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Abstract

In conversational Al agents, Query Rewriting
(QR) plays a crucial role in reducing users fric-
tions and satisfying their daily demands. Users
frictions are caused by various reasons, such
as errors in the spoken dialogue system, users’
accent or their abridged language. In this work,
we present a novel Constrained Generation
Framework (CGF) for query rewriting at both
global and personalized level. The proposed
framework is based on the encoder-decoder
framework and consists of a context-enhanced
encoding and constrained generation decoding
phrases. The model takes the query and its
previous dialogue context information as the
encoder input, then the decoder relies on the
pre-defined global or personalized constrained
decoding space to generate the rewrites. Ex-
tensive offline and online A/B experimental re-
sults show that the proposed CGF significantly
boosts the query rewriting performance.

1 Introduction

Large-scale conversational Al agents such as Alexa,
Siri and Google Assistant help millions of users to
perform a lot of tasks, such as playing music, con-
trolling light devices at home, etc. In general, such
conversational Al agents have two components:
automatic speech recognition (ASR) and natural
language understanding (NLU). ASR is responsi-
ble for converting speech signals of user query (e.g.
“play Michael Jackson music") to a text transcript.
Following this, NLU provides domain/intent clas-
sification (e.g. domain: Music, intent: PlayMusic)
and entity labelling (e.g. ArtistName: Michael
Jackson), which are used to fulfill the user’s re-
quest.

However, users sometimes suffer friction due to
errors occurred in the speech recognition. In detail,
ASR module may mis-recognize utterance due to
background noise or users’ accent. For example,
ASR error led to a erroneous transcript “play alien
bridges”, when the user actually meant “play leon

bridges”. Due to such errors, the downstream NLU
system is affected, capturing a wrong entity “alien
bridges” for the slot “ArtistName”. This leads to
a fractured user experience and they may need to
rephrase their query. Moreover, the friction might
happen due to the NLU cannot handle the users
requests. For example, “tv to input three” cannot
handled by NLU instead of user’s intended “turn tv
to h.d.m.i. three”. Thus, in order to reduce the fric-
tion and make the dialog system more robust, query
rewriting (QR) (Ponnusamy et al., 2019; Chen et al.,
2020) becomes an increasingly important technique
in the conversational Al agents.

Many existing QR systems in conversational Al
described in the literature commonly involve com-
plex search-based pipelines for either global-wise
query rewriting (Fan et al., 2021; Chen et al., 2020)
or personalized query rewriting (Cho et al., 2021).
A search system mainly comprises of two stacks
operating sequentially: retrieval and ranking. The
global or personalized indexer constructs the global
or personalized index by using the users historical
defect-free interactions with agent. Whenever a
new request arrives, the system compares it to ex-
isting utterances in the index using a series of dual
encoder retrieval model with FAISS search (John-
son et al., 2017) and retrieves top N candidates
from the index. Then the retrieved candidates are
ranked by a ranking model with both neural seman-
tic and IR features as input. The system picks the
top 1 ranked candidates as the final rewrite. Such
search-based system is widely used in the large
scale conversational Al agents as it can easily and
effectively control the output by index and thus risk
averse.

However, we cannot ignore the limitations posed
by (1) the error accumulation in multi-stage system;
(2) lacking of fine-grained interactions in current
search-based models; (3) a large memory footprint
is needed to store dense representations when con-
sidering large index in retrieval layer. Also, few



research work targets query rewriting with consid-
ering the previous context information, although
they admit the importance and the context infor-
mation has been proven useful in many other NLP
tasks (Wang et al., 2017; Wu et al., 2018).

