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Abstract

In conversational AI agents, Query Rewriting001
(QR) plays a crucial role in reducing users fric-002
tions and satisfying their daily demands. Users003
frictions are caused by various reasons, such004
as errors in the spoken dialogue system, users’005
accent or their abridged language. In this work,006
we present a novel Constrained Generation007
Framework (CGF) for query rewriting at both008
global and personalized level. The proposed009
framework is based on the encoder-decoder010
framework and consists of a context-enhanced011
encoding and constrained generation decoding012
phrases. The model takes the query and its013
previous dialogue context information as the014
encoder input, then the decoder relies on the015
pre-defined global or personalized constrained016
decoding space to generate the rewrites. Ex-017
tensive offline and online A/B experimental re-018
sults show that the proposed CGF significantly019
boosts the query rewriting performance.020

1 Introduction021

Large-scale conversational AI agents such as Alexa,022

Siri and Google Assistant help millions of users to023

perform a lot of tasks, such as playing music, con-024

trolling light devices at home, etc. In general, such025

conversational AI agents have two components:026

automatic speech recognition (ASR) and natural027

language understanding (NLU). ASR is responsi-028

ble for converting speech signals of user query (e.g.029

“play Michael Jackson music") to a text transcript.030

Following this, NLU provides domain/intent clas-031

sification (e.g. domain: Music, intent: PlayMusic)032

and entity labelling (e.g. ArtistName: Michael033

Jackson), which are used to fulfill the user’s re-034

quest.035

However, users sometimes suffer friction due to036

errors occurred in the speech recognition. In detail,037

ASR module may mis-recognize utterance due to038

background noise or users’ accent. For example,039

ASR error led to a erroneous transcript “play alien040

bridges”, when the user actually meant “play leon041

bridges”. Due to such errors, the downstream NLU 042

system is affected, capturing a wrong entity “alien 043

bridges” for the slot “ArtistName”. This leads to 044

a fractured user experience and they may need to 045

rephrase their query. Moreover, the friction might 046

happen due to the NLU cannot handle the users 047

requests. For example, “tv to input three” cannot 048

handled by NLU instead of user’s intended “turn tv 049

to h.d.m.i. three”. Thus, in order to reduce the fric- 050

tion and make the dialog system more robust, query 051

rewriting (QR) (Ponnusamy et al., 2019; Chen et al., 052

2020) becomes an increasingly important technique 053

in the conversational AI agents. 054

Many existing QR systems in conversational AI 055

described in the literature commonly involve com- 056

plex search-based pipelines for either global-wise 057

query rewriting (Fan et al., 2021; Chen et al., 2020) 058

or personalized query rewriting (Cho et al., 2021). 059

A search system mainly comprises of two stacks 060

operating sequentially: retrieval and ranking. The 061

global or personalized indexer constructs the global 062

or personalized index by using the users historical 063

defect-free interactions with agent. Whenever a 064

new request arrives, the system compares it to ex- 065

isting utterances in the index using a series of dual 066

encoder retrieval model with FAISS search (John- 067

son et al., 2017) and retrieves top N candidates 068

from the index. Then the retrieved candidates are 069

ranked by a ranking model with both neural seman- 070

tic and IR features as input. The system picks the 071

top 1 ranked candidates as the final rewrite. Such 072

search-based system is widely used in the large 073

scale conversational AI agents as it can easily and 074

effectively control the output by index and thus risk 075

averse. 076

However, we cannot ignore the limitations posed 077

by (1) the error accumulation in multi-stage system; 078

(2) lacking of fine-grained interactions in current 079

search-based models; (3) a large memory footprint 080

is needed to store dense representations when con- 081

sidering large index in retrieval layer. Also, few 082
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research work targets query rewriting with consid-083

