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Abstract
Large Language Models (LLMs) achieve re-001
markable performance through pretraining on002
extensive data. This enables efficient adapta-003
tion to diverse downstream tasks. However,004
the lack of interpretability in their underlying005
mechanisms limits the ability to effectively006
steer LLMs for specific applications. In this007
work, we investigate the intrinsic mechanisms008
of LLMs from a cognitive perspective using009
eye movement measures. Specifically, we ana-010
lyze the layer-wise correlation between human011
cognitive indicators and LLM representations.012
Building on these insights, we propose a heuris-013
tic approach for selecting the optimal steering014
layer to modulate LLM semantics. To this end,015
we introduce an efficient selective layer inter-016
vention based on prominent parameter-efficient017
fine-tuning methods, which conventionally ad-018
just either all layers or only the final layer. Ad-019
ditionally, we present an implicit layer con-020
trastive intervention during inference to steer021
LLMs away from toxic outputs. Extensive ex-022
periments on natural language understanding,023
reasoning, and generation tasks, conducted on024
GPT-2, LLaMa2-7B, and Mixtral-7B, demon-025
strate the effectiveness and efficiency of our026
approach. As a model-agnostic framework, it027
enhances the interpretability of LLMs while028
improving efficiency for safe deployment.029

1 Introduction030

Large Language Models (LLMs) (Dubey et al.,031

2024; Yang et al., 2024; Guo et al., 2025) have032

demonstrated strong capabilities in natural lan-033

guage understanding and reasoning (Wei et al.,034

2022; Zhao et al., 2023) through pretraining on035

large datasets, followed by instruction tuning and036

alignment with human values (Wei et al., 2021;037

Ouyang et al., 2022). Consequently, LLMs achieve038

excellent performance on downstream tasks with039

fine-tuning. However, their lack of interpretability040

and transparency limits the development of effi-041

cient fine-tuning and inference methods.042

Figure 1: Demonstration of CogSteer Intervention.
For an N-layer LLM, we first heuristically find the opti-
mal layer M for semantic intervention. The upper block
represents an adapter that is fine-tuned and inserted into
the frozen layer M. The bottom block illustrates the
operation of the attention module in M to steer the se-
mantic direction towards safer outputs during inference.

To understand intrinsic mechanisms of LLMs, 043

previous work has introduced various interpretabil- 044

ity methods, including training linear classifiers as 045

probes on top of hidden representations (Belinkov, 046

2022), projecting representations into vocabular- 047

ies (Geva et al., 2022), and intervening in the com- 048

putation path, such as knowledge neurons (Dai 049

et al., 2022) and circuits (Conmy et al., 2023; Ghan- 050

deharioun et al., 2024). However, these methods, 051

which focus on a limited set of predefined classes, 052

concepts, or prompts, have practical limitations in 053

terms of scalability and generalization. 054

In this work, we introduce a novel interpretabil- 055

ity analysis method that leverages eye movement 056

data (Luke and Christianson, 2018; Hollenstein 057

et al., 2020; Colman et al., 2022) collected by cogni- 058

tive researchers to study human reading behaviors. 059

Through correlation experiments, we find that LLM 060

hidden states exhibit a strong correlation with hu- 061

man gaze, peaking in the middle layers. Using eye 062

movement measures such as fixation and regression 063

(Rayner, 1998) as human-interpretable indicators, 064

we observe a hierarchical progression in LLMs, 065

from initial syntactic and semantic processing to 066

deeper integration and final prediction. Addition- 067
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ally, a comparison of correlation results between068

