of the proposed model in a parameteric setting.

The simplified CCP model describes a low-temperature plasma that is generated between two elec-
trodes when an alternating voltage is applied, operating in a manner similar to a capacitor. In this
system, the oscillating electric field accelerates electrons, which then collide with neutral gas atoms
or molecules, producing ions and additional electrons that sustain the plasma. CCPs are widely used
in microelectronics manufacturing, including etching and thin-film deposition for semiconductor de-
vices, as well as in materials processing and surface engineering (Lieberman & Lichtenberg, 1994;
Rauf et al., 2023).

Figure 1: The spatial domain
and boundary conditions.

Figure 2: An example solu-
tion snapshot of electron den-
sity and electric potential.

The governing equation is defined as follows:

∂tne = −∂xΓe +R, (Electron continuity equation)
∂xxϕ = −e/ϵ0(ne − nio), (Poisson equation)

where ne(x, t) and ϕ(x, t) denote electron density and electric po-
tential, which are the solutions of the equations, and ∂□ refers to
a partial derivative with respect to □. Γe is electron flux, defined
as diffusion flux and drift flux such as Γe = −D∂xne − µne∂xϕ
with electron diffusion coefficient D and electron mobility coeffi-
cient µ, and ion density is defined as nio = R0(x2 − x1)

√
mi/eTe.

R andR0 denote reaction rate and coefficient, respectively. The ion
density is assumed constant in this model.

Physical parameters There are several physical parameters char-
acterizing a domain geometry, boundary conditions (BCs), and gov-
erning physical dynamics (See Table 4 in Appendix). Among them,
in this study, we consider fixed parameters for geometry (illustrated
in Figure 1), but varying parameters that define the boundary con-
ditions and the dynamics. In the BCs, the zero boundary condition
is given to the electron density (at x = 0, L). The electric poten-
tial satisfies a Dirichlet condition (at x = 0), and a time-periodic
Dirichlet condition at x = L, V (t) = V0 sin(2πt). That is, the po-
tential at the right boundary oscillates sinusoidally with amplitude
V0 (driving voltage) and frequency f and we vary V0 in the ex-
periments. This models the externally applied radio-frequency forcing that sustains the discharge in
CCP. Along with V0, we consider two other physical parameters that governs the dynamics: reaction
coefficient, R0, and ion mass, mi. Figure 2 depicts solution snapshots of ne(x, t) and ϕ(x, t), simu-
lated over a single cycle, configured with V0 = 100, R0 = 2.7×1020, andmi = 40×1.67×10−27.

4.2.1 DATA SETUP

Data generation We collect solution snapshots by numerically simulating the governing equa-
tions using a finite-difference solver. The spatial domain is discretized into 128 cells, and the time
domain into 100,000 steps per cycle, with the cycle determined by the boundary driving frequency
of 13.56 MHz. A fixed initial condition is used to focus on scenarios where capturing physical
dynamics is critical. We then subsample every 1000th snapshot, yielding 100 temporal indices per
solution. Physical parameters are sampled on an equidistant grid, which contains 100 elements:
V0 ∈ [100, 300], R0 ∈ [2.7× 1019, 2.7× 1020], and mi ∈ [1.67× 10−26, 6.68× 10−26].

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2.2 NUMERICAL RESULTS

1-dimensional parameter space We perform three separate experiments, each on a dataset ob-
tained by varying a single physical parameter: R0, V0, or mi. Table 1 summarizes the results,
reporting prediction errors on the test set for the proposed methods and the baseline models. The
proposed FNOx architecture (FNOx, without the parametric extension) provides notable improve-
ment over the baseline methods. The overall second best model in this set of experiments is CMWNO
and, compared to its performance, FNOx achieve the prediction accuracy improved up to 38% (in the
varying reaction rate scenario). The parametric extensions, pFNOx and hpFNOx, further improve
the performance, achieving up to 55% improvement over the best performing baselines.

Table 1: Performance comparisons between the proposed methods and the baseline methods. All
models are tested on three parameters (R0, V0 and mi) individually. The performance is measured
in the relative ℓ2-error (nRMSE); the reported numerical values refer to the mean (± std. dev.).

Model Reaction rate Driving voltage Ion mass
FNOm 0.0403 (± 0.0012) 0.0791 (± 0.0243) 0.0363 (± 0.0067)
FNOc 0.0375 (± 0.0055) 0.0873 (± 0.0200) 0.0299 (± 0.0030)
CFNO 0.0315 (± 0.0093) 0.0428 (± 0.0064) 0.0333 (± 0.0076)
MWTc 0.0409 (± 0.0032) 0.0639 (± 0.0038) 0.0403 (± 0.0040)

CWMNO 0.0312 (± 0.0023) 0.0526 (± 0.0521) 0.0241 (± 0.0036)
DONc 0.0844 (± 0.0058) 0.2147 (± 0.0414) 0.1035 (± 0.0174)

U-NETc 0.1084 (± 0.0345) 0.0844 (± 0.0354) 0.1719 (± 0.1022)
FNOx 0.0193 (± 0.0059) 0.0345 (± 0.0108) 0.0212 (± 0.0062)

pFNOx 0.0194 (± 0.0075) 0.0278 (± 0.0053) 0.0142 (± 0.0021)
hpFNOx 0.0154 (± 0.0029) 0.0192 (± 0.0040) 0.0128 (± 0.0017)

Computational/memory aspects Since prediction accuracy alone does not provide a complete
picture of the experimental results, Figure 3 presents additional information under the varying driv-
ing voltage scenario, including model size (3a) and computational timing (3b), alongside the mod-
els’ prediction accuracy. The model size is measured in the number of trainable model parameters
and the timing reports a per-epoch training time measured and averaged across the total number
of epochs. The both figures provide the same observation: the proposed methods FNOx, pFNOx,
and hpFNOx achieve improvement in accuracy without sacrificing the model size (i.e., memory
footprint) and the computational wall time too much. Additionally, Figure 3c shows the test loss
trajectories over the training epoch. Along with the computational timing per epoch (Figure 3b), the
loss trajectories provide a complete picture on models’ computational requirements in achieving the
presented accuracy.