ering the previous context information, although084

they admit the importance and the context infor-085

mation has been proven useful in many other NLP086

tasks (Wang et al., 2017; Wu et al., 2018).087

In this work, we propose to solve query rewriting088

task by leveraging generation-based models under089

Constrained Generation Framework (CGF), which090

is to generate the rewrites left to right, token-by-091

token in an autoregressive fashion and conditioned092

on the previous context. Specifically, instead of093

input the query for the model encoder, we input094

the previous context including users requests and095

agent response to encoder. Then, we deploy the096

constrained decoding when inference to force the097

generated rewrite in a predefined candidate set. The098

proposed CGF enables us to mitigate the afore-099

mentioned shortcomings from search-based sys-100

tem as the autoregressive formulation allows the101

model to directly capture relations between contex-102

tual input and target rewrites and thus effectively103

cross encode both. Moreover, the memory footprint104

is greatly reduced because the parameters of our105

encoder-decoder architecture scale with vocabulary106

size, not index count. Also, neural language gener-107

ation approaches are known to hallucinate content,108

the constrained decoding with a predefined candi-109

date set helps generation model to be faithful to the110

model input and avoid the potential hallucinations111

or bad rewrites.112

Finally, we conduct extensive offline experi-113

ments for both global query rewriting and person-114

alized query rewriting to show the effectiveness of115

the proposed approach. Online experiments and116

case studies reveal that the proposed CGF indeed117

generates rewrites of better quality and less risks.118

The main contributions of this work are as fol-119

lows:120

• We introduced CGF, which consists context-121

enhanced encoding and constrained decoding.122

• CGF enables generative models to perform123

personalized query rewriting for the first time.124

• We provide both offline and online experi-125

ments to validate the effectiveness of the pro-126

posed CGF approach.127

2 Related Work 128

2.1 Query Rewriting 129

In dialogue system, on the one hand, the query 130

rewriting serves for the dialogue state tracking es- 131

pecially for the reference resolution (Rastogi et al., 132

2019; Vakulenko et al., 2020). On the other hand, 133

query rewriting can seamlessly replace the use’s 134

utterance in order to remove friction and unsatisfac- 135

tory experience to users (Ponnusamy et al., 2019). 136

To do this, (Ponnusamy et al., 2019) propose to 137

reformulate the queries with Markov Chain. Chen 138

et al. (2020) propose a retrieval-based model with 139

pre-training method to reduce the customer’s fric- 140

tion. Fan et al. (2021) and Cho et al. (2021) lever- 141

age multi-stage search-based system to perform 142

global and personalized query rewriting. In this 143

work, we propose CGF based on Seq2Seq model 144

to generate a rewrite of the initial query of user. 145

Another thread of work which is very like the 146

query rewriting is Grammatical Error Correction 147

(GEC) task. GEC is the task of correcting different 148

kinds of grammatical errors in text such as spelling, 149

punctuation, grammatical, and word choice errors. 150

Recently, Seq2Seq TRANSFORMER has become 151

state-of-the-art approach for GEC (Zhao et al., 152

2019; Wang et al., 2019; Kaneko et al., 2020), in 153

which the model aims to corrects an ungrammati- 154

cal sentence to a grammatical sentence. Therefore, 155

the main difference between GEC and our query 156

rewriting is that this task is more concerned with 157

grammatical corrections, and we focus on the er- 158

rors from usrs, ASR or NLU system to reduce the 159

friction. 160

2.2 Constrained Generation 161

Constrained generation has been applied in many 162

tasks like machine translation and web search. 163

Hokamp and Liu (2017) introduce grid beam search 164

to allow the inclusion of pre-specified lexical con- 165

straints. Mohankumar et al. (2021) apply con- 166

strained decoding with diverse sibling search al- 167

gorithm for search advertising. To the best of our 168

knowledge, ours is the first work which introduce 169

the constrained decoding into the query rewriting 170

for conversational AI agents. Moreover, we extend 171

the approach for personalized rewriting so that it 172

takes full advantage of the constrained generation. 173

3 CGF for Query Rewriting 174

As shown in Figure 1, we introduce the sequence- 175

to-sequence (Seq2Seq) model to generate the 176
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Figure 1: Illustration of the Constrained Generation Framework (CGF) for query rewriting. When a new utterance
arrives, the model performs the contextual encoding and constrained decoding and outputs the final rewrites. “Model
output nBest” denotes the candidates in a beam from beam search.

