
Accepted at the ICLR 2022 Workshop on Geometrical and Topological Representation Learning

HETEROGENEOUS MANIFOLDS FOR CURVATURE-
AWARE GRAPH EMBEDDING

Francesco Di Giovanni1∗, Giulia Luise2∗, Michael M. Bronstein1,3

1Twitter 2University College London 3University of Oxford

ABSTRACT

The quality of graph embeddings depends on whether the geometry of the space
matches that of the graph. Euclidean spaces are often a poor choice and recently
hyperbolic spaces and more general manifolds, such as products of constant-
curvature spaces and matrix manifolds, have resulted advantageous to better
matching nodes pairwise distances. However, all these manifolds are homoge-
neous, implying that the curvature distribution is the same at each point, making
them unsuited to match the local curvature (and related structural properties) of
the graph. We study embeddings in a broader class of heterogeneous rotationally-
symmetric manifolds. By adding a single radial dimension to existing homoge-
neous models, we can both account for heterogeneous curvature distributions on
graphs and pairwise distances. We evaluate our approach on reconstruction tasks.

1 INTRODUCTION

Embedding data into a continuum space is at the heart of representation learning. For some time
continuum was a synonym of Euclidean and it was usually assumed that data mapped to high-
dimensional vectors likely lived on a smaller but generally curved submanifold. Recently a trend
has emerged of encoding the geometry of the data directly into a richer ambient manifold. This
approach has become popular for graph embeddings, since many real-world graphs exhibit power-
law degree distribution and hierarchical structures typical of hyperbolic geometry Krioukov et al.
(2010). It is thus not surprising that hyperbolic embeddings turned to be beneficial for recon-
struction tasks such as link-prediction Nickel & Kiela (2017); Chamberlain et al. (2017). The im-
proved performance is due to the space better matching structural properties of the input graph:
this greater flexibility is encoded in the curvature information, contrarily to the flat Euclidean set-
ting. Such findings have sparked interest in exploring different manifold classes such as products of
constant curvature spaces (Gu et al. (2018), generalizing Wilson et al. (2014)), and matrix man-
ifolds Cruceru et al. (2021), that could better accommodate the structural properties of graphs.

Figure 1: Left: nodes col-
ored by discrete curvature.
Right: a heterogeneous man-
ifold proposed here, colored
by its scalar curvature, and the
graph-embedding.

These approaches have recently been noted to be instances of graph
embeddings into symmetric manifolds López et al. (2021a). This
family of manifolds are usually amenable to optimization tech-
niques, partly because all points ‘look the same’, a feature known
as homogeneity. Homogeneity often allows for closed and tractable
formulas for distances and exponential maps that are required
for Riemannian gradient descent algorithms Wilson & Leimeister
(2018), but at the same time makes the ambient space ‘stiff’ since
its curvature is position-independent. On the other hand, real-world
graphs are often heterogeneous, where clustering and density gen-
erally vary from node to node. This local heterogeneous geometry
can be encoded in discrete curvature Forman (2003); Ollivier (2007;
2009). We propose to go beyond the common strategy of minimizing distance-based losses and in-
stead make our embedding curvature-aware, by also matching the node-wise curvature information
with pointwise curvature on the manifold. This allows us to access structural information about the
input graph from the local properties of the manifold rather than simply from the embedded nodes.
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Contributions. In this paper, we propose what to our knowledge is the first method that preserves
both distance and curvature information in graph representations. To this aim, we study a class of
heterogeneous manifolds consisting of a product of a homogeneous factor and a spherically symmet-
ric one. We show that this family generalize any homogeneous embedding studied so far and allow
to both match the discrete curvature distribution and retain the computational tractability of stan-
dard approaches (something generally lacking on heterogeneous manifolds). We show that classical
optimization techniques, such as Riemannian-SGD, extend to our heterogeneous spaces by comput-
ing a single additional derivative. We test this new approach on reconstruction tasks and conduct
experiments that show its potential for triangles estimation and manifold random graphs.

Related work. Approximate isometric embeddings of graphs and similar objects have been exten-
sively studied in theoretical geometry Gromov (1981); Linial et al. (1995); Indyk et al. (2017) and in
computer graphics applications Mémoli & Sapiro (2005); Bronstein et al. (2006). The recent trend
of ‘geometric machine learning’ Bronstein et al. (2017; 2021) attempts to incorporate geometric
inductive biases such as symmetry and equivariance into deep neural networks and more broadly,
leverage the geometric structure of the data and learning tasks. In the context of graphs, much of
this research area is propelled by the success of graph neural networks Sperduti (1994); Goller &
Kuchler (1996); Scarselli et al. (2008); Bruna et al. (2014), where the role of non-Euclidean geome-
try both in the form of representation of the node features Chami et al. (2019); Liu et al.; Bachmann
et al. (2020) and tool to investigate limitations of existing architectures Chamberlain et al. (2021);
Topping et al. (2021) is emerging. Our work continues the line of research of Wilson et al. (2014);
Nickel & Kiela (2017); Gu et al. (2018); Cruceru et al. (2021); López et al. (2021a) and generalizes
these methods by proposing a new class of ambient spaces and embedding algorithms.

2 GRAPH EMBEDDING IN HETEROGENEOUS SPACES

We refer to the appendix for notions of gradient, geodesics and exponential map on Riemannian
manifolds. Below (M, g) is a Riemannian manifold with tangent space at p denoted by TpM .

Homogeneous vs Heterogeneous spaces. For each point p in M , and for each pair of linearly
independent tangent vectors u, v ∈ TpM , the sectional curvature Kp(u, v) at p is the Gaussian
curvature (product of the minimal and maximal curvatures) of the surface spanned by expp({u, v}).
When Kp is constant (in the sense that there exists K ∈ R such that Kp(u, v) = K for any
p ∈ M and u, v,∈ TpM ), then, up to quotients, M is either a sphere (K > 0), a Euclidean
space (K = 0), or a hyperbolic space (K < 0). We refer to this special class as space-forms. More
general than space-forms are homogeneous manifolds, which are characterized by the following
property: for any points p, q ∈ M there exists an isometry mapping p to q. This means that an
observer cannot distinguish the point they are at based on the surrounding geometry. It follows
that the sectional curvatures are only functions of the tangent vectors but not of the base-point,
meaning that Kp(·, ·) = K(·, ·) and hence that the scalar curvature - the simplest curvature term
one can associate with a manifold (see Appendix) - is constant. Recent papers studied embedding
graphs into homogeneous manifolds which hence cannot encode any node-wise information in their
curvature being the latter constant Gu et al. (2018); Cruceru et al. (2021); López et al. (2021b). To
overcome this rigidity one has to drop the homogeneity and consider more general manifolds, i.e.
with non-constant (scalar) curvature, here referred to as heterogeneous (see Figure 2).

Curvature on graphs Although a graph does not come with a differential structure, synthetic
notions of graph curvature have been introduced, most notably, by Forman (2003) and Ollivier
(2007; 2009). In both cases, the idea is to consider an edge-based map that can recover some aspects
of the Ricci curvature on manifolds, including relations to the volume growth rate Paeng (2012).
Following Samal et al. (2018) we define the γ-augmented Forman curvature of an unweighted graph
G = (V,E) as the map F : E → R

F(i, j) = 4− di − dj + 3γ ♯∆(i, j), γ > 0, (1)

where di, dj are the degrees of i, j ∈ V respectively and ♯∆(i, j) is the number of triangles based
at the edge (i, j). We note that γ regulates the contribution of triangles and is generally set equal to
one.
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(a) Space forms (sphere, plane, hy-
perboloid)

(b) Product mani-
fold

(c) Heterogeneous man-
ifold

Figure 2: Homogeneous manifolds include (a) space-forms and (b) products of space-forms (e.g.
cylinder) and have constant scalar curvature. A heterogeneous manifold (c) has non-constant scalar
curvature and its graph counterpart has varying node-wise Forman curvature.

