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Abstract

Recent work in interpretability shows that large language models (LLMs) can be
adapted for new tasks in a learning-free way: it is possible to intervene on LLM
representations to elicit desired behaviors for alignment. For instance, adding
certain bias vectors to the outputs of certain attention heads is reported to boost the
truthfulness of models. In this work, we show that localized fine-tuning serves as
an effective alternative to such representation intervention methods. We introduce
a framework called Localized Fine-Tuning on LLM Representations (LOFIT),
which identifies a subset of attention heads that are most important for learning a
specific task, then trains offset vectors to add to the model’s hidden representations
at those selected heads. LOFIT localizes to a sparse set of heads (3% — 10%)
and learns the offset vectors from limited training data, comparable to the settings
used for representation intervention. For truthfulness and reasoning tasks, we
find that LOFIT’s intervention vectors are more effective for LLM adaptation
than vectors from representation intervention methods such as Inference-time
Intervention. We also find that the localization step is important: selecting a task-
specific set of attention heads can lead to higher performance than intervening on
heads selected for a different task. Finally, across 7 tasks we study, LOFIT achieves
comparable performance to other parameter-efficient fine-tuning methods such as
LoRA, despite modifying 20x-200x fewer parameters than these methodsm

1 Introduction

A significant body of work has studied how to localize model behavior within pre-trained Transformer
language models [15, 122} 1211117, 133]]. The localized modules can be used with lightweight interventions
to modify that behavior [21} 35} 31} 18 127, 15} 45]]. These approaches are unified in recent work on
representation intervention [45,41]], which adds offset vectors into various layer representations of a
model to achieve desired behaviors. Computing these vectors from model activations is reported to
require less data and compute than fine-tuning approaches [[15].

At the same time, a distinct line of work has established the effectiveness of parameter-efficient
fine-tuning (PEFT) methods [[11} 1} (9 |16] by updating only parts of the pre-trained weights. Very
recently, new PEFT methods have been proposed to change models’ representations rather than

'An extended version of this paper is available at https://arxiv.org/abs/2406.01563. Our code is
available at|https://github.com/fc2869/1lo-fit.
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Figure 1: LOFIT methodology. LOFIT freezes all pre-trained weights of a transformer language
model and appends two sets of lightweight parameters to the LLM representations with two steps:
Attention Head Selection and Bias Tuning. Only the tuned biases are used in the final model.

weights [39,41]], in line with the motivation of representation intervention. However, these methods
typically do not use any explicit localization step.

In this work, we investigate whether the idea of localization from representation intervention can be
useful for fine-tuning LLMs. We propose Localized Fine-Tuning on LLM Representations (LOFIT;
Figure[T). LOFIT first selects a subset of attention heads to modify for the target task by fine-tuning
scaling factors on the model’s attention head outputs and selecting the heads with the largest norm of
learned scaling weights. Then, we perform a localized fine-tuning step to learn offset vectors added
to these heads’ representations, which gives our final model.

We compare LOFIT with representation intervention methods on truthfulness and reasoning tasks.
We show that LOFIT is substantially more effective than representation intervention baselines, in-
cluding Inference-Time Intervention [15, ITI] and Representation Engineering [45, RepE]. Moreover,
localization is important for LOFIT. Across tasks and models at different scales, using the set of
heads specialized to a particular task improves the final fine-tuning step.

Finally, we compare LOFIT against existing PEFT methods, specifically LoRA [11]], RED [39], and
ReFT [41]. LoFIT is on par with these across various settings for different LLMs, despite using
20x-200x fewer learned parameters.

The main contributions of this work are the following: (1) We introduce LOFIT, a localized fine-
tuning method that achieves competitive downstream performance on truthfulness and reasoning
tasks by modifying the representations of a small number of attention heads. (2) We show the benefits
of localization to particular sets of heads across tasks and models, suggesting that interpretability
methods can be combined with PEFT for strong performance.

2 LOFIT: Localized Representation Fine-Tuning

Preliminaries: Localized Representation Intervention Consider a decoder-only Transformer
model of L layers and a hidden size of d, following notations from [36} |6]. At time step ¢, a
Transformer block of layer [ € [1, L] takes as input the hidden vectors of all previous time steps
R, (where h! € R?) and outputs a hidden representation RIT! for the next layer [ 4+ 1: hiT! =

ht + MultiHead(hlSt) + MLP(R! + MultiHead(hlSt)). MultiHead represents the multi-head



attention outputs with H attention heads of head dimension dj..q after a linear projection wo
20020 Here, 2 € Rinead for

i € [1, H] represents the activations output by the ith attention head at layer . zgl’i) is essentially the

output representation of a single attention head.

PIEEEY)

into the residual stream: MultiHead(hlgt) = concat(

We define localized intervention I = (T, V). Here, T' = {(l1,1) ... (lx,ix)} is a set of K attention
heads to intervene on selected by some scoring function S : (Z*,Z%) — R, where [; denotes
the target layer and 7; denotes the target head at the target layer. V = {vli}(l,i)eT is the set of

offset vectors, where v{ € R?<cad, During inference time, V will be added to offset the targeted

(L,3)

attention activations. That is, z will be overwritten as a linear combination with the offset vectors

zt(l’i) — ztl’i) + aw} if (1,4) € T where « is a constant. Several representation intervention methods

in literature can be cast in this framework [[15, 42| [27]]; details can be found in Appendix @

LOFIT: Localized Representation Fine-Tuning Localized Representation Fine-tuning (LOFIT)
also aims to learn a set of the offset vectors V' in the representation space targeted at a localized set of
heads in T'. As illustrated in Figure|l} our approach also follows a two-step framework.

