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Abstract

Gaze target detection (GTD) is the task of predicting where a person in an image is looking.
This is a challenging task, as it requires the ability to understand the relationship between
the person’s head, body, and eyes, as well as the surrounding environment. In this paper,
we propose a novel method for GTD that fuses multiple pieces of information extracted
from an image. First, we project the 2D image into a 3D representation using monocular
depth estimation. We then extract a depth-infused saliency module map, which highlights
the most salient (attention-grabbing) regions in image for the subject in consideration. We
also extract face and depth modalities from the image, and finally fuse all the extracted
modalities to identify the gaze target. We quantitatively evaluated our method, including
the ablation analysis on three publicly available datasets, namely VideoAttentionTarget,
GazeFollow and GOO-Real, and showed that it outperforms other state-of-the-art methods.
This suggests that our method is a promising new approach for GTD.

Keywords: gaze target detection, gaze-following, 3D gaze, free-viewing, saliency, depth
map, 3D projection, point cloud, multi-modal, fusion

1. Introduction

It is general phenomenon that human gaze acts as a natural cue which provides rich con-
textual information on the attention of individuals when it comes to social interactions,
engagements and communication. Gaze is a fundamental human communication mean,
since it can express emotions, feelings, and intentions (Lund, 2007). Human beings have a
remarkable capability to follow the gaze of others to understand their gaze target, under-
stand whether a person is gazing at them and determine the attention of others (Chong
et al., 2018). GTD, also known as gaze-following, is an active research area and can have a
wide range of applications, including human-computer interaction, educational assessment,
treatment of patients with cognitive or neurological disorders such as early diagnosis of
ADHD (Attention Deficit Hyperactivity Disorder) in children and so on.

Gaze estimation (GE) utilizes eye or facial images of a person to estimate the direction
of gaze for the person (Huang et al., 2017) (Krafka et al., 2016). These methods utilize facial
features of the person, such as the eyes, nose, and mouth, to estimate the three-dimensional
orientation (i.e. Yaw, Pitch and Roll) of the face and predict the gaze direction. These
methods can be less accurate, especially in challenging conditions such as low lighting or
when the person is wearing glasses. Typical gaze detection and tracking systems often
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require a calibration step, where the user is asked to look at various points before usage of
such a system. Also, such gaze tracking systems are constrained because they are designed
to monitor the gaze of one person when the person is well situated within the confined
space of monitoring for the gaze tracking system. An example of such a system is a driver
attention or fatigue detection system in vehicles where the system is expected to monitor
the gaze of the driver seated on the driving seat.

Unlike GE, the GTD of a given person in an image involves learning relationship between
the relative position of the person within the scene and the surrounding objects that lie
within the field-of-view of that person. A robust and scalable gaze target assessment system
is needed to identify the salient objects that people are likely looking at. While significant
progress has been made in GTD from images, incorporating depth-related contextual cues
remains a challenge. Such cues can enhance the accuracy and robustness of GTD, but
reconstructing these cues from 2D images in multiple scenarios is difficult. This problem is
further exacerbated when detecting the gaze target when the person is looking at a point
on a smartphone screen (Zhang et al., 2015), or when predicting fixation on an object when
the person is looking at a salient object within or outside the frame (Chong et al., 2020).
In this paper, we focus on in-frame GTD due to time and scope constraints.

Figure 1: Overview of our multi-modal saliency and fusion architecture for gaze target
detection.

Our GTD architecture consists of two modules, as shown in Figure 1. Firstly, Depth-
Infused Saliency Module (DISM) extracts a map (binary mask) that highlights objects
and artifacts that are in the line-of-sight of the subject’s gaze within the scene. This
map is predicted from the scene features that lie along the subject’s field-of-view, based on
contextual cues such as the subject’s depth and spatial positioning in the scene. The second
module, Multi-Modal Fusion (MMF), blends the DISM map with rich representations of
scene, depth, and head features. This fusion process creates a unified representation of the
scene that incorporates information from multiple sources. Together, the two modules work
together to infer the gaze fixation of a given subject within the image. We further elaborate
this method in Section 3. It is important to mention that many visual-attention-based
saliency models (Itti and Koch, 2001) (Judd et al., 2009) focus on identifying visual gaze
fixations of a person free-viewing a natural image. In GTD, people in the picture might
fixate on objects even when they are not the most salient (Recasens∗ et al., 2015). Our work

2



Leveraging Multi-Modal Saliency and Fusion for Gaze Target Detection

goes beyond this, since we learn gaze target with respect to a person’s viewpoint, and the
learnt saliency map adapts based on the person’s location and facial orientation within the
image. In this research, our network in DISM aims to identify salient scene artefacts specific
to the person in consideration within the image and this may not necessarily be the free-
viewing saliency. Additionally, our MMF module introduces dedicated attention layers to
distill the learnt saliency across face, scene, and depth branches and fuses the multi-modal
embeddings effectively. Such multimodal design leads to achieving better performance when
compared to those presented in similar contemporary prior-art research.