natural reading and task-specific reading suggests069

that the upper layers of LLMs are more capable070

of reasoning. Furthermore, advanced LLMs such071

as LLaMa, which incorporate instruction tuning072

and reinforcement learning from human feedback073

(RLHF), demonstrate enhanced reasoning capabili-074

ties, even in the middle layers.075

LLM intervention (Poth et al., 2023; Dong et al.,076

2024) refers to fine-tuning or applying inference077

methods to steer their semantics to align with spe-078

cific tasks and data distributions. In addition to079

enhancing the understanding of LLM behavior, our080

interpretability analysis reveals that different layers081

serve distinct functions, with middle layers playing082

a crucial role in deeper syntactic and semantic pro-083

cessing. This enables us to first identify the most084

suitable layer for intervention, thereby improving085

task-specific performance. Based on these insights,086

we propose a heuristic approach for selecting the087

optimal steering layer for semantic intervention.088

To achieve this, we refine prominent PEFT meth-089

ods, which traditionally adjust either all layers or090

only the last layer. As shown in Figure 1, our pro-091

posed CogSteer framework first identifies the most092

suitable layerM for semantic intervention based on093

the task. Instead of fine-tuning all layers or only the094

last layer, our method fine-tunes only the selected095

layer, enabling LLMs to better adapt to specific096

tasks and datasets. The number of learnable param-097

eters in CogSteer is significantly reduced, requir-098

ing only 1/N of the parameters in LLMs, thereby099

improving parameter efficiency. Furthermore, we100

propose an implicit layer contrastive intervention101

method during inference, which efficiently identi-102

fies and steers semantics toward safer generation103

directions to evaluate the effectiveness of our pro-104

posed selective layer intervention.105

Through extensive evaluations across diverse106

tasks and datasets, we demonstrate that the pro-107

posed selective layer intervention method achieves108

comparable or even superior performance with109

fewer parameters compared to the full-layer inter-110

vention baseline. Specifically, we observed an av-111

erage absolute improvement of +1.7 on the GLUE112

benchmark for LLaMa2-7B, and an average abso-113

lute improvement of +5.8 on the GLUE benchmark114

for Mistral-7B, with only 3.1% of the parameters115

involved in full-layer fine-tuning. Moreover, in116

experiments on generation tasks, language toxifica-117

tion (Dementieva et al., 2025), and detoxification118

(Leong et al., 2023), our method achieves a +1.85%119

improvement in toxification compared to full-layer 120

intervention and a +13.45% improvement in detox- 121

ification as compared to last-layer intervention. 122

Our main contributions are as follows: 123

(1) We are the first to propose leveraging eye 124

movement measures to analyze LLM behavior. We 125

publicly release the probing code to facilitate fur- 126

ther research on interpretability from a cognitive 127

perspective. (2) Through correlation analysis, we 128

demonstrate a hierarchical progression in LLMs 129

and introduce a heuristic steering layer selection 130

method for efficient layer intervention. (3) Ex- 131

tensive experiments validate the effectiveness of 132

our proposed method across various language un- 133

derstanding, reasoning, and generation tasks, con- 134

tributing to the development of efficient and ex- 135

plainable foundation models. 136

2 Related Work 137

Interpretability research is essential for uncov- 138

ering the mechanisms of LLMs and ensuring their 139

safe and trustworthy deployment as foundation 140

models. Various studies have analyzed how knowl- 141

edge is stored in LLMs (Goldowsky-Dill et al., 142

2023; Stolfo et al., 2023; Rai et al., 2024; Bills 143

et al., 2023; Geva et al., 2022), focusing on con- 144

cepts such as knowledge neurons (Dai et al., 2022) 145

and circuits (Conmy et al., 2023; Yao et al., 2024). 146

Moreover, Wang et al. (2024a) reveal that GPT- 147

2 predicts tokens more similarly to humans than 148

shallow language models but lacks engagement 149

with LLMs. Unlike previous works, our method 150

investigates the interpretability of LLMs through 151

human-interpretable indicators based on eye move- 152

ment theory, enabling a more precise understanding 153

and control of model behavior (see § 3 and 4.1). 154

Parameter-Efficient Semantic Steering PEFT 155

(Han et al., 2024; Wang et al., 2023), including 156

Adapter (Houlsby et al., 2019; Poth et al., 2023) 157

and LoRA (Hu et al., 2022), has gained popular- 158

ity due to its ability to maintain a large number of 159

frozen parameters in LLMs for generality while in- 160

troducing only a small number of trainable parame- 161

ters per task. Our method for semantic steering via 162

fine-tuning enhances PEFT methods by incorporat- 163

ing a selective layer intervention strategy, reducing 164

computational costs while achieving superior per- 165

formance (see § 4.2). Furthermore, steering seman- 166

tics during inference offers an even more efficient 167

approach. Contrastive decoding (Li et al., 2023; 168

Sennrich et al., 2024; Wang et al., 2024b) guides 169
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Figure 2: Correlation Results Comparison: Natural Reading (NR) vs. Task-Specific Reading (TSR). Correlation
results are shown for GPT-2 Large NR (36 layers, top-left), GPT-2 Large TSR (36 layers, bottom-left), LLaMa2-7B
NR (32 layers, top-right), and LLaMa2-7B TSR (36 layers, bottom-right). Green, blue, and orange boxes indicate
the premature, middle, and mature buckets, respectively.

the generation process by comparing two output170

distributions. In contrast, our proposed implicit171

layer contrastive intervention efficiently identifies172

and steers the semantics of LLMs toward safe di-173

rections during inference (see § 4.3).174

3 From Human Gaze to LLM Behavior175

Recent studies (Geva et al., 2021; Schuster et al.,176

2022) suggest that feed-forward networks (FFNs)177

function similarly to neural memory networks, cap-178

turing syntactic and semantic features as well as179

factual knowledge (Chuang et al., 2023; Zhang180

et al., 2024). Meanwhile, research in cognitive sci-181

ence (Rayner, 1998) has shown that eye movement182

measures provide insights into the time required for183

human readers to process syntax, semantics, and184

integrate information. Motivated by these findings,185

we leverage eye movement measures to analyze186

their correlation with the hidden states of FFNs187

across different layers of LLMs.188

Models. Correlation studies are conducted on189

the GPT-2 model (Radford et al., 2019) at different190

sizes (12-layer small, 24-layer medium, 36-layer191

large) and the 32-layer LLaMa2-7B (Touvron et al.,192

2023). Both GPT-2 and LLaMa2-7B use a decoder-193

only transformer architecture. Comparing earlier194

LLMs, such as GPT-2, with more advanced models195

like LLaMa2 provides valuable insights into their196

similarities and differences while also enhancing197

the robustness and generalizability of our findings.198

Eye-movement Experiments and Datasets. 199

We conduct a correlation analysis under two ex- 200

perimental conditions: natural reading and task- 201

specific reading. For natural reading, we use the 202

Provo (Luke and Christianson, 2018), GECO (Col- 203

man et al., 2022), and ZuCo 2.0 (Hollenstein et al., 204

2020) datasets. The ZuCo 2.0 dataset also in- 205

cludes task-specific reading experiments. In task- 206

specific reading, participants are required to deter- 207

mine whether a specific relation type is present in 208

a sentence. Relation detection is a high-level se- 209

mantic and reasoning task that involves complex 210

cognitive processing. 211

Correlation Analysis. Let Sj denote the j-th 212

sentence, consisting of nj words w1, w2, . . . , wnj . 213

For each word wi in sentence Sj , we con- 214

sider five eye movement measures: e
(k)
i , k ∈ 215

{std, ffd, gd, trt, gpt}, where each measure repre- 216

sents a scalar value. The hidden state at layer l 217

of the LLM for word wi is denoted as hl,i ∈ Rd, 218

where d is the dimensionality of the hidden states. 219

To analyze the relationship between eye move- 220

ment measures and LLM hidden states, we com- 221

pute the Pearson correlation between each eye 222

movement measure and the corresponding hidden 223

states at each layer. Specifically, we concatenate 224

hidden states and eye movement measures across 225

all words in the dataset and apply principal com- 226

ponent analysis to obtain a scalar representation of 227

hidden states, ensuring alignment with eye move- 228
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ment measures (see Appendix D for details). The229

correlation is then defined as:230

ρl,k =

ntotal∑
i=1

(
hl,i − h̄l

)(
e
(k)
i − ē(k)

)
√

ntotal∑
i=1

(
hl,i − h̄l

)2√ntotal∑
i=1

(
e
(k)
i − ē(k)

)2 , (1)231

where hl,i represents the processed hidden states232

aligned with the eye movement measures, and h̄l233

and ē(k) are their respective means.234

Results and Finding 1. Based on the correlation235

calculation in Eq. 1, we first analyze the correla-236

tion results for the natural reading task. To facil-237

itate interpretation, we divide the layers of both238

models into three equal groups: premature, mid-239

dle, and mature. Figures 2 (upper) and 7 present240

the correlation results between various eye move-241

ment measures and the hidden states of the LLMs,242

illustrating how these values evolve across layers.243

The results indicate that the hidden states of dif-244

ferent LLM layers exhibit a clear and strong cor-245

relation with human gaze, peaking in the middle246

bucket and reaching a secondary peak in the ma-247

ture bucket. This trend is consistent across different248

eye movement measures and LLMs with varying249

layer sizes. Considering the nature of these eye250

movement measures, the increase in correlation251

in the premature bucket suggests that LLMs be-252

gin processing tokens by integrating syntactic and253

semantic features, reflecting an initial focus on to-254

ken processing. In the middle bucket, the further255

increase in correlation signifies deeper syntactic256

and semantic processing, with the peak indicating257

the integration of linguistic features. In the mature258

bucket, the secondary peak likely reflects the final259

integration of information for word prediction.260

The overall trend across the three buckets is sim-261

ilar for GPT-2 and LLaMa2-7B. For a detailed anal-262

ysis of eye movement measures and additional find-263

ings, please refer to Appendix D.264

Finding 1. (Layer-wise functionality)

LLM hidden states exhibit a strong correlation
with human gaze, peaking in the middle bucket
and again in the mature bucket. This pattern
suggests a hierarchical progression from initial
syntactic and semantic processing to deeper
integration and final prediction.