Step 1. Attention Head Selection: The first step of LOFIT incorporates a learnable vector of scaling
factors A € R <ad for any head at layer | € [1, L] and index i € [1, H] of the pre-trained LLM. A}

can be viewed as scaling each neuron in the activations z,gl’i) of the head ¢ at layer [.

With the scaling factors, during a forward pass, the activation z,gl’i) is rescaled by z,gl’i') — (14

Ao zt(l’i). We freeze all pre-trained weights and learn A} end-to-end with the cross-entropy loss
on a small amount of labeled data from the task of interest. During training, A} is initialized from
N(0,0.4). We regularize the optimization with an L1 normalization with a scaling hyperparameter A
to encourage sparsity for better head selection. We score each head using the norm of the learned
A, ie., 8(i,j) = ||Al|l. A large score S(i, ;) indicates a stronger intervention is needed for a
particular head. Therefore, we select the set of top-K attention heads as 7. K and o 4 are adjustable
hyperparameters. E]

Step 2. Bias Tuning: The second step of LOFIT learns the offset vectors V' added to the hidden
representations of each attention head in 7. We freeze all pre-trained weights and add learnable
parameters V = {v} |(l,4) € T’} such that during a forward pass, the activation zgl’z)

added offset bias vector: ztl’i) —ul e zt(l’l). During training, we learn V' with the cross-entropy loss

on the same training data. v} is initialized from N (0, o,) and o, is an adjustable hyperparameter.

will have an

At inference time, the learned biases V' are added to the hidden representations of the target attention
heads 7T in the same way as a forward pass during training.

3 Experimental Setup

We evaluate LOFIT on truthfulness, multi-hop reasoning, and counterfactual reasoning tasks, which
are common settings for evaluating interpretability-motivated methods [15} 45]], with the following
datasets: Truthful QA [18]], CLUTRR [30], and MQuAKE [43]]. We focus on the common low-data
condition of representation intervention methods: for each dataset, we sample 500 training points or
fewer. Details of datasets and evaluation metrics can be found in Appendix

Baselines: We compare LOFIT with representation intervention methods, including Inference-
time Intervention [15, ITI], and Representation Engineering [45, RepE]. Details are discussed in

Appendix [A.T]
Implementation: We use Llama 2-7B [34], Llama 2-13B, and Gemma-7B [32] for experiments. For

all experiments in Section 4] we select 3% attention heads for each model for LOFIT and ITI and use
the top-1 layer for RepE}’| Details can be found in Appendices

?Further discussion on the hyperparameters of LOFIT can be found in Appendix@
3We discuss the optimal choice of the number of heads to use for LOFIT in Appendix@



Table 1: Test accuracy of LOFIT against representation intervention baselines. LOFIT beats baselines
by a large margin across all settings on all models.

Truthful QA MQuAKE  CLUTRR

MCI  MC2 EM EM Average

Oshot 315  48.1 233 602 4038

Gommap 1T 297 500 495 673 49.1
emma- RepE 385 537 54.2 66.9 53.3
LOFIT  60.5 794 69.4 86.7 740

Oshot 284 434 189 647 388

ITI 34 495 345 682 46.4

Llama2-7B - pooE 468 644 379 662 538
LOFIT 581 758 73.4 89.7 743

Oshot  29.1 443 254 64.7 409

Tl 327 417 403 727 483

Llama2-13B  pok 437 664 406 641 55.1
LOFIT 567 7640 762 89.7 746

Table 2: Bias tuning accuracy using attention heads from LOFIT against other head selection methods.
For TruthfulQA, we report MC1 accuracy. Best results are bolded. Fine-tuning the representations of
LOFIT heads leads to consistently better performance than other head selection methods.

Probe-layers ~ Random  Bias-based  ITI-heads = LOFIT

TruthfulQA 46.7 552 56.7 56.7 60.5
Gemma7s  MQUAKE 712 65.2 710 69.2 69.4
emma- CLUTRR 833 86.0 86.7 84.8 86.7
Average 67.1 68.8 71.5 70.2 72.2

TruthfulQA 526 46.6 523 57.1 58.1

. MQUAKE 7.8 719 722 73.8 734
Llama 278 o R 86.7 88.0 88.2 86.7 89.7
Average 70.7 68.8 70.9 725 737

TruthfulQA 315 543 40.1 56.5 56.7

MQUAKE 74.1 67.1 711 746 76.2

Llama 2138 o 7R 85.6 90.7 90.9 87.6 89.7
Average 63.7 70.7 67.4 729 742

Average 67.2 69.4 69.9 71.9 734

4 Results: Effectiveness of Localization

As shown in Table [T} LOFIT outperforms the representation intervention baselines by a large margin
across all settings. Our learning-based localized intervention can be much more effective than
learning-free alternatives, even with limited training data.

