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ABSTRACT

Environments with procedural content generation (PCG environments) are useful
for assessing the generalization capacity of Reinforcement Learning (RL) agents.
A growing body of work focuses on generalization in RL in PCG environments,
with many methods being built on top of on-policy algorithms. On the other hand,
off-policy methods have received less attention. Motivated by this discrepancy,
we examine how Deep Q Networks (Mnih et al., 2013) perform on the Procgen
benchmark (Cobbe et al., 2020), and look at the impact of various additions to
DQN on performance. We find that some popular techniques that have improved
DQN on benchmarks like the Arcade Learning Environment (Bellemare et al.,
2015, ALE) do not carry over to Procgen, implying that some research has overfit
to tasks that lack diversity, and fails to consider the importance of generalization.

1 INTRODUCTION

Training general agents has become a central topic of RL research (Kirk et al., 2021). For RL
algorithms to be applicable to real world problems, they must produce agents with the ability to
handle diverse and changing conditions. Because of the variety in non-static environments, it is
practically impossible to show all possible instances of such environments to agents during learning.
Thus, we tackle the problem of Generalization in Reinforcement Learning, where algorithms must
be developed that allow agents to succeed in situations not seen during training. Many environments
built to evaluate the generalization capacity of algorithms use procedural content generation (Risi &
Togelius, 2019) - which involves the algorithmic creation of random content such as game layouts,
background colors, dynamics, and entities - to generate the set of environment instances.

Most of the algorithms in recent work that emphasizes performance on PCG environments are built
on top of on-policy RL algorithms (Jiang et al., 2021; Raileanu et al., 2020; Raileanu & Fergus,
2021), while off-policy algorithms have received less attention. Off-policy algorithms possess the
advantage of being able to update an agent’s policy using older experiences in addition to recent
ones, which often means that they can be more sample efficient than on-policy algorithms. Ap-
proaches that can leverage experience replay hold great promise for real-world applications, espe-
cially in situations where it may be costly or dangerous to collect many new trajectories. Under-
standing how off-policy algorithms perform in PCG environments can illuminate whether recent
advances in off-policy algorithms have overfit to non-PCG environments, and what sorts of adapta-
tions can be made to train agents with greater generalization capacity.

We focus our study on DQN (Mnih et al., 2013) due to its popularity, its ability to work well on
environments with the pixel observations and discrete action spaces encountered in the Procgen
benchmark.

Our main result is that some popular extensions to DQN like Prioritized Experience Replay (Schaul
et al., 2016) and Dueling Networks (Wang et al., 2015) fail to improve performance on the Procgen
benchmark, suggesting that research on off-policy methods has overfit to singleton environments
(Whiteson et al., 2011). We also find that DQN and PPO experience similar patterns in generaliza-
tion gaps, indicating that the two algorithms may struggle to generalize in similar ways. Finally, we
find that combining data augmentation with distributional RL consistently improves DQN perfor-
mance on the Procgen benchmark.
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2 MOTIVATION AND RELATED WORK

A large body of work exists on the problem of overfitting in deep RL, emphasizing the need for
better generalization. Many benchmarks are insufficient for answering key questions about deep
RL, including how to train more general agents. In response to this issue, several environments with
procedural content generation have been proposed, including the Procgen benchmark (Cobbe et al.,
2020), the NetHack Learning Environment (Kuttler et al., 2020), and MiniGrid (Chevalier-Boisvert
et al., 2018). These environments provide a key step towards studying the important problem of
generalization in RL.