Figure 3: Nodes with same
degree but different curva-
ture.

As for manifolds, we can trace over the edges passing through
i to compute the node-wise Forman scalar curvature F(i) =
(
∑

j:j∼i F(i, j))/di. We note that we can have nodes with same de-
grees but different (scalar) Forman curvatures describing distinct ge-
ometric configurations (Figure 3). If we are able to find an isometric
embedding f of G into some space M , meaning that the average dis-
tance distortion ADd vanishes, then we have preserved all the infor-
mation and can thus fully reconstruct the graph. Distortions though
are often unavoidable for a given ambient space Verbeek & Suri (2016). Partly motivated by these
findings, we wish to leverage the structural information encoded in the Forman curvature to find
embeddings that minimize ADd and match the node-wise curvature of the graph with the point-
wise curvature of the manifold. Accordingly, we need to consider embeddings into heterogeneous
manifolds where the curvature information changes at each point, which we discuss next.

Spherically symmetric heterogeneous spaces The family of manifolds that we study are char-
acterized by two features: a product structure and spherical symmetry. These two elements play
a key role in ensuring that curvature and distance can be computed in closed formulas, something
generally uncommon on manifolds. We refer to the appendix for full details on the construction.

Choose any homogeneous manifold (Mh, gh) with a closed formula for the distance. Given a graph
G with node set V and a manifold M = Mh × R3, with Mh a homogeneous space and R3 a
rotationally symmetric space as described in the appendix, we aim to find an embedding of the form

V ∋ x 7→ y(x) = (z(x), r(x), θ̄),

with z(x) ∈ Mh and (r(x), θ̄) polar coordinates in R3 for some fixed angles θ̄ ∈ S2. By doing so,
the angles θ̄ enter neither the distance function nor the curvature one and are hence geometrically
meaningless. Accordingly, we think of our embedding as simply adding a radial coordinate to our
chosen homogeneous space x 7→ (z(x), r(x)) to obtain a heterogeneous curvature now varying
with r. We denote this class of embedding spaces by Mh ×R. Note that our model generalizes any
existing homogeneous one that in fact can be recovered by (r = const).

Loss function. Similarly to Nickel & Kiela (2017); Gu et al. (2018); Cruceru et al. (2021), we
construct embeddings by minimizing a suitable loss function. Thanks to our model we can minimize
any distance and curvature depending loss via gradient descent. Let V = {x1, . . . , xn} and denote
the embedded nodes by {yi = (zi, ri)}ni=1 ⊂ Mh ×R. Using the shorthand (y1, . . . , yn) = {yi},
we consider a loss function of the form

L({yi}) = Ld({yi}) + τLc({yi}), (2)

where τ is a scale parameter acting as a regularizer. We take Ld to be the average relative squared
distance distortion (also known as ‘dilation’) and similarly for Lc (see Appendix for details). By
minimizing Ld we account for long-range interactions in the form of pairwise distances meaning
that we prioritize minimization of the average distance distortion ADd. On the other hand, Lc is a
curvature-based distortion so it measures how close the local geometry of the manifold around the
embedded nodes resembles that of the graph G.
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Figure 4: Web-edu graph (left) reconstructed using only distance in H5 × H5 (center) and with a
curvature-based correction (with 22.6% reconstruction improvement) in H5 ×H5 ×R (right).

Given our loss, we apply Riemannian stochastic gradient descent (R-SGD) Bonnabel (2013) to find
an optimal embedding of a given graphG into our heterogeneous manifold. In the appendix we show
that compared to the baseline homogeneous models, the only additional term we need to compute
for the gradient of L is a radial derivative.

3 EXPERIMENTS

We experimentally evaluate graph embeddings into the new class of heterogeneous manifolds intro-
duced in the previous section. We consider four real-world graphs: aves-wildbird Rossi & Ahmed
(2015) (small animal network) CS-PhD De Nooy et al. (2018) (advisor-advisee relationship), web-
edu Gleich et al. (2004) (web networks from the .edu domain) and Facebook Leskovec & Mcauley
(2012) (dense social network). We show that our heterogeneous embeddings perform well w.r.t.
distance-based metrics (average distance distortion ADd and mean average precision mAP, see Ap-
pendix) while also matching the node-wise curvature information with the pointwise scalar curvature
on the manifold. To assess the quality of the latter, we introduce the average curvature distortion
ADc (see Appendix). As baseline homogeneous embeddings, we use different products of space-
forms Mh from Gu et al. (2018) and compare them to the heterogeneous embeddings constructed
with the rotationally symmetric factorMh×R. The results in Table 1 show that the proposed model
attains reconstruction fidelity (in the sense of distance distortions) on par with the homogeneous
baseline while also minimizing ADc. In the homogeneous setting one can only match an average
‘global curvature’ as heuristically investigated in Gu et al. (2018) since the curvature is position-
independent. Accordingly, computing ADc is meaningless so we simply report the variance of the
Forman curvature. In the appendix we also propose an investigation into better preservation of trian-
gles via the curvature and how such improved fidelity can be exploited in the reconstruction (Figure
4). We also showcase the potential of our approach for generating heterogeneous random graphs
from sampling on the family of rotationally symmetric manifolds introduced here.

Conclusions In this paper we proposed curvature-aware graph embeddings using a novel class
of heterogeneous manifolds constructed as a product of a homogeneous space and a rotationally-
symmetric manifold and offering a rich heterogeneous geometric structure together with compu-
tational tractability. Our approach extends all existing models for graph embeddings to faithfully
approximate both distance-based and curvature-based information of the graph. We showed the ef-
fectiveness of the proposed approach on real-world graph reconstruction tasks and point towards the
advantage of retaining curvature information in higher order structure detection and in controlling
local behaviors when sampling random graphs.

Distance and Curvature Reconstruction Error
Aves-Wildbird CS-PhD WebEdu Facebook

|V | / |E| 131 / 1444 1025 / 1043 3031 / 6474 4039 / 88324
ADd mAP ADc ADd mAP ADc ADd mAP ADc ADd mAP ADc

H5 ×H5 .088 .99 (131) .038 .96 (76.0) .036 .98 (220) .043 .77 (>104)
H5×H5×R .085 .99 .001 .038 .99 .089 .036 .97 .018 .057 .76 .161
H5× S5 .090 .98 (131) .050 .91 (76.0) .050 .98 (220) .059 .74 (>104)
H5× S5×R .088 .98 .004 .043 .92 .186 .050 .99 .021 .076 .74 .163

Table 1: Perfomance of reconstruction tasks on real datasets. For homogeneous embeddings, ADc

reports the variance of Forman curvature.
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tions in product spaces. In International Conference on Learning Representations, 2018.