rewrite, where a bidirectional encoder takes the177

context information and request as input, an autore-178

gressive decoder relies on the pre-defined index179

to perform the constrained decoding in order to180

generate the target rewrite.181

3.1 Context-enhanced Encoding182

For the generative query rewriting, we adopt the183

Seq2Seq pre-trained model BART (Lewis et al.,184

2020). BART has the same model architec-185

ture with the widely-used Seq2Seq Transformer186

model (Vaswani et al., 2017) and it is pre-trained187

with a denoising way (Devlin et al., 2019).188

In this work, we directly fine-tune the BART.189

Instead of training BART to maximize the condi-190

tional distribution of the (request, rewrite) pairs, we191

flatten the previous dialogue turns (including both192

user request and agent response) and the current193

request into a single sequence for the encoder input,194

as shown in the Figure 1.195

Formally, given a pair of context-enhanced re-196

quest Q = {q1, ..., qM}, the conditional probabil-197

ity of its corresponding rewrite R = {r1, ..., rN}198

is defined as:199

P(R|Q) =
N∏

n=1

P(rn|R<n,Q; θ), (1)200

where rn denotes the n-th target token. θ denotes201

the parameters of the BART model, which are opti-202

mized to minimize the following loss function over203

the training corpus D:204

L = E(Q,R)∼D[−logP (R|Q; θ)] (2)205

The auto-regressive generation process is basically 206

achieved upon the encoder-decoder framework. 207

The encoder is responsible for reading the input 208

request and its previous dialogue information, the 209

decoder auto-regressively generates the rewrites. 210

Given the embeddings of the context-enhanced re- 211

quest and rewrite by equations (3) and (4), the 212

conditional probability of the n-th target word rn 213

is calculated as following: 214

HEnc = ENCBART (Q
0), (3) 215

HDec = DECBART (R
0,HEnc) (4) 216

P(rn|R<n,Q; θ) = Softmax(Proj(hn)) (5) 217

where ENCBART is the BART encoder to read 218

the context-enhanced request, and DECBART is 219

the BART decoder to read the target input rewrite 220

and conduct the cross attention on the encoder 221

output. hn is the n-th hidden representation of 222

HDec. Proj() and the Softmax() are two trans- 223

formation functions in the output layer of the de- 224

coder (Vaswani et al., 2017). 225

3.2 Constrained Decoding 226

Neural language generation approaches are known 227

to hallucinate content, resulting in generated text 228

that conveys information that did not appear in the 229

input. In general, one of the typical types of hal- 230

lucination is factual inconsistency generation. In 231

query rewriting, both of them will generate the de- 232

fective utterance and hurt the user experience. For 233

example, if a user has a request “play broadway 234

girls by morgan wallen”, the model with free-style 235

generation can have the generated rewrite “play 236
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broadway girls by morgan wade”. It’s a wrong fact237

generation actually as the “morgan wade” never238

sings the song “broadway girls”. However, general239

generative model leverage the beam search over240

all the whole vocabulary and thus there is a good241

chance of generating fluent but factually wrong242

sentences. Thus, the inability to effectively control243

the generated text have become one of the biggest244

obstacles for letting generative models for query245

rewriting in conversational AI. In this work, we246

consider to have the constrained decoding for gen-247

erative models to reduce the potential bad rewrites.248

The beam search is widely used in Seq2Seq249

models during inference to improve the search250

quality. The standard beam search consists of se-251

lecting the top B hypothesis with the maximum252

sum of log probability S(R,Q) = S(r<t|Q) +253

logP (rt|r<t, Q) at each time step t. Since we want254

to output the rewrite from U (we can regard it as a255

pre-defined rewrite candidate set), we cannot use256

traditional Beam Search while decoding. Allowing257

to generate any token from the vocabulary at every258

decoding step might lead the model to generate259

output strings that are not valid (i.e. bad rewrite).260

Hence, we resort to constrained beam search, forc-261

ing to only decode valid rewrite from a predefined262

candidate set. Beam Search only considers one step263

a head during decoding so we can only constrain264

the generation of a single next token conditioned265

on the previous ones. Thus, we define our constrain266

in terms of a prefix trie T , where nodes are anno-267

tated with tokens from the vocabulary. For each268

node t ∈ T , its children indicate all the allowed269

continuations from the prefix defined traversing the270

trie from the root to t. More formally, when de-271

coding the token rt at time step t, the constrained272

probability distribution is calculated as:273

P̃ =

{
P (rt = r|r<t, Q), if r ∈ suffixT (r<t)