(a) Model size (b) Timing (c) Test loss

Figure 3: [1D CCP] Plots depict the number of model parameters versus the model performance
(left), computational timing versus the model performance (middel), and the test loss trajectories
over epochs (right). These results are from the varying driving voltage scenario.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Study on varying Tin Although the true dynamics depend on physical parameters, all non-
parametric NOs in Table 1 achieve reasonable accuracy. This is because the NOs take as input a
window of past snapshots, characterized by Tin, akin to delay embedding in dynamical systems (Tak-
ens, 2006). By consuming multiple consecutive time steps, the NOs implicitly encode information
about system parameters through temporal correlations, enabling them to infer dynamics.

Thus, the benefits of using the parameterized version of FNOxcan be more pronounced when Tin
becomes smaller. To see this, we extend the experimentation for varying Tin = {10, 5, 2, 1}. Table 2
reports the results comparing the performance of FNOc and FNOx and their two parametric variants
(pFNOc, hpFNOc), and (pFNOx, hpFNOx), respectively. As Tin decreases, the overall model per-
formance, which is expected. For Tin = {10, 5}, the improvement achieved by hpFNOx over FNOx
over 20%. For Tin = {2, 1}, while the hp variants maintain the accuracy level around 13∼16%
relative errors. Considering that only initial conditions are available in most practical setups, main-
taining this level of performance could be considered as important step forward for FNOs.

Table 2: Performance comparisons of non-parameterized (FNOc, FNOx) and parameterized (pFNOc,
hpFNOc, pFNOx, hpFNOx) models for varying Tin = {10, 5, 2, 1}. All models are tested on the
reaction rate case. The performance is measured in the relative ℓ2-error; the reported numerical
values refer to the mean (± std. dev.). † indicates that the models fail to learn the dynamics and ‡

indicates that the model performance are averaged from the best 5 runs out of 10 total runs.

Model Tin = 10 Tin = 5 Tin = 2 Tin = 1

FNOc 0.0375 (±0.0055) 0.1324 (±0.0304) 1.0048† (±0.6356) 1.4484† (±0.3128)
pFNOc 0.0334 (±0.0101) 0.0923 (±0.0276) 0.2151‡ (±0.0374) 0.3757‡ (±0.0679)

hpFNOc 0.0196 (±0.0021) 0.0804 (±0.0237) 0.1515‡ (±0.0070) 0.1609‡ (±0.0043)

FNOx 0.0193 (±0.0059) 0.0406 (±0.0093) 1.2832† (±0.4298) 1.8143† (±0.0558)
pFNOx 0.0194 (±0.0075) 0.0464 (±0.0158) 0.1640‡ (±0.0155) 0.2522‡ (±0.1376)

hpFNOx 0.0154 (±0.0029) 0.0317 (±0.0022) 0.1324‡ (±0.0242) 0.1372‡ (±0.0100)

Figure 4: Num. of bases v.s.
performance improvement.

Adaptive basis view point In the next set of experiments, we in-
vestigate further on the adaptive basis viewpoint given on the last
projection operatorQ. We first vary the width (that is, the number of
basis functions) of the last layer of Q for nq = {8, 16, 32, 64, 128}
and measure the prediction performance of hpFNOx on the varying
reaction rate scenario. Taking the dbasis = 8 as a baseline, Figure 4
reports the percentage of improvements (shown in the bottom filled
markers). Next, we test the idea of having (close to) orthogonal ba-
sis functions and repeat the same experiments. An orthonormality
condition imposed to the learned basis, Ψ(a(x)); we could achieve
further improvement (shown in the top filled markers). As dbasis be-
comes small, the effect of the orthogonality enforcement becomes
higher, leading to ∼10% improvements. We define the orthogonal-
ity of the learned basis functions and its computation in Appendix B.3.

Table 3: Performance comparisons
for the 2D input parameter case.

Model Performance
FNOm 0.0285 (± 0.0028)
FNOc 0.0252 (± 0.0026)
CFNO 0.0223 (± 0.0023)
MWTc 0.0305 (± 0.0028)

CMWNO 0.0298 (± 0.0023)
DONc 0.0409 (± 0.0077)

U-Netc 0.0461 (± 0.0160)
FNOx 0.0163 (± 0.0009)
pFNOx 0.0140 (± 0.0012)

hpFNOx 0.0124 (± 0.0011)

2-dimensional parameter space Next we extend our in-
vestigation to 2D input parameter space, a parameter space
spanned by the reaction rate and the driving voltage. For input
parameter sampling, we consider the same ranges for each pa-
rameter V0 ∈ [100, 300], R0 ∈ [2.7 × 1019, 2.7 × 1020], con-
struct a uniform 2D mesh grid (21×21), and randomly split
them into training and test sets with 9:1 ratio. We can make
observations that are similar with the ones from the 1D input
parameter cases; the proposed architecture FNOx provides im-
provement in prediction accuracy and parameterized versions
of FNOc and FNOx further reduce the prediction errors, lead-
ing to the best performance with hpFNOx. The model size and
the computational timing follow the similar trends with the 1D

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

case, only except the slightly increased per-epoch computation time due to the increased number of
data instances in the dataset for all methods.

4.3 GRAY–SCOTT EQUATIONS

As the second benchmark problem, we consider the Gray–Scott equations, which form a system of
coupled reaction-diffusion equations describing the spatio-temporal dynamics of interacting chemi-
cal species. We consider a parameterized dynamics of this equation, where the parameters are dif-
fusion coefficients and feed rate. The task of the NOs are performing predictions of time-dependent
PDE solutions in the auto-regressive manner, and we follow the same training/testing protocols
shown in the first benchmark problem. We refer to Appendix E for details.

We observe that the proposed methods achieve 54% improvement (for the varying diffusion coef-
ficients scenario) and 72% improvement (for the varying feed rates scenario) in terms of the pre-
diction accuracy compared to the performance of the best performing baseline method. We refer to
Appendix E.1 for the details of the equations, the experimental setups and results.

5 RELATED WORK

Building on the success of FNOs, there have been many variants extending their capabilities.
Physics-informed neural operators (PINO) hybridize data supervision with PDE residuals to enforce
physical constraints (Li et al., 2024). Geo-FNO learns a deformation from an arbitrary physical
geometry into a latent regular grid so that the FFT-based FNO can be applied, making the spectral
approach applicable to irregular domains and nonuniform discretizations (Li et al., 2023).