Piotr Indyk, Jiřı́ Matoušek, and Anastasios Sidiropoulos. 8: low-distortion embeddings of finite
metric spaces. In Handbook of discrete and computational geometry, pp. 211–231. Chapman and
Hall/CRC, 2017.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space
26. Contemporary Mathematics, 26, 1984.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
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A EMBEDDING INTO RIEMANNIAN MANIFOLDS

The setting. We consider an undirected graph G = (V,E) with n nodes. For i ∈ V we let Ni be
the neighbourhood of i and di = |Ni| the degree of i. The (geodesic) distance1 dG(i, j) is the length
of the shortest walk connecting nodes i and j. We are interested in finding a target spaceM equipped
with metric dM and an embedding f : V → M so that the graph can be reconstructed from f and
M . If there exists an isometric map f : V → M , i.e. satisfying dM (f(i), f(j)) = dG(i, j) for all
i, j ∈ V , then we can perfectly reconstruct the input data. However, given constraints on M such as
bounded dimension, a perfect isometric embedding is typically unavailable, and one tries to find a
‘least-distorting’ embedding, in some sense: the average (distance) distortion ADd(f)

ADd(f) :=
2

n(n− 1)

n∑
i,j=1

∣∣∣∣1− dM (f(i), f(j))

dG(i, j)

∣∣∣∣ (3)

and the mean average precision mAP

mAP(f) :=
1

n

∑
i∈V

1

di

∑
j∈Ni

|Ni ∩Ri,j |
|Ri,j |

, (4)

are two common criteria, where Ri,j is the set of nodes z ∈ V such that dM (f(i), f(z)) ≤
dM (f(i), f(j)). We note that while ADd(f) is affected by pairwise distances beyond the 1-hop
neighbourhood, the mAP is a measure of how well an embedding is able to reproduce the 1-hop
neighbourhood of a node disregarding the actual scale of distances. We refer to Section 4 in Cruceru
et al. (2021) for a thorough discussion on the matter of choosing the right criterion for embedding
distortion.

In general, distortions are inevitable and tend to accumulate on higher-order structures Verbeek &
Suri (2016), which are important in many practical applications such as social networks Benson
et al. (2016) and physical systems Battiston et al. (2020). In this case, it is desirable to go beyond
pairwise distances and access other types of information on the ambient space to better reconstruct
the input data. Discrete graph curvature Forman (2003); Ollivier (2007) is one way of accounting
for such structures. In the rest of the paper, we study embeddings that can both minimize ADd (or
maximize mAP) and account for local graph structural properties by matching the graph curvature
distribution with that of a suitable class of target spaces.

A.1 RIEMANNIAN MANIFOLDS

A natural class of continuous embedding spaces for graphs are Riemannian manifolds Petersen
(2006), since they come with a differentiable structure and are hence amenable to optimization
methods. Informally, a d-dimensional manifold M is a topological space that can be locally
identified with Euclidean space via smooth maps: hence for every point p ∈ M there exists an
associated tangent space TpM ∼= Rd. Assume we are given a positive-definite inner product
gp : TpM × TpM → R. If the assignment p 7→ gp is smoothly compatible with the differen-
tiable structure of M , we refer to g as a Riemannian metric (tensor) on M .

Geodesics. The Riemannian metric g induces a distance function dg that measures the length of
minimal paths on the manifold M called geodesics. An important property of the distance is that
d2g(·, p) is smooth locally2 around p, meaning that any loss L depending on d2g is locally smooth on
M and can hence be optimized by first order methods.

Exponential map. Given v ∈ TpM , the exponential map expp : TpM → M yields the point
in M obtained by travelling for unit time along the geodesic starting at p with initial speed v. The
exponential map plays a key role in optimization on manifolds, allowing to update an embedding at
p based on gradients of the loss living in the tangent space.

1Distances are often termed ‘metrics’. Here, we prefer the term ‘distance’ to avoid confusion with Rieman-
nian metrics.

2Namely, away from the cut-locus Petersen (2006).
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Embedding. The problem of isometric (metric-preserving) embeddings of discrete metric spaces
(and graph in particular) has been extensively studied both in theoretical and applied literature Linial
et al. (1995); Indyk et al. (2017); Johnson & Lindenstrauss (1984). In general, a graph cannot be
isometrically embedded into a fixed space; the structure and the dimension of the embedding space
have a crucial effect on the embedding distortion. Typically, increasing the dimension of the space
allows to reduce the distortion, however, it comes at the expense of memory and computational cost.
For this reason, one often seeks a lower-dimensional space with ‘richer’ structure that is better suited
for the graph. When using Riemannian manifolds for graph embeddings, the ‘richness’ of the space
M is manifested in its curvature, which we define next.

Curvature. For each point p in M , and for each pair of linearly independent tangent vectors
u, v ∈ TpM , the sectional curvatureKp(u, v) at p is the Gaussian curvature (product of the minimal
and maximal curvatures) of the surface spanned by expp({u, v}). Given a tangent vector v at p, if
we ‘average’ the sectional curvatures at p over a set of orthonormal vectors we obtain a bilinear form
Ricp : TpM × TpM → R called Ricci curvature. This bilinear map is related to the volume growth
rate and the propagation of information Petersen (2006)[Chapter 9]. By computing the trace of Ric,
we finally obtain a map R : M → R called scalar curvature. This is the simplest curvature term
one can associate with a manifold and the most natural quantity to adopt when fitting the node-wise
curvature on a graph.

Gradient on manifolds. If (M, g) is a Riemannian manifold, a vector field X is a smooth map
X : p 7→ Xp ∈ TpM assigning to each point inM a tangent vector. We recall that tangent vectors on
a manifold represent linear differential operators, meaning that for any smooth function f :M → R
and vector field X , we can construct a smooth function X(f) : p 7→ Xp(f) = dfp(Xp).

Given f : M → R smooth, the gradient of f with respect to g is the vector field ∇gf satisfying
df(X)|p = gp(X,∇gf) for any vector field X . Given local coordinates {xi} around p ∈ M , we
can express the gradient of f as

(∇gf)|ip =
∑
j

(g−1
p )ij∂jf(p). (5)

Therefore, if we have a loss L, once we compute its Euclidean gradient with respect to coordinates
on M and hence obtain the tangent vector (∂1L, . . . , ∂dL), we need to further project it using the
inverse metric g−1.

Since many real graphs are characterized by features as power-law degree distribution and hierar-
chical structures that are intrinsic to hyperbolic geometry Krioukov et al. (2010), in most of our
evaluations we let the homogeneous factor be a product of space forms containing at least one hy-
perbolic term. Accordingly, we first briefly review the hyperboloid model we adopt following the
discussion in Wilson & Leimeister (2018).

Hyperboloid model. We consider the Minkowski product on Rd+1 defined by

⟨x, y⟩d:1 :=

d∑
i=1

xiyi − xd+1yd+1,

with signature (+, . . . ,+,−). The d-dimensional hyperbolic space Hd can be described as
Hd =

{
x ∈ Rd+1 : ⟨x, x⟩d:1 = −1, xd+1 > 0

}
.

The distance between two points on the hyperbolic space is given by
dHd(x, y) = arcosh(−⟨x, y⟩d:1).

The tangent space TpHd is isomorphic to the null directions with respect to the Minkowski product
at p. Finally, the exponential map is given by

expp(v) = cosh(||v||)p+ sinh(||v||) v

||v||
.

Assume now we have a distance-based loss Ld defined on the hyperboloid model. One first has
to compute the standard gradient ∇L in the ambient space Rd+1. Then, in light of equation 5 we
rescale using the (inverse) Minkowski metric deriving

∇d:1L = diag(+, . . . ,+,−)∇L.
Finally we project∇d:1 to the tangent space of the hyperboloid to derive∇HdL.

9
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Homogeneity of existing models. In this paragraph we briefly review that the main existing mod-
els analysed recently in Nickel & Kiela (2017); Gu et al. (2018); Cruceru et al. (2021); López et al.
(2021a) are indeed homogeneous and hence their curvature information cannot generally match the
graph discrete one. In fact, as observed in López et al. (2021a), the homogeneity follows from the
stronger requirement of symmetry Petersen (2006)[Chapter 8.1]: symmetric spaces are characterized
by the property that for each point p there exists an isometry fixing p whose Jacobian is minus the
identity.