265

Results and Finding 2. Empirically, LLMs are266

trained with the next-token prediction objective.267

Modern LLMs demonstrate strong language under- 268

standing and reasoning abilities, raising the ques- 269

tion: Are LLMs merely next-token predictors, or are 270

they task reasoners? Figure 2 presents a compari- 271

son between natural reading and task-specific read- 272

ing. The correlation patterns suggest that LLMs 273

function as both next-token predictors and reason- 274

ers, as the trends in task-specific reading closely 275

resemble those observed in natural reading. 276

Notably, for both GPT-2 and LLaMa2-7B mod- 277

els, the correlation values in the middle bucket dur- 278

ing task-specific reading are higher than those ob- 279

served during natural reading. In particular, for 280

the LLaMa2-7B model, these values remain con- 281

sistently higher in task-specific reading. We hy- 282

pothesize that this indicates LLaMa2-7B is better 283

suited for reasoning tasks and that the layers in 284

the middle bucket and mature bucket are activated 285

when processing complex tasks, as it is trained on a 286

larger text corpus and incorporates more advanced 287

post-training techniques. 288

Finding 2. (LLM functions as both next-
token predictor and task reasoner)

LLMs function as both next-token predictors
and reasoners, with overall correlation trends
aligning with human cognition indicators. Ad-
vanced training methods enhance their ability
to reason and handle complex tasks.

289

4 Method 290

4.1 Heuristic Steering Layer Selection 291

A better understanding of LLM mechanisms will 292

help in precisely and efficiently controlling their 293

behaviors, particularly for semantic steering. We 294

argue that the predominant parameter-efficient fine- 295

tuning (PEFT) methods (Han et al., 2024), which 296

by default intervene in the last layer or across all 297

layers, are not optimal1. Instead, we propose an 298

efficient heuristic steering layer selection strategy 299

for intervention, based on our cognition-inspired 300

interpretability analysis detailed in Section 3. 301

For semantic steering in LLMs, the layers in the 302

middle bucket are the most suitable candidates for 303

intervention. These layers handle further token pro- 304

cessing, information integration, and preliminary 305

reasoning. Additionally, the residual connections 306

(He et al., 2016) in transformer layers allow the 307

1Recent work (Yu et al., 2023) on fine-tuning speech trans-
lation models also supports our hypothesis.
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semantic intervention to flow and evolve gradu-308

