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Abstract

Comparing structured data from possibly different
metric-measure spaces is a fundamental task in
machine learning, with applications in, e.g., graph
classification. The Gromov-Wasserstein (GW) dis-
crepancy formulates a coupling between the struc-
tured data based on optimal transportation, tackling
the incomparability between different structures by
aligning the intra-relational geometries. Although
efficient local solvers such as conditional gradi-
ent and Sinkhorn are available, the inherent non-
convexity still prevents a tractable evaluation, and
the existing lower bounds are not tight enough for
practical use. To address this issue, we take in-
spirations from the connection with the quadratic
assignment problem, and propose the orthogonal
Gromov-Wasserstein (OGW) discrepancy as a sur-
rogate of GW. It admits an efficient and closed-
form lower bound with O(n3) complexity, and di-
rectly extends to the fused Gromov-Wasserstein
(FGW) distance, incorporating node features into
the coupling. Extensive experiments on both the
synthetic and real-world datasets show the tight-
ness of our lower bounds, and both OGW and its
lower bounds efficiently deliver accurate predic-
tions and satisfactory barycenters for graph sets.

1 INTRODUCTION

Similarity based learning has been a popular approach in
many machine learning applications. Instead of directly
modeling each individual object which may pose challenge
in some areas, it resorts to models based on pairwise simi-
larity, possibly across different domains. The most common
example is the kernels used in support vector machines and
Gaussian process, including RBF kernel and covariance ma-
trices that measure similarity in the Euclidean space [Chang

et al., 2010], and string or tree kernels that compare discrete
objects [Lodhi et al., 2002]. More generally, featured graphs
have been a useful tool for capturing similarities and rela-
tions in the structured data that are commonly not Euclidean.
Examples include social network [Fan et al., 2019], recom-
mendation systems [Wu et al., 2020], fraud detection [Li
et al., 2020], quantum chemistry [Coley et al., 2019] and
topology-aware IoT applications [Abusnaina et al., 2019].

Despite the inherent challenge in comparing graphs from
possibly different metric-measure spaces, there has been
a wealth of refined discrepancy measures between graphs,
including kernels [Vishwanathan et al., 2010, Shervashidze
et al., 2011] and GCNs based approaches [Bronstein et al.,
2017, Defferrard et al., 2016]. Recently, the Gromov-
Wasserstein discrepancy [GW, Peyre et al., 2016], which
extends the Gromov-Wasserstein distance [Memoli, 2011],
has emerged as an effective transportation distance between
structured data, alleviating the incomparability issue be-
tween different structures by aligning the intra-relational
geometries. Thanks to its favorable properties such as effi-
ciency and isometry-awareness, GW has been applied to
domain adaptation [Yan et al., 2018], word embedding
[Alvarez-Melis and Jaakkola, 2018], graph classification
[Vayer et al., 2019a], metric alignment [Ezuz et al., 2017],
generative modeling [Cohen and Sejdinovic, 2019], and
graph matching and node embedding [Xu et al., 2019b,a].

However, different from the standard Wasserstein distance
which is a linear program, GW is unfortunately intractable
to evaluate. Despite the practical success of non-convex op-
timization techniques such as conditional gradient method
and entropic regularization [Peyre et al., 2016, Gold and
Rangarajan, 1996], it remains NP-hard to find the global
optimum. Hence, existing practice settles with local solu-
tions, lacking an analyzable guarantee. This significantly
challenges the trustworthiness of the GW discrepancy.

Towards a tractable approximation, Memoli [2011] pro-
posed three lower bounds of GW, which cost O(n2), O(n4)
and O(n5). They can be useful for branch-and-bound based
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global optimization, as well as recent algorithms for certi-
fying the robustness of nonconvex models. However, these
lower bounds are rarely used in practice, and as we will show
later in Figure 3, even the most expensive lower bound can
be quite loose, raising the concerns on their effectiveness.

Instead of developing yet another lower bound or tight ap-
proximation of GW, our goal in this paper is to design a
surrogate of it (namely orthogonal GW, or OGW) such that:

(a) It retains GW’s desirable properties such as permu-
tation invariance, non-negativity, triangle inequality,
and good performance in machine learning tasks such
as classification and barycenter. We stress that OGW
does not need to be either an upper bound or a lower
bound of GW. We are also not concerned about the gap
between OGW and GW because what matters is the
desirable mathematical properties and the performance
in learning, instead of how close OGW is to GW.

(b) It does not have to be tractable, but it must admit a
tight and efficient lower bound – upper bound is easier
from local optimization as in GW. The tightness will
potentially contribute to global optimization such as
certification, a topic that is beyond this paper. Ideally,
such a lower bound should also possess the aforemen-
tioned good properties of the surrogate itself.

Our inspiration, as unrolled in Section 2, stems from the con-
nection of GW to quadratic assignment problems (QAPs),
which was tapped into by sliced GW [Vayer et al., 2019b]
and Gromov-Monge problems [Memoli and Needham,
2021]. It paved the way for approximating the set of doubly
stochastic matrices (used in GW) by orthonormal matrices
under marginal constraints [Rendl and Wolkowicz, 1992,
Hadley et al., 1992, Anstreicher and Brixius, 2001]. The
resulting problem is well known to admit tight approximate
solutions, and accommodates fused GW to account for node
features [FGW, Vayer et al., 2019a]. Experiments on classi-
fication and barycenter demonstrate the effectiveness of our
proposed OGW and its lower bounds.