In this work, we propose to solve query rewriting
task by leveraging generation-based models under
Constrained Generation Framework (CGF), which
is to generate the rewrites left to right, token-by-
token in an autoregressive fashion and conditioned
on the previous context. Specifically, instead of
input the query for the model encoder, we input
the previous context including users requests and
agent response to encoder. Then, we deploy the
constrained decoding when inference to force the
generated rewrite in a predefined candidate set. The
proposed CGF enables us to mitigate the afore-
mentioned shortcomings from search-based sys-
tem as the autoregressive formulation allows the
model to directly capture relations between contex-
tual input and target rewrites and thus effectively
cross encode both. Moreover, the memory footprint
is greatly reduced because the parameters of our
encoder-decoder architecture scale with vocabulary
size, not index count. Also, neural language gener-
ation approaches are known to hallucinate content,
the constrained decoding with a predefined candi-
date set helps generation model to be faithful to the
model input and avoid the potential hallucinations
or bad rewrites.

Finally, we conduct extensive offline experi-
ments for both global query rewriting and person-
alized query rewriting to show the effectiveness of
the proposed approach. Online experiments and
case studies reveal that the proposed CGF indeed
generates rewrites of better quality and less risks.

The main contributions of this work are as fol-
lows:

* We introduced CGF, which consists context-
enhanced encoding and constrained decoding.

* CGF enables generative models to perform
personalized query rewriting for the first time.

* We provide both offline and online experi-
ments to validate the effectiveness of the pro-
posed CGF approach.

2 Related Work
2.1 Query Rewriting

In dialogue system, on the one hand, the query
rewriting serves for the dialogue state tracking es-
pecially for the reference resolution (Rastogi et al.,
2019; Vakulenko et al., 2020). On the other hand,
query rewriting can seamlessly replace the use’s
utterance in order to remove friction and unsatisfac-
tory experience to users (Ponnusamy et al., 2019).
To do this, (Ponnusamy et al., 2019) propose to
reformulate the queries with Markov Chain. Chen
et al. (2020) propose a retrieval-based model with
pre-training method to reduce the customer’s fric-
tion. Fan et al. (2021) and Cho et al. (2021) lever-
age multi-stage search-based system to perform
global and personalized query rewriting. In this
work, we propose CGF based on Seq2Seq model
to generate a rewrite of the initial query of user.

Another thread of work which is very like the
query rewriting is Grammatical Error Correction
(GEC) task. GEC is the task of correcting different
kinds of grammatical errors in text such as spelling,
punctuation, grammatical, and word choice errors.
Recently, Seq2Seq TRANSFORMER has become
state-of-the-art approach for GEC (Zhao et al.,
2019; Wang et al., 2019; Kaneko et al., 2020), in
which the model aims to corrects an ungrammati-
cal sentence to a grammatical sentence. Therefore,
the main difference between GEC and our query
rewriting is that this task is more concerned with
grammatical corrections, and we focus on the er-
rors from usrs, ASR or NLU system to reduce the
friction.

2.2 Constrained Generation

Constrained generation has been applied in many
tasks like machine translation and web search.
Hokamp and Liu (2017) introduce grid beam search
to allow the inclusion of pre-specified lexical con-
straints. Mohankumar et al. (2021) apply con-
strained decoding with diverse sibling search al-
gorithm for search advertising. To the best of our
knowledge, ours is the first work which introduce
the constrained decoding into the query rewriting
for conversational Al agents. Moreover, we extend
the approach for personalized rewriting so that it
takes full advantage of the constrained generation.

3 CGF for Query Rewriting

As shown in Figure 1, we introduce the sequence-
to-sequence (Seq2Seq) model to generate the
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Figure 1: Illustration of the Constrained Generation Framework (CGF) for query rewriting. When a new utterance
arrives, the model performs the contextual encoding and constrained decoding and outputs the final rewrites. “Model
output nBest” denotes the candidates in a beam from beam search.

rewrite, where a bidirectional encoder takes the
context information and request as input, an autore-
gressive decoder relies on the pre-defined index
to perform the constrained decoding in order to
generate the target rewrite.

3.1 Context-enhanced Encoding

For the generative query rewriting, we adopt the
Seq2Seq pre-trained model BART (Lewis et al.,
2020). BART has the same model architec-
ture with the widely-used Seq2Seq Transformer
model (Vaswani et al., 2017) and it is pre-trained
with a denoising way (Devlin et al., 2019).