ally, avoiding abrupt changes in the final prediction309

(Chuang et al., 2023).310

From a task-oriented perspective, we apply311

PEFT methods and inference-only methods to the312

candidate layers in the middle bucket, using a small313

portion of data, like the validation set, to search for314

and select the best-performing layer that suits the315

task scenario. Formally, given M as the best layer316

for intervention, J represents a set of candidate317

layers in the middle bucket
(
N
3 ≤M ≤ 2N

3

)
. D318

denotes the validation set. We search for the layer319

M that yields the best task score or loss perfor-320

mance, as follows:321

M = argmax
j∈J

S (D;P (· | xt)) . (2)322

Later, we will demonstrate the effectiveness of323

the heuristic steering layer selection approach in324

language understanding, reasoning, and generation325

tasks, as discussed in Section 5.326

4.2 Layer Intervention via Fine-tuning327

PEFT approaches, such as additive fine-tuning328

(i.e., adapters) and reparameterized fine-tuning (i.e.,329

LoRA), are among the most popular due to their330

efficiency, as they require only a small set of new331

parameters for task-specific fine-tuning. Let the pa-332

rameters of an LLM consist of a set of pre-trained,333

frozen parameters ϕ(·) and a set of newly intro-334

duced parameters in the inserted block ψ(·). Our335

layer intervention via fine-tuning to steer semantics336

in LLM and predicts the next token as follows:337

y(xt) = softmax
(
logitϕ,ψ

(
FFN

N
ϕ (xt) | FMϕ,ψ(xt), y<t

))
. (3)338

Here, FFNN
ϕ (xt) represents the hidden state of339

the FFN in the final layer with frozen parameters340

ϕ(·), used for token prediction over a vocabulary.341

M denotes the best layer for semantic intervention,342

determined by Equation 2. FMϕ,ψ(xt) indicates that343

the fusion layer in the LLM integrates new parame-344

ters ψ(·) from the newly added block, aligned with345

the frozen parameters ϕ(·).346

Our cognitive-inspired selective layer interven-347

tion method is an adaptive fine-tuning strategy that348

identifies the best layer for both effective semantic349

steering and task performance. Moreover, as our350

method only operates on a single layer rather than351

all layers, it significantly reduces computational re-352

sources and time, while also avoiding catastrophic353

forgetting (Luo et al., 2023; Li et al., 2024).354

4.3 Layer Intervention during Inference 355

Efficient semantic steering can be achieved via fine- 356

tuning. However, an even more efficient approach 357

is to steer the semantics of LLMs during inference 358

without introducing additional parameters. Mo- 359

tivated by Li et al. (2023); Leong et al. (2023), 360

which contrast outputs from either a less capable 361

model or outputs induced by a negative prompt, 362

we propose an implicit layer contrastive interven- 363

tion method during inference. First, we fine-tune 364

a contrast model that generates either the desired 365

output or the output we aim to mitigate. In our case, 366

to mitigate toxic token generation, we fine-tune a 367

toxic LLM as the contrast model. Unlike Li et al. 368

(2023); Leong et al. (2023), which contrast the 369

outputs explicitly in the last layer, our method op- 370

erates on the contextualized value vectors derived 371

from the weight matrices K, Q, V of the attention 372

modules within LLMs. We perform this operation 373

on the best layer for intervention as described in 374

Equation 2. Formally, our layer intervention during 375

inference finds the semantic steering direction by 376

contrasting the value vectors as follows: 377

∆vM = vMc − vMo , (4) 378

where vMc and vMo are the contextualized value 379

vectors of the contrast LLM and the original LLM 380

at the best layer M for semantic intervention (see 381

Elhage et al. (2021) for mathematical derivation). 382

We then update the value vector in the layer M of 383

the original LLM: 384

v′M = vMo − λα
norm ·∆vM . (5) 385

Here, λnorm = 1 +
∥∥∆vM∥∥

2
is a normalization 386

term that adaptively regulates the steering effect, 387

and α is a hyperparameter that further controls the 388

steering strength. Finally, we preserve the updated 389

steering direction and renormalize the adapted 390

value vector to ensure its representation is close 391

to the original vector: 392

v′M = v′M ·
∥∥vMo ∥∥

2

∥v′M∥2
. (6) 393

5 Experiments 394

5.1 Datasets and Evaluation 395

Datasets We evaluate our proposed efficient se- 396

mantic steering methods using the General Lan- 397

guage Understanding Evaluation (GLUE) bench- 398

mark (Wang et al., 2019), applying selective layer 399
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Model VAL-SET

MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 WNLI Avg.

GPT2-L
78.0 l-19 79.5 l-19 85.5 l-20 83.3 l-19 80.6 l-19 71.1 l-19 92.9 l-19 53.5 l-19 78.1

82.1 83.5 83.1 85.2 82.6 70.4 93.6 53.5 79.2

Llama2-7B
86.4 l-14 87.1 l-14 86.5 l-14 89.3 l-14 83.3 l-14 75.5 l-14 95.8 l-14 56.4 l-19 82.5

89.0 89.3 86.3 91.9 85.6 65.3 96.7 56.3 82.5

Mistral-7B
87.3 l-12 88.1 l-12 86.9 l-12 91.4 l-14 84.6 l-12 80.1 l-12 95.8 l-14 56.3 l-12 83.8

89.5 89.7 82.2 81.7 78.1 58.9 96.7 56.3 79.1

Model TEST-SET

MNLI-M MNLI-MM MRPC QNLI QQP RTE SST-2 WNLI Avg.

GPT2-L
79.3 l-19 79.3 l-19 83.0 l-20 84.1 l-19 65.6 l-19 64.6 l-19 92.4 l-19 58.9 l-19 75.8

82.6 83.0 82.7 85.6 65.6 62.6 93.5 61.6 77.1

Llama2-7B
82.9 l-14 86.3 l-14 83.4 l-14 88.5 l-14 68.8 l-14 74.7 l-14 95.2 l-14 64.4 l-19 80.5

89.5 88.8 80.5 92.1 71.6 58.2 93.5 55.5 78.7

Mistral-7B
87.1 l-12 87.5 l-12 86.6 l-12 91.7 l-14 70.5 l-12 81.0 l-12 95.9 l-14 65.8 l-12 83.2

89.7 89.4 80.4 81.3 62.7 52.3 97.3 65.1 77.3

Table 1: Evaluation on GLUE Benchmark. MRPC and QQP are reported using F1, while the other tasks
are reported using Accuracy. A green box indicates that the single-layer intervention outperforms the full-layer
intervention, an orange box denotes comparable performance, and a blue box indicates slightly lower performance.

intervention. Specifically, we focus on eight GLUE400

tasks covering sentiment analysis (SST-2), para-401

phrase identification (MRPC, QQP), and natural402

language inference (MNLI-M, MNLI-MM, QNLI,403

RTE, WNLI). Additionally, to assess our methods404

in the context of language generation, we examine405

their effectiveness in natural language toxification406

and detoxification. To train toxic adapters and con-407

trast models, as described in Sections 4.2 and 4.3,408

we utilize the Toxic Comment Classification Chal-409

lenge Dataset (Jigsaw, 2018). (See Appendix A)410

Evaluation For the evaluation on the GLUE411

benchmark, we report both validation-set and test-412

set F1 scores for QQP and MRPC, while accuracy413

is used for all other tasks. Additionally, we use the414

RealToxicityPrompts (RTP) dataset (Gehman et al.,415

2020). Following prior work (Li et al., 2023; Leong416

et al., 2023), we sample 2,122 toxic prompts. For417

each toxic prompt in the RTP dataset, we generate418

25 continuations and evaluate their toxicity using419

the Perspective API, which assigns a toxicity score420

to each continuation, with higher scores indicating421

a greater likelihood of toxicity. Finally, we use the422

average maximum toxicity as our evaluation metric.423

Specifically, we compare the toxicity scores and424

detoxification margins obtained by applying our425

methods to different layers of the models.426

5.2 Models and Baselines427

We evaluate our efficient semantic steering methods428

using three sizes of GPT-2 models, as discussed429

in § 3, along with LLaMa2-7B. We select GPT- 430

2 and LLaMa2-7B because the former represents 431

earlier classical LLMs, while the latter exemplifies 432

modern LLMs. To ensure generalizability, we also 433

evaluate the Mixtral-7B (Jiang et al., 2024) model 434

to assess performance across tasks. Since applying 435

semantic intervention to either the last layer or all 436

layers of LLMs is a conventional approach, we 437

use these two methods as baselines for comparison. 438

The implementation details are in Appendix A. 439

5.3 Evaluation on GLUE Benchmark 440

We first present the performance of our proposed 441

selected layer intervention method on the GLUE 442

Benchmark in Table 1. It can be observed that by 443

selecting the optimal layer to steer semantics in 444

LLMs for a specific task, all three LLMs achieve 445

comparable or even superior results compared to 446

conventional all-layer intervention while introduc- 447

ing only 1/N of the parameters (N is the number 448

of layers in the LLMs). Specifically, LLaMa2-7B 449

achieves an absolute increase of +1.8 on average in 450

the test set, while Mistral-7B achieves an absolute 451

increase of +4.7 on average in the validation set 452

and +5.9 in the test set. Moreover, GPT2 achieves 453

comparable or better results on 5 out of 8 tasks in 454

GLUE, LLaMa2 on 4 tasks, and Mixtral on 7 tasks. 455

Additionally, we find that the optimal layer for 456

our proposed method consistently falls within the 457

middle bucket across all LLMs. For GPT2-L, the 458

best-performing layer is L19 for most tasks, while 459
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Figure 3: Toxification/Detoxification Evaluation. The upper chart (green bars) shows toxicity scores for inter-
ventions at each layer via fine-tuning. The bottom chart (blue bars) displays detoxification margin scores per layer
during inference, comparing toxicity scores in toxification and detoxification processes. Purple, blue, and orange
boxes indicate the premature, middle, and mature buckets.