2 OGW-DISCREPANCY WITH
TRACTABLE LOWER BOUNDS

We represent an undirected graph G with n nodes by an
adjacency matrix A ∈ {0, 1}n×n, where Aii = 0, and
Aij = 1 if there is an edge between nodes i and j (i 6= j),
and 0 otherwise. To start with, we consider the discrepancy
between two graphs with the same order (i.e., number of
nodes). A detailed generalization to any graph orders will
be addressed in Section 2.3. Associated with the nodes is
a distribution, encoding some prior information about their
importance, e.g., the normalized degree of each node [Xu
et al., 2019b]. However, many applications lack such natural
normalization [Vayer et al., 2019a,b, Peyre et al., 2016].

Therefore, we will stick with a uniform distribution over
all nodes and include our extension of non-uniform distri-
bution in Appendix A.5. Letting 1 = (1, . . . , 1)> whose
dimensionality can be implicitly induced from the context,
the standard GW distance between graph G and H based
on `2 distance can be formulated as (the square root of)

GW(G,H) :=

min
P∈E∩N

∑
i,j,k,l

[cG(i, j)− cH(k, l)]
2
PikPjl, (1)

where E := {P ∈ Rn×n : P1 = P>1 = 1} and N :=
Rn×n+ [Memoli, 2011]. Here cG(i, j) represents a distance
measure between node i and j on G, and common choices
include their shortest-path distance, or simply 1−Aij (the
complement of adjacency). When both cG and cH are a
metric, (1) is a squared metric on isomorphism classes of
measurable metric spaces. However, as pointed out by Peyre
et al. [2016], cG and cH do not have to be restricted to
metrics and `2 can be extended to other asymmetric or non-
subadditive losses such as f -divergence. They call it GW
discrepancy, which broadens its applicability in machine
learning. We will refer to it as GW, without even taking the
square root of (1) just like in Peyre et al. [2016].

Remark 1. It is noteworthy that although the original GW
requires cG(i, j) to be a distance metric [Memoli, 2011], it
can be relaxed in (1) where `2 loss is used. Indeed, cG(i, j)
can also be served by similarities between nodes instead
of distance, e.g., by simply flipping the sign of the distance
measure. This also opens up the use of non-metric dissimi-
larity measures such as constrained shortest path [Lozano
and Medaglia, 2013].

Define two n-by-n symmetric matrices C and D whose
(i, j)-th elements are Cij = cG(i, j) and Dij = cH(i, j),
respectively. For example, the complement of adjacency can
be written as C = 11> −A. The above GW can be com-
pactly rewritten in the Koopmans-Beckmann form [Koop-
mans and Beckmann, 1957]:

GW(G,H) =

1

n2

(
‖C‖2F + ‖D‖2F − 2 max

P∈E∩N
tr(CPDP>)

)
. (2)

Here ‖·‖F is the Frobenius norm. Obviously, GW is per-
mutation invariant, nonnegative, and equals 0 when G and
H are isomorphic. The major drawback is that the maxi-
mization over P is intractable, although efficient local al-
gorithms are available such as conditional gradient [Vayer
et al., 2019a] and Sinkhorn [Peyre et al., 2016].

2.1 CONNECTING OGW WITH THE QUADRATIC
ASSIGNMENT PROBLEM

Rewriting GW with quadratic optimization over E ∩N as in
(2) reveals an innate connection to the quadratic assignment



QAP
E ∩ N ∩ O

GW
E ∩ N

OGW
E ∩ O

Figure 1: Connection between QAP and GW, OGW

problem (QAP). Noting that by the Birkhoff–von Neumann
theorem [Birkhoff, 1946], E ∩N is the convex hull of the set
of n× n permutation matrices (denoted as Π). Indeed, the
connection with QAP has been used to formulate Gromov-
Monge distances [Memoli and Needham, 2021], and to
accelerate the evaluation of GW via projection (slicing) to
1-D [Vayer et al., 2019b]. Fortunately, a number of tractable
relaxations of QAP are available, many of which are based
on the following characterization of Π:

Π = E ∩ N ∩ O, (3)

where O := {P ∈ Rn×n : P>P = PP> = I}. Here I
is the identity matrix. Whenever necessary, we will explic-
itize the dimensionality of O by writing On. Interestingly,
tr(CPDP>) can be maximized exactly by a simple eigen-
decomposition if P is restricted to O [Umeyama, 1988].
Specifically, assume the eigen-decomposition of C and D
are C = PC diag(λC)P>C and D = PD diag(λD)P>D,
respectively, and suppose the eigenvalues in λC and λD are
both arranged in a descending order. Then

P1P
>
2 ∈ arg max

P∈O
tr(CPDP>), (4)

and max
P∈O

tr(CPDP>) = λ>CλD. (5)

Based on this result, Hadley et al. [1992] proposed tighten-
ing the domain approximation from O to O ∩ E , which, de-
spite the original intention of approximating inhomogeneous
QAPs, happens to be useful in our context too. Compared
withN ∩E , O∩ E offers more convenience in constructing
upper and lower bounds that are tight and efficient. This
substitution leads to our proposed new metric, named as
orthogonal Gromov-Wasserstein (OGW) discrepancy:

OGW(G,H) :=

1

n2

(
‖C‖2F + ‖D‖2F − 2 max

P∈O∩E
tr(CPDP>)

)
. (6)

Figure 1 illustrates how QAP is connected with GW and
OGW through the different convex outer approximations of
the domain of the permutation matrices.