In the case of graph embeddings into space forms Wilson et al. (2014); Nickel & Kiela (2017), the
homogeneity is a known fact and follows for example from the curvature tensor being covariantly
constant. This extends to the cartesian products of such spaces analysed in Gu et al. (2018). In
Cruceru et al. (2021) two Riemannian manifolds have been investigated regarding the graph embed-
ding problem: the SPD manifold (i.e. symmetric positive definite matrices) and the Grassmannian
manifold. The homogeneity is a consequence of their Lie group structure (see Lin (2019) and
Petersen (2006)[Chapter 8.2] respectively). Finally another class of symmetric spaces - Siegel man-
ifolds - have been studied in López et al. (2021a). In particular, we refer to the Appendix of López
et al. (2021a) for a more detailed discussion of symmetric manifolds and why they are generally
advantageous in representation learning tasks López et al. (2021b).

As observed in Section 2, since the curvature of a Riemannian metric g is invariant under isometries,
when g is homogeneous - meaning that its isometry group acts transitively - the curvature of g
cannot distinguish between two given points p, q otherwise it would break the invariance with respect
to the isometry mapping p to q. This key property of homogeneous spaces is arguably the main
reason why they appear so frequently whenever optimization on manifolds is required: the position-
independence of the curvatures makes the geometry of the space the same around each point, often
leading to closed and tractable formulas for the distance function and exponential maps, which are
generally unavailable. On the other hand, this rigidity comes with a price: no information about the
input graph domain can be derived from the underlying continuum space and its geometry without
reconstructing an adjacency skeleton on the embedded point cloud.

This last point is at the heart of our work, where we are interested in encoding the geometry
of the data in the actual continuum texture of the ambient space via curvature matching. To
this aim, one has to consider heterogeneous manifolds with position aware curvature.

B A TRACTABLE CLASS OF HETEROGENEOUS MANIFOLDS

We first rewiew the two main apsects of our construction: product structure and rotational symmetry.
We also note that in the following we use spherical and rotational interchangeably.

Product manifolds. Given two Riemannian manifolds (M1, g1) and (M2, g2), their Cartesian
product M := M1 × M2 can be equipped with a standard Riemannian structure g := g1 ⊕ g2.
The product structure allows to easily compute relevant quantities such as distance, exponential map
and scalar curvature from each factor. The squared distance function on (M, g) and the exponential
map are given by

d2g((p1, p2), (q1, q2)) = d2g1(p1, q1) + d2g2(p2, q2), (6)

expg |(p1,p2)(X) = (expg1 |p1
(X1), expg2 |p2

(X2)), (7)

respectively, where p = (p1, p2) and q = (q1, q2) are points on M . The scalar curvature is simply
given by the sum

Rg(p1, p2) = Rg1(p1) + Rg2(p2). (8)
The above decomposition shows that for optimizing a distance and curvature dependent loss on a
product manifold it suffices to follow the Riemannian gradient descent on each factor separately.

Rotationally symmetric manifolds. Consider polar coordinates {(r, θ, ψ)} in R3. We can write
the Euclidean metric in such coordinates as gE = dr2 + r2(dθ2 + sin2(θ)dψ2) = dr2 + r2gS2 ,
where gS2 is the standard metric on the 2-sphere. We can generalize this construction to the class of
metrics that are invariant under rotations and can hence be written in polar coordinates as

gφ = dr2 + φ2(r)gS2 , (9)

10
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for some smooth function φ. In fact, we note that a generally rotationally symmetric metric gφ on
(0,∞)× Sm can be written as

gφ = dr2 + φ2(r)gSm

up to renaming r to be the coordinate representing the distance from the singular orbit (origin in our
case), as for example in Angenent & Knopf (2004); Di Giovanni (2021). The metric gφ on the open
manifold (0,+∞)×Sm defines a smooth complete metric on Rm+1 if φ extends to an odd function
at the origin with ∂rφ(0) = 1 Petersen (2006)[Chapter 1.4]. It is worth emphasizing that the choice
φ(r) = sinh(r) recover the Hyperbolic space as well.

The curvature information of a spherically symmetric metric on Rm+1 is encoded in the sectional
curvature K of the 2-plane perpendicular to the spherical orbits and L of the 2-plane tangential to
such orbits Petersen (2006)[Chapter 3.2]:

K = −∂
2
rrφ

φ
, L =

1− (∂rφ)
2

φ2
. (10)

By tracing we derive the formulas for the Ricci curvature and the scalar curvature:

Ric = −m∂2rrφ

φ
dr2 + (−φ∂rrφ+ (m− 1)(1− (∂rφ)

2))gSm , (11)

R = m

(
−2∂

2
rrφ

φ
+ (m− 1)

1− (∂rφ)
2

φ2

)
(12)

In particular in the three-dimensional case, i.e. m = 2, we have

R(r) = 2

(
−2∂2rrφ

φ
+

1− (∂rφ)
2

φ2

)
(r). (13)

The curvature depends on the radial coordinate r, meaning that r 7→ R(r) is non-constant and hence
that the resulting space is heterogeneous (except for very particular choices of φ). We emphasize
how the curvature is instead independent of angular coordinates θ, ψ.

We also note that given two points p, q lying along the same ray, i.e. p = (r0, θ̄, ψ̄) and q = (r1, θ̄, ψ̄)
for some angles θ̄, ψ̄, then we have a simple formula for their distance:

dg(p, q) = |r1 − r0|. (14)

In the following, we pick one specific instance of rotationally symmetric space, by choosing the
radial function φ in equation 9 of the form

φα(r) = α arctan
( r
α

)
, α > 0. (15)

Figure 5: Visualisation of 3D ro-
tationally symmetric manifolds for
different α.

While other options are viable, this choice is motivated by
some convenient properties of the metric in equation 9. The
resulting geometry resembles a hemisphere glued to a cylin-
der with positive monotone decreasing scalar curvature while
α controls the radius of the hemisphere and hence how curved
the space is (Figure 5). In practice, the value α depends on
two tunable hyperparameters that allow us to vary the range of
curvatures on the manifold to match the discrete curvature of
the embedded graph as detailed below. Alternatively, α - or
more generally φ - could be learned based on the problem.

Details on our explicit choice. It follows from equation 10 that any smooth concave function φ
with ∂rφ(0) = 1 gives rise to a spherically symmetric metric with nonnegative sectional curvature
K ≥ 0, L ≥ 0 and hence R ≥ 0. The concavity and monotonicity of the warping function
φ characterizes strongly the geometry of these spaces and indeed has an impact for example on the
type of singularities that the Ricci flow may develop Angenent & Knopf (2004); Di Giovanni (2021).
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In particular our choice in equation 15 reported below

φα : r 7→ φα(r) = α arctan
( r
α

)
, α > 0

satisfies these properties.

Since φ is odd with ∂rφα(0) = 1, the manifold (Rm+1, gφα
) is smooth and complete. Moreover, as

mentioned above Rα ≥ 0. In fact, a standard de l’Hôpital argument gives

Rα(0) =
12

α2
.

By direct computation one can also check that ∂rRα ≤ 0 with

inf
r≥0

Rα(r) =
8

α2π2
.

Note how this is not surprising, since geometrically the manifold looks like a round cylinder away
from the origin. In particular, we see that α affects the range of curvature and how positively curved
the manifold is at the origin as illustrated in Figure 5. We will see below how to choose α based on
the range of curvatures on the given input graph we want to match.