Importance of LOFIT Heads: To validate the effectiveness of our localization method, we compare
it with other head selection methods by tuning the biases V' for a set of heads 7" selected by the
following baseline methods: random sampling; probing for layers; bias-based selection; ITI head
selection. Details of each baseline can be found in Appendix [A.2] Table 2] shows that selecting
attention heads based on LOFIT outperforms all other head localization methods in most settings.
This shows that LOFIT is a strong localization method for finding some optimal sets of attention
heads for learning the interventions.

Effectiveness of Localization: We are also interested in the localization across tasks: is localizing
task-specific attention heads important for learning downstream tasks in the LLM representation
space? To answer this question, we change the sets of head to tune, specifically using the selected
heads from different tasks, and compare the accuracy of LOFIT using different-task heads with
the same-task accuracy. Figure 2] shows that localized interventions by LOFIT are task-specific for
Truthful QA and MQuAKE: tuning biases on same-task heads is consistently better than tuning on
different-task heads by a significant margin across all models. For TruthfulQA, using different-task
heads can lead to as large as 10% absolute performance degradation, suggesting that the selected
heads might have very specific functions. On the contrary, CLUTRR does not require a task-specific
set of heads to achieve good performance, possibly because LLMs can be easily adapted without
task-specific localization for this relatively easy task.
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Figure 2: Test accuracy of using LOFIT heads learned from a different task. Colors reflect relative
accuracy with respect to using same-task heads, with same-task heads (diagonals) representing 100%
relative accuracy. Different-task results with * are significantly lower than the same-task result at
the significance level of 0.05 with a paired bootstrap test and results with + are significantly lower
at the level of 0.1. For TruthfulQA, we report MC1 accuracy. Across models, task-specific heads
consistently outperform different-task heads for Truthful QA and MQuAKE.
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Figure 3: Distribution of LOFIT heads over layers for different tasks. Across tasks, LOFIT heads are
often located in different parts of the model, and layer selection differs between Llama2 and Gemma.

Distribution of LOFIT Heads: We further examine where the task-specific heads reside in LLMs:
do the localized sets overlap, or tend to select heads from similar layers? Figure[3]shows that task-
specific distribution of LOFIT heads over layers peak in some contiguous sets of layers within the
same model rather than being widely spread across layers or concentrated in a single layer, indicating
there is not a single set of heads best for fine-tuning across all tasks.

S Comparison with PEFT Methods

We also compare LOFIT with existing PEFT methods, LoRA [11]], RED [39], and ReFT [41].
Details of the baselines and implementations can be found in Appendix [A.3]

Our focus is on datasets where models can be steered to have the right behavior, e.g., by
interpretability-motivated methods from Section [3] However, for completeness, we include a rep-
resentative selection of datasets from for PEFT methods that cover commonsense reasoning,
open-book/closed-book QA, and mathematical reasoning: SIQA [28], ARC-Challenge [3]], BoolQ
[2]], and SVAMP [24]]. We stick to the low-data setting by sampling 500 training examples or fewer;
details can be found in Appendix [B-2]and Appendix [C] For all the following experiments, we select
10% attention heads for each model: K = 48 for Gemma-7B, K = 96 for Llama 2-7B, and K = 160
for Llama 2-13B.

Table [3|compares LOFIT results with PEFT methods. The results show that across settings from
Section 3] LOFIT outperforms ReFT on average, and gives results comparable to LoRA with 200x



Table 3: Test accuracy of LOFIT and state-of-the-art PEFT methods. Results are averaged over 2
random seeds and the best results are bolded. For LOFIT, we select 10% attention heads. With 20x
- 200x fewer learned parameters, LOFIT is comparable to PEFT models across models and even
outperforms them in some settings.

Evaluation Datasets for Interpretability-motivated Methods

Learned Params Truthful QA MQuAKE CLUTRR Average

# Params % Params MC1 MC2 EM EM 8

RED 229K 0.003% 60.5 78.2 71.9 90.2 75.2

Gemma-7B LoRA 3.21M 0.04% 60.8 78.9 75.7 92.9 771
ReFT 2.10M 0.03% 46.8 69.5 75.4 90.2 70.5

LOFIT 12K 0.0001% 60.2 78.3 73.7 91.2 75.9

RED 262K 0.004% 56.3 76.8 759 89.1 74.5

Llama 2-7B LoRA 4.19M 0.06% 52.6 71.5 75.0 91.1 72.6
ReFT 2.10M 0.03% 48.6 68.8 77.2 87.6 70.5

LoFIT 12K 0.0002% 56.3 74.5 73.7 92.0 74.1

RED 409K 0.003% 53.7 74.1 76.4 93.8 74.5

Llama 2-13B LoRA 6.55M 0.05% 56.3 754 76.4 922 75.1
ReFT 3.28M 0.03% 53.2 72.9 75.4 93.6 73.8

LOFIT 20K 0.0002% 57.0 76.8 76.3 922 75.6

Evaluation Datasets for PEFT Methods
Learned Params Commonsense and QA Math Av
#Params % Params SIQA  ARC-c BoolQ SVAMP verage

0-shot - - 48.3 459 77.4 36.7 52.1

RED 262K 0.004% 60.4 51.5 82.2 55.3 624

Llama 2-7B RED (Half) 131K 0.002% 55.5 49.7 77.6 52.7 58.9
4= LoRA 4.19M 0.06% 59.8 50.6 80.8 56.7 62.0
ReFT 2.10M 0.03% 58.1 51.0 80.1 52.7 60.5