Several studies on generalization in RL propose carry over methods typically used to prevent overfit-
ting in deep supervised learning, such as dropout (Srivastava et al., 2014), ℓ2 regularization (Nigam
et al., 1999; Farebrother et al., 2018), and batch normalization (Ioffe & Szegedy, 2015). Other works
study the impact of data augmentation on deep RL performance (Laskin et al., 2020; Kostrikov et al.,
2021; Raileanu et al., 2020), finding that it can improve sample efficiency and enable robustness to
environment changes. Representation learning techniques like learning to associate observations
that are certain numbers of timesteps away (Stooke et al., 2021), and learning representations that
assign similarity to states with close subsequent trajectories (Agarwal et al., 2021; Zhang et al.,
2021; Mazoure et al., 2021) have also been shown to improve generalization. Many recent works on
generalization in RL use the Procgen benchmark for evaluation (Jiang et al., 2021; Raileanu et al.,
2020; Raileanu & Fergus, 2021; Mazoure et al., 2021), though they mostly build upon on-policy
algorithms like PPO. For an in depth survey on generalization in RL, refer to Kirk et al. (2021).

Much less is known about how off-policy algorithms perform on environments where generalization
is emphasized. Anand et al. (2021) analyzes MuZero’s (Schrittwieser et al., 2020) performance on
Procgen, and while MuZero does learn from off-policy experiences, the study focuses more on how
planning and self-supervision influence generalization. Cobbe et al. (2020) includes an experiment
comparing the performance of Rainbow and PPO on the Procgen benchmark when trained on the
full level distribution, where Rainbow outperforms PPO on 6 out of the 16 games. We look at how
additions to a baseline DQN implementation influence performance on the Procgen benchmark.

Popular extensions to DQN include Prioritized Experience Replay (Schaul et al., 2016), double Q
learning (Hasselt et al., 2016), multi-step learning (Sutton & Barto, 2005), dueling networks (Wang
et al., 2015), noisy nets (Fortunato et al., 2018) and distributional RL (Bellemare et al., 2017).
These extensions are combined in Hessel et al. (2018) to form an integrated agent called Rainbow
that achieved state-of-the-art performance on ALE, suggesting that these extensions can complement
each other. An ablation study shows that PER, multi-step learning and distributional RL are more
crucial than the other components for Atari performance. We ask if this is also true for Procgen.

3 EXPERIMENTS

Many studies of RL in PCG environments examine the generalization capacity of agents. While
progress has been made, few works include experiments with off-policy algorithms such as DQN.
We fill some of this gap in the literature by studying the advantages and disadvantages of using DQN
in PCG environments, and how various additions to DQN impact performance. We are guided by
the following questions:

1. How do baseline versions of DQN and PPO compare on environments with procedural
content generation in terms of test performance and generalization gaps?

2. How do various additions to DQN influence performance on procedurally generated envi-
ronments?

3. What further changes can be made to DQN to improve performance on PCG environments?

We first compare baseline implementations of DQN and PPO (refer to Appendix A for implemen-
tation details)1 to see if they have similar patterns of generalization gaps. Figure 1 shows that PPO
generally outperforms a baseline DQN, with PPO getting better mean test scores on nine games,
DQN doing better on four, and there being similar scores on three. In terms of average perfor-
mance across all games, PPO gets 0.3 min-max normalized returns on test levels, while DQN gets

1Code available here

2

https://github.com/anon19237/dqn_procgen


Presented at the Generalizable Policy Learning in the Physical World Workshop (ICLR 2022)

Figure 1: Left: Train and Test returns for PPO and DQN with 200 training levels and 25 million
environment steps. Right: Min-max normalized scores across all games for PPO and DQN

0.15 after 25 million environment steps on 200 training levels on the easy mode of Procgen. The
two algorithms tend to drop in performance by similar percentages from train to test levels, though
DQN experiences a larger percent drop on 12 out of 16 games (Figure 5). The correlation between
DQN’s and PPO’s percent drops is .8, indicating that the two algorithms may struggle to generalize
in similar ways.

Our experiments indicate that DQN is more likely to outperform or score on par with PPO on games
with fewer factors of variation that mainly control the spawn times and locations of other entities.
These include games like Starpilot, Bigfish, Leaper and Plunder. DQN seems to generally receive
test scores that are significantly worse than PPO on environments with procedural generation for
mazes, level layouts, and goal locations. Games with these attributes include Coinrun, Maze, Miner
and Chaser. Of course, this does not necessarily mean that DQN systematically handles the factors
of variation for games like Starpilot better than those for games like Chaser, and further work should
study this. Moreover, it should examine why different algorithms cope well with different forms
of variation, perhaps through the development of environments where these can easily be turned on
and off.