2.2 UPPER AND LOWER BOUNDS OF OGW

The evaluation of OGW is hindered by the nonconvex objec-
tive and the nonconvex domain in the optimization of P in
(6). So it is natural to resort to its lower and upper bounds.

Upper bound of OGW. Obviously, any locally optimal
P in (6) yields an upper bound of OGW. To ease the local

optimization, we first leverage the characterization ofO∩E
[Hadley et al., 1992]:

O ∩ E =
{

1
n11> + VQV> : Q ∈ On−1

}
, (7)

where V is any n× (n−1) matrix satisfying V>1 = 0 and
V>V = In−1. An example is given in Appendix A.1. Plug-
ging P = 1

n11> + VQV> into the optimization objective
in (6) yields

max
P∈O∩E

tr(CPDP>) =

1

n2
sCsD + max

Q∈O
{tr(ĈQD̂Q>) + tr(Ê>Q)}︸ ︷︷ ︸

=: Q(Ĉ,D̂,Ê)

, (8)

where X̂ := V>XV and sX := 1>X1 for any matrix
X, and E := 2

nC11>D. Since Q(Ĉ, D̂, Ê) involves both
linear and quadratic terms in Q, no closed-form solution
remains available.

Clearly, any locally optimal Q yields a lower bound for Q
(denoted as Qlb), i.e., an upper bound for OGW (denoted
as OGWub). Locally optimizing Q over O (a.k.a. Stiefel
manifold) has been very well studied [Absil et al., 2009,
Wen and Yin, 2013, Arasu and Mohan, 2018], and we adopt
a straightforward approach of projected quasi-Newton, not-
ing that the projection of any matrix Q on O is simply
UQV>Q, where the singular value decomposition (SVD) of
Q is UQΛQV>Q. With the locally optimal Q in hand, the
locally optimal P for OGW can be recovered by plugging
Q into the formula in (7).

Similarly to the practice of GW which resorts to locally
optimal solutions, we will use OGWub as a practical “evalu-
ation” of OGW. Whenever there is no confusion (especially
in empirical investigation), we will simply refer to the per-
formance of OGWub as the performance of OGW.

Lower bounds of OGW. The simplest way to lower
bound OGW is by relaxing the domain of P into O in (6):

OGWo(G,H)

:=
1

n2

(
‖C‖2F + ‖D‖2F − 2 max

P∈O
tr(CPDP>)

)
(9)

= 1
n2 ‖λC − λD‖2 , (10)

where the last step is by (4). We note in passing that OGWo

embodies a different design principle from heat kernel sig-
nature [Sun et al., 2009] and wave kernel signature [Aubry
et al., 2011], in that neither of the kernel signatures sort the
kernel spectrum.

In practice, we found that completely dropping the con-
straint E may lead to over relaxation. To bring back E , we
follow Hadley et al. [1992] and decompose Q in (8) into



quadratic and linear terms by decoupling their Q:

Qub(Ĉ, D̂, Ê)

:= max
Q1∈O

tr(ĈQ1D̂Q>1 ) + max
Q2∈O

tr(Ê>Q2). (11)

As a result, we obtain an upper bound of Q (denoted as
Qub), which produces a lower bound of OGW:

OGWlb(G,H) := (12)

1

n2

(
‖C‖2F + ‖D‖2F − 2Qub(Ĉ, D̂, Ê)− 1

n2
sCsD

)
.

Qub can be evaluated analytically. First, Q1 can be solved
by (4). As for Q2, the von Neumann’s trace inequality im-
plies that its optimal value is UEV>E , where UEΛEV>E
is the SVD of Ê, and the maximum value of tr(Ê>Q2) is
||Ê||∗, the trace norm of Ê, which is the sum of the singular
values of Ê. Hadley et al. [1992] showed that such an upper
bound in (11) is often quite tight, which is also observed
in our experiments. Indeed, we noticed that the magnitude
of Ĉ and D̂ in (11) is significantly larger than that of Ê.
Therefore, although the optimal Q1 and Q2 are different,
the resulting gap is small.

We next summarize the mathematical properties of OGW
and its lower bounds as follows:

Theorem 1. OGW, OGWo, and OGWlb are all nonnega-
tive and symmetric. Their square root satisfies the triangle
inequality. Their values are 0 if (but not only if) the two
graphs are isomorphic.

The proof is in Appendix A.2. Compared with the require-
ment of distance metric, OGW and its lower bounds only fall
short of the “only if” part of the identity of indiscernibles.
To see why “only if”cannot hold, consider OGWo whose
closed form in (9) shows that its value can be 0 as long as
C and D are similar, i.e., share the same eigenvalues. In
general, however, C and D are derived from graphs with
certain discrete properties, leaving permutation the most
likely path to similarity.