for LLaMA2-7B and Mixtral-7B, it is L14 and L12,460

respectively. This aligns with our interpretabil-461

ity analysis and findings based on eye movement462

measures (see § 3). Furthermore, the best layer463

remains consistent across both the validation and464

test sets, demonstrating the effectiveness of the465

heuristic steering layer selection approach (§ 4.1).466

Lastly, from a task perspective, we find that para-467

phrase identification (MRPC, QQP) and natural468

language inference (MNLI, QNLI, RTE, WNLI)469

achieve the highest average improvement of +2.0470

across all LLMs compared to full-layer fine-tuning471

(e.g., +28.7 for Mixtral-7B and +16.5 for LLaMA2-472

7B on the RTE test set). This suggests that, given473

the complex structure of LLMs, fine-tuning all lay-474

ers for semantic steering does not always yield the475

best downstream task performance and can result476

in parameter redundancy, where certain layers be-477

come less active in making accurate predictions.478

Additionally, the conventional approach of fine-479

tuning only the last layer of an LLM, based on its480

proximity to the prediction output, is not optimal.481

Instead, in practice, the intervention layer should482

first be identified to better steer semantics and im-483

prove prediction accuracy for a specific task.484

5.4 Analysis on Language Toxification485

We evaluate our selective layer intervention via486

fine-tuning using the language toxification task.487

Figure 3 (green bars in the upper chart) shows488

the toxicity score for inserting a toxic adapter into489

each layer of the LLMs, with the last layer and490

full layers (red line) used as baselines. The best491

layer M in the middle bucket for semantic inter-492

vention is L23 for GPT-2 and L13 for LLaMa2-7B,493

competing with the results from both the last layer494

(+4.5% for GPT & +23% for LLaMa) and full lay-495

ers (+0.9% for GPT & +2.8% for LLaMa). This 496

indicates that the conventional intervention is not 497

optimal, demonstrating the effectiveness of our pro- 498

posed selective layer intervention approach, which 499

saves considerable computational resources and 500

time for fine-tuning. 501

Furthermore, layer intervention in the mature 502

bucket, including the last layer (used as a baseline), 503

is not remarkable when compared to full-layer in- 504

tervention for both GPT-2 and LLaMa2-7B models. 505

According to our behavioral analysis in Section 3, 506

the layers in the mature bucket focus more on rea- 507

soning and factual knowledge, involving less to- 508

ken processing, which makes them less suitable 509

for semantic steering. Interestingly, for the GPT-2 510

model, we observe that layers L1-L4 and L6-L8 in 511

the premature bucket also outperform the full-layer 512

intervention baseline, whereas this phenomenon is 513

not observed in LLaMa2-7B. We hypothesize that 514

this difference may be due to the distinct adapter 515

training schemes. For GPT-2, we use the vanilla 516

Adapter as a plug-in, which directly affects token 517

distributions and allows successive minor changes 518

as tokens pass through layers, following the early 519

exit theory (Elbayad et al., 2020; Schuster et al., 520

2022). However, for LLaMa2, we use the LLaMa- 521

Adapter, which directly modifies attention. Edits 522

to the attention modules gradually affect token dis- 523

tributions (Geva et al., 2021; Elhage et al., 2021). 524

We believe that our selective layer intervention 525

approach is LLM-agnostic and not limited to the 526

LLMs used in the interpretability analysis. Figure 3 527

(right) presents the toxicity scores based on Mistral- 528

7B, which align with the observations discussed 529

earlier. Specifically, the best-performing layer in 530

the middle bucket is L13, achieving better results 531

than the last layer (+11.4%) and nearly identical 532
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Model Time/min Time% Params/M Params% Toxify Score↑ Detoxify Score↓ Avg. GLUE↑

GPT2-L→ full 33 100 14.8 100 0.86 0.60 77.1
→ single 13 39.4 0.4 2.7 0.87 0.63 75.8

Llama2-7B→ full 205 100 1.3 100 0.86 0.62 78.7
→ single 85 41.5 0.04 3.1 0.87 0.59 80.4

Mistral-7B→ full 36 100 134.5 100 0.85 0.68 77.3
→ single 25 69.4 4.2 3.1 0.84 0.68 83.1

Table 2: Efficiency Comparison between CogSteer (selective single-layer intervention) and full-layer intervention.
A green box indicates that the single-layer intervention outperforms the full-layer intervention, while an orange box
denotes comparable performance.