More relevant to our proposed approach, several variants have focused on enhancing model perfor-
mance through architectural improvements. Factorized FNO revisits spectral layers and introduces
separable spectral operators and improved residual connections that enable deeper networks and
better accuracy across simulation benchmarks (Tran et al., 2023). U-NO proposes a U-shaped,
memory-enhanced neural operator architecture that borrows the encoder–decoder with skip connec-
tions to permit deeper operator nets with improved training stability (Rahman et al., 2023). Similarly,
U-FNO combines Fourier layers with U-Net–style multiscale processing, enhancing expressivity
while maintaining resolution independence (Wen et al., 2022). There have been non-Fourier-based
NOs such as Multiwavelet NOs (Gupta et al., 2021) and Laplace NOs (Cao et al., 2024), for example.

Another line of relevant research in NOs is the study of coupled PDEs, which remains relatively
underexplored. The coupled multiwavelet neural operator (CMWNO) is among the first to address
this direction, introducing a framework that decouples integral kernels during multiwavelet decom-
position and reconstruction to efficiently capture interactions in coupled PDE systems (Xiao et al.,
2023). More recently, attention-based approaches have been proposed for multiphysics PDEs (Rah-
man et al., 2024), focusing on large-scale pretraining and transfer. In the parameterized setting,
another work (Subramanian et al., 2023) has explored scaling laws and transfer behavior under very
large datasets and compute budgets. Compared to these methods, our work emphasizes systematic
architectural enhancements to FNOs that capture parameterized dynamics and coupled interactions
with minimal modifications and without reliance on large-scale training budgets.

6 CONCLUSION

This work has investigated extensions of Fourier neural operators (FNOs) for modeling parameter-
ized and coupled time-dependent partial different equations. To enhance the capability of FNOs in
handling parameterized dynamics, we have proposed a novel modulation-based architectural modi-
fication that incorporates parameter information in a lightweight yet effective manner. For coupled
systems, we have defined design spaces of FNOs and conducted an in-depth systematic investi-
gation to identify economic architectures that preserve efficiency while capturing inter-component
interactions. In addition, we have introduced a novel benchmark problem on plasma physics, which
introduces rich parameterized dynamics and contributes a valuable testbed to the community. Exper-
imental results have demonstrated that our proposed approaches achieve significant improvements
in predictive performance, while maintaining model size and runtime efficiency comparable to stan-
dard FNOs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

This study focuses on methodological advances in machine learning for computational physics prob-
lems, and we do not anticipate any significant ethical concerns arising from the proposed approaches.

8 REPRODUCIBILITY STATEMENT

To support reproducibility, we provide detailed descriptions of the proposed methods, including
model architectures, algorithms, loss definitions, hyperparameters, training setups, and baseline
comparisons. All experiments are described in the main text and appendix, and upon acceptance
we will release the full source code to further facilitate reproduction of our results.

REFERENCES

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, 6(5):320–328, 2024.

Peter Bauer, Alan Thorpe, and Gilbert Brunet. The quiet revolution of numerical weather prediction.
Nature, 525(7567):47–55, 2015.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. In Handbook of
Numerical Analysis, volume 25, pp. 83–125. Elsevier, 2024.

Marcelo Buffoni and Karen Willcox. Projection-based model reduction for reacting flows. In 40th
Fluid Dynamics Conference and Exhibit, pp. 5008, 2010.

Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karniadakis. Physics-
informed neural networks for heat transfer problems. Journal of Heat Transfer, 143(6):060801,
2021.

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator for solving
differential equations. Nature Machine Intelligence, 6(6):631–640, 2024.

Kevin Carlberg, Charbel Farhat, Julien Cortial, and David Amsallem. The GNAT method for nonlin-
ear model reduction: Effective implementation and application to computational fluid dynamics
and turbulent flows. Journal of Computational Physics, 242:623–647, 2013.

Woojin Cho, Kookjin Lee, Donsub Rim, and Noseong Park. Hypernetwork-based meta-learning for
low-rank physics-informed neural networks. Advances in Neural Information Processing Systems,
36:11219–11231, 2023.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong
Park. Parameterized physics-informed neural networks for parameterized PDEs. In International
Conference on Machine Learning, pp. 8510–8533. PMLR, 2024.

Eric C Cyr, Mamikon A Gulian, Ravi G Patel, Mauro Perego, and Nathaniel A Trask. Robust
training and initialization of deep neural networks: An adaptive basis viewpoint. In Mathematical
and Scientific Machine Learning, pp. 512–536. PMLR, 2020.

Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide, 2014.

Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented neural odes. Advances in neural
information processing systems, 32, 2019.

Emilien Dupont, Hyunjik Kim, SM Ali Eslami, Danilo Jimenez Rezende, and Dan Rosenbaum.
From data to functa: Your data point is a function and you can treat it like one. In International
Conference on Machine Learning, pp. 5694–5725. PMLR, 2022.

Rizal Fathony, Anit Kumar Sahu, Devin Willmott, and J Zico Kolter. Multiplicative filter networks.
In International conference on learning representations, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Joel H Ferziger, Milovan Perić, and Robert L Street. Computational Methods for Fluid Dynamics.
springer, 2019.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differen-
tial equations. Advances in neural information processing systems, 34:24048–24062, 2021.

David Ha, Andrew M Dai, and Quoc V Le. Hypernetworks. In International Conference on Learn-
ing Representations, 2017.

George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang.
Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of
the 3rd International Conference on Learning Representations (ICLR 2015), 2015. URL https:
//arxiv.org/abs/1412.6980.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces
with applications to PDEs. Journal of Machine Learning Research, 24(89):1–97, 2023.

Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020.

Kookjin Lee and Eric J Parish. Parameterized neural ordinary differential equations: Applications
to computational physics problems. Proceedings of the Royal Society A, 477(2253):20210162,
2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhat-
tacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial differ-
ential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020b.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, Anima Anandkumar, et al. Fourier neural operator for parametric partial differential equa-
tions. In International Conference on Learning Representations, 2021.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
informed neural operator for large-scale 3d pdes. Advances in Neural Information Processing
Systems, 36:35836–35854, 2023.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. ACM/IMS Journal of Data Science, 1(3):1–27, 2024.

Michael A Lieberman and Allan J Lichtenberg. Principles of Plasma Discharges and Materials
Processing. MRS Bulletin, 30(12):899–901, 1994.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Richard H Macneal and Robert L Harder. A proposed standard set of problems to test finite element
accuracy. Finite elements in analysis and design, 1(1):3–20, 1985.

Stefano Massaroli, Michael Poli, Jinkyoo Park, Atsushi Yamashita, and Hajime Asama. Dissecting
neural odes. Advances in neural information processing systems, 33:3952–3963, 2020.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proceedings of the 27th international conference on machine learning (ICML-10), pp. 807–814,
2010.