LOFIT 12K 0.0002% 59.3 50.3 80.9 52.3 60.7

0-shot - - 50.3 494 81.7 46.7 57.0

RED 409K 0.003% 65.3 64.2 82.5 63.0 68.7

Llama 2-13B RED (Half) 204K 0.0015% 59.1 65.5 82.3 60.7 66.9
: LoRA 6.55M 0.05% 66.4 67.6 84.1 63.7 70.4

ReFT 3.28M 0.03% 62.5 64.1 84.3 60.7 67.9

LOFIT 20K 0.0002% 63.4 65.4 85.4 62.3 69.1

fewer learned parameters and to RED with 20x fewer learned parameters. On commonsense and
mathematical reasoning datasets, LOFIT falls slightly short of LoRA and RED, but outperforms
ReFT and the parameter-matched version of RED. This is probably because these tasks require
resurfacing of memorized world knowledge from the pre-trained model and the benefit of having
more parameter updates outweighs the benefit of localization. In addition, we also analyze the data
efficiency (Appendix [G)), performance of open-ended generation (Appendix [H), and out-of-domain
generalization (Appendix [[) of LOFIT with results in the Appendices. These results show that
localization can enable further targeting of parameter updates without impacting task accuracyﬂ

6 Conclusion

In this work, we introduce LOFIT, a two-step localized fine-tuning method for LLMs that selects
a subset of attention heads and learns task-specific offset vectors to be added to the hidden repre-
sentations of the targeted attention heads. We show the strong downstream performance of LOFIT
on tasks involving truthfulness and reasoning, outperforming representation intervention methods
(ITT and RepE) and matching strong PEFT methods (LoRA) with fewer learned parameters. We also
show that LOFIT is effective at localizing task-specific attention heads for learning downstream tasks,
showing that interpretability insights have a part to play in improving LLM fine-tuning processes.

*Our two-step procedure requires fitting additional parameters in the first stage. However, even accounting
for these parameters, which are not used in the final model, we still modify fewer parameters than PEFT methods:
half the parameters of RED and 3% of LoRA even if counting both sets.
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A Details of Baselines

A.1 Representation Intervention Baselines

We compare LOFIT against two main representation intervention methods: Inference-time Interven-
tion [15} ITI], and Representation Engineering [45, RepE].

ITI is a representation intervention method to improve LLM truthfulness. ITI localizes T by training
a logistic regression classifier to predict the truthfulness of responses using zii71 from the last
timestep as the input features. It then selects top- K heads where the scoring function S(1,7) is the
probe accuracy on the validation set. Finally, ITI extracts the difference in representations of heads
in T between truthful and untruthful responses as V' through a forward pass, and adds V' to the
pre-trained representations of heads in 7" to improve truthfulness. For ITI, we used the original paper
implementations.

RepE steers LLMs towards certain behaviors, including honesty and counterfactual knowledge,
by using representations extracted from contrastive prompts. RepE extracts the difference vectors
between two contrastive prompts as V' and adds them to the representations of selected MLP layers.
Note that RepE intervenes on MLP layers instead of attention heads as ITI and LOFIT do. E] While
RepE proposes three different representation engineering methods for different tasks, we selected the
method that works best for each task in the original paper: specifically, we used RepE with contrast
vector for MQUAKE and CLUTRR, and RepE with reading vector for TruthfulQA. We refer readers
to [45] for further details.

A.2 Head Selection Baselines

We use the following head selection baselines to compare with the scaling-factor-based head selection
of LOFIT.

Random sampling: We randomly sample K heads from the uniform distributionﬂ

Probing for layers: Along with other mechanistic interpretability works [21}[29], RepE focuses on
layers as the subject matter for localizing functionality in LLMs. We examine if localizing important
layers is better than important attention heads. Given a prompt in training data, we concatenate the
gold response with it and a sampled incorrect response with it to create a pair of contrastive responses.
We extract the pre-trained representations of all attention heads at each layer at the last token of both
responses through a forward pass and concatenate them. We then train a logistic regression classifier

for each layer to predict the correctness of responses using the concatenated representations as the
input features, i.e., z/__; = concat(zflz’l_)l, ey zt(l:Z_)l) for i € [1, H]. We define the scoring function

over heads as a scoring function over layers S(*, 1), which is the probe accuracy on the validation set.

Bias-based selection: Prune-then-retrain is a common paradigm in neural network sparsification
literature [44} 25]] by re-training models on a sparse set of fine-tuned weights. We adapt this paradigm
as the bias-based head selection baseline: we fine-tune the biases for the hidden representations of all
attention heads v}, and select the top-K attention heads where the scoring function S(i,1) = ||v{].

ITT head selection: ITI shows that training a linear probe using the hidden representations of each
attention head can help identify important heads for truthful generation. We select the top-K heads
based on ITI head selection method as described in Section 2l

A.3 Parameter-efficient Fine-Tuning Baselines

LoRA: LoRA learns offsets to weight parameters (rather than representations, as we do) via a product
of two low-rank matrices. We use the huggingface PEFT library [20] implementation of LoRA.