performance to full-layer intervention (-0.01).533

5.5 Analysis on Language Detoxification534

As a dual task, we evaluate our selective layer inter-535

vention during inference using the language detox-536

ification task. This task serves as an adversarial537

task to mitigate the toxic tokens that are amplified538

by layer intervention methods during fine-tuning.539

Thus, we observe the detoxification margin in each540

intervention layer and compare the performance541

with intervention in the last layer. Figure 3 (blue542

bars in the bottom chart) shows the results of the543

detoxification margin scores. The best layer M544

for semantic intervention in the middle bucket is545

L23 for GPT-2 and L16 for LLaMa2-7B, both out-546

performing the last layer results by a large margin547

(+2.9% for GPT and +24% for LLaMa). Notably,548

the best layerM for LLaMa2-7B in the toxification549

task is L13, whereas the best layer for detoxifica-550

tion is L16, demonstrating that our heuristic layer551

selection method is adaptive and suitable for tasks.552

Moreover, the detoxification margin scores for553

layer intervention in the middle bucket for both554

GPT-2 and LLaMa2 models are significantly better555

than those for intervention in the mature bucket.556

This aligns with our findings that the middle bucket557

layers are involved in further token processing and558

information integration, whereas the mature bucket559

layers focus on reasoning. Finally, for the GPT-2560

model, the detoxification margin scores are also sig-561

nificant in the premature bucket layers. This could562

be attributed to the distinct adapter training scheme,563

as the earlier layers are more deeply affected by the564

toxification, which broadens the scope of detoxifi-565

cation. The remaining results for GPT-2 small and566

medium models are listed in Appendix B.567

For Mistral-7B, the optimal layer for semantic in-568

tervention in the middle bucket is L15 for the detox-569

ification task. Although the detoxification margin570

scores for L23 and L32 in the mature bucket are571

slightly higher than that of L15 (+0.14 on average), 572

the scores in the middle bucket are more stable. 573

We hypothesize that the differences among GPT- 574

2, LLaMa2, and Mixtral-7B in the mature bucket, 575

where Mixtral-7B achieves better detoxification 576

performance, stem from variations in post-training. 577

As an advanced LLM incorporating additional hu- 578

man value alignment for safety, Mixtral-7B bene- 579

fits more from interventions in the mature bucket, 580

leading to improved detoxification performance. 581

5.6 Efficiency Analysis 582

The efficiency analysis of our proposed cognition- 583

inspired selective layer intervention is presented 584

in Table 2. By selecting the optimal layer for se- 585

mantic steering in LLMs, the training time and the 586

number of parameters required for fine-tuning are 587

significantly reduced compared to full-layer inter- 588

vention. Specifically, our method requires, on aver- 589

age, only half the time and 3.0% of the parameters 590

needed for full-layer settings. Importantly, this re- 591

duction in computational cost does not compromise 592

performance; in fact, selective layer intervention 593

performs comparably to, and in some cases even 594

outperforms full-layer intervention. 595

6 Conclusion 596

In this paper, we introduce an efficient semantic 597

steering method for LLMs using selective layer 598

intervention. Our approach is motivated by correla- 599

tion analysis with eye movement measures, making 600

it both interpretable and understandable. Extensive 601

experiments demonstrate that selective layer inter- 602

vention achieves comparable or even superior per- 603

formance while significantly reducing training time 604

and the number of parameters required. Overall, 605

our proposed method represents an important step 606

toward improving the interpretability of LLMs and 607

contributes to their safe and efficient deployment. 608
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Limitations609

In this paper, we conduct a thorough analysis of610

the correlation between hidden states in the feed-611

forward network (FFN) and eye movement mea-612

sures. We focus on FFN blocks because their hid-613

den states play a greater role in token prediction.614

For future work, we plan to explore the mecha-615

nisms of the attention block in greater depth. Ad-616

ditionally, our analysis suggests that layers in the617

mature bucket are involved in reasoning based on618

the task-specific reading dataset. However, factual619

knowledge also appears to be integrated within this620

bucket. To refine our analysis, we will seek fur-621

ther eye movement studies that examine factual622

information processing.623

Ethics Statement624

We propose an efficient semantic steering method625

for LLMs through cognition-inspired selective626

layer intervention to better understand their behav-627

ior and address safety concerns, thereby enhanc-628

ing their safety and reliability within the commu-629

nity. Additionally, the eye-tracking data used in this630

study, derived from the ZuCo 2.0, GeCo, and Provo631

datasets, are publicly available and adhere to es-632

tablished ethical protocols, promoting transparency633

and reproducibility in our research. Furthermore,634

we have made our code publicly accessible, en-635

suring that researchers and practitioners can easily636

access and implement our methods.637
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requires determining whether two sentences934

are semantically equivalent. The validation935

set consists of 400 examples, and the test set936

contains approximately 1.7k examples.937

• QQP (Quora Question Pairs): Another para-938

phrase identification task in which the goal939

is to determine whether two questions are se-940

mantically equivalent. The validation set con-941

tains 40k examples, while the test set includes942

around 391k examples.943

• MNLI (Multi-Genre Natural Language In-944

ference): Given a premise and a hypothesis,945

the model must predict whether the premise946

entails, contradicts, or is neutral with respect947

to the hypothesis. There are two validation948

sets (MNLI-M and MNLI-MM), each contain-949

ing approximately 10k examples, along with950

two corresponding test sets of the same size.951

• QNLI (Question Natural Language Infer-952

ence): A task reformulated from SQuAD,953

where the objective is to determine whether954

a context sentence contains the answer to a955

given question. Both the validation and test956

sets contain approximately 5.5k examples.957

• RTE (Recognizing Textual Entailment): A958

binary entailment task in which the model959

must determine whether a premise logically960

entails a hypothesis. The validation set con-961

sists of 277 examples, while the test set con-962

tains around 3k examples.963

• WNLI (Winograd NLI): Based on the Wino-964

grad Schema Challenge, this task involves re-965

solving ambiguous pronouns. Models must966

determine whether substituting the pronoun in967

a sentence preserves its meaning. The valida-968

tion set includes 71 examples, and the test set969

contains 146 examples.970

To train toxic adapters and contrast models, as971

described in Sections 4.2 and 4.3, we use the Toxic972

Comment Classification Challenge Dataset (Jigsaw,973

2018), which contains 15,294 annotated toxic com-974

ments. We randomly split this dataset into 13,764975

comments for fine-tuning and contrast model train-976

ing, and 1,530 comments for validation, which is977

used to determine the optimal layer for intervention,978

as described in Section 4.1.979

Implementation. For training the GPT-2980

adapters, we set the learning rate to 5× 10−4 and981

train for 5 epochs. For the LLaMa2-7B adapters, 982

we adopted the default settings provided by LLaMa- 983

Adapter (Zhang et al., 2023), using a base learn- 984

ing rate of 9× 10−3, a weight decay of 0.02, and 985

training for 5 epochs. For Mistral-7B, we simi- 986

larly employed the Bottleneck Adapters used for 987

GPT-2, training for 5 epochs with a learning rate 988

of 5 × 10−5 and a weight decay of 0.01. In the 989

detoxification task, we applied the implicit layer 990

contrastive intervention approach with α = 0.4 991

across all models. Following previous works (Liu 992

et al., 2021; Leong et al., 2023), the model gen- 993

erates 25 continuations per prompt using nucleus 994

sampling with p = 0.9, with each continuation 995

limited to a maximum of 20 tokens. 996

B Analysis on Language Toxification and 997

Detoxification on Small Models 998

For the GPT-2 models, three versions differ in the 999

number of layers. As shown in Figures 4 and 5, the 1000

overall trend in the toxification and detoxification 1001

tasks aligns with the observations in Section 5. In- 1002

terestingly, we find that as the number of layers in 1003

LLMs increases, the correlation trend and findings 1004

become more pronounced. 1005

Figure 4: Toxification/Detoxification Evaluation on
GPT-2 Small (12 Layers). The bottom chart shows
toxicity scores for interventions at each layer: green
bars represent selective intervention via fine-tuning, and
purple bars represent selective intervention during in-
ference. The top chart displays detoxify margin scores
per layer, comparing toxicity scores in toxification and
detoxification processes. Purple, blue, and orange boxes
indicate the premature, middle, and mature buckets.