11

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-NO: U-shaped neural
operators. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=j3oQF9coJd.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain
attention neural operators for solving multiphysics PDEs. Advances in Neural Information Pro-
cessing Systems, 37:104035–104064, 2024.

M Raissi, P Perdikaris, and GE Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, 2019.

Michel Rappaz, Michel Bellet, Michel O Deville, and Ray Snyder. Numerical modeling in materials
science and engineering, volume 20. Springer, 2003.

Shahid Rauf, Kallol Bera, Jason Kenney, and Prashanth Kothnur. Modeling of plasma processing
reactors: review and perspective. Journal of Micro/Nanopatterning, Materials, and Metrology,
22(4):041503–041503, 2023.

Michał Jerzy Rewieński. A trajectory piecewise-linear approach to model order reduction of non-
linear dynamical systems. PhD thesis, Massachusetts Institute of Technology, Department of
Electrical Engineering . . . , 2003.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Im-
plicit neural representations with periodic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Giovanni Stabile and Gianluigi Rozza. Finite volume POD-Galerkin stabilised reduced order meth-
ods for the parametrised incompressible Navier–Stokes equations. Computers & Fluids, 173:
273–284, 2018.

Shashank Subramanian, Peter Harrington, Kurt Keutzer, Wahid Bhimji, Dmitriy Morozov,
Michael W Mahoney, and Amir Gholami. Towards foundation models for scientific machine
learning: Characterizing scaling and transfer behavior. Advances in Neural Information Process-
ing Systems, 36:71242–71262, 2023.

Floris Takens. Detecting strange attractors in turbulence. In Dynamical Systems and Turbulence,
Warwick 1980: proceedings of a symposium held at the University of Warwick 1979/80, pp. 366–
381. Springer, 2006.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized Fourier neural
operators. In The Eleventh International Conference on Learning Representations, 2023.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—An enhanced Fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin, Radu
Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled partial dif-
ferential equations. In International Conference on Learning Representations, 2023.

12

https://openreview.net/forum?id=j3oQF9coJd
https://openreview.net/forum?id=j3oQF9coJd

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A DESIGN SPACES OF FNOS

A.1 DESCRIPTION ON EACH COMPONENT

Data space

D1 Separate single-channel format. Each variable is treated as an independent function, a(x) =
(aα(x), aβ(x)), and discretized separately as aα,aβ ∈ Rm. This representation keeps the two
components distinct throughout the architecture.

D2 Two-channel format. The input is represented as a vector-valued function, a : X → R2, x 7→
(aα(x), aβ(x)), which in a discretized form becomes a = [aα,aβ] ∈ Rm×2. The output is rep-
resented analogously as u(x) = [uα(x), uβ(x)]T ∈ R2 and the discretized form u = [uα,uβ] ∈
Rm×2.

Lift operator, P

P1 The lift operator P : R1 → Rdv and shared across the two input components, so that both
variables are mapped into the latent space using the same transformation.

P2 Alternatively, the lift operator can consist of two separate mappings, P = (Pα, P β), each specific
to one input component. This allows the two variables to have independent latent representations
from the beginning.

P3 Compatible with D2, the lift operator is defined as P : R2 → Rdv , mapping a two-channel input
to a hidden state.

Fourier layers

L1 The point-wise linear map is a single operator shared by the both variables.

L2 The point-wise linear map is defined as two separate operators (Wα, W β).

G⃝ For coupled systems, we define the global spectral convolution to perform coupling only in
Fourier space. Specifically, each variable is first transformed independently, ṽ□(k) = Fv□ℓ (k),
for □ = {α, β}. Their spectral representations are then combined through a shallow en-
coder network f enc(ṽα(k), ṽβ(k)), followed by the usual mode-wise kernel multiplication ˜̃v(k) =
Rϕ(k)ṽ(k). The result is decomposed into variable-specific coefficients using another shallow net-
work, (˜̃vα(k), ˜̃vβ(k) = f dec(˜̃v(k), and finally mapped back to the data space via the inverse Fourier
transform, v□ℓ+1(k) = F−1(˜̃v□(k)), for □ = α, β.

G2⃝ The standard global spectral convolution performs the Fourier transform, mode-wise kernel mul-
tiplication, followed by the inverse Fourier transform: F−1

(
Rϕ · (Fvℓ)

)
(x).

Projection operator, Q

Q1 The projection operator is shared across both output components, Q : Rdv → R1.

Q2 The projection operator is defined separately for each output component, Q = (Qα, Qβ), with
Q□ : Rdv → R1 for □ ∈ α, β. From the adaptive-basis view perspective, Q can differ in whether
the basis and the coefficients are shared or separate across the two variables:

• Q2a Shared basis and separate coefficients, and

• Q2b Separate basis and shared coefficients, and

• Q2c Separate basis and separate coefficients.

Q3 Similar to P3 , this projection operator is defined as Q : Rdv → R2, mapping a hidden state to a
two-channel output.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A.2 RESULTING MODELS

Now we list realizations of FNOs obtained from some combinations of the above design choices.

• FNOm: D2 + P3 + L1 + G2 + Q3 - a two-channel input is processed by a standard FNO to
produce a two-channel output.

• FNOc: D1 + P1 + L1 + G2 + Q1 - two single-channel variables are concatenated in a discrete
representation, i.e., [aαT,aβT]T ∈ R2m; the concatenated input is processed by a standard
FNO to produce a single-channel vertically-concatenated output, i.e., [uαT,uβT]T ∈ R2m.

• FNOx: This is a class of the proposed models, which can be realized with the combinations
of D1 + P1/P2 + L1/L2 + G⃝ + Q1/Q2 . In the experimentation, with FNOx, we refer to
D1 + P2 + L2 + G⃝+ Q2c unless otherwise stated.

B IMPLEMENTATION DETAILS

B.1 DESCRIPTIONS AND SPECIFICATIONS OF THE BASELINES AND THE PROPOSED MODELS

FNOm / FNOc / FNOx For all FNO-based baselines, we consider the same hyper-parameter 4
Fourier layers with the modes and width (k = 12 and dv = 20). P is parameterized as a linear
layer and Q is parameterized as a shallow MLP with one hidden layer. All nonlinearity functions
are ReLU (Nair & Hinton, 2010). This fixed hyperparameter setup is to control the representational
capacity contributed by these hyperparameters. Consequently, any observed performance gains can
be attributed to the architectural modifications introduced in each variant rather than to differences
in model capacity.