In this work, we directly fine-tune the BART.
Instead of training BART to maximize the condi-
tional distribution of the (request, rewrite) pairs, we
flatten the previous dialogue turns (including both
user request and agent response) and the current
request into a single sequence for the encoder input,
as shown in the Figure 1.

Formally, given a pair of context-enhanced re-
quest Q = {qu, ..., qns }, the conditional probabil-
ity of its corresponding rewrite R = {r1,...,rn}
is defined as:

N

PR|Q) = [[PEaRn Q:0), (1)

n=1

where r,, denotes the n-th target token. 6 denotes
the parameters of the BART model, which are opti-
mized to minimize the following loss function over
the training corpus D:

L = Eqr)~p[-logP(R|Q;0)] (2)

The auto-regressive generation process is basically
achieved upon the encoder-decoder framework.
The encoder is responsible for reading the input
request and its previous dialogue information, the
decoder auto-regressively generates the rewrites.
Given the embeddings of the context-enhanced re-
quest and rewrite by equations (3) and (4), the
conditional probability of the n-th target word ry,
is calculated as following:

Hp, = ENCparr(Q°), (3)
Hpee = DECparr(RY, Hpne)  (4)
P(rn|Rcn, Q;0) = Softmax(Proj(hy)) (5)

where ENCpap7 i1s the BART encoder to read
the context-enhanced request, and DECpagT is
the BART decoder to read the target input rewrite
and conduct the cross attention on the encoder
output. h,, is the n-th hidden representation of
Hpe.. Proj() and the Softmax() are two trans-
formation functions in the output layer of the de-
coder (Vaswani et al., 2017).

3.2 Constrained Decoding

Neural language generation approaches are known
to hallucinate content, resulting in generated text
that conveys information that did not appear in the
input. In general, one of the typical types of hal-
lucination is factual inconsistency generation. In
query rewriting, both of them will generate the de-
fective utterance and hurt the user experience. For
example, if a user has a request “play broadway
girls by morgan wallen”, the model with free-style
generation can have the generated rewrite “play



broadway girls by morgan wade”. It’s a wrong fact
generation actually as the “morgan wade” never
sings the song “broadway girls”. However, general
generative model leverage the beam search over
all the whole vocabulary and thus there is a good
chance of generating fluent but factually wrong
sentences. Thus, the inability to effectively control
the generated text have become one of the biggest
obstacles for letting generative models for query
rewriting in conversational Al. In this work, we
consider to have the constrained decoding for gen-
erative models to reduce the potential bad rewrites.
The beam search is widely used in Seq2Seq
models during inference to improve the search
quality. The standard beam search consists of se-
lecting the top B hypothesis with the maximum
sum of log probability S(R,Q) = S(r«|Q) +
logP(r¢|r<¢, Q) at each time step t. Since we want
to output the rewrite from U (we can regard it as a
pre-defined rewrite candidate set), we cannot use
traditional Beam Search while decoding. Allowing
to generate any token from the vocabulary at every
decoding step might lead the model to generate
output strings that are not valid (i.e. bad rewrite).
Hence, we resort to constrained beam search, forc-
ing to only decode valid rewrite from a predefined
candidate set. Beam Search only considers one step
a head during decoding so we can only constrain
the generation of a single next token conditioned
on the previous ones. Thus, we define our constrain
in terms of a prefix trie 7', where nodes are anno-
tated with tokens from the vocabulary. For each
node t € T, its children indicate all the allowed
continuations from the prefix defined traversing the
trie from the root to t. More formally, when de-
coding the token 7 at time step ¢, the constrained
probability distribution is calculated as:

if r € suffixp(r<;)