The remainder of this paper is organized as follows: Section 2 reviews state-of-the-art GE
and GTD methods. Section 3 lays out our methodology, including our proposed architecture
for extraction of DISM map and MMF. Section 4 discusses extensive experimental results
and evaluation against established benchmarks using Area Under the Curve (AUC), Dis-
tance and Angular metrics. In Section 5, we summarize our research findings and, Section 6
sets out our goals for extending this work in the future.

2. Related Work

The study of automatic gaze analysis can be divided into two categories: gaze estimation
(GE) and gaze target detection (GTD) (Chong et al., 2020) (Fang et al., 2021) (Recasens
et al., 2017). GE estimates the direction of a person’s gaze, typically in 3D, and does not
necessarily focus on precisely locating the object of their interest (Zhang et al., 2018)(Guo
et al., 2023). Methods such as Parks et al. (2015) estimate the gaze direction and do not
identify the objects that are being attended to. On the other hand, Liu et al. (2020) uses
a head-mounted eye-tracker to estimate the user’s point of gaze. Similarly Thakur et al.
(2021) also elaborate a method to detect where each person in the scene is looking by fusing
videos and Inertial Measurement Unit (IMU) data. However, both these methods focus on
GTD from the first-person viewpoint. There have been significant developments in gaze
and saliency mapping, but robust 3D gaze orientation determination is still a challenging
problem. Chong et al. (2018) rely on a 3D gaze angle regression model for GTD. Subse-
quently, Chong et al. (2020) extends the work to include temporal information to directly
output an estimate of gaze uncertainty. In this paper, we focus on GTD with in-the-wild
images, captured from a third-person viewpoint.

GTD has been evolving given the adaptation of computer vision technologies in human
gaze research. It has become evident that in domains where close-level iris/eye tracking is
not possible, head pose is the most important feature for estimating human focus of atten-
tion, along with other semantic information. While modelling 3D gaze requires additional
human annotations (Jin et al. (2022)), models trained on such datasets still struggle to
generalize to common scenarios. Fang et al. (2021) have pinpointed three significant issues
in previous research. Firstly, most research works explore the gaze direction in 2D repre-
sentation without encoding the depth modality. Secondly, salient object searching from 2D
visual cues without depth understanding. Finally, learning mapping functions directly from
head position to gaze direction without considering the relationship between eyes and head.
Thus a comprehensive understanding of 3D scenes is essential to identify candidate objects
lying at different depth layers along the subject’s gaze direction.
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While many approaches learn the mapping function from head features to gaze di-
rection using 2D visual cues (Recasens∗ et al., 2015) (Chong et al., 2018) (Chong et al.,
2020) (Recasens et al., 2017), estimating depth information from a RGB image is essential to
accurately predicting the gaze target. Fang et al. (2021) and Tonini et al. (2022) introduced
a dedicated depth branch to embed depth-related cues within their architecture. However,
conventional depth estimation is a challenging task given the ill-posed nature of estimating
real depth from a single RGB image. In the context of GTD, for example, using monocular
depth estimation there may be multiple solutions in terms of estimating the distance from
a viewpoint for a given target. Recently, deep neural networks have mitigated this problem
by exploiting multiple visual cues such as relative size, brightness, patterns, and vanishing
points extracted from an RGB image (Shim et al., 2023). New deep-learning frameworks
for head localization and pose estimation on depth images are being used to tackle issues
arising from poor illumination conditions, occlusion, and dynamic scenes (e.g., in low light
and with illumination changes during the day). Moreover, Shim et al. (2023) propose a
transformer-based approach called Relative Depth Transformer (RED-T), which uses rela-
tive depth as guidance in self-attention, such that the model assigns high attention weights
to pixels of close depth and low attention weights to pixels of distant depth. However,
transformer-based models typically require longer training and inference time than CNN
counterparts, especially when a multimodal solution is adopted in the inference pipeline.
Another challenge is the 3D reconstruction of the scene once the depth estimation is done,
in order to place objects in 3D space and align them with their estimated depths.