The role of rescaling. We emphasize how the curvature monotonicity is in general a feature help-
ing the fitting of the Forman distribution on the graph since otherwise the gradient of the curvature-
based loss Lc could get stuck at one stationary point of Rα. In fact, this property also allows us to
have a better control and interpretability of the hyperparameters entering the model as discussed in
the next section. On the other hand, since the graph is still a non-differentiable structure, it may hap-
pen that adjacent nodes have highly varying Forman curvature: equivalently, the node-wise Forman
curvature may have large Dirichlet energy

E(F) =
1

2

∑
i∼j

∣∣∣∣∣
∣∣∣∣∣ Fi√
di
− Fj√

dj

∣∣∣∣∣
∣∣∣∣∣
2

.

Accordingly, to avoid sacrificing the distance-based loss, we grant the model an extra degree of
freedom given by a rescaling λ2 of the rotationally symmetric metric gφ. We usually take λ to be
a contraction, meaning that the projection of the distance function on the radial directions in equa-
tion 14 becomes λdgφ((r0, ·), (r1, ·)) hence allowing us to weight less the rotationally symmetric
space in the distance-based loss Ld. On the other hand the scalar curvature of the rescaled metric
transforms as Rα/λ

2. In the next section we will describe how to deal with the curvature rescaling
and in general make the curvature matching component of our approach more robust to both the
choice of the homogeneous factor and of the rescaling factor.

Volume growth measurement Here we describe how we accounted for the volume on the syn-
thetic reconstruction task in Figure 6. We choose our homogeneous space to be the standard 3-
dimensional Hyperbolic space (Mh, gh) = (H3, gH3).

Since our embedding is spherically symmetric, instead of considering geodesic balls Bg(yi, ρ) in
our heterogeneous space H3 ×R, we look at annular regions

V (yi, ρ) := {y = (z, r, θ) : d2H3(z, zi) + (r − ri)2 < ρ2},
so that we can explicitly compute volumes and exploit the fact that our geometry (e.g. ordering of
nodes with larger volumes at a given radius) is independent of the angular coordinates. We then
have

v(yi, ρ) := volg(V (yi, ρ)) =

∫ ri+ρ

(ri−ρ)+

|BgH3 (o,
√
ρ2 − (r − ri)2)|gH3 ω2 φ

2
α(r)dr,

with ω2 the area of the 2-sphere and o some fixed point of our hyperbolic model. Say we consider
the rotationally symmetric model for the three-dimensional hyperbolic space, then

v(yi, ρ) = (ω2)
2

∫ ri+ρ

(ri−ρ)+

(∫ √ρ2−(r−ri)2

0

sinh2(z)dz

)
φ2
α(r)dr. (16)

This is the quantity we use to match the volume reconstruction of the graph as in Figure 6.
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B.1 TRACTABLE HETEROGENEOUS MANIFOLDS.

Choose any homogeneous manifold (Mh, gh) with a closed formula for the distance and consider a
rotationally symmetric space (e.g. with φ as in equation 15). We build a heterogeneous space as the
product Mh × R3 equipped with the metric gh ⊕ gφ.

We now describe how one can effectively rely on the structure of the heterogeneous manifolds
introduced above to learn curvature aware graph representations (see Figure 1).
Given a graph G with node set V and a manifold M = Mh × R3, with Mh a homogeneous space,
we aim to find an embedding of the form

V ∋ x 7→ y(x) = (z(x), r(x), θ̄),

with z(x) ∈ Mh and (r(x), θ̄) polar coordinates in R3 for some fixed angles θ̄ ∈ S2. According
to equation 6 and equation 14, the squared distance between two points y0 = (z0, r0, θ̄) and y1 =
(z1, r1, θ̄) is

d2g((z0, r0, θ̄), (z1, r1, θ̄)) = d2h(z0, z1) + (r1 − r0)2, (17)
where dh is the distance on the homogeneous factor. On the other hand, from equation 8 we derive
that for any (z, r, θ̄) in M the following holds:

Rg(z, r, θ̄) = Rgh(z) + Rα(r) = Rh +Rα(r) (18)
where we have used that the scalar curvature of the homogeneous factor Rh is a constant and Rα(r)
is the scalar curvature of the rotationally symmetric factor given by equation 13 with φα as in
equation 15. Note that by embedding the nodes along a ray in the rotationally symmetric factor,
the angles enter neither the distance function nor the curvature one and are hence geometrically
meaningless. Accordingly, we think of our embedding as simply adding a radial coordinate to our
chosen homogeneous space x 7→ (z(x), r(x)) to obtain a heterogeneous curvature now varying
with r. Therefore, we simplify our notation and denote this class of embedding spaces by Mh×R
to emphasize that there is only one additional dimension compared to the homogeneous baseline.
From now on, we tacitly assume that any heterogeneous graph embedding is of this form. Note in
particular that if we embed the graph into r = const, we recover existing homogeneous models. In
the following, we usually take (Mh, gh) to either be a space-form or a product thereof as in Gu et al.
(2018).

Example. Let Hd denote the standard d-dimensional hyperbolic space. Since the scalar curvature
of Hd is given by RHd = −d(d− 1), if we consider for example an embedding x 7→ (z(x), r(x)) ∈
H5 ×H5 ×R, then equation 18 becomes R(z(x), r(x)) = 2 (−5 · 4) + Rα(r(x)).

C DETAILS ON THE ALGORITHM

Loss function. Similarly to Nickel & Kiela (2017); Gu et al. (2018); Cruceru et al. (2021), we
construct embeddings by minimizing a suitable loss function. Thanks to equation 17 and equa-
tion 18 we can minimize any distance and curvature depending loss via gradient descent. Let
V = {x1, . . . , xn} and denote the embedded nodes by {yi = (zi, ri)}ni=1 ⊂ Mh × R. Using
the shorthand (y1, . . . , yn) = {yi}, we consider a loss function of the form

L({yi}) = Ld({yi}) + τLc({yi}), (19)
where τ is a scale parameter acting as a regularizer. We take Ld to be the average relative squared
distance distortion (also known as ‘dilation’)

Ld({yi}) =
∑
i,j

∣∣∣∣∣d2gh(zi, zj) + (ri − rj)2

d2G(xi, xj)
− 1

∣∣∣∣∣ (20)

where we have used equation 17 to compute the squared distance of embedded nodes. This has the
advantage of depending only on the squared distance functions which we recall to be locally smooth.
On the other hand, Lc is a new curvature-based loss

Lc({yi}) =
∑
i

(F(xi)− Rh − Rα(ri))
2

(|F(xi)|+ ϵ)
2 , (21)

where ϵ is a constant to avoid numerical instabilities. Note that this is just one option to encourage
curvature matching and other losses can be adopted.
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C.1 ALGORITHM

Given our loss in equation 19, we apply Riemannian stochastic gradient descent (R-SGD) Bonnabel
(2013) to find an optimal embedding of a given graph G into our heterogeneous manifold. Assume
that we have chosen a homogeneous factorMh and we have mapped the nodes to the points (zi, ri) ∈
Mh × R. We denote by U the update on the homogeneous coordinates {z(t)i } based on a step of
R-SGD of the loss in equation 19. We show the following:

Proposition C.1. If we apply R-SGD to L = Ld + τLc, the update of the radial component simply
becomes:

(r
(t)
i + ∂riL)+ ← r

(t)
i , (22)

with (·)+ the positive part. Therefore, the update on the product space is

(U(z
(t)
i ), (r

(t)
i + ∂riL)+))← (z

(t)
i , r

(t)
i ). (23)

Proof of Proposition C.1. Let (Mh, gh) be a chosen homogeneous manifold. Suppose we have f :
M → R smooth with M = Mh × R, meaning that we consider the heterogeneous manifold
(M, g) = (Mh, gh) × (R3, gφ), with gφ as in equation 9 for some smooth radial map φ. Assume
that f is SO(3)-invariant, i.e. that given z ∈Mh and r > 0 we have

f(z, r, θ0) = f(z, r, θ1), ∀θ0, θ1 ∈ S2.