0, otherwise
274

where we remove all the tokens r which are not275

a suffix of the already generated sequence r<t in276

the predefined trie. In this way, we can ensure that277

the model is only allowed to generate the rewrites278

from predefined candidates set. In the trie showed279

in Figure 2, each path from the root node to the leaf280

node (e.g. [BOS] → play → staring → at → it →281

[EOS]) represents an utterance that we allow the282

model to generate. “[BOS]” is the special token283

for the model to indicate the begin of sequence.284

Similarly, “[EOS]” denotes the end of sequence.285

Figure 2: A snapshot of the utterance trie we construct
based on global index. When the model has generated a
sequence “[BOS] play staring at” during the decoding
process, in the next step, with the pre-defined trie, the
model is only allowed to generate either “the” or “it”.
Then, if the model generates “the” in the next step, it is
only allowed to generate one of the three words “sun”,
“moon” or “sky” in next next step.

In this work, similar to how to build index for 286

search-based QR models (Fan et al., 2021), we 287

build a trie containing all the defect-free utterances 288

from the user historical interactions of the conver- 289

sational agent. However, as constrained decoding 290

with trie doesn’t require to store dense vectors of 291

index, we can reduce the memory footprint greatly 292

and thus enlarge the trie a lot comparing to the in- 293

dex of search-based models in real online system. 294

3.3 Global and Personalized Query Rewriting 295

Constrained generation with pre-fixed decoding 296

space can not only reduce the risky generated 297

rewrites from the generation-based query rewriting 298

models, but also open the door for the generation 299

models to conduct the personalized query rewriting, 300

as we can constrain the decoding space on the user 301

level to reflect the users preference. In this subsec- 302

tion, we introduce how to conduce the global and 303

personalized query rewriting with proposed CGF 304

approach. 305

Global Query Rewriting Global query rewrit- 306

ing indicates that the rewrite for a certain request 307

is applicable for all users. For example, the user’s 308

original query is “tv to input three”, while the agent 309

cannot well handle it and thus responses “I’m not 310

quite sure what went wrong.”. The ideal rewrite 311

for this query is “turn tv to h. d. m. i. three” 312

which can be applicable to all users who might say 313
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this request. In the proposed CGF, we pre-define314

the global constrained decoding space where there315

are all the rewrite candidates that the model is al-316

lowed to generate. To achieve this, inspired by317

the approach to construct the global index in (Fan318

et al., 2021), we build the global trie which pro-319

vides rewrite candidates extracted from all users’320

interactions. The global trie is generated from ag-321

gregated, anonymized historical interactions be-322

tween the users and the agent within a period of323

time (e.g. 30 days). Specially, after collecting all324

the users historical interactions, we rely on a defect325

detection model (Gupta et al., 2021) to filter out326

the defective utterances. Moreover, We also make327

sure the impression of the utterance appears in the328

trie is at least 2. Finally, we got 27M unique utter-329

ances in global trie, which will be the constrained330

decoding space for the global query rewriting.331

Personalized Query Rewriting A crucial nature332

of query rewriting is that often it needs to reflect333

personal preference or personalized error types to334

recover from the defect (Cho et al., 2021). For335

example, when a defective request “turn on the336

moon” from user A and user B comes in, the user337

A intended request should be “turn on the moon-338

light sonata”. However, the user B might want to339

“turn on the moon lamp”. Thus, the global query340

rewriting described above is not a optimal solution341

to handle such cases. It’s necessary to have a per-342

sonalized query rewriting system to fill this gap.343

The vanilla Seq2Seq models is not able to conduct344

personalized generation naturally. However, the345

proposed CGF can allow the generation models to346

perform the personalized query rewriting. Specifi-347

cally, we build the personalized constrained decod-348

ing space for each user. For a request comes from349

a specific user, the model is only allowed to gen-350

erate a rewrite from the pre-defined personalized351

decoding space. In order to support personalized352

rewrites, it’s important to build the proper personal-353

ized constrained decoding space for each user. We354

follow Cho et al. (2021) to build the constrained355

decoding space for each user, leveraging individual356

interaction history. The utterance included in the357

constrained decoding space reflects satisfied expe-358

riences for each user with in past 30 days of time359

window.360

Data Type Machine Human
Train Valid Test Test

Global QR 1083.0x 66.0x 66.0x 1.0x
Personalized QR - - - 1.0x

Table 1: Query rewriting data sets summary. “Machine”
denotes the Machine-Annotated data. “Human” denotes
the Human-Annotated data. We report relative size with
respect to the global human test set. The training data
was extract one month traffic from a large-scale conver-
sational AI agent. The valid/test data are extracted from
latter one week traffic.