Saliency mapping, in depth estimation, is another aspect that involves identifying and
highlighting the most visually significant regions in a scene contributing to the depth per-
ception element. Researchers like Recasens∗ et al. (2015) and Chong et al. (2020) present
methods that completely discard utilization of depth modality within their networks which
may prevent the GTD algorithms from identifying salient regions in a scene from the per-
spective of a human observer. Tonini et al. (2022) include a dedicated branch for depth
modality, where the depth is processed as pixels in 2D image space. Fang et al. (2021)
extract a depth-based attention map, however, they utilize only the coarse depth features
for extraction of the saliency map.

One of the challenges, arising from integrating 2D annotation with 3D scene models
for GTD is the semantic understanding and interaction with the scene. Bao et al. (2022)
propose a GTD method that explicitly models 3D scenes using only 2D gaze annotations.
Their research is particularly interesting because it considers 3D geometry to model the
scene for GTD. However, this method assumes that the front-most object is always the
salient object and this may not be valid at all times.

Tu et al. (2022) propose Human Gaze Target detection Transformer (HGTTR), which
simultaneously detects multiple human head locations and their associated gaze targets at
once in an image (instead of salient object detection and gaze prediction separately). This
approach is more computationally efficient than the traditional two-stage head location and
gaze target detection pipeline. However, HGTTR reports high false positives in images
with a single human gaze target, making it less attractive for users evaluating gaze target
detection datasets such as GazeFollow.

In terms of interesting real-world use cases, Senarath et al. (2022) proposed Retail Gaze,
and Tomas et al. (2021) proposed GOO which are datasets for GTD in real-world retail
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environments. There has also been some work in the context of classroom gaze measurement
use-case. Ahuja et al. (2021) develop a new computer vision system that powers a 3D ”digital
twin” of the classroom. GTD is performed by post-processing the estimated gaze orientation
of the face and ArUco markers (Garrido-Jurado et al., 2014) placed on objects around
the classroom. Furthermore, Ömer Sümer et al. (2021) experimented with multimodal
engagement analysis from facial videos in the classroom.

3. Our Methodology

Figure 1 outlines our method which extracts the DISM map Si using depth map Di, binary
face mask Mi, and cropped face Fi. The scene image Ii along with other modalities Di,
Fi, Mi, Si are fused to estimate the gaze target point of any given person in an image.
Furthermore, our methodology has been clearly explained in Algorithm 1.

Algorithm 1: Method for Gaze Target Detection
Input: Image stream I1, . . . , In
Output: Heatmap Hi

Given: Depth-Infused Saliency network fds, Scene Branch fs, Depth Branch fd,
Face Branch ff , Fusion Branch fn

Function Depth Infused Saliency(Di,Mi,Fi):
return Si = fds(Di,Mi, Fi)

End Function
Function Multi Modal Fusion(Si,Ii,Di,Mi,Fi):

scene features = fs(concatenate(Ii, Mi))
depth features = fd(concatenate(Di, Si))
face features = ff (Fi)
modulated scene features = modulate scene(scene features, face features, Si)
modulated depth features = modulate depth(depth features, face features, Mi)
gaze fixation = fn(modulated scene features, modulated depth features)
return gaze fixation

End Function
Function GazeTargetDetection(Ii, Di, Mi, Fi):

Si = Depth Infused Saliency(Di,Mi,Fi)

gaze fixation = Multi Modal Fusion(Si,Ii,Di,Mi,Fi)

return gaze fixation
End Function

for i← 1 to n do
Extract Di, Mi, Fi from Ii
Hi = GazeTargetDetection(Ii, Di, Mi, Fi)

end

3.1. Depth-infused Saliency Module (DISM)

The depth-infused saliency network, fds, uses a Feature Pyramid Network (FPN) architec-
ture (Lin et al., 2017) to learn high-level semantic saliency for the subject of interest. The
network takes a concatenated 7-channel input of the scene depth map Di, binary head posi-
tion mask Mi, and face image Fi. Mi and Di encode the subject’s relative three-dimensional
position in the scene. Fi helps the model to focus on scene artefacts that lie along a pro-
jection plane originating from the subject’s facial position along the depth axis and are
directed parallel to the facial orientation vector. The network finally predicts a DISM map,
Si that highlights the most likely gaze fixation artefacts for the subject in the scene. An
overview of the depth-infused saliency network fds is shown in Figure 2.
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It is our intention to simplify the learning objective of DISM and utilize it to pro-
vide rich cues for the MMF module. We bin the human gaze direction θ along the depth
plane θd into forward (θdf )(90