We note that this is the case for our loss L in equation 19 which is independent of angular coordi-
nates. Since g is a product metric the tangent space of M is the direct sum of the tangent spaces of
the individual factors and we can write the gradient of f as

∇gf(z0, r0, θ0) = (∇ghf(·, r0, θ0)) (z0)⊕
(
∇gφf(z0, ·, ·)

)
(r0, θ0).

Since f is spherically symmetric, the right hand side becomes

∇gf(z0, r0, θ0) = (∇ghf(·, r0, θ0)) (z0)⊕ ∂rf(z0, ·, θ0)(r0)∂r,

where we have also used equation 5 and that the inverse metric g−1
φ writes as

g−1
φ =

(
1 0
0 g−1

S2

)
.

On the other hand, if ν ∈ R, the unique gφ-radial geodesic starting at some (r0, θ0) with initial
tangent vector ν∂r is

t 7→ (r0 + tν, θ0),

meaning that the exponential map is always defined at ν∂r and is given explicitly by

(expgφ)|(r0,θ0)(ν∂r) = ((r0 + ν)+, θ0).

Therefore, we may apply equation 7 and conclude that

(expg)(z0,r0,θ0)(∇gf) =
(
(expgh)|z0(∇ghf(·, r0, θ0)(z0)), (r0 + (∂rf(z0, ·, θ0))(r0))+, θ0

)
.

If we apply the previous computation to each component of L, we then get the update rule for the
R-SGD algorithm.

We see that compared to the baseline homogeneous models, the only additional term we need to
compute for the gradient of L is a radial derivative.

Our construction generalizes to weighted products of homogeneous factors and rotationally sym-
metric spaces. Specifically, this means considering Mh × λ2R with λ > 0. The scaling λ impacts
equation 17 and equation 18 and results in weighting less the radial contribution to the distance func-
tion effectively allowing us to match the node-wise graph curvature with the pointwise continuous
one more easily. Since scaling the curvature generally affects the range of curvatures, we can also
allow the curvature matching to be up to a linear transformation. This is discussed further in the next
paragraph.
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Matching curvature up to invertible linear maps Next, we discuss how we allowed our al-
gorithm to have an extra degree of freedom to more easily account for distances and curvatures
simultaneously. In general the curvature of the heterogeneous model Mh × λ2R writes as

R = Rh +
1

λ2
Rα

where we are using the explicit choice in equation 15 for the spherically symmetric factor with λ > 0
a positive rescaling on the rotationally symmetric space introduced above. In general, we wish to
make our model robust with respect to the choice of the homogeneous factor given that it only leads
to a constant value Rh translating the global curvature of our ambient space. Similarly, the role of
the rescaling should not affect how we match the node-wise curvature distribution. Accordingly,
we propose to reconstruct the curvature information at node xi by the curvature on the manifold
at the embedded point yi = (zi, ri) up to a known shifting and rescaling. It means that for our
curvature-based loss we instead minimize

Lc(y1, . . . , yn) =
∑
i

(
F(xi)− λ2

(
Rh +

Rα(ri)

λ2

)
+ ρ

)2

, (24)

where we take the translation ρ of the form

ρ = λ2Rh −minF + δ̂α,

with minF the minimum of scalar Forman on the given graph G and δ̂α a constant we discuss in the
next section. Therefore, equation 24 becomes

Lc(y1, . . . , yn) =
∑
i

(
F(xi)− Rα(ri)−minF + δ̂α

)2
(25)

making it independent of the choice of the homogeneous factor Mh. It remains to discuss the role
of δ̂α and in general how by using the geometry of the problem we can tune two hyperparameters to
ensure the curvature matching.

C.2 TUNING GEOMETRIC HYPERPARAMETERS

To allow the manifold scalar curvature to fit the node-wise Forman signal, we see from equation 25
that a necessary requirement is considering range of curvatures that cover the interval maxF −
minF. Since by choice Rα is monotone, we immediately see that the argminF on the graph should
be mapped to the radial coordinate rmin where Rα(rmin) = δ̂α. We know that given α, the function
Rα admits a horizontal asymptote given by 8/(πα)2, therefore we find the constraint

δ̂α ≥
8

π2α2
. (26)

On the other hand, a symmetric argument works for maxF: in fact, if we denote by rmax the radial
coordinate we should map argmaxF to, by monotonicity we have the constraint

12

α2
= Rα(0) = R(rmax) + ℓ+ = maxF−minF + δ̂α + ℓ+,

with ℓ+ our first hyperparameter controlling how close to the origin of our spherically symmetric
factor we need to be to match the maximum of Forman on the input graph. In particular, given ℓ+,
the constraint in equation 26 yields:

δ̂α =
2

3π2 − 2
(maxF−minF + ℓ+) + δ

where δ > 0 is our second hyper-parameter determining what is the range of radial coordinates
needed for the curvature matching, since the smaller δ the closer to its asymptote Rα must be to take
on the value minF. In conclusion, the choice of α is affected by two geometric hyperparameters
ℓ+, δ and is a function of the range of Forman curvatures on the given graph we want to embed in
our heterogeneous model:

α =

(
12

maxF−minF + δ + ℓ+

) 1
2

.
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D FURTHER EXPERIMENTS AND DETAILS

D.1 A SYNTHETIC EXPERIMENT

Curvature is deeply related to the rate of expansion of space on manifolds, meaning that it affects
whether volume of geodesic balls grow polynomially or exponentially Bishop et al. (1964). While
on homogeneous manifolds the volume of a geodesic ball of given radius is independent of the
position of its center, on heterogeneous manifolds the volume is position-dependent. To highlight
this aspect in our setting, we consider a heterogeneous graph composed of a cycle and a tree ( Figure
6). Note that the choice of the graph is emblematic of heterogeneous pattern since nodes inside
the cycle would have constant volume growth while nodes in the tree region will have exponential
volume growth. We then embed this graph in H3×R and use the normalized volume of the ambient
manifold to match the volume on the graph for a given radius ρ. Explicitly, we fix a radius ρ = 4 and
we compute the volume of each ‘geodesic’ ball inside a graph, i.e. |{xj ∈ V : dG(xi, xj) ≤ ρ}|.
We then use the spherical symmetry of our ambient space and the formula in equation 16 with ρ = 4
and yi given by our embedded nodes. Once we normalize the volume scores on both the graph and
the ambient space, we can finally compare the results as in Figure 6. We emphasize again that on a
homogeneous manifold this information cannot be accessed from the actual continuum space since
|Bgh(p, r)| is only a function of the radius but not of the base-point if (Mh, gh) is homogeneous.

D.2 RECONSTRUCTION TASKS

We use our embeddings for the reconstruction of four real-world graphs: aves-wildbird Rossi &
Ahmed (2015) (small animal network) CS-PhD De Nooy et al. (2018) (advisor-advisee relationship),
web-edu Gleich et al. (2004) (web networks from the .edu domain) and Facebook Leskovec &
Mcauley (2012) (dense social network).