P= i
0, otherwise

~ {P(n =r|re, Q),

where we remove all the tokens r which are not
a suffix of the already generated sequence r~; in
the predefined trie. In this way, we can ensure that
the model is only allowed to generate the rewrites
from predefined candidates set. In the trie showed
in Figure 2, each path from the root node to the leaf
node (e.g. [BOS] — play — staring — at — it —
[EOS]) represents an utterance that we allow the
model to generate. “[BOS]” is the special token
for the model to indicate the begin of sequence.
Similarly, “[EOS]” denotes the end of sequence.
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\
\\\\\‘
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—

at

/ \ N

the it

NN

sun moon sky EOS
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Figure 2: A snapshot of the utterance trie we construct
based on global index. When the model has generated a
sequence “[BOS] play staring at” during the decoding
process, in the next step, with the pre-defined trie, the
model is only allowed to generate either “the” or “it”.
Then, if the model generates “the” in the next step, it is
only allowed to generate one of the three words “sun”,
“moon” or “sky” in next next step.

In this work, similar to how to build index for
search-based QR models (Fan et al., 2021), we
build a trie containing all the defect-free utterances
from the user historical interactions of the conver-
sational agent. However, as constrained decoding
with trie doesn’t require to store dense vectors of
index, we can reduce the memory footprint greatly
and thus enlarge the trie a lot comparing to the in-
dex of search-based models in real online system.

3.3 Global and Personalized Query Rewriting

Constrained generation with pre-fixed decoding
space can not only reduce the risky generated
rewrites from the generation-based query rewriting
models, but also open the door for the generation
models to conduct the personalized query rewriting,
as we can constrain the decoding space on the user
level to reflect the users preference. In this subsec-
tion, we introduce how to conduce the global and
personalized query rewriting with proposed CGF
approach.

Global Query Rewriting Global query rewrit-
ing indicates that the rewrite for a certain request
is applicable for all users. For example, the user’s
original query is “tv to input three”, while the agent
cannot well handle it and thus responses “I’'m not
quite sure what went wrong.”. The ideal rewrite
for this query is “turn tv to h. d. m. i. three”
which can be applicable to all users who might say



this request. In the proposed CGF, we pre-define
the global constrained decoding space where there
are all the rewrite candidates that the model is al-
lowed to generate. To achieve this, inspired by
the approach to construct the global index in (Fan
et al., 2021), we build the global trie which pro-
vides rewrite candidates extracted from all users’
interactions. The global trie is generated from ag-
gregated, anonymized historical interactions be-
tween the users and the agent within a period of
time (e.g. 30 days). Specially, after collecting all
the users historical interactions, we rely on a defect
detection model (Gupta et al., 2021) to filter out
the defective utterances. Moreover, We also make
sure the impression of the utterance appears in the
trie is at least 2. Finally, we got 27M unique utter-
ances in global trie, which will be the constrained
decoding space for the global query rewriting.

Personalized Query Rewriting A crucial nature
of query rewriting is that often it needs to reflect
personal preference or personalized error types to
recover from the defect (Cho et al., 2021). For
example, when a defective request “turn on the
moon” from user A and user B comes in, the user
A intended request should be “turn on the moon-
light sonata”. However, the user B might want to
“turn on the moon lamp”. Thus, the global query
rewriting described above is not a optimal solution
to handle such cases. It’s necessary to have a per-
sonalized query rewriting system to fill this gap.
The vanilla Seq2Seq models is not able to conduct
personalized generation naturally. However, the
proposed CGF can allow the generation models to
perform the personalized query rewriting. Specifi-
cally, we build the personalized constrained decod-
ing space for each user. For a request comes from
a specific user, the model is only allowed to gen-
erate a rewrite from the pre-defined personalized
decoding space. In order to support personalized
rewrites, it’s important to build the proper personal-
ized constrained decoding space for each user. We
follow Cho et al. (2021) to build the constrained
decoding space for each user, leveraging individual
interaction history. The utterance included in the
constrained decoding space reflects satisfied expe-
riences for each user with in past 30 days of time
window.