◦), intermediate-forward (θdif )(45
◦), same-plane (θds)(0

◦),
intermediate-backward (θdib)(−45◦) and backward (θdb)(−90◦) directions. The gaze direc-
tion along the image plane θxy is binned into lower-right (θxylr)(30

◦), straight (θxys)(90
◦),

lower-left (θxyll)(150
◦), upper-left (θxyul)(220

◦) and upper-right (θxyur)(320
◦) directions. At

any instance, the 3D-gaze angle will comprise an image plane component and a depth
plane component. That is, θ = [θxy, θd], where θxy ∈ {θxylr , θxys , θxyll , θxyul , θxyur} and
θd ∈ {θdf , θdif , θds , θdib , θdb}.

Figure 2: Overview of DISM. We take 3D projection of depth map Pd alongside gaze binning
parameters θd and θxy to extract a sub-collection of filtered 3D points Pc. The
re-projection of Pc back to the image-plane serves as pseudo-labels for the FPN
network, fds. The network provides a representation of the learned DISM map
Si.

3.1.1. Data pre-processing

Pseudo-labels for DISM require relative depth between face and target point, computed
using monocular depth estimation techniques such as Ranftl et al. (2020) and Ranftl et al.
(2021). Depth plane gaze angle θd is extracted using average depth of face df and target
points dt, and empirically setting depth plane binning thresholds γ1 and γ2 to 3 and 10
respectively.

θd =



θds , if df − dt < γ1

θdif , if γ1 < df − dt < γ2

θdib , if γ1 < dt − df < γ2

θdf , if df − dt > γ2

θdb , if dt − df > γ2

(1)

The gaze direction along the image plane θxy is extracted from the pixel positions of
the eye (ex, ey) and the gaze target (gx, gy). Given θxy ∈ {θxylr , θxys , θxyll , θxyul , θxyur}, the
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image angle α is discretized which assumes one of the values within θxy. α is computed as:

α = arctan
gy − ey
gx − ex

(2)

where the fraction calculates the gradient between the eye location and gaze fixation points.

3.1.2. Depth-infused saliency map

The dataset A comprises of N images such that A = {Ii, Di,Mi, Fi}Ni=1, where Ii ∈
RHi×Wi×3 is i-th image in the dataset. Hi and Wi denote the width and height of im-
age. Di is the depth map of Ii. The binary mask of the head position of the subject within
the scene is denoted as Mi and Fi is the cropped face of the subject. The DISM map for all
images is represented as S = {Si}Ni=1 = {{smi }Hi×Wi

m=1 }Ni=1 where smi ∈ {0, 1} denote presence
of m-th pixel in DISM map of i-th image, with m = [1, ...,Hi ×Wi]. We can represent the
network fds which predicts the DISM map Si as :

Si = fds(Di,Mi, Fi) (3)

In order to extract the ground truth DISM map Si (pseudo-labels), the depth map is
projected onto a 3D grid representation using focal length (fx, fy) and optical centre (cx, cy)
of the depth camera parameters from Places dataset. The extrinsic parameters are assumed
to be an identity matrix. Let Pd be the collection of 3D projection points of the depth map
Di. For every pixel location (a, b) of the depth map, p is a point within the collection Pd

such that :

p =


px = (j−cx)Di[a,b]

fx

py =
(i−cy)Di[a,b]

fy

pz = Di[a, b]

(4)

A cuboid aligned along θxy in the XY plane and θd in the Z plane is projected from
the face position in 3D space. The orientation of the 3D projection cuboid is determined
using the image plane and depth plane gaze angle parameters θxy and θd obtained from
Equation (1) and (2), respectively. Pc is the collection of 3D points within the volume of
the projected cuboid, where Pc ⊂ Pd. The collection, Pc is then re-projected back to the
image plane as a binary mask using the depth camera parameters to finally derive the DISM
map Si. The ground truth saliency mask, Si, and prediction saliency mask, Ŝi are trained
with the objective of minimizing the Jaccard distance (JD). We have opted for JD as it is
considered suitable for binary segmentation tasks or mask comparison, especially in our case
where precise delineation of regions matters a lot. The metric provides normalized measures
of IOU along with computational efficiency and interpretability benefits which allows for
meaningful comparison across different scales. The objective function to minimize JD is
given by Lj as :