C Qualitative Analysis 1006

Warning: Some examples have harmful or offen- 1007

sive language. 1008
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Figure 5: Toxification/Detoxification Evaluation on
GPT-2 Medium (24 Layers). The bottom chart shows
toxicity scores for interventions at each layer: green
bars represent selective intervention via fine-tuning, and
purple bars represent selective intervention during in-
ference. The top chart displays detoxify margin scores
per layer, comparing toxicity scores in toxification and
detoxification processes. Purple, blue, and orange boxes
indicate the premature, middle, and mature buckets.

In this section, we conduct a qualitative analy-1009

sis of the continuations generated under different1010

settings of the GPT2-L model. For language toxi-1011

fication, we compare four continuations produced1012

from a toxic prompt in the Toxic Comment Classi-1013

fication Challenge Dataset. The continuation gen-1014

erated by fine-tuning only the last layer is similar1015

to that of the vanilla GPT2-L model. By contrast,1016

fine-tuning on the full model and the selective layer1017

results in more toxic outputs in terms of both toxic1018

words and the overall semantics of the sentence.1019

For detoxification, we find that the continuation1020

generated using layer contrastive intervention at1021

the last layer still contains offensive words, such as1022

stupid, whereas the output from layer contrastive in-1023

tervention based on our proposed heuristic steering1024

layer selection is neutral.1025

D Detailed Interpretability Analysis1026

Reading is a crucial ability for humans to process1027

and integrate information, and eye movement stud-1028

ies enable the examination of the cognitive pro-1029

cesses involved in reading (Rayner, 1998). Eye1030

movements are monitored using various techniques,1031

including eye-tracking systems that rely on infrared1032

pupil monitoring. In eye-tracking studies, changes1033

in the reader’s gaze are recorded in relation to eye1034

movements. Similarly, tokens are processed, and1035

information is integrated through layers in large lan-1036

guage models (Chuang et al., 2023). This similarity1037

Figure 6: Case Study. The continuations are produced
from a toxic prompt in the Toxic Comment Classifica-
tion Challenge Dataset and generated under different
settings of the GPT2-L model.

offers us the opportunity to leverage the extensive 1038

data previously collected and analyzed from eye 1039

movement studies, not only to infer human read- 1040

ing and information-processing behavior, but now 1041

to also understand the behavioral patterns of large 1042

language models. 1043

Recent studies reveal that feed-forward networks 1044

(FFNs) function similarly to neural memory net- 1045

works (Geva et al., 2021), embedding syntactic 1046

features, semantic features, and even factual knowl- 1047

edge (Chuang et al., 2023; Zhang et al., 2024). The 1048

early exit concept (Elbayad et al., 2020; Schuster 1049

et al., 2022) further demonstrates that the hidden 1050

states of FFNs can be directly applied to predict 1051

words over a vocabulary. At the same time, eye 1052

movement measures provide insights into the time 1053

required for human reading to process syntax, se- 1054

mantics, and integrate information. 1055

Motivated by this, we utilize eye movement mea- 1056

sures from various datasets (Luke and Christianson, 1057

2018; Hollenstein et al., 2020; Colman et al., 2022) 1058

to establish correlations with the hidden states in 1059

FFNs across layers of LLMs. Unlike traditional 1060

eye movement studies, which focus on differences 1061
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in eye movement measures under experimental con-1062

ditions such as natural reading or task-specific read-1063

ing, we observe changes in correlation values be-1064

tween eye movement measures and hidden states1065

across layers. Our approach, inspired by cognitive1066

theory, aims to better understand the behavioral1067

patterns of LLMs.1068

Formally, let Sj denote the j-th sentence, which1069

consists of nj words w1, w2, . . . , wnj . For each1070

wordwi in sentence Sj , we have five eye movement1071

measures for each word wi in sentence Sj , denoted1072

as E(sfd)
i , E

(ffd)
i , E

(gd)
i , E

(trt)
i , E

(gpt)
i . Each of1073

these represents a single scalar value per word.1074

We also denote the hidden state at layer l of the1075

LLM for word wi as Hl,i ∈ Rd, where d is the1076

dimensionality of the hidden state vectors.1077

Since the eye movement measures are scalar val-1078

ues and each hidden state is a high-dimensional1079

vector, we apply Principal Component Analysis1080

(PCA) to reduce the dimensionality of the hidden1081

states Hl,i to a scalar that can be aligned with the1082

eye movement measure for each word wi, yield-1083

ing a one-dimensional representation: HPCA
l,i =1084

PCA(Hl,i). We concatenate the eye movement1085

measures and the reduced hidden states across all1086

words in all sentences. Specifically, for the eye1087

movement measure k ∈ {sfd, ffd, gd, trt, gpt}, we1088

concatenate the measures for all words in all sen-1089

tences to form a vector E(k):1090

E(k) =
[
E

(k)
1 , E

(k)
2 , . . . , E(k)

ntotal

]
∈ Rntotal , (7)1091

where ntotal =
∑m

j=1 nj is the total number of1092

words across all sentences. Similarly, for the PCA-1093

reduced hidden states at layer l, we concatenate the1094

reduced hidden states:1095

HPCA
l =

[
HPCA

l,1 , HPCA
l,2 , . . . , HPCA

l,ntotal

]
∈ Rntotal . (8)1096

Finally, we compute the Pearson correlation ρl,k1097

between the hidden states at layer l and the eye1098

movement measure k:1099

ρl,k =

∑ntotal
i=1

(
HPCA

l,i − H̄PCA
l

) (
E

(k)
i − Ē(k)

)
√∑ntotal

i=1

(
HPCA

l,i − H̄PCA
l

)2
√∑ntotal

i=1

(
E

(k)
i − Ē(k)

)2
,

(9)