Remark 2. The coupling matrix P in GW provides a useful
matching between two sets of nodes. Although the P in
OGW and its lower bounds may contain negative entries,
it optimizes over the orthonormal domain, which may still
provide useful insights between the two groups of node.
For example, invariance to orthogonal transformation is a
longstanding pursuit in learning [Kornblith et al., 2019].
Despite the hardness of exactly optimizing P for OGW, we
can use Q1 from (11) to recover P via the transformation in
(7). This is reasonable because Ê is generally much smaller
in magnitude than Ĉ and D̂.

Computational complexity. The analytic solution for
OGWlb and OGWo is achieved by singular value decom-
position and eigen decomposition, whose computational

complexity is O(n3). Ĉ, D̂, and Ê can be computed in
O(n3) thanks to the structure of V (see Appendix A.1). It
is worth mentioning that Memoli [2011] also derived the
lower bounds of GW by solving a set of linear assignment
problems, named First Lower Bound (FLB), Second Lower
Bound (SLB), and Third Lower Bound (TLB). The follow-
ing inequalities provide the connections between different
lower bounds of GW:

GW ≥

{
GWtlb ≥ GWflb

GWslb.
(13)

And the complexities of FLB, SLB and TLB are
O(n2),O(n4),O(n5), respectively. In general, TLB pro-
vides the tightest lower bound for GW, and SLB has re-
semblant performance compared with TLB. This is also
observed in our experiments.

2.3 GRAPHS WITH DIFFERENT SIZES

So far, we have been restricting the two graphs to have the
same number of nodes, primarily because the orthonormal
domain O only contains square matrices. In order to deal
with the non-square matrix, i.e., graphs of different order,
we introduce the semi-orthogonal domain

Õm,n := {T ∈ Rm×n : T>T = In}, (14)

where m > n without loss of generality. That is a domain
of “tall” matrices, whose columns are orthonormal. When
m = n, Õ recovers On because T>T = In is equivalent
to TT> = In for a square matrix T.

For a non-square matrix P ∈ Rm×n and m > n, it is no
longer feasible to impose the constraint of E := {P ∈
Rn×n : P1 = P>1 = 1} because the dimensionality does
not match. Instead, it can be generalized into

Ẽ := {P1n =
√

n
m1m,P

>1m =
√

m
n 1n}. (15)

To summarize, we can extend the OGW in (6) to graphs with
different orders by replacing the domain of P, amounting to

OGW(G,H) := (16)
1

m2
‖C‖2F +

1

n2
‖D‖2F −

2

mn
max

P∈Õ∩Ẽ
tr(CPDP>),

where G and H have the graph order of m and n, respec-
tively. We reuse the symbol OGW because the constraints
Õ and Ẽ recover O and E respectively when m = n. It is
also easy to see that OGW is nonnegative because

OGW(G,H)

≥ 1

m2
‖C‖2F +

1

n2
‖D‖2F −

2

mn
max
P∈Õ

tr(CPDP>)

=
∥∥ 1
mλC − 1

nλD

∥∥2 ≥ 0.

In the similar spirit to (7), any P ∈ Õ ∩ Ẽ can be re-
parameterized as follows



Theorem 2. Let U ∈ Rm×(m−1) and V ∈ Rn×(n−1) be
arbitrary projection matrices satisfying

U>1m = 0m−1, V>1n = 0n−1, (17)

U>U = Im−1, V>V = In−1. (18)

Then

P ∈ Õ ∩ Ẽ ⇐⇒ P = 1√
mn

1m1>n + UQV>, (19)

where Q ∈ Õm−1,n−1.

The proof is relegated to Appendix A.4. Letting Ĉ :=
U>CU and D̂ := V>DV, the optimization over P in
(16) turns into a projected QAP (PQAP) with an additional
linear term and some constant terms

max
Q∈Õm−1,n−1

tr(ĈQD̂Q>) + tr(ÊQ>) + const, (20)

where Ê = 2√
mn

U>C1m1>nDV. Finally, in order to lever-
age the favorable properties of orthonormal matrices, we
right-pad the matrix Q by an (m− 1)× (n−m) matrix J,
such that [Q, J] ∈ Om−1. Indeed

Q ∈ Õ(m−1),(n−1) ⇐⇒ ∃J :
[
Q J

]
∈ Om−1. (21)

Such a J matrix only needs to be any basis of the
kernel space of Q. As a result, the quadratic term
maxQ∈Õ tr(ĈQD̂Q>) is equivalent to

max
[Q J]∈O

tr

(
Ĉ
[
Q J

] [D̂ 0
0 0

] [
Q J

]>)
, (22)

and we can optimize [Q J] as a whole, utilizing the closed-
form solution to the squared matrix case.

Similarly, for the linear term, we have

max
Q∈Õ

tr(ÊQ>) = max
[Q K]∈O

tr
([

Ê 0
] [

Q K
]>)

, (23)

where K serves the same role as J.

To conclude, by padding zero on the non-square matrices
D̂ and Ê to square matrices, we can enjoy the analytic
solutions to the problems in (22) and (23) in the same way
as in the square case.

Remark 3. We refrain from the interpretation of adding
dummy nodes with 0 distance because, as pointed out in
Remark 1, C and D can represent similarity measures. In
such cases, padding with 0 is still justified with the above
derivation, but not amenable to dummy node interpretations.