We observe that PER only has higher test performance than uniform sampling on one level, and
sometimes degrades test scores (Figure 2). We validate this finding by confirming that our imple-
mentation gives the expected improvement on Atari environments and by experimenting with several
hyperparameter settings. This corroborates (Raileanu & Fergus, 2021)’s idea that lower value errors
can be symptomatic of aliasing and overfitting due to value functions being prone to learning spu-
rious correlations in order to accurately estimate values. Value functions could use features that are
irrelevant to the optimal policy like background colors to learn different values for states that are
semantically identical, and given that DQN’s policy directly comes from its value estimates, these
spurious features for estimating values would in turn be spurious features for the agent’s policy. Our
findings are in stark contrast with the result from Hessel et al. (2018) that shows PER is one of
the most helpful factors for the performance of Rainbow on Atari environments. We implement an
off-policy variant of Prioritized Level Replay (Jiang et al., 2021) to see if this form of sampling is
favorable above PER and uniform level, and get equivocal results. Further investigation should be
done to improve upon our adaptation of PLR.

Of the extensions to DQN that we experiment with, only data augmentations and distributional RL
(using quantile regression (Dabney et al., 2018) reliably improve performance, and combining them
makes DQN much more competitive with our implementation of PPO, with roughly similar min-
max normalized performance across games (Figure 3, Figure 9). Notably, in an ablation study, we
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Figure 2: Left: Train and Test returns for PER and uniform sampling with 200 training levels and
25 million environment steps. Right: Min-max normalized scores across all games for PER and
uniform sampling

observe that they generally perform on par with each other when not combined, but that large in-
creases in performance occurs when they are put together (Figure 11). Further study on whether data
augmentations enable learned value distributions to ignore spurious features could be informative.
Refer to Appendix C for further experimental results including more games and other additions to
DQN.

Figure 3: Left: Train and Test returns for QR-DQN trained using data augmentations and baseline
DQN with 200 training levels and 25 million environment steps. Right: Min-max normalized scores
across all games for QR-DQN with augmentations and baseline DQN

4 CONCLUSION

Here we have given evidence that commonly used additions to DQN may not aid test performance on
environments with procedural content generation. This emphasizes the problem of evaluating agents
on singleton environments - chasing the state of the art on benchmarks like ALE has resulted in algo-
rithms that do not sufficiently consider generalization capacity. To make progress towards viability
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for real world applications of RL, diverse environments where generalization capacity is required to
obtain high returns should be used. The comparisons with PPO illuminate either a deficiency in the
potential of off-policy algorithms, or a failure to find the potential of off-policy algorithms that are
more capable of zero-shot generalization. While some components do not aid DQN performance
on Procgen, we motivate further investigation of off-policy RL algorithms in procedurally generated
environments by showing that certain components can improve the test scores of DQN Procgen en-
vironments. Namely, we demonstrate that a simple combination of data augmentation and quantile
regression for learning the value distribution gives promising results.

Our work naturally leads to several fascinating research directions that will bring agents closer to
real world applications by understanding how agents can generalize - we discuss this in Appendix B.
To give one example, evaluating agents on environments like MiniHack (Samvelyan et al., 2021),
where different factors of variation can be set on and off, can help to isolate which sources of
variability cause different agents to struggle the most. An improved grasp of where and why current
approaches fail will serve as a great stepping stone for the next generation of RL algorithms.
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A IMPLEMENTATION DETAILS

We adapt DQN to work with the Procgen benchmark. To align with recent work on Procgen, we
must allow DQN to work with parallel actor processes, each collecting experience on one of the
training levels. We can specify which levels are available for training, and then either use random
sampling or some other level replay strategy, such as sequential sampling or PLR (Jiang et al., 2021),
to select levels for each actor. Many existing works on DQN use a single actor, so a few details need
to change with regards to adding experience to a replay buffer. When using multi-step returns, a list
of queues is used to track which trajectories contain enough transitions to add a multi-step transition
to the replay buffer, and if multiple transitions are available to be added to the replay buffer, the
buffer supports adding multiple transitions at once to improve speed.