Lj(Si, Ŝi) = 1− (Si · Ŝi) + ϵ

(Si + Ŝi − Si · Ŝi) + ϵ
(5)

where ϵ prevents zero division.
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Our method in DISM generates 3D point clouds and embeds complete 3D information
when modelling the DISM map and makes no assumptions regarding the spatial relationship
of the salient points with respect to the subject. Our network supports deep supervision
and is trainable end-to-end. Furthermore, our network is groundbreaking in its approach,
as it addresses the task of modelling the likelihood of a subject’s gaze location within the
scene as if it were a scene segmentation problem.

3.2. Multi-Modal Fusion (MMF) module

The MMF network, fmm is shown in Figure 3. It outputs a heatmapHi ∈ RHi×Wi reflecting
the probability of the gaze fixation point for a subject within the scene. We utilize the scene
image Ii, the depth map Di, the cropped face Fi, the binary face position mask Mi, and the
DISMmap Si to identify the gaze target. We can represent the network fmm mathematically
as:

Hi = fmm(Ii, Di,Mi, Fi, Si) (6)

where Si is obtained from the DISM network fds in Equation (3).

Figure 3: Our MMF module comprises three branches - face, scene, and depth. The three
branches are fused in the Fusion module. The output of the module is a 2D
Heatmap Hi superimposed on the scene image Ii here for visualization.

Face Branch ff extracts facial features of dimension 1024 × 7 × 7 from the cropped
face image Fi using the face backbone. It then average-pools the extracted features to eFi ,
which has dimensions 1024 × 1 × 1. eFi is then separately processed using a set of linear
projections to learn the attention weights. Attention Layer 1 embeds the depth relevance
by concatenating eFi with the max-pooled and flattened DISM map eSi , which represents the
salient depth information in the scene. Attention Layer 2 embeds the spatial relevance of
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the face by concatenating eFi with the max-pooled and flattened binary face position mask
eMi . Both attention layers (attnS

i and attnM
i ) are represented as a set of linear projections

fS and fM , respectively. These linear layers are then passed through a softmax function
that applies weightage to spatial and depth-relevant cues within the image.

attnS
i = Φ(fS(e

F
i ⊕ eSi ))

attnM
i = Φ(fM (eFi ⊕ eMi )) (7)

where ⊕ denote concatenation operation and Φ denote softmax function.
Scene Branch fs branch takes as input the scene image Ii and the binary face position

mask Mi. The two inputs are concatenated and passed through the scene backbone to
extract the scene embedding eIi , where each embedding has a dimension of 1024 × 7 × 7.
eIi is then modulated by attnS

i . The dimension of attnS
i is 1× 7× 7. The modulated scene

embedding eI∗i has a dimension of 1024× 7× 7 and is given by :

eI∗i = eIi ⊗ attnS
i (8)

Depth Branch fd takes the depth map Di and DISM map Si as inputs. The two
inputs are concatenated and passed through the depth network backbone. The output depth
embedding eDi from the network has a dimension of 1024×7×7. The depth embeddings are
also modulated by attnM

i having a dimension of 1×7×7. The modulated depth embedding
eD∗i with the dimension of 1024× 7× 7 is given by :

eD∗i = eDi ⊗ attnM
i (9)

where ⊗ represents elementwise multiplication operation.
The modulated scene embeddings eI∗i and depth embeddings eD∗i are concatenated with

face embeddings eFi and are separately encoded using scene and depth encoders f I
e and fD

e .
The encodings are fused by summation and finally passed on to a decoder fd for predicting
the gaze target heatmap Hi. The MMF network fmm can thus alternatively be represented
as :

Hi = fmm(Ii, Di,Mi, Fi, Si) = fd
[
f I
e (e

I∗
i ⊕ eFi ) + fD

e (eD∗i ⊕ eFi )
]

(10)

The ground-truth gaze heatmap, Ĥi is attained by overlaying a Gaussian weight centred
around the target gaze point. The objective of the network is to minimize the Heatmap
Loss Lh which is computed using Mean Squared Error (MSE) loss for cases when the gaze
target is present inside the frame for N instances within the dataset.