Data Type ‘ Machipe Human
Train Valid Test Test
Global QR 1083.0x  66.0x  66.0x 1.0x
Personalized QR - - - 1.0x

Table 1: Query rewriting data sets summary. “Machine”
denotes the Machine-Annotated data. “Human” denotes
the Human-Annotated data. We report relative size with
respect to the global human test set. The training data
was extract one month traffic from a large-scale conver-
sational Al agent. The valid/test data are extracted from
latter one week traffic.

4 Offline Experiments

4.1 Data

We train and evaluate our proposed method with
both weak-labeled data annotated by the model
(Machine-Annotated data). Specifically, we first
leverage a defect detection model such as Gupta
et al. (2021) to find two consecutive user utterances,
where the first turn was defect, but the second turn
was successful. Then, we further filter out the
two consecutive user utterances whose time gap
is larger than 35 seconds and edit distance is larger
than 5, in order to reduce the potential noise in the
data. We also evaluate our model with a human-
annotated test data (Human-Annotated data). For
both global and personalized test set, we make sure
the target rewrites are in the global/personalized
constrained decoding space. Table 1 gives the statis-
tics of the data set. Note all the data has been
de-identified.

4.2 Model Setup

In this work, we adopt the pre-trained BART large
model provided by (Lewis et al., 2020). Then, we
fine-tune the BART model on our query rewrit-
ing data sets. We use a batch size of 2048 tokens,
dropout rate of 0.1 and adam optimizer. The learn-
ing rate is 3e~° and linearly warms up over the
first 5% steps, then decreases proportionally to the
inverse square root of the step number. All the
models are trained on eight NVIDIA Tesla V100
GPU.

To evaluate the query rewriting performance, we
compare our proposed model with a few baselines.
For global query rewriting task, we compare pro-
posed approach with Fan et al. (2021). For per-
sonalized task, we have Cho et al. (2021) as the
baseline. As trie used in our system is fast to query
and small enough to fit in memory, we can enlarge
the size of the trie easily. In this work, we follow



System Mafzhine tgst set quan test set
Precision Trigger Rt | Precision Trigger Rt
UFS-QR (Fan et al., 2021) 59.63 14.52 63.34 15.03
CGF 77.84 51.85 78.24 47.67
Ablations

CGF w/o context-enhanced encoding 75.03 49.55 76.99 47.17
CGF w/o constrained decoding 75.00 50.34 77.30 47.46
CGF w/o both 72.75 46.55 76.02 46.10

Table 2: Global query rewriting evaluation. We compare our proposed CGF with the existing search-based query
rewriting systems on both machine annotated and human annotated test sets.

Fan et al. (2021) to build global trie which con-
tains 27M unique utterances and Cho et al. (2021)
to build the personalized trie for each user which
contains at most 100 utterances to make the fair
comparison. For personalized query rewriting eval-
uation, we just utilize the model trained with global
training data and apply the personalized trie on it
for personalized rewriting. We employed the con-
straints masking the log-probabilities of the invalid
tokens and we do not re-normalize the probability
over the vocabulary.

4.3 Evaluation Metrics

We perform the evaluation on the utterance level
with precision and trigger rate. The precision de-
notes how often the triggered rewrite matches the
correct rewrite. The trigger rate is the fraction of
instances on which the model makes a prediction
with the final beam score above a threshold !. We
set the threshold to -0.2 for all the proposed CGF
models.

4.4 Global Query Rewriting

Table 2 shows the CGF results on both machine-
annotated and human-annotated test sets when
incrementally applying the proposed techniques
within CGF, i.e. context-enhanced encoding and
constrained generation. The experimental result
is quite consistent with our intuition. CGF with
context-enhanced encoding and constrained decod-
ing gets the best performance on precision and trig-
ger rate across two test sets. Our approach outper-
forms the search-based UFS-QR system by more
than 14% absolute precision for both Machine-
Annotated and Human-Annotated test sets. More-
over, the proposed approach can confidently trigger

'The final beam score is formalized as Py(ylz) =
Y 1 po(yi|y<i, ), where @ is the model parameters and  is
the model input.