With 64 processes, 64 transitions occur at each step, meaning that the replay buffer fills up more
quickly, and that transitions exist in the buffer for less time. Existing DQN implementations com-
monly do a gradient update using experience replay at small intervals of steps in the environment
(e.g. 4). In contrast, if experience replay is done after every iteration when there are 64 processes,
this is equivalent to doing experience replay after 64 environment steps. We find that on Procgen,
this doesn’t create problems, as performance does not improve when experience replay is done more
than 1 time for every 64 environment steps. Furthermore, in our experiments, using less processes
never improves performance, and can sometimes hurt performance.

For the first 2000 steps (128000 total environment steps), actions are selected at random to warm
up the replay buffer. For the first 8000 steps (512000 environment steps), the value of ϵ for ϵ-
greedy exploration decreases from 1 to 0.1. We also track the effective rank of the first linear
layer of the neural network to see if DQN experiences similar rank collapse on Procgen compared
to the environments used for experiments in Kumar et al. (2021) - we observe some reduction in
the effective rank, but do not see drops as severe as the original experiments on Atari and Gym
environments.

Prioritized Experience Replay is implemented using proportional prioritization (pi = δi + ϵ), with
a sum tree data structure being used to increase speed - experiments using rank based prioritization
yielded worse results. We also implement replay buffers that allow for data augmentation, and
other non-uniform sampling strategies. For data augmentations, we follow the methods of Data
Regularized Q (DrQ) (Kostrikov et al., 2021). Namely, when a transition is sampled for experience
replay, the state, next state, and copies of each of them are augmented using a random crop (after
being padded to result in the same dimension). Bootstrap target Q values are constructed for each
augmented version of the next state, and their values are averaged. Q value estimates are then
calculated for each augmented state, and the loss is calculated for each estimate.

B FUTURE WORK

In light of our findings, we hope that future works on off-policy reinforcement learning emphasize
performance on environments that necessitate good generalization ability. This work also motivates
future study focusing on improving our understanding of how differences in learning dynamics
between on-policy and off-policy algorithms influence differences in generalization capacity. Recent
studies on the relationship between TD-learning, bootstrapping, and generalization Bengio et al.
(2020) serve as a good example for this.
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Table 1: DQN Hyperparameters

HYPERPARAMETER VALUE

STATE SHAPE (64, 64, 3)
MAX ENV STEPS 25× 106

REPLAY BUFFER SIZE 1× 106

NUM PROCESSES 64
WARM UP STEPS 128000

BATCH SIZE 512
OPTIMIZER ADAM

LEARNING RATE 2.5× 10−4

ENV STEPS PER UPDATE 128
DISCOUNT γ 0.99

TARGET UPDATE FREQ 32000
HIDDEN UNITS FOR MLP 512

INITIAL EPSILON 1
END EPSILON 0.1

EPSILON DECAY PERIOD 512000

Table 2: PPO Hyperparameters

HYPERPARAMETER VALUE

STATE SHAPE (64, 64, 3)
MAX ENV STEPS 25× 106

NUM PROCESSES 64
OPTIMIZER RMSPROP

LEARNING RATE 5× 10−4

ENV STEPS PER UPDATE 128
DISCOUNT γ 0.999

GAE λ 0.95
ENTROPY COEF 0.01

VALUE LOSS COEF 0.5
RETURN NORMALIZATION TRUE

A2C FORWARD STEPS 256
NUM PPO EPOCHS 3

NUM PPO MINIBATCHES 8
GRADIENT CLIP 0.2

An exciting direction for research would be to isolate which kinds of factors of variation cause on-
policy and/or off-policy algorithms to struggle the most. Designing environments where the user
can turn on and off factors of variation would make this sort of study viable. Further work in this
area could help to either corroborate or contradict our observations regarding the kinds of proce-
dural generation that favor DQN or PPO. Also, applying interpretability techniques like attribution
(Simonyan et al., 2014) may illuminate differences in the features learned by these algorithms - re-
producing the results of Hilton et al. (2020) and transferring its methods to DQN could be a good
starting place.