RED: RED fine-tunes scaling factors and biases on the hidden representations of LLMs, similar to
combining Step 1 and Step 2 of LOFIT. We also include a half-parameter version of RED (RED

SWe choose to focus on attention heads, as recent interpretability research indicates that attention heads are
semantically interpretable units for many key functionalities of LLMs such as induction [22] and retrieval [40]
We considered other random selection schemes, including sampling the same number of heads from each
layer and biased sampling towards more important layers, but they worked worse than uniform random sampling.
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(Half)) as an additional baseline where only the layers in the second half of the network are tuned.
We used our replication of RED as the official implementation was not available at the time of writing
this paper.

ReFT: Concurrent to our work, ReFT learns to edit the hidden representations with a linear projection
in a lower-dimensional subspace. Unlike LOFIT, RED and ReFT involve no localization. For ReFT,
we used the official implementation of the most performant variant of ReFT, called LoReFT, from
[41]. LoReFT edits the representations of a model in a lower-dimensional subspace by learning a
linear projection from the residual hidden states to the subspace.

B Details of Datasets for Evaluation

We use the following datasets to evaluate LOFIT. Licensing details of each dataset can be found in
Appendix [J]

B.1 Main Evaluation

Truthful QA [18] is a QA dataset with questions where humans are likely to give false answers
because of common misconceptions. Representation interventions such as ITI [15] have shown
success in eliciting truthful responses from LLMs without tuning. We follow the setup in [15] to split
Truthful QA into train/dev/test sets into 326/82/407 questions and use two-fold cross validation. We
report MC1 and MC2 accuracy in the results; details of these metrics can be found in Appendix[B.3]

CLUTRR [30] is a deductive reasoning dataset requiring multi-hop reasoning over family relation-
ships. We use the subset of 2-hop questions and randomly split the data into train/dev/test sets of
300/450/450 QA pairs. Evaluation is exact match (EM).

MQuAKE [43] is a knowledge editing benchmark for evaluating the propagation of edited knowledge
to related facts. We convert the subset of 2-hop knowledge propagation into an in-context knowledge
editing setup by prepending “Imagine that <Edited Knowledge>* to the question of related facts [4]];
we use this setup to evaluate if our method can learn simple reasoning over counterfactuals. Data is
randomly split into train/dev/test sets of 134/95/864 QA pairs. Evaluation is exact match (EM).

B.2 Evaluation Setup of Comparison with PEFT methods

Although our main focus is to evaluate methods on datasets that are commonly used to benchmark
interpretability-motivated methods, including representation intervention methods and LOFIT, we
include additional results of LOFTT on common benchmarks for PEFT methods in Section )l To
be consistent with our low-data setting in Section 3] we only sampled 100 to 350 training examples
rather than using the entire training data. We use the single-task learning setting from [12]] where
each fine-tuned model only learns to do one task. Details of these datasets are below.

SIQA [28] SIQA is a commonsense QA dataset that evaluates the model’s understanding of social
scenarios. We sampled 100 training examples and 100 validation examples for training, and used the
test split of 1954 examples for evaluation.

ARC-c [3] ARC is an open-book QA dataset. We used the challenging set, ARC-c, and sampled
100 training examples and 299 validation examples for training. We used the test split of 1172
examples for evaluation.

BoolQ [2] BoolQ is a closed-book QA dataset. We sampled 100 training examples and 100
validation examples for training. We used the test split of 3270 examples for evaluation.

SVAMP [24] SVAMP is a math word problem dataset. We split the dataset into train/dev/test splits
of 350/350/300 examples, and we trained the models using the gold equation and the final answer as
the label (rather than just using the final answer).

We converted SIQA, ARC-c, and BoolQ into a unified multiple-choice QA format using prompts
from [[12]. Following [12]], we evaluate the models based on whether they can correctly generate the
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option (rather than using the log-likelihood scoring of the sequence of each option). The prompts can
be found in Appendix

B.3 Evaluation of Truthful QA

We would like to provide some additional clarifications on the evaluation metrics for TrutfhulQA. The
multiple-choice setting of Truthful QA evaluates whether a model is able to select the true responses
to a question out of several false responses that are related to common misconceptions. The two
standard metrics used for this setting, as proposed in the original paper implementation of TruthfulQA
[18]], are the following:

MC1 (Single-true): Given a question, there is a single correct response out of 4-5 responses. The
model evaluates each response independently by computing the log probability as the continuation
of the question, and the model gets a score of 1 for a question only if it assigns the highest log
probability to the single correct answer and O otherwise. The MCI1 accuracy is the average score
across all questions.

MC2 (Multi-true) Given a question, there are multiple correct responses provided. The score for a
question is the sum of the normalized probability assigned to each true response. The MC2 accuracy
is the average score across all questions.

C Experiment Configurations

When training with LOFIT, we learn the same scalars and biases for every token position of the
input sequence. When performing inference with LOFIT, we use greedy decoding and we add the
bias terms at the targeted attention heads to every decoding step. Prompt templates can be found in
Appendix [E] Hyperparameters for LOFIT and the baselines can be found in

For CLUTRR and MQuAKE, we use cross-entropy loss with gold responses for fine-tuning. For
Truthful QA, we use direct preference optimization [26] by pairing the gold truthful responses and
untruthful responses as preference data for fine-tuning, as SFT has been shown ineffective in [15].