System Precision | Trigger Rt
Personalized-QR

(Choetal,2021) | 138 88.80
CGF 73.04 90.33

Table 3: Personalized query rewriting evaluation.

more cases, which is super beneficial for the pro-
duction rewrite traffic volume increase.

4.5 Ablation Study

Table 2 also lists the ablation study results for the
CGF with global query rewriting task. “w/o both”
denotes the CGF without context-enhanced encod-
ing and constrained decoding, in which the model
takes the query only as the encoder input and con-
duct the unconstrained generation. Eventually, us-
ing context-enhanced encoding or constrained de-
coding proved useful. Combining them together
is better to get the high precision and at the same
time higher trigger rate.

4.6 Personalized Query Rewriting

We here discuss the personalized query rewriting
evaluation results on Human-Annotated test set
for our proposed CGF showed in Table 3. We
use the same model as the global query rewiring
task. The only difference is that the constrained
decoding space is changed to personalized-level
based on each user’s historical interactions with
agent and thus diverse for each user. As seen, the
results of both search-based and our CGF models
are in the relatively high range, as the search space
for personalized query rewriting is much smaller
comparing to global-wise. However, the CGF can
still outperforms search-based system by 1.66%
absolute precision score and 1.53% trigger rate
meanwhile.



Dialog Reference

CGF CGF w/o CD

CGF w/o CE

USER: what time is sunset tonight
AGENT: sunset, in greenacres, florida,
on thursday, october 21 will be 6:48pm
USER: what kind of sunset tonight

in willimantic connecticut

what time is sunset
tonight in willimantic connecticut

what time is sunset
tonight in willimantic connecticut

what time is sunset
tonight in willimantic connecticut

what is sunset tonight
in willimantic connecticut

USER: play little yancy
AGENT: Lil’ Fancy from Apple Music.y
USER: play little yankees praise part

play little yancy praise party

play little yancy praise party

play little yancy praise party play little yankees praise party music

USER: play in jesus name by katie nicole | play in jesus name by katy nichole | play in jesus name by katy nichole | play in jesus name by kayla nicole

play in jesus name by katy nichole

Table 4: Examples of the generated rewrites. In the dialog session, the last turn from the user is the current request
which is needed to be rewritten by the model. “CGF w/o CD” denotes the model CGF without constrained decoding,
“CGF w/o CE” denotes the CGF without context-enhanced encoding.

80.0 - 55.0 -
M First turn M First turn
Not first turn Not first turn
71.5 513
75.0 4715
72.5 438
70.0 40.0
CGF  CGF w/o context CGF  CGF w/o context
(a) Precision (b) Trigger Rate

Figure 3: Global query rewriting evaluation on the first
turn and not first turn subsets. “CGF w/o context” de-
notes the CGF without context-enhanced encoding.

4.7 Effect of Context-enhanced Encoding

We study the effect of the context-enhanced encod-
ing in this subsection. As in some of test cases,
there are not previous context available and the
query the model will rewrite the first turn of the
multi-turn dialogue session. We investigate if the
proposed model is robust and effective for both of
such cases. Thus, we split the global test set into
the with previous context (“First turn”) and without
previous context cases (“Not first turn”™).

As shown in the Figure 3, the CGF gets signif-
icant improvement for both precision and trigger
rate on the “Not first turn” test set comparing to
CGF without context-enhanced encoding, which
demonstrates the effect of the context information
during the model training. Moreover, on “First turn”
test set, surprisingly, when there is not previous
context for the CGF model, the performance only
decrease in a relatively small margin. This suggests
that the model is good at generalization and robust
for various test cases in the actual scenario.