For defining the FNOx, we consider the combination, P1 + L2 + Q2c , which employs the shared
lift operator, the separate point-wise linear maps, the proposed coupled global spectral convolution
layer, and the separate sets of basis functions and separate sets of coefficients in the projection
operator. The encoder/decoder, f enc/f dec, in the Fourier layers are set to simple linear layers. This
choice is obtained from the ablation study.

pFNOc / pFNOx These parameterized variant takes the standard input (i.e., the input to FNOc and
FNOx), but augmented with the physical parameters, µ.

hpFNOc / hpFNOx These variants require one additional component, the hypernetwork, f hyper.
In our implementation, we consider a simple linear layer to parameterize the hypernework, and we
model the hypernetwork to take (x, µ) along with the discrete reprsentation of the windowed history,
{u(t− τ)}Tin−1

τ=0 . Thus, the hypernetwork becomes a local transform similar to the lift operator.

MWTc / CMWNO The multiwavelet-based operator learning framework (MWT) has been intro-
duced as an approach to leverage multiwavelet expansions for differential equations. By decompos-
ing solution operators into multiwavelet bases, MWT captures both global structures and localized
variations in a flexible and efficient way, capable of handling multi-scale dynamics and heteroge-
neous patterns. The coupled extension of this has been introduced in the sequel (Xiao et al., 2023),
which is named as MWTc and is designed to take vertically concatenated input variables.

Extending this idea, the coupled multiwavelet neural operator (CMWNO) adapts the MWT framework
to systems of coupled partial differential equations. CMWNO introduces a strategy that decouples the
operator kernels across different wavelet components during decomposition and reconstruction. This
enables the model to efficiently learn and represent the interactions between multiple coupled fields
while keeping computation tractable. Computationally, CMWNO consists of two distinct operators
that communicate by exchanging hidden representations. A randomized scheduling mechanism,
referred to as the ‘dice’ algorithm, determines the order in which these operators share information,
enabling flexible and efficient coordination between the coupled components.

For both MWT and CMWNO, we use the implementation available from the Github repository1. The
scaling parameter α is set to 12, the channel multiplier c is set to 16, the wavelet polynomial order
c is set to 4, and the base polynomial basis is set to the ‘Legendre’ polynomials. The dice strategy

1https://github.com/joshuaxiao98/CMWNO/

14

https://github.com/joshuaxiao98/CMWNO/

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

is utilized as follows: for each batch we throw a random number from a uniform distribution [0,1]
and if the sampled random number is below 0.5, the second operator takes the first operator’s hidden
representation through the roll-out. On the opposite case, the first operator takes the first operator’s
hidden representation through the roll-out.

CFNO CFNO mimics the operations of CMWNO, i.e., two separate operators enabling coupling
effect via sharing a hidden representation of one operator to another. For CFNO, the backbone is
FNO instead of CFNO. Also, the same dice approach described above is utilized.

Same as other FNO-based baselines, we consider the same hyper-parameter 4 Fourier layers with the
modes and width (k = 12 and dv = 20). P is parameterized as a linear layer andQ is parameterized
as a shallow MLP with one hidden layer. All nonlinearity functions are ReLU. For CFNOs, we have
two separate realizations of FNOs and in the third layer of CFNOs, the hidden representation from
one CFNO is passed to another CFNO, where the direction is dictated by the dice approach.

DeepONets For the implementation of DeepONets (DONs), we base our implementation on
a publicly available PyTorch version. 2 We modify the DONs to take multivariate input and
produce multivariate output. We explore the combination of a (shared/separate) trunk net and a
(shared/separate) branch net, and find that two separate branch networks and a shared trunk network
perform the best. Each branch network takes the same input, which is concatenated time-windowed
snapshots; then one branch network produces coefficients for the electron density and another branch
network produces coefficients for the electric potential. That is,

ne(x, t+ 1) =

p∑
i=1

f branch,ne
i (ā≤t)f

trunk,ne
i (x),

ϕ(x, t+ 1) =

p∑
i=1

f branch,ϕ
i (ā≤t)f

trunk,ϕ
i (x)

where f branch,ne and f branch,ϕ denote two separate MLPs, taking time-windowed input

ā≤t =

[
ne(x, t) · · · ne(x, t− Tin + 1)
ϕ(x, t) · · · ϕ(x, t− Tin + 1)

]
,

where Tin decides the window length. The trunk net is modeled as a separate network, producing
two separate sets of basis such that

[f trunk,ne(x), f trunk,ϕ(x)] = [Wnef trunk(x) + bne ,Wϕf trunk(x) + bnϕ],

where f trunk denote a shared MLP, and (Wne , bne) and (Wϕ, bnϕ) denote a set of model parameters
specific to the electron density and electric potential, respectively.

For each branch networks, we use 4 hidden layers with 1024 neurons in each layer. For the trunk
network, we use 3 hidden layers with 1024 neurons. For both network types, we consider ReLU for
nonlinear activation.

U-Net For the implementation of U-Nets, we base our implementation on the code base we use
for DeepONets. We modify the U-Net to take 1-dimensional and 2 channel inputs, and produce
the output with the same dimensional specification. The U-Net architecture we consider has an
encoder–decoder structure with skip connections.

The encoder progressively reduces the spatial resolution while increasing the feature dimension. It
begins with an initial block (DoubleConv → ReLU), followed by four downsampling stages (Max-
Pool1d → DoubleConv → ReLU), where each stage halves the sequence length and expands the
channel dimension. The spatial resolution is halved at every downsampling and the channel dimen-
sion is updated (32→64→64→128→128).

The decoder mirrors this process with four upsampling stages (Upsample → Concat (skip-
connection) → DoubleConv → ReLU). At each stage, the feature map is upsampled by a factor
of two, concatenated with the corresponding encoder feature (skip connection), and refined by a
double convolution block. Finally, the output layer applies 1D convolution to project the features to
the desired number of output channels.

2This is accessible through https://github.com/camlab-ethz/ConvolutionalNeuralOperator.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B.2 TRAINING DETAILS

All FNO variants and wavelet-based operators are trained for 500 epochs using the Adam opti-
mizer (Kingma & Ba, 2015) with a learning rate of 0.0025, weight decay 0.0001, and mini-batches
of size 10. For U-Nets, we consider the same hyperparameters, except for the total training epochs,
which is set to 1,000, which is to mitigate the effect of the increased model sizes. For DeepONets,
we again consider the same hyperparameters, except for the learning rate, which is set to 0.0001 and
the total training epochs, which is set to 2,500 which is to compensate the decreased learning rate.
For all baseline models, we repeat 5 different runs for varying random seeds.