We fine-tune LOFIT and baselines using a single NVIDIA-RTX A6000 GPU with 48G memory. We
use the huggingface implementation of Transformers [38]] in PyTorch for all fine-tuning, and the TRL
[37] implementation of direct preference optimization [26] for fine-tuning on TruthfulQA. We use
AdamW optimizer for fine-tuning [[19] with e = 1e—8 an a weight decay of factor 0.01. For both
fine-tuning and inference, we use full precision for Llama 2-7B and bfloat16 mixed-precision for
Llama 2-13B and Gemma-7B to fit on a single GPU.

D Hyperparameters

For all experiments on TruthfulQA, MQuAKE, CLUTRR, and SVAMP, we fine-tuned for 5 epochs
with a batch size of 8 for all methods except ReFT; we will discuss the specific hyperparameters
for ReFT in later sections. For all experiments on SIQA, and ARC-c, we fine-tuned for 3 epochs
with a batch size of 8 to prevent memorization of world knowledge. For BoolQ, we fine-tuned for
3 epochs with a batch size of 4 for Llama 2-7B and of 2 for Llama 2-13B to fit the long passage
context into a single GPU. We used the same implicit reward hyperparameter of direct preference
optimization 5 = 0.5 for Truthful QA experiments. Method-specific hyperparameters can be found in
the following subsections.

D.1 LoFIT

Hyperparameters of LOFIT used in each experiment are summarized in Table ] Because LOFIT
for different models involves different numbers of learned parameters, we did not use the same set
of hyperparameters throughout; instead, we tuned the following hyperparameters with grid search.
Specifically, we found that a small L1 regularization term is good for enforcing the learning of a
sparse set of effective attention heads, which is also suggested by model sparsification literature [23]].
We also found that when using fewer heads, a larger learning rate is needed to stabilize training for
LoF1T.
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Table 4: The hyperparameters used for different tasks and models for LOFIT. BT = Bias Tuning.

Attention Head Selection | BT (3% heads) BT (10% heads)
A Learning Rate Learning Rate Learning Rate
TruthfulQA | Se-4 5e-3 2e-2 8e-3
Gemma-7B MQuAKE 5e-4 5e-3 8e-3 8e-3
CLUTRR 5e-3 Se-4 le-2 le-2
TruthfulQA | Se-4 5e-3 le-2 5e-3
Llama 2-7B MQuAKE le-3 5e-3 le-2 5e-3
CLUTRR 5e-3 Se-4 le-2 5e-3
Truthful QA | 1e-3 le-3 2e-2 5e-3
Llama 2-13B  MQuAKE le-3 le-3 8e-3 5e-3
CLUTRR le-3 le-3 le-2 8e-3
SIQA 5e-3 S5e-4 - le-2
Llama 2-7B ARC-c le-3 le-3 - 5e-3
BoolQ 5e-3 S5e-4 - 8e-3
SVAMP le-3 le-3 - le-2
SIQA le-3 le-3 - Se-3
Llama 2-13B  ARC-c le-3 le-3 - 5e-3
BoolQ le-3 le-3 - 5e-3
SVAMP le-3 le-3 - le-2

In addition to hyperparameters listed in Table ] we used the following hyperparameters uniformly
across all experiments for LOFIT: 04 = o, = 0.001 for the initialization of LOFIT. We found that
this set of initialization is robust to random seeds.

D.2 Representation Intervention Baselines

ITTI In preliminary studies, we tuned the scaling factor « of the offset vectors over a range of values
suggested in the original paper [[15]. We tuned « on a validation set of each dataset and we found that
o = 15 worked robustly across all settings.

RepE In preliminary studies, we tuned the scaling factor «v of the offset vectors on a validation set
of each dataset and found that @ = 5 worked best across settings.

D.3 PEFT Baselines

LoRA In preliminary studies, we experimented with different configurations of LoRA, including
applying LoRA weights to MLP layers and changing the rank and o. We found that the following
configuration strikes the best balance across settings between overfitting with too many parameters
and under-tuning with too low rank: we fine-tuned the @) projection and V' projection matrices of all
attention heads, used rank = 8, @ = 8, and applied a dropout rate of 0.1 to prevent overfitting. We
performed a hyperparameter sweep for the learning rate on the validation set of each dataset and the
optimal configurations for each model and dataset can be found in Table 5]

RED Suggested by the original RED paper [39]] and confirmed in our preliminary studies, fine-
tuning all attention heads with RED is better than other alternative RED configurations, including
tuning MLP layers and tuning all modules, across settings. We performed a hyperparameter sweep
for the learning rate on the validation set of each dataset and the optimal configurations for each
model and dataset can be found in Table

ReFT The ReFT paper [41] indicates that ReFT has the following important hyperparameters to
tune: layers to apply interventions, the rank of the subspace, token positions in the input where the
interventions are applied, and learning rate. In addition, in our preliminary experiments, we found
that ReFT is very sensitive to hyperparameter choices and batch size also has an impact on the ReFT
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Table 5: The hyperparameters used for different tasks and models for LoRA and RED.