4.8 Case Study

We here discuss the several cases that indicate the
representative situations we find so that we can fur-
ther understand the effect of the context-enhanced
encoding and constrained decoding in CGF. As

shown in the Table 4, the first example illustrates
the cases when CGF w/o context-enhanced encod-
ing gives a rewrite which changes the semantic
meanings of the source request (“what kind of” ->
“what is”) and is not faithful. However, with consid-
eration of previous context information, the CGF
is able to understand the user intent and provide
the accurate rewrite. Also, the second case corre-
sponds to the situation of carrying over an correct
entity from context and replace the wrong entity
in current utterance, while as shown in the table,
this is not hard for our context-enhanced encoding
models. However, without consider the informa-
tion from context, the model sometimes fails. The
third case shows that without constrained decod-
ing, the CGF has a factual inconsistency generation
(“kayla nicole” is an artist but never sung “in jesus
name”). This is a common situation for generation-
based models, especially on unseen data samples.
Conversely, this situation rarely happens with con-
strained decoding, as the generation is based on the
predefined constrained decoding space and we will
never have such factual inconsistency generation.

S Online Experiments

To investigate the effectiveness of the introduced
techniques in the real-world large-scale conversa-
tional Al agent, we leverage the proposed model
CGF to generate the global rewrites and deploy
them into the online production environment. We
compare it with the no CGF rewrites within En-
glish speaking users environment. The data was
collected for more than one week over a significant
percentage of traffic via the A/B testing framework.
We use one primary metric to evaluate the perfor-
mance of our proposed CGF approach during A/B:

* Defect Rate: the total number of potential
rewritten utterances that is defective divided
by total number of potential rewritten utter-
ances. We leverage the defect detection model



Original request (w/o context):
USER: how much time is left on my
CGF rewrite:

how much time is left on my timer

Response (before rewrite):

Sorry, I missed something. Can you say it again?

Response (after rewrite):

You have 2 minutes and 20 seconds left on your 7-minute timer.

Original request (w/o context):
USER: play night talk by drake
CGF rewrite:

play knife talk by drake

Response (before rewrite):

I couldn’t find night talk

Response (after rewrite):

Here’s Knife Talk , by Drake (feat. 21 Savage, Project Pat) , on Amazon Music.

Original request (w/ context):

USER: play little yancy

AGENT: Lil’ Fancy from Apple Music.y
USER: play little yankees praise part
CGF rewrite:

play little yancy praise party

Response (before rewrite):
Sorry, I'm having trouble finding the song.

Response (after rewrite):
Here is little yancy praise party.

Table 5: Examples from the online experiment.

proposed by Gupta et al. (2021) to measure
if an utterance is defective.

From A/B results, our proposed model con-
tributed to a healthy decease of defect rate without
compromising on the traffic volume of generated
rewrites. We observed significant > reduction of
defect rate 20.94% and millions of new rewrites
generated by the proposed approach.

As a part of online monitoring, we monitor the
number of new, previous unseen rewrites in online
live traffic. The Table 5 shows the cases where
the original request got unsatisfied response from
the agent and after the rewrite, the friction was re-
moved with satisfied response. In the first example,
the original request “how much time is left on my”
lacks the key entity “fimer” due to user’s accent
or background noise. Even without context infor-
mation available i.e. the request is the first turn,
the propose CGF can successfully rewrite it and
thus the user got the satisfied response from the
agent finally. In the second case, due to an ASR
error, the original request cannot well interpreted
by agent and the agent cannot fulfill the user’s need.
The CGF can correct the ASR error from “night”
to “knife” so as to meet the need of the user. The
last example demonstrates that when user rephrase
his/her request, CGF generated the good rewrite
“play little yancy praise party ” based on the helpful
context information.

6 Conclusion

In this work, we propose CGF, a novel paradigm
to conduct query rewriting: generate target rewrite
autoregressively with context-enhanced encoding

2p-value<0.0001

and constrained decoding. Our proposed CGF is
a general framework for different query rewriting
purposes where one can freely define the decoding
space, (e.g. global, personalized or domain-specific
space). Both offline and online experiments show
that our approach consistently and significantly im-
proves query rewriting performance and demon-
strate the effectiveness and universality of the CGF.

Future directions include exploring advanced
prompt approaches that can better reflect the learn-
ing abilities of large-scale language models, as well
as extending the current CGF to handle the other
tasks like entity correction, etc.
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