1100

where H̄PCA
l and Ē(k) are the mean values of the re-1101

duced hidden states and the eye movement measure1102

k, respectively.1103

We conduct a correlation analysis using the GPT- 1104

2 model at different sizes (12-layer small, 24-layer 1105

medium, 36-layer large) and the 32-layer LLaMa2- 1106

7B, following the analysis approach described ear- 1107

lier. To better interpret our observations, we divide 1108

the layers into three equal groups: premature, mid- 1109

dle, and mature. Figure 7 presents the correlation 1110

results between different eye movement measures 1111

and the hidden states from the LLMs, as well as 1112

how these values change across layers. 1113

We observe Pattern #1, where LLMs exhibit a 1114

trend similar to human gaze patterns across layers, 1115

with a peak correlation in the middle bucket. In 1116

the premature bucket, the correlation first increases, 1117

then decreases, before gradually increasing again 1118

in the later layers. In the middle bucket, the correla- 1119

tion reaches a peak before declining. In the mature 1120

bucket, the correlation continues to decrease, fol- 1121

lowed by a second peak. This similarity in trends 1122

is consistent across both different eye movement 1123

measures and LLMs with varying layer sizes. 1124

Furthermore, we apply eye movement theory to 1125

interpret the phenomenon observed in Pattern #1, 1126

offering insights into the interpretability of LLMs. 1127

First fixation duration refers to the time spent on 1128

the first fixation on a word, whether it is the only 1129

fixation or the first of multiple fixations on that 1130

word. Gaze duration measures the time spent on 1131

a word during the first fixation before making a 1132

saccade to the next word. Additionally, single fixa- 1133

tion duration refers to the time of the first and only 1134

fixation on a word. 1135

Based on these fixation measures, the increase in 1136

correlation in the premature bucket indicates that 1137

the LLMs are beginning to process tokens by inte- 1138

grating syntactic and semantic features, suggesting 1139

that this bucket focuses on preliminary token pro- 1140

cessing. Geva et al. (2022) found that syntactic and 1141

semantic concepts stabilize in the first few layers 1142

using top scoring token analysis. Thus, we hypothe- 1143

size that the subsequent decline in correlation may 1144

indicate that these layers are redundant but still 1145

become activated when processing more complex 1146

sentences, a point that will be explained further. 1147

In the middle bucket, the increase in correlation 1148

signifies further processing of syntactic and seman- 1149

tic tokens, and the peak indicates the integration 1150

of linguistic features and information. In the ma- 1151

ture bucket, the decline in correlation differs from 1152

that in the premature bucket. We hypothesize that 1153

the layers in the mature bucket are responsible for 1154

reasoning and factual knowledge, which will be dis- 1155
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Figure 7: Correlation Results Under the Natural Reading Scheme. Correlation results are shown for GPT-2 Small
(12 layers, top-left), GPT-2 Medium (32 layers, top-right), GPT-2 Large (36 layers, bottom-left), and LLaMa2-7B
(bottom-right). Green, blue, and orange boxes indicate the premature, middle, and mature buckets, respectively.

cussed later. The second peak in the mature bucket1156

likely represents the final integration of information1157

for word prediction.1158

Moreover, total reading time represents the sum1159

of all fixations, starting with the first fixation in a1160

region and ending with the first forward saccade,1161

including regressions. Go-past time refers to the1162

total time spent on a word before moving to the1163

right of it, including regressions, but it excludes1164

re-fixations. Regressions are meaningful indicators,1165

as they indicate that the reader had difficulty pro-1166

cessing the word, failed to understand the current1167

text, or needed to make corrections (Rayner, 1998).1168

When we zoom in on the correlation between1169

measures like trt, gpt, and the hidden states in1170

LLMs, the trend is consistent with the fixation-1171

based measures. Interestingly, we observe that the1172

correlation with trt also increases in the premature1173

bucket. Unlike previous studies, which suggest that1174

the first few layers of LLMs only process surface1175

linguistic features (Zhang et al., 2024), our correla-1176

tion analysis shows that these layers also engage in1177

contextual information processing.1178

Lastly, we compare the correlation results be-1179

tween GPT-2 and LLaMa2-7B to investigate the1180

effect of modern training schemes on LLMs. The1181

overall trend across the three buckets is similar.1182

However, we observe three major differences. The1183

first notable difference is that the first layer of1184

LLaMa2-7B already shows a significant correla-1185

tion with eye movement measures, likely due to 1186

the large amount of pre-training data. The second 1187

difference is the presence of a peak correlation in 1188

the middle bucket, with no evident decline after- 1189

ward until reaching a second peak in the mature 1190

bucket. As discussed earlier, the premature bucket 1191

in GPT-2 is primarily responsible for token process- 1192

ing, while in LLaMa2-7B, it also contributes to rea- 1193

soning. The last two differences will be elaborated 1194

on later. We believe that LLaMa2-7B employs 1195

modern pre-training techniques, such as instruction 1196

tuning (IT) (Brown et al., 2020) and RLHF (Ziegler 1197

et al., 2020), which distribute reasoning and fac- 1198

tual knowledge abilities not only to the middle and 1199

mature layers but across all layers. 1200

Empirically, LLMs are trained with the next- 1201

token prediction objective. Modern LLMs exhibit 1202

strong language understanding and reasoning abil- 1203

ities. This raises the question: are LLMs merely 1204

next-token predictors, or are they task reason- 1205

ers? In the ZuCo 2.0 dataset (Hollenstein et al., 1206

2020), there are two different settings for eye move- 1207

ment studies: natural reading and task-specific read- 1208

ing. In the task-specific reading, participants are re- 1209

quired to determine whether a specific relation type 1210

is present in a sentence, including categories like 1211

political affiliations, education, founder, spouse, 1212

job title, nationality, and employer. Relation de- 1213

tection is a high-level semantic and reasoning task 1214

that demands complex cognitive processing. 1215
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Figure 2 shows the comparison between natural1216

reading and task-specific reading in terms of corre-1217

lations between eye movement measures and hid-1218

den states in LLMs across layers. We observe Pat-1219

tern #2, where LLMs function as both next-token1220

predictors and reasoners. For the GPT-2 model, the1221

correlation values in the premature bucket during1222

task-specific reading are lower than those in natural1223

reading, indicating that the layers in GPT-2’s pre-1224

mature bucket primarily handle token processing,1225

not reasoning. However, in the middle bucket, the1226

correlation peak in task-specific reading is higher1227

than in natural reading. Furthermore, the decline in1228

correlation across the middle and mature buckets is1229

less pronounced, suggesting that layers in the ma-1230

ture bucket are particularly involved in reasoning.1231

For LLaMa2-7B, the correlation in the premature1232

bucket increases in task-specific reading compared1233

to natural reading, indicating that these layers han-1234

dle both token processing and reasoning. Addition-1235

ally, the correlation in both the middle and mature1236

buckets significantly increases, suggesting that the1237

middle bucket is responsible for token processing,1238

information integration, and reasoning, while the1239

mature bucket plays a key role in information inte-1240

gration and reasoning.1241
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