LoRA RED
Learning rate  Learning rate

Truthful QA le-3 le-3

Gemma-7B MQuAKE le-3 le-3
CLUTRR le-3 le-4

Truthful QA le-4 S5e-4

Llama 2-7B MQuAKE le-3 le-3
CLUTRR le-3 5e-3

Truthful QA le-3 le-3

Llama 2-13B  MQuAKE le-3 le-3
CLUTRR le-3 le-3

SIQA le-3 le-3

Llama 2-7B ARC-c le-3 8e-4
BoolQ Se-4 Se-4

SVAMP le-3 8e-4

SIQA le-3 le-3

Llama 2-13B  ARC-c 8e-4 le-3
BoolQ le-4 le-3

SVAMP 8e-4 8e-4

performance. Therefore, we performed grid search for the aforementioned hyperparameters to select
the best combinations on a validation set for each dataset. The optimal configurations can be found in
Table[6] We ran all experiments with ReFT for 5 epochs.

E Prompt Templates for Experiments
We use the following prompt templates for fine-tuning and evaluating LOFIT and baselines.

E.1 TruthfulQA

We follow the prompt strategy in ITI [13]: at the fine-tuning steps, we simply concatenate the question
with the gold response or the incorrect response in the preference pair of the training and validation
data as:

Prompt E.1: Truthful QA

Prompt:
“QZ {Question} A: {Response} ”

For evaluation, we prepend the standard “QA prompt”, which can be found in the original implemen-
tation of Truthful QA and are later adopted by others [15} 34} [32], to the aforementioned prompt
as the standard way of evaluating models on Truthful QA in literature.

E.2 MQUAKE

Each example in MQuUAKE comes with a piece of edited knowledge and a multi-hop reasoning
question that uses the edited knowledge. We used the following prompt for MQuUAKE.

Prompt E.2: MQuAKE

Prompt:
“Q: Imagine that {edited_knowledge} . {question} A:”
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Table 6: The hyperparameters used for different tasks and models for ReFT. “Layers” indicates the
layers where the interventions are applied. “Token Positions” indicates the token positions in the
inputs where the interventions are applied, and “fa+1b” means the first a tokens and the last b tokens
are intervened.

Layers Rank Token Positions Learning rate Batch Size

TruthfulQA  All 4 f1+11 le-3 16
Gemma-7B  MQuAKE All 4 f1+11 le-3 8
CLUTRR All 8 £3+13 le-3 8
TruthfulQA Al 4 f1+11 le-3 16
Llama2-7B  MQUAKE All 8 £3+13 9e-4 16
CLUTRR All 8 £3+13 9e-4 16
TruthfulQA Al 4 f1+11 le-3 16
MQUAKE All 8 £3+13 9e-4 8
Llama2-13B o/ Grrr Al 8 £3+13 9e-4 8
SIQA All 8 £3+13 9e-4 8
ARC-c All 8 £5+15 Se-4 8
Llama2-7B g 010 All 8 £3+13 le-4 2
SVAMP All 8 £3+13 9e-4 8
SIQA All 16 f3+13 le-4 8
Llama2-13B  ARC-c All 16 £3+13 le-4 8
BoolQ All 8 £3+13 le-4 2
SVAMP All 4 £3+13 9e-4 8
E3 CLUTRR

Each example in CLUTRR comes with a few-sentence story that describes relations among fictional
characters and a pair of characters whose relationship needs to be inferred from the story and answered
by the model. We use the following prompt for CLUTRR. In preliminary experiments, we found that
LLMs sometimes refuse to answer and indicate that relationships in the provided story are incorrect
based on names and relations of known people in the real world, so we include further clarifying
instructions in the prompt in addition to basic formatting.

Prompt E.3: CLUTRR

Prompt:

“Read the following story about a family. {story} Assume the relations described in the story are all true.
Based on relations between the fictional characters in the story (assume the relations are all true) and your
commonsense knowledge about family relationship, how is {Character2} related to {Character1} ? Answer:
{Character2} iS {Character1} ’S”

E4 SIQA

We use the prompt from for SIQA.

Prompt E.4: SIQA

Prompt:

Please choose the correct answer to the question.
Question: {context} {question}
A. {answerA}

B. {answerB}

\ J
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C. {answerC}
Answer:”

———

E.5 ARC-c

We use the prompt from [12] for ARC-c.

Prompt E.5: ARC-c

Prompt:

Please choose the correct answer to the question.
Question: {question}

A. {answerA}

B. {answerB}

C. {answerC}

Answer:”

\ J

E.6 BoolQ

We use the prompt from [12] for BoolQ. BoolQ does not have answer options as the answers can
only be True/False.

Prompt E.6: BoolQ

Prompt:

{Passage}

Question: {question}

Answer:”

\ J

E.7 SVAMP

In the prompt, we instruct the models to generate an equation for the math word problem, and we only
evaluate the correctness of the final answer derived from the equation rather than the entire equation.

Prompt E.7: SVAMP

Prompt:

Question: {Context} {question}

Equation:”

F Effects of the Number of Heads on LOFIT performance

The number of heads K used for the bias tuning stage has an impact on LOFIT performance. We
conduct an analysis on the percentage of attention heads used for LOFIT bias tuning versus the
accuracy on MQuAKE and CLUTRR with Llama 2-7B and Llama 2-13B.

Results can be found in Figure E[ We observe that the performance plateaus when reaches 10% - 20%
of the total number of attention heads and continues to increase as K gets larger before it reaches
the above threshold. This is likely because the number of learned parameters is too small to be
expressive when is smaller than 10% of attention heads (< 10K parameters). Note that the results in
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Figure 4: The effects of the percentage of attention heads K used for LOFIT Bias Tuning on LOFIT
performance. Results are averaged over two runs. The test accuracy increases with K when K< 10%
and plateaus when K reaches 10% — 20%.