Lh(Hi, Ĥi) =

N∑
i=1

(Hi − Ĥi)
2 (11)

3.3. Implementation Details

We have implemented the training and inferencing pipeline of our model using the PyTorch
framework. All inputs are normalized and resized to 224×224 pixels. DISM uses a Resnet-
101 (He et al., 2015) backbone pre-trained on ImageNet (Russakovsky et al., 2015). It has
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a 5-stage encoder design with 256 and 128 convolution filters in the FPN feature pyramid
and segmentation blocks, respectively. All backbones in the MMF module are pre-trained
similar to Chong et al. (2018), Chong et al. (2020) and Fang et al. (2021). The scene
and depth backbones were pre-trained on the Places dataset (Zhou et al., 2014), and the
head backbone was pre-trained on the Eyediap dataset (Funes Mora et al., 2014). The face,
scene, and depth feature extractors use Resnet-50 (He et al., 2015) backbones. The network
outputs a 64 × 64 gaze heatmap. We use random crop, colour manipulation, random flip,
and head bounding box jittering for data augmentation during training. We train the DISM
and MMF module on GazeFollow (Recasens∗ et al., 2015) until convergence; then fine-tune
on VideoAttentionTarget (Chong et al., 2020). We also train the network from scratch on
the GOO-Real (Tomas et al., 2021) dataset. We use the Adam optimizer (Kingma and Ba,
2014) with a learning rate of 0.00025 and a batch size of 48.

4. Experiments

We quantitatively and qualitatively evaluated our full model on the VideoAttentionTarget,
GazeFollow and GOO-Real datasets. We followed the standard training/testing splits of all
datasets for a fair evaluation. We demonstrate that our method surpassed the performance
of prior methods across most metrics in Section 4.3. Moreover, we perform an ablation
study in Section 4.4 to validate the effectiveness of each module within our architecture.

4.1. Datasets

VideoAttentionTarget dataset comprises 164,541 frame-level head bounding boxes with
109,574 in-frame gaze targets and 54,967 out-of-frame gaze annotations. 10 shows were
kept aside as test split, which comprises of 31,978 gaze annotations. GazeFollow dataset
comprises of 122,143 images and about 160,000 annotations of people head bounding boxes
and their corresponding gaze points. Gaze On Objects (GOO) dataset focuses on the
retail environment where several grocery items are placed on shelves to imitate a real grocery
store. GOO comprises 192,000 synthetic images (GOO-Synth) and 9552 real images (GOO-
Real).

4.2. Evaluation Metrics

We use three evaluation metrics in line with previous works such as Chong et al. (2018,
2020); Fang et al. (2021); Recasens∗ et al. (2015); Lian et al. (2019); Tonini et al. (2022) to
assess our model’s performance. In the GazeFollow dataset, the ground truth gaze target
location is estimated by taking the average of the annotations provided by 10 different
human annotators for each image and subject. Area Under Curve (AUC): We compare
the flattened output gaze heatmap to the flattened binarized ground truth heatmap and
plot the ROC curve using True Positive Rate and False Positive Rate. The AUC score is
the area under this curve, with a score of 1.0 denoting perfect agreement of the prediction
with the ground truth. L2 Distance(Dist.): The Euclidean distance between the ground
truth target location and prediction heat map maximum is measured after normalizing the
image height and width to 1. For the GazeFollow dataset, we also calculate the minimum
distance (Min. Dist.) between the predicted gaze point and the 10 ground truth gaze target
points for each subject. Angular error(Ang.): This metric reports the angular difference
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between the predicted gaze direction and the ground truth gaze vector between face location
and gaze point. We report all results from our experiments in Table 1 and Table 2.

4.3. Multi-Modal Saliency and Fusion Model Evaluation

We compare our model to several state-of-the-art architectures (Chong et al., 2020) (Recasens∗

et al., 2015) (Lian et al., 2019) (Chong et al., 2018) (Fang et al., 2021) (Jin et al., 2022) (Bao
et al., 2022) (Tonini et al., 2022) for in-frame gaze target detection. We observed that the
overall performance of our model is better on VideoAttentionTarget and GOO-Real, which
have higher-resolution images than GazeFollow. The improved resolution translates to bet-
ter depth map representations and generation of more accurate DISM maps from the 3D
projections. See Figure 4 for visualizations of depth maps, DISM maps, MMF heatmaps,
and predicted gaze target points for example cases from different datasets.