B.3 ORTHOGONALITY LOSS

To measure the orthogonality of the learned basis functions, Ψ(x) = [ψ1(x), . . . , ψnq (x)], we define
a discrete inner product over the spatial domain. For a spatial domain D and a measure ρ(x), the
continuous inner product is ⟨ψi, ψj⟩ =

∫
D
ψi(x)ψj(x)dρ(x). In practice, we approximate this inte-

gral using numerical quadrature. Specifically, we employ Gauss-type quadrature rules, which select
quadrature nodes xk ∈ D and associated weights wk, yielding ⟨ψi, ψj⟩ ≈

∑M
m=1 wkψi(xk)ψj(xk).

With this discrete formulation, we compute the Gram matrix, [G]ij = ⟨ψi, ψj⟩, for i, j = 1, . . . , nq

and quantify deviation from orthonormality via Lortho = ∥G − Inq∥2F, leading to the ultimate loss
L = Lmse +λorthoLortho. This approach allows for a principled enforcement of orthonormality in the
learned basis while ensuring consistency with the underlying continuous inner product and measure.
For λortho, we consider {0.1, 0.01,0.001}.

C 1D CCP: DESCRIPTION

C.1 GOVERNING EQUATIONS

The simplified one-dimensional capacitively coupled plasma physics is described by two equations:
electron continuity equation and Poisson equation. The electron continuity equation describes the
conservation of particles; electron density changes in time because of electron flows out at the sur-
face and because they can be created/destroyed locally due to the chemical reactions. The Poisson
equation relates how the electrostatic potential varies in space to the distribution of charges (i.e.,
electrons and ions) in the plasma. The governing equations are defined as follows:

∂ne

∂t
= −∂Γe

∂x
+R, (Electron continuity equation)

∂xxϕ =
e

ϵ0
(ne − nio), (Poisson equation)

where ne(x, t) and ϕ(x, t) denote electron density and electric potential, which are the solutions of
the equations, and ∂□ refers to a partial derivative with respect to □. Γe is electron flux, defined as
diffusion flux and drift flux such as

Γe = −D∂xne − µne∂xϕ

with electron diffusion coefficient D and electron mobility coefficient µ, which is defined as D =
eTe/meϑm. Here, µ = e/meϑm. Here, e, Te, me, and ϑm denote elementary charge, electron
temperature, electron mass, and collision frequency. The ion density is defined as nio = R0(x2 −
x1)

√
mi/eTe, where R(x) and R0 denote reaction rate and coefficient, respectively. The reaction

rate is a spatially dependent quantity such that

R(x) =

{
R0, x ∈ [x1, x2] ∪ [L− x2, L− x1]
0, otherwise .

The boundary conditions are specified as

ne = 0, ϕ = 0, at x = 0,

ne = 0, ϕ = V (t) at x = L,

where V (t) = V0 sin(2πt). That is, the zero boundary condition is given to the electron density
(at x = 0, L). The electric potential satisfies a homogeneous Dirichlet condition (at x = 0), and

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

a time-periodic Dirichlet condition at x = L. That is, the potential at the right boundary oscillates
sinusoidally with amplitude V0 and frequency f .

Table 4 lists up the important parameters, their description, and their values. Other important con-
stants are elementary charge, e = 1.6 × 10−19 (C) and vacuum permittivity ϵ0 = 8.854 × 10−12

(C2kg−1m−3s2).

Table 4: Input parameter symbols, descriptions, and values

Symbols Descriptions Values (unit)

L Domain Length 0.025 (m)
x1, x2 Reaction area 0.005(m), 0.01(m)

f Driving frequency 13.56 (MHz)
V0 Driving voltage amplitude [100, 300] (V)

R0 Reaction rage coefficients [2.7×1019, 2.7 ×1020‘] (m−3s−1)

Te Electron temperature 3 (eV)
mi Ion mass [1.67×10−26, 6.68×10−26] (kg)
me Electron mass 9.109×10−31 (kg)
ϑm Collision frequency 108 (s−1)

C.2 VISUALIZATION OF THE SOLUTION SNAPSHOTS

To provide better understanding on the dynamics of the benchmark problem, we present some col-
lections of solution snapshots for varying input parameters, reaction rate (Figure 5) and driving
voltage (Figure 6) in the first RF cycle. All Figures presents the two spatio-temporal fields, the
electron density ne(x, t) and the electric potential ϕ(x, t), on a t− x plane, in a heatmap format.

Figure 5 shows the solution snapshots for varying reaction rates R0 = {2.7 × 1019, 1.485 ×
1020, 2.7 × 1020}m−3s−1. The reaction rate serves as a quantity that determines how fast ion-
ization occurs. The reaction rate drives the plasma density and sustainment in a CCP discharge. The
higher the reaction rates, the faster the ionization is, and the higher plasma density is. Reaction rate
can be controlled using power in plasma processing systems. Figure 5 shows some example solution
snapshots for varying reaction rate; from the left panel to the right panel, the reaction rate increases,
which results in higher electron density and thinner sheaths.

(a) R0 = 2.7× 1019 (b) R0 = 1.485× 1020 (c) R0 = 2.7× 1020

Figure 5: [1D CCP] Solution snapshots presented in heatmap; the solutions are collected for varying
reaction rates R0 = {2.7× 1019, 1.485× 1020, 2.7× 1020}.

Figure 6 shows the solution snapshots for varying driving voltages V0 = {100, 200, 300} in the
first RF cycle. The driving voltage, given as the boundary condition, establishes the time-varying

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

electric potential fields. The higher the driving voltage, the larger is the sheath voltage, resulting
in stronger electric fields. The sheath is thicker at higher electric field. Figure 6 shows example
solution snapshots for varying driving voltage: (a) V0 = 100, (b) V0 = 200, and (c) V0 = 300.

(a) V0 = 100 (b) V0 = 200 (c) V0 = 300

Figure 6: [1D CCP] Solution snapshots presented in heatmap; the solutions are collected for varying
driving voltages V0 = {100, 200, 300}.

Likewise, varying the ion-mass also provides variations in the dynamics. However, compared to
other two physical parameters, the reaction rate and the driving voltage, changing the ion-mass
parameter has slightly less physical impact on the dynamics and thus, the solution snapshots.