Data Efficiency of LoFiT (Llama 2-7B)
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Figure 5: LOFIT performance using different numbers of training examples n on CLUTRR and
MQuAKE with Llama 2-7B. For LOFIT, we tune 10% of the attention heads. Results are averaged
over two runs. In the low data settings (n < 100), LOFIT is more data efficient than LoRA and RED.
For n > 300, LOFIT is still comparable to LoRA and RED with fewer parameters.

the paper used either 3% (as in Table (1) for extremely parameter-efficient scenarios to achieve a fair
comparison with representation intervention methods, or 10% (as in Table |3) for the best balance
between parameter counts and performance.

G Data Efficiency

We further compare LOFIT against PEFT methods using different numbers of training examples n.
We analyze the data efficiency of LOFIT on CLUTRR and MQUAKE with Llama 2-7B. Figure 3]
shows that in the extremely low data settings (n < 100), LOFIT performs better than LoRA and
RED, showing that LOFIT is very data efficient. For 300 < n < 1000, LOFIT is still comparable to
LoRA and RED with fewer parameters.

H Open-ended Generation

While being fine-tuned for discriminative tasks in the above experiments, LOFIT also shows good
performance on the open-ended generation task of TruthfulQA. We fine-tune with LOFIT and other
methods on Truthful QA with the same setup in Section [3|and evaluate its open-ended generation on
Truthful QA test questions with GPT-4. We prompt GPT-4 to evaluate the informativeness (/nfo) and
truthfulness (True) of model responses given the question and the gold labels. Table[7]shows that
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Table 7: GPT-4 evaluation of open-ended generation quality to TruthfulQA. LOFIT is comparable to
PEFT methods in terms of truthfulness and informativeness, and outperforms 0-shot and ITI baselines
by a large margin.

True Info True x Info

0-shot  35.7 92.7 33.1
ITI 523 814 42.6
Llama 2-7B LoRA 643 88.0 56.6
RED 66.5 914 60.8
LoFIT 67.2 875 58.9
0-shot  38.6 93.9 36.3
ITI 469 785 36.8
Llama 2-13B  LoRA 672 90.5 60.8
RED 67.0 94.6 63.4
LoFIT 67.5 90.7 61.2

Table 8: Out-of-domain generalization performance of LOFIT on Llama 2-7B-Chat after fine-tuning
on Truthful QA. 0-shot prompts are used for OOD evaluation. “No-FT” represents the base model
without being fine-tuned on TruthfulQA. In-domain evaluation results on TruthfulQA are also
included for reference. Compared to PEFT methods, LOFIT better preserves the existing capabilities
of the base model after being fine-tuned across all settings.

Truthful QA Out-of-Domain
MC1 MC2 | TriviaQA NQ MMLU Average
No-FT \ 337 513 \ 76.5 62.9 40.3 60.0
ITI 40.0 59.1 72.7 60.6 37.3 56.9
RED 54.0 73.1 74.9 63.3 354 57.9
LoRA 513 733 73.5 62.0 41.0 58.8
LOFIT | 545 749 76.7 64.4 40.5 60.5

LOFIT leads to truthful and informative responses that are comparable to PEFT methods and are
better than ITI.

I Out-of-domain Generalization

Benefiting from the small number of parameter updates, LOFIT can potentially generalize well
to out-of-domain tasks after fine-tuning. We show a case study on TruthfulQA: we first fine-tune
Llama 2-7B-chat on Truthful QA and then evaluate 0-shot on three out-of-domain question-answering
benchmarks: TriviaQA [13]], Natural Questions [14, NQ], and MMLU [10]. We follow the same
evaluation scheme in [[15] to convert TriviaQA and Natural Questions into multiple-choice questions
and report accuracy[] Table 8| shows that LOFIT suffers less from overfitting on TruthfulQA as its
performance on TriviaQA and MMLU does not drop from the non-fine-tuned base model, and it even
improves on NQ while OOD performance degradation can be observed in ITI and PEFT baselines.

J Licensing
We use the following publicly available datasets from prior works with open licenses.

TruthfulQA [18]] uses the Apache-2.0 license and data is available at: https://github.com/
sylinrl/TruthfulQA.

"For TriviaQA and NQ, we use the two evaluation splits curated by [15]] that are publicly accessible in the
honest_llama repository. We refer readers to [[15] for details. For MMLU, we use the evaluation scheme of
open-source package Im-evaluation-harness [7].
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https://github.com/sylinrl/TruthfulQA
https://github.com/likenneth/honest_llama

CLUTRR [30] uses CC-BY-NC 4.0 (Attr Non-Commercial Inter.) license and data is available
athttps://github.com/facebookresearch/clutrr. Our data splits of CLUTRR are available at
https://github.com/fc2869/1o-fitl

MQuUAKE [43] uses the MIT license as per https://github.com/princeton-nlp/MQUAKEL Our
data splits of MQuUAKE are available at https://github.com/fc2869/1o-fitl

SIQA, ARC-c, BoolQ, and SVAMP For these datasets, we follow [12] who use the open

data commons attribution license. The data and licenses are available at https://github.com/
AGI-Edgerunners/LLM-Adapters.
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