Remark 4. Disconnected graphs can be modeled by any ex-
isting heuristic that is also required by GW. In (1), cG(i, j)
cannot be∞ because it would push GW to∞ as long as
all cH(k, l) <∞ and all nodes have nonzero marginals. A

simple heuristic is to employ a large distance value between
two nodes that belong to two separate/disconnected sub-
graphs. Our experiments only involved connected graphs,
because all the graphs from the real datasets are already
connected – none was discarded.

We stress that the heuristic in Remark 3 is independent of
padding 0 in (22) that tackles different graph sizes. The latter
is on how to characterize the alignment of two matrices,
which is orthogonal to the design of base measure itself
within each graph.

3 BARYCENTER

We next study the application of OGW to the Barycenter
problem, where given a set of sampled graphs and their
associated weights, we aim to find their Fréchet mean by
minimizing the weighted average discrepancy between the
barycenter and the sampled graphs. Here the discrepancy is
measured by our proposed OGW, and the sampled graphs
are represented by a set of cost matrices Di, along with
normalized weight λi for i ∈ {1, ..., S}. Di can also en-
code pairwise similarities instead of dissimilarities, and our
method accommodates both cases naturally. The barycen-
ter problem can be formalized as minimizing the weighted
average OGW discrepancy:

min
C
B(C) := min

S∑
i=1

λi · OGW(C,Di) (24)

=

S∑
i=1

λi

(
1

m2
‖C‖2F −

2

mni
max

Pi∈O∩E
tr(CPiDiP

>
i )

)
+ const. (25)

For simplicity, we specify the barycenter with a fixed order
m, although the value of m can also be optimized.

We follow the block coordinate update proposed in Peyre
et al. [2016], i.e., iteratively minimizing with respect to the
couplings Pi and updating the optimal cost matrix for the
barycenter in a closed-form solution. Given a set of coupling
matrices Pi, we can retrieve the optimal C by taking the
partial derivative of (24)

∂B(C)

∂C
=
∑
i

λi

(
2

m2
C− 2

mni
PiDiP

>
i

)
(26)

=
2

m2
C−

∑
i

2λi
mni

PiDiP
>
i = 0. (27)

So the optimal C under the current {Pi} is C∗ ←
m
∑S
i=1

λi

ni
PiDiP

>
i . Noting that OGW itself is still in-

tractable, we resort to the tractable lower or upper bounds,
replacing OGW in the definition of B(C) with its tractable
bounds. In the case of OGWub (resp. OGWo), we simply
adopt the locally (resp. globally) optimal {Pi}. For OGWlb,
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Figure 2: Steps of constructing the graph discrepancies

we can rewrite B(C) in terms of Q1 and Q2 from (11) and
(12), and then C can be updated using the optimal Q1 and
Q2. More details are provided in Appendix A.7.

It is noteworthy that any optimal solution C for (24) leads
to a set of optimal solutions {PCP> : P ∈ O ∩ E}. This
also resonates with the intuition retrievable from OGWo

in (9), where only the eigenvalues of C matter. Therefore,
additional “post-processing” is needed to pinpoint the opti-
mal C from the equivalent class. Furthermore, the optimal
C∗ found over O ∩ E does not guarantee elementwise non-
negativity. Next, we present our method, named as spectral
reconstruction, to find the appropriate C.

3.1 SPECTRAL RECONSTRUCTION

To begin with, suppose C and all Di are graphs of or-
der m, and we consider their projections to R(m−1)×(m−1)

via Ĉ∗ = V>C∗V and D̂i = V>DiV. Let their eigen-
decomposition be Ĉ∗ = R>ΣR and D̂i = S>i ∆iSi. In-
spired by the above observation that OGW(C,Di) depends
primarily on the eigenvalues of C and Di, we rebuild Ĉ∗

by Ĉ∗recon =
∑
i λiS

>
i ΣSi, i.e., trusting and retaining the

eigenvalues of the optimal solution Ĉ∗ while pairing them
with the eigenvectors of the sampled graphs.

For graphs with different sizes, the trick in Section 2.3, i.e.,
padding on smaller graph, helps us to assemble the Ĉ∗ from
the top m− 1 eigen system. Noting that Ĉ∗ is still on the
projected domain Rm−1×m−1, i.e., there exist V such that
Ĉ∗ = V>C∗V.

Next, we bring Ĉ∗recon back to its original space Rm×m via

C∗recon = VĈ∗reconV> + Y, (28)

where Y satisfies V>YV = 0, ensuring that V>C∗reconV
recovers Ĉ∗recon. In addition, when OGW operates on dis-
similarity matrices, we require diag(C∗recon) = 0, i.e., the
dissimilarity between a node and itself is 0. A straightfor-
ward choice of Y satisfying the two conditions is

Y = −1

2
(d1> + 1d>), (29)

where d := diag(VĈ∗reconV>). (30)

To gain more intuition into the recipe, consider the barycen-
ter problem with OGWlb and only one sampled graph D1.

By Theorem 1, B(C) can be driven to 0 and it is attained
when Ĉ shares the same eigenvalues as D̂1, i.e., Σ = ∆1.
Then Ĉ∗recon = D̂1 by our construction. Furthermore,
the proof of Theorem 1 indicates 1>C1 = 1>D11 and∥∥V >C1

∥∥ =
∥∥V >D11

∥∥. It is then not hard to show that
C∗recon is exactly D1. We provide our experiments on both
synthetic and real dataset in Section 5.3.