Input Image Depth Map DISM Map MMF
Heatmap

Target
Prediction

Figure 4: Visualization results. This figure shows examples from the VideoAttention-
Target (first two rows), GazeFollow (middle two rows), and GOO-Real (last two
rows) datasets. Each row shows the input image, depth map, DISM map, MMF
heatmap, prediction result, and ground truth.
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4.3.1. Evaluation on VideoAttentionTarget

Quantitative results on VideoAttentionTarget dataset are summarized in Table 1. Random
denotes that the prediction is made with 50% chance by sampling the values randomly from
a Gaussian distribution. In Fixed bias, the bias present in the dataset in terms of position of
the faces and the relative gaze fixation points are taken into consideration. It is to be noted
that the method in Chong et al. (2020) uses a spatio-temporal architecture for video-based
prediction (denoted as VideoAttn). For fair comparisons, we also include the performance
of its spatial-only counterpart (denoted as VideoAttn†).

Ours‡ refer to the GazeFollow-trained model (no fine-tuning) and Ours refer to the
GazeFollow-trained model that is fine-tuned on VideoAttentionTarget. It is interesting
to note that the performance of our model surpasses the performance of Chong et al.
(2020) without the inclusion of any temporal features for video-based gaze target detection.
Our proposed architecture also exhibits impressive generalization capabilities. The model
trained purely on GazeFollow (Ours‡) outperforms all other state-of-the-art architectures
that were finetuned on VideoAttentionTarget in the AUC metric. Finally, the fine-tuning of
our model on VideoAttentionTarget (Ours) results in new state-of-the-art scores for both
AUC and Dist. metrics. Some qualitative images are shown in Figure 5.

Table 1: Evaluation on VideoAttentionTarget and Goo-Real. ∗ indicates taken from Tomas
et al. (2021). The best and second-best scores are highlighted in teal and red.

Method VideoAttentionTarget GOO-Real
AUC↑ Dist.↓ AUC↑ Dist. ↓

Random (Chong et al., 2020) 0.505 0.458 - -
Fixed Bias (Chong et al., 2020) 0.728 0.326 - -
Recansens et al. (Recasens∗ et al., 2015) - - 0.850∗ 0.220∗

Lian et al. (Lian et al., 2019) - - 0.840∗ 0.321∗

Chong et al. (Chong et al., 2018) 0.830 0.193 - -
VideoAttn† (Chong et al., 2020) 0.854 0.147 - -
VideoAttn (Chong et al., 2020) 0.860 0.134 0.796∗ 0.252∗

Danyang et al. (Tu et al., 2022) 0.893 0.137 - -
Fang et al. (Fang et al., 2021) 0.905 0.108 - -
Jin et al. (Jin et al., 2022) 0.901 0.116 - -
Bao et al. (Bao et al., 2022) 0.885 0.120 - -
Tonini et al. (Tonini et al., 2022) 0.940 0.129 0.918 0.164
Ours‡ 0.958 0.123 0.876 0.208
Ours 0.964 0.100 0.954 0.130

Human 0.921 0.051 - -

4.3.2. Evaluation on GOO-Real

Similar to the notation scheme above, Ours‡ denote the performance of the model trained
on GazeFollow and tested on GOO-Real. The performance of the model trained from scratch

12
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Figure 5: Qualitative results. The red and green lines denote ground truth and predic-
tions respectively. The first two rows represent the changes in gaze target points
of a subject from video sequences in VideoAttentionTarget. The last two rows
are images from GOO-Real for varying head poses.

on GOO-Real is denoted as Ours. The authors of Tomas et al. (2021) trained and tested
the architectures from Recasens∗ et al. (2015), Lian et al. (2019) and Chong et al. (2020)
on GOO-Real dataset. The performance of these models is reported in Table 1. Our model
trained on GazeFollow (Ours‡) was able to surpass the performance of Recasens∗ et al.
(2015), Lian et al. (2019) and Chong et al. (2020) when tested on GOO-Real for both AUC
and Dist. metrics even-though the model was not finetuned for retail gaze target detection
using GOO-Real dataset. The model that was trained and tested on GOO-Real (Ours)
sets the new benchmarks for both the AUC and Dist. metrics. Some qualitative images are
shown in Figure 5.