4 Offline Experiments 361

4.1 Data 362

We train and evaluate our proposed method with 363

both weak-labeled data annotated by the model 364

(Machine-Annotated data). Specifically, we first 365

leverage a defect detection model such as Gupta 366

et al. (2021) to find two consecutive user utterances, 367

where the first turn was defect, but the second turn 368

was successful. Then, we further filter out the 369

two consecutive user utterances whose time gap 370

is larger than 35 seconds and edit distance is larger 371

than 5, in order to reduce the potential noise in the 372

data. We also evaluate our model with a human- 373

annotated test data (Human-Annotated data). For 374

both global and personalized test set, we make sure 375

the target rewrites are in the global/personalized 376

constrained decoding space. Table 1 gives the statis- 377

tics of the data set. Note all the data has been 378

de-identified. 379

4.2 Model Setup 380

In this work, we adopt the pre-trained BART large 381

model provided by (Lewis et al., 2020). Then, we 382

fine-tune the BART model on our query rewrit- 383

ing data sets. We use a batch size of 2048 tokens, 384

dropout rate of 0.1 and adam optimizer. The learn- 385

ing rate is 3e−5 and linearly warms up over the 386

first 5% steps, then decreases proportionally to the 387

inverse square root of the step number. All the 388

models are trained on eight NVIDIA Tesla V100 389

GPU. 390

To evaluate the query rewriting performance, we 391

compare our proposed model with a few baselines. 392

For global query rewriting task, we compare pro- 393

posed approach with Fan et al. (2021). For per- 394

sonalized task, we have Cho et al. (2021) as the 395

baseline. As trie used in our system is fast to query 396

and small enough to fit in memory, we can enlarge 397

the size of the trie easily. In this work, we follow 398
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System Machine test set Human test set
Precision Trigger Rt Precision Trigger Rt

UFS-QR (Fan et al., 2021) 59.63 14.52 63.34 15.03
CGF 77.84 51.85 78.24 47.67

Ablations
CGF w/o context-enhanced encoding 75.03 49.55 76.99 47.17
CGF w/o constrained decoding 75.00 50.34 77.30 47.46
CGF w/o both 72.75 46.55 76.02 46.10

Table 2: Global query rewriting evaluation. We compare our proposed CGF with the existing search-based query
rewriting systems on both machine annotated and human annotated test sets.

Fan et al. (2021) to build global trie which con-399

tains 27M unique utterances and Cho et al. (2021)400

to build the personalized trie for each user which401

contains at most 100 utterances to make the fair402

comparison. For personalized query rewriting eval-403

uation, we just utilize the model trained with global404

training data and apply the personalized trie on it405

for personalized rewriting. We employed the con-406

straints masking the log-probabilities of the invalid407

tokens and we do not re-normalize the probability408

over the vocabulary.409

4.3 Evaluation Metrics410

We perform the evaluation on the utterance level411

with precision and trigger rate. The precision de-412

notes how often the triggered rewrite matches the413

correct rewrite. The trigger rate is the fraction of414

instances on which the model makes a prediction415

with the final beam score above a threshold 1. We416

set the threshold to -0.2 for all the proposed CGF417

models.418

4.4 Global Query Rewriting419

Table 2 shows the CGF results on both machine-420

annotated and human-annotated test sets when421

incrementally applying the proposed techniques422

within CGF, i.e. context-enhanced encoding and423

constrained generation. The experimental result424

is quite consistent with our intuition. CGF with425

context-enhanced encoding and constrained decod-426

ing gets the best performance on precision and trig-427

ger rate across two test sets. Our approach outper-428

forms the search-based UFS-QR system by more429

than 14% absolute precision for both Machine-430

Annotated and Human-Annotated test sets. More-431

over, the proposed approach can confidently trigger432

1The final beam score is formalized as Pθ(y|x) =
ΠN

i=1pθ(yi|y<i, x), where θ is the model parameters and x is
the model input.