4 EXTENSION TO FUSED GW

Most applications carry features for each node. To account
for this important information, Vayer et al. [2019a] proposed
the fused GW (FGW), employing an additional matrix M
whose (i, k)-th entry encodes the `2 distance between the
features of node i inG and of node k inH . M is asymmetric
in general. Then the vanilla FGW-distance was formulated
by Vayer et al. [2019a] as

FGW(G,H,M) :=
α

n2
‖C‖2F +

α

n2
‖D‖2F (31)

− 1

n2
max

P∈E∩N

{
2α tr(CPDP>)− (1− α) tr(M>P)

}
,

where α ∈ [0, 1] is a trade-off between structure and feature
measure. For simplicity, we will only present the treatment
for two graphs of the same size. The extension to different
sizes can be easily derived in the same way as in Section 2.3.
Similar to Q, with the additional linear term tr(M>P),
there is no closed-form solution even if we replace the do-
main of P by O. However, we can still tighten the domain
from O to O ∩ E , leading to our new approximation

OFGW(G,H,M) :=
α

n2
‖C‖2F +

α

n2
‖D‖2F (32)

− 1

n2
max

P∈E∩O

{
2α tr(CPDP>)− (1− α) tr(M>P)

}
.

The pipeline of construction is illustrated in Figure 2. As
α tends to zero, OFGW recovers OGW between only struc-
tures. A number of favorable properties are enjoyed by
OFGW, which are summarized in Theorem 3 below (proof
deferred to Appendix A.3). Although OGW must be non-
negative, OFGW is not guaranteed nonnegative for all M.
To see a counter-example, set C = D = 0 and M = I. For-
tunately, for a large set of M, it still enjoys nonnegativity.

Theorem 3. Suppose M satisfies 1>M1 ≥ n||M̂||∗. Then
OFGW(G,H,M) ≥ 0 for all G, H , and is invariant to
the (different) permutations of G and H . When M = 0, it
degenerates to OGW.

Since M encodes the pairwise distance between two sets
of node features {Xi}ni=1 and {Yi}ni=1 with Mij =

‖Xi −Yj‖2, we can confirm whether the above assump-
tion holds a priori. Interestingly, this is the case in all the
datasets considered in our experiment. For datasets with-
out node attributes and labels, we take node degree as their
features. In the sequel, we will make this assumption on M.



Although OFGW is still intractable in general, local opti-
mization can be performed very efficiently. As will be shown
in Section 4.1, it also admits a tight lower bound using the
same relaxation technique as for OGW. Now that OFGW
is motivated by computational convenience, one may natu-
rally wonder whether it captures as much graph structure as
the original FGW does. We verified this in the affirmative
by following Vayer et al. [2019a], where FGW is used as
a kernel function served in a support vector machine. In
Section 5.1, we will show that replacing FGW by OFGW
achieves similar or better classification accuracy on a variety
of datasets, corroborating the effectiveness of OFGW.

4.1 UPPER AND LOWER BOUNDS OF OFGW

Following (7), plugging P = 1
n11> + VQV> into the

optimization objective in (32) yields

max
P∈O∩E

{2α tr(CPDP>)− (1− α) tr(M>P)} (33)

= 1
2nsF −

α
2nsM + max

Q∈O
2α tr(ĈQD̂Q>) + tr(F̂>Q)︸ ︷︷ ︸

=: Q(Ĉ,D̂,F̂)

,

where F := 2α
n C11>D− 1−α

2α M. It reveals that compared
with the expression of GW in (8), the additional linear term
M in the FGW formulation does not change the structure.
As a result, we can again derive the lower bound of Q,
i.e., upper bound of OFGW, by using the projected quasi-
Newton as before. And a lower bound of OFGW can also
be obtained by decoupling the Q in the two terms of (33).
Specifically, by using the Qub defined (11) via decoupling
into Q1 and Q2, we obtain

OFGWlb(G,H,M) =
α

n2
‖C‖2F +

α

n2
‖D‖2F

− 1

n2

[
2αQub(Ĉ, D̂, F̂) +

sF
n
− 1− α

2αn
sM

]
. (34)

5 EXPERIMENTS

We now demonstrate the empirical effectiveness of OGW
and OFGW via two applications: graph classification and
barycenter problem. We will also illustrate the tightness of
our lower bound OGWlb. All the code and data are available
at https://github.com/cshjin/ogw.

5.1 EFFECTIVENESS OF OGW/OFGW

Recall in Figure 2, N ∩ E was replaced by O ∩ E because
the latter enjoys tight and efficiently computable upper and
lower bounds. So it is important to validate the resulting
OGW/OFGW as an equally good measure of comparing
two graphs as the vanilla GW/FGW.

Datasets. We experimented on six graph classification
datasets: BZR, COX2, MUTAG, PTC-MR, IMDB-Binary,
and IMDB-Multi [TUDataset]. Their statistics are given
in Appendix A.8. The first four datasets contain a collec-
tion of molecules (e.g., chemical compound and ligands),
where the vertices represent atoms and edges are chemical
bonds. The class label represents a certain property of the
molecules, e.g., "mutagenic effect on a specific bacterium"
(MUTAG) and carcinogenicity of compounds for male rats
(PTC-MR). BZR and COX2 consist collections of ligands
for the benzodiazepine receptor and cyclooxygenase-2 in-
hibitors, respectively. IMDB-Binary and IMDB-Multi are
the movie collaboration dataset, where nodes represent ac-
tors/actresses who played roles in movies in IMDB, and one
edge means two played in the same movie. We group the
dataset into three categories according to their feature prop-
erty: vectorized, discrete, and no features. For the datasets
with no features, we take the node degrees as their features.