4.3.3. Evaluation on Gaze Follow

The quantitative results for the GazeFollow dataset are shown in Table 2. The entry la-
belled Center denotes the metrics are calculated by considering the gaze point to always
be at the center of the image. Our model achieves new state-of-the-art in the AUC metric.
Similar to Bao et al. (2022), we believe that AUC is a better metric than Dist. and Angle
for the GazeFollow dataset because the latter metrics are susceptible to errors introduced by
averaging human annotations. For example, Figure 6 shows how averaging human annota-
tions can lead to inconsistent estimates of the ground-truth gaze target point. Our example
case highlights that averaging the human annotations causes the gaze point to drift away
from the true gaze point and causes the averaged gaze point not to be consistently centred
around the object that the person is looking at. We additionally include some challenging
scenarios and failure cases from GazeFollow dataset in Figure 6. Our model generalises
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Table 2: Evaluation on GazeFollow dataset

Method AUC↑ Dist.↓ Min. Dist.↓ Angle↓

Random 0.504 0.484 0.391 69.0
Center 0.633 0.313 0.230 49.0
Fixed bias 0.674 0.306 0.219 48.0
Recansens et al. (Recasens∗ et al., 2015) 0.878 0.190 0.113 24.0
Chong et al. (Chong et al., 2018) 0.896 0.187 0.112 -
Lian et al. (Lian et al., 2019) 0.906 0.145 0.081 17.6
Danyang et al. (Tu et al., 2022) 0.917 0.133 0.069 -
VideoAttn† (Chong et al., 2020) 0.921 0.137 0.077 -
Fang et al. (Fang et al., 2021) 0.922 0.124 0.067 14.9
Jin et al. (Jin et al., 2022) 0.923 0.120 0.064 14.8
Tonini et al. (Tonini et al., 2022) 0.927 0.141 - -
Bao et al. (Bao et al., 2022) 0.928 0.122 - 14.6
Ours 0.932 0.133 0.073 19.3

Human 0.924 0.096 0.040 11.0

well and identifies the correct target gaze heatmap bin consistently, thus achieving new
state-of-the-art scores on the AUC metric.

Figure 6: Qualitative results. Red, green and blue denote average human annotation,
prediction, and head location, respectively. The first row shows inconsistent hu-
man annotation, while our model predicts the same gaze target for all three
subjects. The second row shows our model’s performance in challenging scenar-
ios with complex backgrounds. The last row shows some failure cases, however,
the predicted gaze targets contextually remain acceptable.
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4.4. Ablation Study

In order to better understand the impact of various components within our system, we
conducted further analysis using the GOO-Real dataset. Firstly, we removed the attention
layers attnM

i and attnS
i from the network. This is reflected as injecting eDi instead of eD∗i

into fD
e and eIi instead of eI∗i into f I

e (Attention-None). Next, we removed the DISM map,
Si, and replaced it with a uniformly weighted mask (DISM-None). We then removed all
inputs in relation to the depth map Di. We removed the Depth branch and attnS

i which
modulates the scene embedding eIi based on DISM map which is inherently learned from
the depth map (Depth - None). Finally, we removed the Scene branch. This means that
only the output of the depth encoder fD

e is fed to the decoder fd (Scene-None). We also
evaluated the multi-modal fusion module using ground-truth DISM maps (DISM pseudo-
labels). The results, sorted in the order of their performance are reported in Table 3. We
notice that DISM contributes significantly to the overall model performance. We also show
that all components of our network are necessary to attain exceptional performance.

Table 3: Ablation study on GOO-Real dataset

Method AUC↑ Dist.↓

DISM - None 0.911 0.188
Depth - None 0.915 0.186
Scene - None 0.941 0.140
Attention - None 0.948 0.135
Ours - All (DISM pseudo-labels) 0.959 0.128

Ours - All 0.954 0.130

5. Conclusion

In this research, we have presented a GTD architecture comprising two key modules: Depth-
Infused Saliency and Multi-Modal Fusion. The former focuses on identifying salient artefacts
relevant to the subject within the scene image to generate the DISM map and the latter
leverages the generated DISM map while fusing multiple modalities to generate the gaze
target heatmap. This approach has proven to outperform similar contemporary research
in terms of various state-of-the-art metrics. We presented challenging scenarios and failure
cases to our model to test its generalization capabilities and it consistently pinpointed the
gaze target correctly. This research represents a significant step forward in gaze target
detection, offering a robust and effective approach to understanding human gaze within
complex scenes.

6. Future Work

One of our next goals is to improve our network with a dedicated component for out-of-frame
gaze detection. Furthermore, we envision extending our work into the field of education,
aiming to enhance student-teacher interaction and engagement. Such systems necessitate
a robust face detector. This inspires us to explore transformer-based networks and self-
attention mechanisms, to concurrently identify faces and their associated gaze points.
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