We show that our heterogeneous embeddings perform well w.r.t. distance-based metrics (average
distance distortion ADd and mean average precision mAP) while also matching the node-wise cur-
vature information with the pointwise scalar curvature on the manifold. To assess the quality of the
latter, we introduce the average curvature distortion

ADc :=
1

n

n∑
xi=1

|F(xi)− R(f(xi))|
|F(xi)|+ 1

.

We stress that the variance of Forman is generally high due to its dependence on the size of the
degrees (Table 1). In fact, we have also confirmed experimentally that if we normalize Forman
Ricci along each edge using the largest degree of the end-nodes, then ADc is below 10−3 on each
dataset. As baseline homogeneous embeddings, we use different products of space-forms Mh from
Gu et al. (2018) and compare them to the heterogeneous embeddings constructed with the rota-
tionally symmetric factor Mh × R. The results in Table 1 show that the proposed model attains
reconstruction fidelity (in the sense of distance distortions) on par with the homogeneous baseline
while also minimizing ADc. In the homogeneous setting one can only match an average ‘global cur-
vature’ as heuristically investigated in Gu et al. (2018) since the curvature is position-independent.
Accordingly, computing ADc is meaningless and we then simply report the variance of the Forman
curvature as a measure of the information lost when moving from the graph curvature to the smooth
manifold one.

Volume 4 ball
on graph

Heterog. volume
reconstruction

Homog. volume
reconstruction

Figure 6: Volume matching.
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Aves-Wildbird CS-PhD WebEdu Facebook
Improvement 49.1 % 0 % 44.2% 20.1%

Table 2: Improvement of triangle counts using curvature. Note that the CS-PhD graph only contains
4 triangles.

Figure 7: Curvature matching on the Aves-Wildbird dataset: true scalar Forman (left), curvature
reconstructed from heterogeneous manifold (centre) and from homogeneous manifold (right).

We summarize here additional details concerning the methods and results of Table 1. We use the
model proposed in Gu et al. (2018) to possibly learn optimal constant rescaling of the homogeneous
factors H5 × H5 and H5 × S5 and we consider a training of 3000 epochs for each dataset and am-
bient space. Typical values of the scale parameter τ in the loss are 0.1, 0.01, noting that this allows
to minimize the curvature distortion without penalizing the distance-based one. In terms of hyper-
parameters ℓ+, δ introduced in Section C.2 we usually take large values (especially for the dense
network Facebook) in the range 10, 100, 1000 which allow to avoid plateau regions of the scalar
curvature profile and hence make the learning easier. This is also accounted for the initialization of
the radial coordinate since once again we want to avoid flat regions of the curvature profile: since
we have an explicit formula for the curvature this can be done efficiently (usually the initialization
is for r ∈ (0.1, 1)).

Estimation of triangle counts. Traditional graph embedding tend to distort higher-order struc-
tures such as cycles and triangles Verbeek & Suri (2016). We verify if we can use the curvature in
our heterogeneous embeddings to improve triangle counting. Given the estimated number of trian-
gles ♯∆(i)′ at node i, we introduce an average triangle distortion AD∆ similarly to ADc by replac-
ing F(xi) with the actual number of triangles ♯∆(i). We consider the graph nodes’ embeddings in
Mh×R and estimate the number of triangles in two different ways: based on the nearest-neighbour
graph and exploiting the curvature information. In the latter case, we use the formula for the For-
man scalar curvature with the curvature of the manifold at respective node embedding in the place
of F to estimate the number of triangles. We report the percentage improvement gained relying on
curvature in Table 2.

Figure 4 shows another example of WebEdu graph reconstruction with and without the use of cur-
vature. It highlights the advantages of heterogeneous embeddings for graph reconstruction tasks by
allowing to account for the curvature.

Further details on triangle counts Given the point clouds found by the embedding into the man-
ifold, we reconstruct the adjancency matrix as follows: we draw an edge between a pair of nodes
(i, j) if the distance between the corresponding embedded points yi, yj is lower than a certain thresh-
old ρ, i.e. if dM (yi, yj) ≤ ρ. Self-loops are then removed. The threshold ρ is tuned on a validation
set that is built drawing randomly 10% of the nodes of the dataset. The tuning aims at minimizing
the reconstruction error between the reconstructed and real graph: given A the adjacency matrix of
the graph and Aρ the adjacency matrix associated with the ρ-nearest neighbour graph, we tune ρ to
minimize ∥A − Aρ∥ on the validation set. More advanced ways for graph reconstruction and link
predictions exist in the literature (see for example Nickel & Kiela (2017)).
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Triangle distortion
Aves-Wildbird CS-PhD WebEdu Facebook

|∆|, avg ∆i 9270, 70.76 4, 0.004 10058, 3.31 1612010, 399.2
H5 ×H5 0.212 0.004 0.658 0.518

H5 ×H5×R 0.108 0.004 0.369 0.414

Table 3: Performance on the triangle counting task.

Given our best nearest neighbour reconstruction adjacency Aρ and our manifold curvature values
R(yi) we reconstruct the number of triangles using equation 1 and its degree average where the true
adjacency is replaced by the reconstructed one. Explicitly:

(3 · 2)γ♯∆(i) = dρ(i)R(yi)−
∑
j

(Aρ)ij(4− dρ(i)− dρ(j)),

where the extra 2 factor on the LHS derives from counting each triangle twice in the formula
2♯∆(i) =

∑
j∼i ♯∆(i, j). For the results reported in Table 3 we take γ = 4 in the weighting of

triangles. We also note that the 0% improvement over the CS-PhD dataset is to ascribe to the ex-
tremely low density of the true graph (with only 4 triangles overall): both methods reach low average
distortion - albeit in this case not highly indicative.

Curvature correction. Once the reconstructed adjacency Aρ (and hence a reconstructed graph Gρ)
is available, one can compute the node-wise Forman curvature, Fρ(i) with i ∈ V . Since in our
embeddings the curvature on the manifold R is a good proxy of the curvature of the graph, one can
use the discrepancy |R(yi)− Fρ(i)| to identify the points where the reconstruction is poor. Indeed,
the discrepancy |R(yi)−Fρ(i)| translate the quality of the reconstruction of the 2-hop neighborhood
of the node i, by definition of Forman curvature. How to best exploit this additional information in
reconstruction tasks and link prediction is of interest on its own and goes beyond the scope of the
work. However, we conducted preliminary experiments resorting on a simple curvature correction
that acts as follows:

• Compute erri = |R(yi)− Fρ(i)| for each node i
• Identify the nodes where the error erri is bigger, e.g. the nodes where erri is above the
90% percentile.

• For these nodes, increase / decrease the distance threshold that governs the edge, obtaining
a new graph G′

ρ that is locally modified from the reconstructed graph Gρ.

• Compute the curvature of nodes of the new graph G′
ρ and compare it with the curvature

of the corresponding points on the manifolds. If the discrepancy between the curvature
decreases, accept the change. Otherwise reject it.

We have tested this method on WebEdu attaining a 22.6% improvement in the reconstruction (see
Figure 4).