System Precision Trigger Rt
Personalized-QR

71.38 88.80
(Cho et al., 2021)
CGF 73.04 90.33

Table 3: Personalized query rewriting evaluation.

more cases, which is super beneficial for the pro- 433

duction rewrite traffic volume increase. 434

4.5 Ablation Study 435

Table 2 also lists the ablation study results for the 436

CGF with global query rewriting task. “w/o both” 437

denotes the CGF without context-enhanced encod- 438

ing and constrained decoding, in which the model 439

takes the query only as the encoder input and con- 440

duct the unconstrained generation. Eventually, us- 441

ing context-enhanced encoding or constrained de- 442

coding proved useful. Combining them together 443

is better to get the high precision and at the same 444

time higher trigger rate. 445

4.6 Personalized Query Rewriting 446

We here discuss the personalized query rewriting 447

evaluation results on Human-Annotated test set 448

for our proposed CGF showed in Table 3. We 449

use the same model as the global query rewiring 450

task. The only difference is that the constrained 451

decoding space is changed to personalized-level 452

based on each user’s historical interactions with 453

agent and thus diverse for each user. As seen, the 454

results of both search-based and our CGF models 455

are in the relatively high range, as the search space 456

for personalized query rewriting is much smaller 457

comparing to global-wise. However, the CGF can 458

still outperforms search-based system by 1.66% 459

absolute precision score and 1.53% trigger rate 460

meanwhile. 461
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Dialog Reference CGF CGF w/o CD CGF w/o CE
USER: what time is sunset tonight
AGENT: sunset, in greenacres, florida,
on thursday, october 21 will be 6:48pm what time is sunset what time is sunset what time is sunset what is sunset tonight
USER: what kind of sunset tonight tonight in willimantic connecticut tonight in willimantic connecticut tonight in willimantic connecticut in willimantic connecticut
in willimantic connecticut
USER: play little yancy
AGENT: Lil’ Fancy from Apple Music.y play little yancy praise party play little yancy praise party play little yancy praise party play little yankees praise party music
USER: play little yankees praise part
USER: play in jesus name by katie nicole play in jesus name by katy nichole play in jesus name by katy nichole play in jesus name by kayla nicole play in jesus name by katy nichole

Table 4: Examples of the generated rewrites. In the dialog session, the last turn from the user is the current request
which is needed to be rewritten by the model. “CGF w/o CD” denotes the model CGF without constrained decoding,
“CGF w/o CE” denotes the CGF without context-enhanced encoding.

(a) Precision (b) Trigger Rate

Figure 3: Global query rewriting evaluation on the first
turn and not first turn subsets. “CGF w/o context” de-
notes the CGF without context-enhanced encoding.