Further research can more closely examine extensions to DQN. For example, with QR-DQN, it may
be interesting to look further into the learned distributions for different states across different envi-
ronments. We observe that in environments where QR-DQN significantly improves performance,
the predicted value distribution usually resembles a Gaussian distribution. Perhaps learned dis-
tributions could look more smooth or more multi-modal according to different levels of diversity
encountered during training. Other work can examine why PER may not be helpful on PCG envi-
ronments. Our initial experiments looking at correlations between a level’s sampling rate and the
agent’s reward on the level were not highly informative. Focusing too much on a subset of levels
could hurt generalization, although work like Prioritized Level Replay (PLR) (Jiang et al., 2021)
shows that updating more on different levels at different stages of training can help generalization.
We adapt PLR for DQN and find that in some cases it can help test returns on some Procgen games,
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Table 3: QR-DQN Hyperparameters

HYPERPARAMETER VALUE

STATE SHAPE (64, 64, 3)
MAX ENV STEPS 25× 106

REPLAY BUFFER SIZE 1× 106

NUM PROCESSES 64
WARM UP STEPS 128000

BATCH SIZE 512
OPTIMIZER ADAM

LEARNING RATE 2.5× 10−4

ENV STEPS PER UPDATE 128
DISCOUNT γ 0.99

TARGET UPDATE FREQ 32000
HIDDEN UNITS FOR MLP 512

INITIAL EPSILON 1
END EPSILON 0.1

EPSILON DECAY PERIOD 512000
NUM QUANTILES 200

Table 4: PER Hyperparameters

HYPERPARAMETER VALUE

ALPHA α 0.5
BETA β 0.4

MIN PRIORITY 0.01
TYPE PROPORTIONAL

though can be detrimental on others. Further work on adapting techniques originally built on top
of on-policy algorithms to off-policy algorithms could illustrate the differences between these two
methods.

C OTHER FIGURES

GAME OUR WINNER WINNER FOR COBBE ET AL. MATCH?

BIGFISH DQN Rainbow Yes
BOSSFIGHT PPO Close (near tie) Yes
CAVEFLYER Close (PPO) DQN No

CHASER PPO PPO Yes
CLIMBER PPO PPO Yes
COINRUN PPO PPO Yes

DODGEBALL DQN Rainbow Yes
FRUITBOT PPO PPO Yes

HEIST PPO PPO Yes
JUMPER Close (PPO) Rainbow No
LEAPER Close (DQN) PPO No

MAZE PPO PPO Yes
MINER PPO PPO Yes
NINJA PPO PPO Yes

PLUNDER DQN PPO No
STARPILOT Close (DQN) Rainbow Yes

Table 5: Comparison between our PPO vs DQN experiment and the PPO vs Rainbow experiment
from Cobbe et al. (2020)
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Figure 4: Train and test level returns for PPO vs DQN (200 training levels, 25 million environment
steps)

Figure 5: Percent drops from train to test level scores for PPO and DQN
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Figure 6: PER vs Uniform Sampling (200 training levels, 25 million environment steps)

Figure 7: Test returns for dueling architecture vs baseline DQN (200 training levels, 25 million
environment steps)
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Figure 8: QR-DQN with Data Augmentations vs Baseline DQN (200 training levels, 25 million
environment steps)
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Figure 9: QR-DQN with Data Augmentations vs PPO (200 training levels, 25 million environment
steps)

Figure 10: Min-max normalized scores across all environments for QR-DQN with Data Augmenta-
tions vs PPO (200 training levels, 25 million environment steps)
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Figure 11: Ablations on distributional RL and data augmentations
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