D.3 GENERATING GRAPHS FROM HETEROGENEOUS MANIFOLDS

Inspired by Cruceru et al. (2021), we study the advantage of heterogeneous manifolds from the per-
spective of random graphs. The focus is on how one can use the curvature information to generate
graphs that are highly heterogeneous and exhibit localized dense community structure while pre-
serving scale-free properties common to small world networks Watts & Strogatz (1998); Newman
(2000; 2003). We consider the following setting: we generate graphs of 500 nodes from H3 and
H3 × R using uniform sampling on the tangent space. We then test two approaches to promote
formation of community structures, measured by the size of maximal cliques. On H3, since the only
geometric quantity we can vary is the distance, we sample nearest-neighbour graphs with increasing
distance threshold. On H3 × R, we instead combine distance and curvature: we increase the dis-
tance threshold only for nodes sampled from more positively-curved regions (see below for details).
Figure 8 (left-to-right) depicts the degree distributions (averaged over 100 runs using Wasserstein
barycenters Agueh & Carlier (2011)) for three cases: sampling from H3 with unit distance threshold
(no dense community structure), with larger distance threshold to encourage clique formation, and
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relying on curvature in H3 × R to attain similar clique sizes. We see how the curvature gives rise
to heterogeneous density on the graph hence achieving dense community structure while preserving
the scale-free profile. On the other hand, sampling from a homogeneous manifold with different
thresholds cannot attain dense cliques without losing the power-law degree distribution due to a
homogeneous increase in density.

Degree Degree Degree

Homog. w/o community Homog. w/ community Heterog. w/ community

Figure 8: Degree distribution and generated examples of graphs sampled from hyperbolic space
(left), after the creation of community using distance (centre) and curvature (right). Nodes are
colored by the number of triangles (blue corresponding to lower values, red to bigger values).

Manifold random graphs Here we comment more on our random graph generation. We consider
a three dimensional hyperbolic space H3 and we follow the sampling procedure adopted for example
in Cruceru et al. (2021): namely, one samples uniformly tangent vectors at some fixed point (this
is not important due to homogeneity) and then use the exponential map to generate points inside
the manifold. We observe that this approach is biased since it does not account for the underlying
geometry (i.e. the Riemannian measure) but only sees the ‘flat’ geometry of the tangent spaces.
Nonetheless, for our purposes of random generation we prefer to stick to this easier uniform tangent
sampling. In fact, if we actually encoded the hyperbolic Riemannian measure, then the sampling
would have an even more manifest scale-free profile (since points on the Poincaré disk would be on
average closer to the boundary) as shown in Cruceru et al. (2021).

Once we have a point cloud inside the Cartesian product of the Poincaré disk (and our spherically
symmetric extension H3×R), we construct the nearest neighbour graph G with adjacency A using
a distance threshold ρ, meaning that Aij = 1 if points yi and yj are at geodesic distance smaller or
equal than ρ. In general, graphs uniformly sampled from a hyperbolic geometry without accounting
for heterogeneous curvature will exhibit small-world network features as power-law degree distri-
bution Krioukov et al. (2010), however they will generally lack community structure (cliques). We
then set the following:

Goal: Sample random graphs of 500 nodes that have one large community (as measured by the
existence of a clique of ∼ 45 − 50 nodes) while preserving the scale-free behaviour of the density
(degree).

For the statistics reported below we sample 100 random graphs for each given threshold.

Approach one: Increase the distance threshold ρ In one case, where we simply sample points
from the hyperbolic space, we consider increasing thresholds ρ to improve the average density.
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While this allows for formation of dense community structures and achieves higher mean clustering,
the higher density is distributed uniformly on the graph due to the homogeneity of the continuous
manifold. In fact, the variance of the degree increases dramatically too, ultimately resulting in a
failure to preserve the scale-free property when arriving to large cliques. On the other hand, the
variance of the clustering coefficient decreases by more than 50 %, highlighting how now in most
of the graph the probability of triangle formation is uniformly high. This is all summed up in the
statistics reported in Table 4.

Homogeneous ρ = 1 ρ = 1.2 ρ = 1.5 ρ = 1.7 ρ = 2
variance degree 6.79 ± 1.85 10.72 ± 3.05 18.27 ± 3.99 23.71 ± 5.76 40.36 ± 8.95
mean degree 7.33 ± 1.47 11.34 ± 2.73 19.33 ± 3.70 25.94 ± 5.64 47.24 ± 10.23
variance clustering 0.29 ± 0.01 0.27 ± 0.01 0.22 ± 0.01 0.19 ± 0.01 0.15 ± 0.01
mean clustering 0.42 ± 0.02 0.53 ± 0.02 0.63 ± 0.01 0.67 ± 0.01 0.73 ± 0.01
size largest clique 10.6 ± 1.97 15.28 ± 3.18 23.84 ± 4.58 29.22± 6.07 49.96 ± 9.39

Table 4: Statistics of the random graphs sampled from the homogeneous model H3 for different
distance thresholds. The formation of dense community structure can only occur uniformly at the
cost of the scale-free property of the networks.

Approach two: increase the connectivity among positively curved points For the point cloud
sampled uniformly3 in H3 × R we can also leverage the curvature information, meaning that now
differently from the homogeneous space to each point yi we can also associate position-dependent
curvature information Rα(yi). In particular we fix α in equation 15 and some curvature threshold
ℓ and assign a connection between any pair of points sampled from H3 × R with both curvatures
larger than ℓ and within a distance threshold ρ we now vary again as above. We report the results
in Table 5: we point out that now we reach a large dense clique (community) structure while still
preserving the scale-free profile as shown in the degree distribution in Figure 8, the mean degree and
its variance. The degree distribution is representative of the 100 runs, as it is obtained computing the
average (or barycenter) of the degree distributions of all runs using Wasserstein distance. Wasser-
stein distance is sensitive to the shape and geometry of the probability distributions and therefore
particularly suitable to compute the average of histograms, preserving their shape (Agueh & Carlier
(2011); Cuturi & Doucet (2014); Luise et al. (2019)). Moreover, we observe how the variance of
the clustering coefficient has not been affected significantly meaning that our sampling has managed
to give rise to a highly heterogeneous density distribution. This is just a simple application of how
heterogeneous manifolds could potentially be used to generate believable graphs that share many
properties with real ones.

Heterogeneous ρ = 1 ρ = 2.5 ρ = 4 ρ = 5.5 ρ = 7.0
variance degree 6.34 ± 1.7 8.26 ± 2.8 12.9 ± 3.2 16.21 ± 2.7 19.4 ± 3.51
mean degree 7.09 ± 1.37 8.46 ± 2.20 10.99 ± 2.58 12.33 ± 1.81 14.06 ± 2.47
variance clustering 0.28 ± 0.01 0.28 ± 0.01 0.28 ± 0.01 0.29 ± 0.01 0.30 ± 0.01
mean clustering 0.42 ± 0.02 0.43 ± 0.02 0.45 ± 0.02 0.46 ± 0.02 0.47 ± 0.02
size largest clique 10.6 ± 2.29 11.94 ± 3.17 24.9 ± 6.31 35.9 ± 5.72 47.2 ± 8.24

Table 5: Statistics of the random graphs sampled from our heterogeneous model H3 × R for
different curvature thresholds. We note how compared to the case where sampled points all come
with same curvature from the ambient space, in this case we can attain large clique sizes without
affecting significantly the variance of the clustering and of the degree distribution.

Limitations and future directions. We have restricted our discussion to embedding of undirected
graphs. Embeddings of directed graphs into (pseudo)-Riemannian manifolds have recently been
studied by Sim et al. (2021). In future work, we will study extensions of the proposed framework
to such settings. Second, we used a fixed rotationally symmetric function φ which determines the
curvature profile of the ambient space. It is possible to make it learnable in future extensions.

3We point out here that the sampling occurs in a compact region. In the case of R we consider radial
coordinates sampled in the interval (0, 2).
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Third, exploiting Ricci curvature information along walks, more sophisticated anisotropic curvature
matching models could be investigated to go beyond the scalar distribution at nodes. Finally, the
family of manifolds we consider is a subclass of a more general ensemble of warped products that
will be investigated in the future. In particular, one can also explore using multiple rotationally
symmetric copies to better account for tensorial curvature information.
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