D 1D CCP: ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

D.1 1D CCP RESULTS

In the following sections, we present additional experimental results that are not presented in the
main body due to the space limit. The additional experiments include an ablation study on different
design choices of FNOs, a study on effectiveness of the proposed hypernetwork and modulation
based architecture for the parametric extension, and a study on extrapolation in the parameter space.

D.1.1 ADDITIONAL RESULTS

Continuing from the experimental results presented in the main text (i.e., the “1-dimensional pa-
rameter space” experimentation), we present the further detailed information regarding the com-
putations: the model sizes and the computational timings, depicted in Figure 7. This time, the
information obtained from the experimentation with the datasets that vary the reaction rate and the
ion masses. Again, the model size is measured in the number of trainable model parameters and the
timing reports a per-epoch training time measured and averaged across the total number of epochs.
We can make the similar observations here: the proposed methods FNOx, pFNOx, and hpFNOx
achieve improvement in accuracy without sacrificing the model size and the computational wall
time. In case of the ion-mass scenario, we see relatively small improvements compared to other
two scenarios (the reaction rates and the driving voltage). This is largely due to the fact that vary-
ing the ion-mass provide less changing physical dynamics and taking the windowed history input,
{u(t − τ)}Tin−1

τ=0 , allows other non-parameterized NOs to infer those physical parameters to some
extent. Still, the proposed methods FNOx, pFNOx, and hpFNOx improves the performance in that
scenario while minimally affecting the model size and the training time.

D.1.2 ABLATION ON COUPLED EXTENSION

To investigate the effectiveness of each design component, we perform an ablation study on several
different combinations of the design choices. We begin with the default combination, P1 + L1 + Q1 ,
which consists of the shared lift/projection operators and the point-wise linear map in the Fourier

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(a) Model size (b) Timing (c) Test loss

(d) Model size (e) Timing (f) Test loss

Figure 7: [1D CCP] Plots depict the number of model parameters versus the model performance
(left), computational timing versus the model performance (right), for varying reaction rates R0

(top) and ion masses mi (bottom)

layers. We first consider replacing the point-wise linear map in the Fourier layer to be a set of sep-
arate point-wise linear maps, Wα and W β . After that, we investigate the projection operator by
testing three different combinations: Shared/separate basis functions Ψ and shared/separate coeffi-
cients Ξ. Finally, we test the effect of a set of separate lift operators. Table 5 reports the results of
this ablation study. The normalization shown in the last entries of the table is layer norm applied to
the pre-activation values in the projection operator (i.e., W1vT (x) + b1). From this ablation study,
we choose the combination, P1 + L2 + Q2c with layer norm, as FNOx for all experimentation.

Table 5: Performance comparisons of different realizations of FNOx. The models are trained for 1-
dimensional parameter space, (reaction rate). The performance is measured in the relative ℓ2-error
(nRMSE); the reported numerical values refer to the mean (± std. dev).

Variant Description Relative errors

P1 + L1 + Q1 Default setup 0.0341 (± 0.0044)

P1 + L2 + Q1 Separate W 0.0281 (± 0.0048)

P1 + L2 + Q2a Separate W and coefficients Ξ 0.0259 (± 0.0032)
P1 + L2 + Q2b Separate W and basis Ψ 0.0315 (± 0.0028)
P1 + L2 + Q2c Separate W and basis Ψ and coefficients Ξ 0.0275 (± 0.0062)

P1 + L2 + Q2b w. norm Separate W and coefficients Ξ with layer norm 0.0205 (± 0.0043)
P1 + L2 + Q2c w. norm Separate W and basis Ψ and coefficients Ξ with layer norm 0.0193 (± 0.0059)
P2 + L2 + Q2c w. norm Separate P and W and basis Ψ and coefficients Ξ with layer norm 0.0204 (± 0.0035)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

D.1.3 PARAMETRIC EXTENSION

Study on the effectiveness of the proposed model architecture To further investigate the ef-
fectiveness of the proposed parameteric extension, we compare the performances of the non-
parameterized versions, FNOc and FNOx against their own two parameterized versions, (pFNOc,
hpFNOc) and (pFNOx, hpFNOx). Table 6 reports the models’ performance measured in all three
physical parameter scenarios. Taking the non-parameterized version as the baseline, Table 6 reports
the achieved prediction accuracy of each model and their improvements over the non-parameterized
versions, presented in the percentage. The results indicate that simply augmenting physical param-
eters to input provide some improvements in prediction accuracy. However, the new architectural
modification (i.e., hypernetwork and modulation) brings significantly improved results (upto 68.01%
improvement).

Table 6: Performance comparisons of non-parameterized (FNOc, FNOx) and parameterized (pFNOc,
hpFNOc, pFNOx, hpFNOx) models. All models are tested on three scalar parameters (reaction
rate, driving voltage, and ion mass) individually. The performance is measured in the relative ℓ2-
error; the reported numerical values refer to the mean (± standard deviation, improvement over
non-parameterized version).

Model Reaction rate Driving voltage Ion mass

FNOc 0.0375 (± 0.0055) 0.0873 (± 0.0200) 0.0299 (± 0.0030)
pFNOc 0.0334 (± 0.0101, 10.94 %) 0.0454 (± 0.0094, 47.92 %) 0.0284 (± 0.0023, 5.08 %)

hpFNOc 0.0196 (± 0.0021, 47.57 %) 0.0279 (± 0.0016, 68.01 %) 0.0210 (± 0.0036, 29.84 %)

FNOx 0.0193 (± 0.0059) 0.0345 (± 0.0108) 0.0212 (± 0.0062)
pFNOx 0.0194 (± 0.0075, -0.51 %) 0.0278 (± 0.0053, 19.30 %) 0.0142 (± 0.0021, 32.91 %)

hpFNOx 0.0154 (± 0.0029, 20.12 %) 0.0192 (± 0.0040, 44.40 %) 0.0128 (± 0.0017, 39.83 %)

Study on the out-of-distribution samples In the main experiments, we follow the standard FNO
testing strategy. In our parameterized scenarios, however, we can explicitly sample parameters that
lie entirely outside the training range, which we define as out-of-distribution (OOD) testing. As a
benchmark case, we vary the reaction rate R0. For training, 101 equidistance values of the reaction
rate is sampled from [2.7×1019, 2.7×1020]; for OOD testing, the interval is expanded outward by
0.2 × 1019 in both directions. Table 7 reports the performance of all considered models on ID test
samples and OOD test samples. Overall, the performance measured on OOD produces increased
numbers, but the trend across the compared methods remains the same. The proposed FNOx model
family produce more accurate predictions than the existing methods.