Settings. In order to evaluate a discrepancy measure d, we
follow Vayer et al. [2019a] by studying the graph classifi-
cation accuracy of an SVM, whose kernel k(G,H) is com-
puted by exp (−γd(G,H)). For both FGW and OFGW, the
feature distance matrix M employed the squared Euclidean
distance. Since OFGW itself is intractable to evaluate, we
resort to the lower bound of OFGW in (31) which has an
analytic form and is nonnegative. For the vanilla GW/FGW,
we adopt the implementation from POT package [Flamary
et al., 2021], which initiates the transition matrix by the
outer product of marginal distributions. And we instantiate
the cost matrix cG by all-pair shortest path for each graph in
the datasets, knowing that the structures are all connected.
We evaluate the models by cross-validation on the hyperpa-
rameters in SVM, setting γ from

{
2−10, 2−9, · · · , 210

}
and

C from 2−4 to 24 on evenly log scale with 15 steps. More-
over, for the FGW/OFGW, we cross-validate the value of
α from [0, 1] with grid search.

In addition, we consider the graph kernel methods as the
baselines. More specifically, we adopt the implementation of
shortest path (SP) kernel [Borgwardt and Kriegel, 2005] and
graphlet sampling (GK) kernel [Przulj, 2007] from Siglidis
et al. [2020]. SP kernel decomposes graphs into shortest
paths and compares pairs of shortest paths according to their
lengths and the labels of their endpoint, while GK kernel
decomposes graphs into graphlets, i.e., small subgraphs
with k nodes where k ∈ {3, 4, 5, · · · }, and counts matching
graphlets in the input graphs.

Results. The average accuracy achieved with 10-fold
cross-validation is presented in Table 1. To see the effective-
ness of OGW and its lower bounds (OGWlb and OGWo),
we compare their accuracy against that of the vanilla GW
and its first lower bound (GWflb). In addition, we also in-
clude FGW and OFGW that incorporate node features. As
the table shows, the tractable lower bounds of our proposed

https://github.com/cshjin/ogw


Table 1: Graph classification

Dataset Graph kernel GW-based SVM OGW-based SVM
SP GK (k = 5) GW GWflb FGW OGWub OGWlb OGWo OFGWlb

Vec.
Attr.

BZR 78.8 ± 3.3 78.8 ± 3.3 84.9 ± 1.8 78.8 ± 1.0 84.8 ± 3.2 78.8 ± 1.0 83.4 ± 3.4 83.4 ± 3.4 84.3 ± 3.8

COX2 78.2 ± 0.4 78.2 ± 0.4 76.2 ± 2.1 78.8 ± 2.2 78.5 ± 1.9 78.4 ± 1.8 78.1 ± 1.8 78.2 ± 0.8 80.2 ± 2.4

Disc.
Attr.

MUTAG 78.2 ± 4.1 66.5 ± 0.9 85.1 ± 3.4 60.5 ± 2.3 85.7 ± 2.4 66.5 ± 2.3 82.8 ± 3.0 82.8 ± 3.0 85.4 ± 1.7

PTC-MR 57.3 ± 1.0 55.8 ± 0.7 53.4 ± 4.3 60.2 ± 5.1 51.8 ± 3.4 59.5 ± 10.1 57.9 ± 4.5 57.9 ± 4.5 57.1 ± 4.1

No
Attr.

IMDB-B 57.5 ± 2.6 60.1 ± 2.4 63.4 ± 0.9 63.7 ± 4.0 65.6 ± 1.8 65.1 ± 0.3 68.3 ± 1.7 67.4 ± 1.1 67.3 ± 2.1

IMDB-M 39.7 ± 1.8 38.2 ± 2.7 47.5 ± 2.3 43.2 ± 2.6 49.7 ± 1.7 48.1 ± 2.2 48.5 ± 1.9 47.9 ± 1.2 47.1 ± 2.3
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Figure 3: Average value of GW and OGW as compared with their respective lower bounds to demonstrate the tightness of
the lower bounds. The running time of these lower bounds is also compared.

metric OGW have comparable performance with GW and
its variant. With the additional information from node fea-
tures (except IMDB datasets), the OFGW provides higher
accuracy in general. It corroborates that the chain in Fig-
ure 2 preserves important structures in graphs, making the
tractable lower bounds of OGW/OFGW sound discrepancy
measures for graphs. Moreover, OGWlb achieves higher ac-
curacy than OGWo on two datasets, and performs similarly
on the other four datasets.

5.2 TIGHTNESS OF THE LOWER BOUND

The tightness of our lower bound OGWlb, with respect to
OGW, can be evaluated through its difference to the upper
bound OGWub, which is obtained by the projected quasi-
Newton method. Such a gap will be compared with its coun-
terpart in GW distance, where the upper bound is served by
a local optimizer based on the conditional gradient method,
and the lower bounds are proposed by Memoli [2011], in-
cluding FLB, SLB, and TLB (the best known lower bound).