4.7 Effect of Context-enhanced Encoding462

We study the effect of the context-enhanced encod-463

ing in this subsection. As in some of test cases,464

there are not previous context available and the465

query the model will rewrite the first turn of the466

multi-turn dialogue session. We investigate if the467

proposed model is robust and effective for both of468

such cases. Thus, we split the global test set into469

the with previous context (“First turn”) and without470

previous context cases (“Not first turn”).471

As shown in the Figure 3, the CGF gets signif-472

icant improvement for both precision and trigger473

rate on the “Not first turn” test set comparing to474

CGF without context-enhanced encoding, which475

demonstrates the effect of the context information476

during the model training. Moreover, on “First turn”477

test set, surprisingly, when there is not previous478

context for the CGF model, the performance only479

decrease in a relatively small margin. This suggests480

that the model is good at generalization and robust481

for various test cases in the actual scenario.482

4.8 Case Study483

We here discuss the several cases that indicate the484

representative situations we find so that we can fur-485

ther understand the effect of the context-enhanced486

encoding and constrained decoding in CGF. As487

shown in the Table 4, the first example illustrates 488

the cases when CGF w/o context-enhanced encod- 489

ing gives a rewrite which changes the semantic 490

meanings of the source request (“what kind of” -> 491

“what is”) and is not faithful. However, with consid- 492

eration of previous context information, the CGF 493

is able to understand the user intent and provide 494

the accurate rewrite. Also, the second case corre- 495

sponds to the situation of carrying over an correct 496

entity from context and replace the wrong entity 497

in current utterance, while as shown in the table, 498

this is not hard for our context-enhanced encoding 499

models. However, without consider the informa- 500

tion from context, the model sometimes fails. The 501

third case shows that without constrained decod- 502

ing, the CGF has a factual inconsistency generation 503

(“kayla nicole” is an artist but never sung “in jesus 504

name”). This is a common situation for generation- 505

based models, especially on unseen data samples. 506

Conversely, this situation rarely happens with con- 507

strained decoding, as the generation is based on the 508

predefined constrained decoding space and we will 509

never have such factual inconsistency generation. 510

5 Online Experiments 511

To investigate the effectiveness of the introduced 512

techniques in the real-world large-scale conversa- 513

tional AI agent, we leverage the proposed model 514

CGF to generate the global rewrites and deploy 515

them into the online production environment. We 516

compare it with the no CGF rewrites within En- 517

glish speaking users environment. The data was 518

collected for more than one week over a significant 519

percentage of traffic via the A/B testing framework. 520

We use one primary metric to evaluate the perfor- 521

mance of our proposed CGF approach during A/B: 522

• Defect Rate: the total number of potential 523

rewritten utterances that is defective divided 524

by total number of potential rewritten utter- 525

ances. We leverage the defect detection model 526
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Original request (w/o context): Response (before rewrite):
USER: how much time is left on my Sorry, I missed something. Can you say it again?
CGF rewrite: Response (after rewrite):
how much time is left on my timer You have 2 minutes and 20 seconds left on your 7-minute timer.

Original request (w/o context): Response (before rewrite):
USER: play night talk by drake I couldn’t find night talk
CGF rewrite: Response (after rewrite):
play knife talk by drake Here’s Knife Talk , by Drake (feat. 21 Savage, Project Pat) , on Amazon Music.

Original request (w/ context): Response (before rewrite):
USER: play little yancy
AGENT: Lil’ Fancy from Apple Music.y Sorry, I’m having trouble finding the song.
USER: play little yankees praise part
CGF rewrite: Response (after rewrite):
play little yancy praise party Here is little yancy praise party.

Table 5: Examples from the online experiment.

proposed by Gupta et al. (2021) to measure527

if an utterance is defective.528

From A/B results, our proposed model con-529

tributed to a healthy decease of defect rate without530

compromising on the traffic volume of generated531

rewrites. We observed significant 2 reduction of532

defect rate 20.94% and millions of new rewrites533

generated by the proposed approach.534

As a part of online monitoring, we monitor the535

number of new, previous unseen rewrites in online536

live traffic. The Table 5 shows the cases where537

the original request got unsatisfied response from538

the agent and after the rewrite, the friction was re-539

moved with satisfied response. In the first example,540

the original request “how much time is left on my”541

lacks the key entity “timer” due to user’s accent542

or background noise. Even without context infor-543

mation available i.e. the request is the first turn,544

the propose CGF can successfully rewrite it and545

thus the user got the satisfied response from the546

agent finally. In the second case, due to an ASR547

error, the original request cannot well interpreted548

by agent and the agent cannot fulfill the user’s need.549

The CGF can correct the ASR error from “night”550

to “knife” so as to meet the need of the user. The551

last example demonstrates that when user rephrase552

his/her request, CGF generated the good rewrite553

“play little yancy praise party ” based on the helpful554

context information.555

6 Conclusion556

In this work, we propose CGF, a novel paradigm557

to conduct query rewriting: generate target rewrite558

autoregressively with context-enhanced encoding559

2p-value<0.0001

and constrained decoding. Our proposed CGF is 560

a general framework for different query rewriting 561

purposes where one can freely define the decoding 562

space, (e.g. global, personalized or domain-specific 563

space). Both offline and online experiments show 564

that our approach consistently and significantly im- 565

proves query rewriting performance and demon- 566

strate the effectiveness and universality of the CGF. 567

Future directions include exploring advanced 568

prompt approaches that can better reflect the learn- 569

ing abilities of large-scale language models, as well 570

as extending the current CGF to handle the other 571

tasks like entity correction, etc. 572
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