Table 7: Performance comparisons of non-parameterized (FNOc, FNOx) and parameterized (pFNOc,
hpFNOc, pFNOx, hpFNOx) models for OOD samples (reaction rate). The performance is measured
in the relative ℓ2-error; the reported numerical values refer to the mean (± standard deviation, im-
provement over non-parameterized version).

Model ID OOD

FNOm 0.0403 (± 0.0012) 0.0628 (± 0.0075)

FNOc 0.0375 (± 0.0055) 0.0673 (± 0.0097)
pFNOc 0.0334 (± 0.0101) 0.0498 (± 0.0069)

hpFNOc 0.0196 (± 0.0021) 0.0374 (± 0.0051)

FNOx 0.0193 (± 0.0059) 0.0446 (± 0.0094)
pFNOx 0.0194 (± 0.0075) 0.0343 (± 0.0059)

hpFNOx 0.0154 (± 0.0029) 0.0303 (± 0.0050)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

E GRAY–SCOTT EQUATIONS

The Gray–Scott equations form a system of coupled reaction-diffusion equations that describe the
spatiotemporal dynamics of interacting chemical species. This model can reproduce a rich variety
of natural patterns, including structure resembling bacterial colonies, spiral waves, and coral-like
formations. In the system, two state variables u and v each undergo independent diffusion and
linear growth/decay, while their interaction is governed by the nonlinear reaction term.

The governing equations are defined as follows:

∂u

∂t
= ϵ1

∂2u

∂x2
+ F (1− u)− λ1uv

2,

∂v

∂t
= ϵ2

∂2v

∂x2
− (K + F)v + λ2uv

2,

where u(x, t) denotes concentration of the feed species, which is continuously supplied to the system
and v(x, t) denotes concentration of the reactant species, which is produced and consumed through
interaction with u. The diffusion coefficients of u and v are denoted as ϵ1 and ϵ2, respectively. Other
parameters include: F , the feed rate, representing the rate at which species u is introduced into the
system from an external source, K, he decay rate of species v, which accounts for natural removal,
and λ, the reaction rate constant associated with the nonlinear term −λuv2, which describes the
autocatalytic process where one unit of u reacts with two units of v.

E.1 EXPERIMENTATION

In the experiment, we consider the parameterized dynamics realized by varying the diffusion co-
efficient ϵ1 ∈ [0.1, 10] and varying the feed rate F ∈ [0.1, 10]. We collect 101 samples of
equi-distanced coefficient/feed rate values while the other parameters are fixed as ϵ2 = 0.05,
K = 0.1 and (λ1, λ2) = (2, 5). For sampling an initial condition, we follow the approach
described in (Xiao et al., 2023), sampling u(x, 0) using the smooth random functions in the
Chebfun package (Driscoll et al., 2014) and sampling v(x, 0) from Gaussian random field,
v(x, 0) ∼ N (0, 74(−2π + 72I)−2.75). For collecting trajectories for constructing training/test
datasets, initial value problems are numerically solved using a fourth-order time-integrator, expo-
nential time differencing fourth-order Runge–Kutta (ETDRK4), utilizing the chebfun software. We
base the implementation the publicly available Matlab script3, which is the implementaion accom-
panyed by the research work (Xiao et al., 2023). The IVPs are solved with a spatial resolution, 1024,
and then the collected solution snapshots are subsampled in the spatial domain, leading to the final
spatial resolution, 128. The time integration is performed for the time interval [0,0.1] with 31 time
steps.

Table 8: Performance comparisons between the proposed methods and the baseline methods. All
models are tested on a scalar parameter: the diffusion coefficient. The performance is measured in
the relative ℓ2-error; the reported numerical values refer to the mean (± standard deviation)

Model Diffusion coeff, ϵ1 Feed rate, F

FNOm 0.0129 (± 0.0032) 0.0116 (± 0.0026)
FNOc 0.0089 (± 0.0052) 0.0097 (± 0.0030)
CFNO 0.0093 (± 0.0016) 0.0161 (± 0.0045)

MWTc 0.0055 (± 0.0011) 0.0092 (± 0.0021)
CWMNO 0.0048 (± 0.0015) 0.0293 (± 0.0078)

DONc 0.0243 (± 0.0029) 0.0138 (± 0.0020)
U-Netc 0.0239 (± 0.0160) 0.0159 (± 0.0071)

FNOx 0.0039 (± 0.0002) 0.0075 (± 0.0016)
pFNOx 0.0027 (± 0.0008) 0.0041 (± 0.0010)

hpFNOx 0.0022 (± 0.0010) 0.0022 (± 0.0006)

3This script is available in https://github.com/joshuaxiao98/CMWNO/.

21

https://github.com/joshuaxiao98/CMWNO/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Table 8 reports the prediction accuracy of all considered method. The results provide similar ob-
servations with those of the 1D CCP experimentation; the proposed methods, the parameterized
variants of FNOx achieve the lowest errors compared to existing baselines with 54% (for the dif-
fusion coefficient case) and 72% (for the feed rate case) improvements. The coupled extension
of FNO, FNOx, improves the performance compared to other baselines. This is achieved without
significantly scarifying the training/inference time and the memory footprint compared to FNOm or
FNOc while other baselines require significantly larger-sized models and/or computational times. In
the varying feed rate scenario, the approaches leveraging two separate operators struggle further to
capture the accurate dynamics, resulting in higher prediction errors.

22

	Introduction
	Technical Background
	Neural Operators
	Fourier neural operators

	Methods
	Extensions to Parametrized FNO
	Extensions to coupled FNO
	Putting all together

	Experimental results
	Setup
	1-dimensional capacitively coupled plasma fluid model
	Data setup
	Numerical results

	Gray–Scott equations

	Related work
	Conclusion
	Ethics statement
	Reproducibility statement
	Design spaces of FNOs
	Description on each component
	Resulting models

	Implementation details
	Descriptions and specifications of the baselines and the proposed models
	Training details
	Orthogonality loss

	1D CCP: Description
	Governing equations
	Visualization of the solution snapshots

	1D CCP: Additional experimental details and results
	1D CCP results
	Additional results
	Ablation on coupled extension
	Parametric extension

	Gray–Scott equations
	Experimentation