Synthetic data. To demonstrate the tightness in synthetic
data, we generate a path graph with 20 nodes and randomly
perturb δg ∈ [1, 10] edges for 50 times, so that we can
measure the distance (dissimilarity) between the original
graph and the perturbed graph under different measures.
Only connected graphs are kept. Figure 3a and 3b provide,
respectively for GW and OGW, the average distance as a

function of the number of perturbed edges. The gap between
OGWub and OGWlb is much tighter than the best gap for
the GW case, i.e., GW− GWtlb.

Note that TLB of GW requires O(n5) computational time,
while OGWlb only costs O(n3). To verify it, we measure
the running time by varying the graph sizes. For each graph
size that ranges from 10 to 1000, 20 Erdős-Rényi random
graphs are generated, ensuring they are connected. Then
their average running time is reported in Figure 3c, which
clearly matches the analyzed computational complexity.

Real-world data. We also examine the gap between lower
and upper bounds on the real-world dataset MUTAG by eval-
uating pairwise distance. Figure 4a provides the distribution
of the gaps from GW and OGW. For GW, we report the gap
between GW local optimizer and GWtlb. Clearly, the gap
between OGWub and OGWlb centers around 0.1, while that
between the GW and its TLB concentrates around 1.

In addition, we also compare in Figure 4b the tightness of
OGWlb and OGWo, both as a lower bound for OGW. Each
point in the scatter plot represents a graph in the MUTAG
dataset, and the horizontal (resp. vertical) axis is the gap be-
tween the upper bound of OGW and OGWlb (resp. OGWo).
The fact that the vast majority of the points lie above the di-
agonal confirms the superior tightness achieved by OGWlb.
This demonstrates the benefit of employing E in the con-
straint and separating Q1 and Q2 in (11). More tightness
results on other datasets are provided in Appendix A.9.
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Figure 5: Optimized barycenter. Subfigures (a-c) show the C∗

retrieved by optimizing the barycenter. Subfigures (d-f) show
the reconstructed graph from the optimal cost matrix C∗.

5.3 BARYCENTER

In the last set of experiments, we evaluate the ability of
OGWlb and OGWub to solve the barycenter problem.

Synthetic data. To start with, we generate a set of cycle-
like graphs with different sizes ranging from 15 to 25. In
addition, we also explicitly add random structural noise
to the graphs separately, and pre-compute their shortest
path as cost matrices. All synthetic samples are plotted
in Appendix A.10. To initialize the barycenter, we fix the
number of nodes to be 20 and initiate a random symmetric
C when starting the block coordinate descend to update
P. For GW, we adopt the implementation from Peyre et al.
[2016] to find the optimal cost matrix of the center. For the
OGWlb and OGWub, we solve the problem by our proposed
eigen projection method in Section 3.

To better visualize the results, we also reconstruct the ad-
jacency matrix following a standard heuristic [Vayer et al.,
2019a]. In particular, for a given threshold, a pair of nodes
can be connected by an edge if and only if their correspond-
ing entry in the cost matrix is below the threshold. Then
we perform a line search on the threshold to minimize the
difference between the optimal cost matrix and the one cor-
responding to the threshold based adjacency matrix. From
Figure 5, we can see the reconstructed cost matrix for the
barycenter from our OGWlb and OGWub are well aligned
to its node ordering. We also recognize that the result from
GW is just one of the local minimizers in the context of
permutation. Due to the tightness between the lower and
upper bounds, it is also hard to differentiate the structures
found by OGWlb and OGWub (i.e., sub-figures e and f).

Point cloud data. We also explore the barycenter on point
cloud dataset called MNIST-2D 1. Refer to Appendix A.10
for the plots of the corresponding point cloud data. Clearly,
the point clouds for 6 and 9 are quite similar up to rotation.

1Point cloud MNIST-2D dataset: https://www.kaggle.
com/cristiangarcia/pointcloudmnist2d

Table 2: Barycenters from point cloud MNIST-2D samples

GW OGWlb OGWub

y
=

0
y

=
6

y
=

9

The point cloud is modeled by a graph whose nodes corre-
spond to non-zero (non-black) pixels, represented by their
2D coordinates. Without constructing the explicit mesh con-
nections between pixels, we take the Euclidean distance
as their cost matrix Di. After retrieving the optimal C∗ of
the barycenter, we further uncover the associated optimal
coordinates. A BFGS optimizer was used to seek the locally
optimal coordinates such that the resulting Euclidean dis-
tance between pixels best reconstructs C∗. Clearly, such a
recovery can only be up to the standard invariant transfor-
mations such as rotation and shift, and they are determined
by the random initialization of BFGS.

Table 2 illustrates the optimal point clouds with labels to be
0, 6, and 9. We sample 5 different point clouds for each digit
and set the weight λi to the uniform distribution. Moreover,
we fix the number of nodes on the barycenter as the mini-
mum size from the samples. Compared with GW, OGWlb

and OGWub clearly find better point clouds of the barycen-
ter in the cases of digit 6 and 9. Moreover, thanks to the tight
gap between the lower bounds, the performance of OGWlb

and OGWub differ only indistinguishably.
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