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ABSTRACT

With recent advances in deep reinforcement learning (RL), high-dimensional action
selection has become an important yet challenging problem in many real appli-
cations, especially in unknown and complex environments. Existing works often
require a sophisticated prior design to eliminate redundancy in the action space,
relying heavily on domain expert experience or involving high computational com-
plexity, which limits their generalizability across different RL tasks. In this paper,
we address these challenges by proposing a general data-driven action selection
approach with model-free and computational-friendly properties. Our method not
only selects minimal sufficient actions but also controls the false discovery rate via
knockoff sampling. More importantly, we seamlessly integrate the action selection
into deep RL methods during online training. Empirical experiments validate
the established theoretical guarantees, demonstrating that our method surpasses
various alternative techniques in terms of both performances in variable selection
and overall achieved rewards.

1 INTRODUCTION

Recent advances in deep reinforcement learning (RL) have attracted significant attention, with
applications spanning numerous fields such as robotics, games, healthcare, and finance [23; 21; 24;
54]. Despite their ability to handle sequential decision-making, the practical utility of RL methods in
real-world scenarios is often limited, especially in dealing with the high-dimensional action spaces
[48; 21; 42; 53]. High-dimensional action spaces are prevalent in “black box” systems, characterized
by overloaded actionable variables that are often abundant and redundant. Examples include precision
medicine, where numerous combinations of treatments and dosages are possible [see e.g., 19; 31];
neuroscience, which involves various stimulation points and intensities [see e.g., 12]; and robotics,
particularly in muscle-driven robot control, where coordination of numerous muscles is required [see
e.g., 44]. Nevertheless, these high-dimensional action spaces often contain many actions that are
either ineffective or have negligible impact on states and rewards. Training RL models on the entire
action space can result in substantial inefficiencies in both computation and data collection.

To handle high dimensionality, a promising approach is to employ automatic dimension reduction
techniques to reduce the size of the action space, by selecting only the essential minimum action set
necessary for effectively learning the environment and optimizing the policy based on the subspace.
Having such a minimal yet sufficient action space can significantly enhance learning efficiency, as
agents can thoroughly explore a more concise set of actions [55; 22; 17]. Moreover, a smaller action
space can reduce computational complexity, a notable benefit in deep RL, where neural networks are
used for function approximation [47; 41]. In practical scenarios, eliminating superfluous actions saves
the cost of extensive measurement equipment and thus allows a more comprehensive exploration
of available actions. Yet, existing works often require a sophisticated prior design to eliminate
redundancy in the action space [e.g., 49; 18; 11; 32], relying heavily on domain expert experience or
involving high computational complexity, limiting their generalizability across different RL tasks.

In this paper, we propose a general data-driven action selection approach to identify the minimum
sufficient actions in the high-dimensional action space. To handle the complex environments often
seen in deep RL, we develop a novel variable selection approach called knockoff sampling (KS) for
online RL, with theoretical guarantees of false discovery rate control, inspired by the model-free
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Figure 1: Average rewards under three proximal policy optimization (PPO) methods in a synthetic
environment with 54 actions (among which only 4 actions influence states and rewards). The green
line refers to the PPO trained based on the true influential actions, the red refers to the PPO with the
estimated minimal sufficient actions by the proposed variable selection (KS), the black line represents
the PPO with the entire redundant action space, and the dashed line is the optimal reward. The red
line outperforms the black line indicating the effectiveness of the variable selection step.

knockoff method [7]. The effectiveness of this action selection method is demonstrated in Fig. 1.
Here, a proximal policy optimization (PPO) method [43] using variable selection outperforms the
one trained on the entire action space and shows comparable performance to the PPO trained with the
pre-known true minimal sufficient action. To remain computational-friendly, we design an adaptive
strategy with a simple mask operation that seamlessly integrates this action selection method into
deep RL methods during online training. Our main contributions are fourfold:

• Conceptually, this work pioneers exploring high-dimensional action selection in online RL. We
formally define the sufficient action set encompassing all influential actions, and the minimal sufficient
action set, which contains the smallest number of actions necessary for effective decision-making.

• Methodologically, our method bypasses the common challenge of creating accurate knockoff
features in model-free knockoffs. We use the established distribution of actions from the current policy
network in online RL to precisely resample action values, producing exact knockoff features.

• Algorithm-wise, to flexibly integrate arbitrary variable selection into deep RL and eliminate the
need to initialize a new RL model after the selection, we design a binary hard mask approach based
on the indices of selected actions. This efficiently neutralizes the influence of non-chosen actions.

• Theoretically, to address the issues of highly dependent data in online RL, we couple our KS method
with sample splitting and majority vote; under commonly imposed conditions, we theoretically show
our method consistently identifies the minimal sufficient action set with false discovery rate control.

1.1 RELATED WORKS

Deep reinforcement learning has made significant breakthroughs in complex sequential decision-
making across various tasks [36; 46; 43; 15]. Yet, several considerable obstacles exist when dealing
with high-dimensional spaces using deep RL. In terms of high dimensional state space, the state
abstraction [35; 37] has been studied to learn a mapping from the original state space to a much
smaller abstract space to preserve the original Markov decision process. Yet, these methods such as
bisimulation can be computationally expensive and challenging when the state space is very large or
has complex dynamics [40]. Tied to our topic, it is hard to utilize such abstraction-based methods
to implement transformed actions. This redirects us to variable selection on the redundant state
space [see e.g., 25; 14]. Recently, Hao et al. [16] combined LASSO with fitted Q-iteration to reduce
states; following this context, Ma et al. [34] employs the knockoff method for state selection but with
discrete action spaces. However, all these works focus on the high dimensional state space in offline
data, while our method aims to extract sufficient and necessary actions during online learning.

For RL with the high-dimensional action space, especially for continuous actions, some studies
[11; 49] transformed the continuous control problem into the combinatorial action problem, by
discretizing large action spaces into smaller subspaces. However, this transformation can lead to a
significant loss of precision and hence produce suboptimal solutions [27; 50]. Other works [see e.g.,
18; 32] focused on muscle control tasks and used architectures reducing the action dimensionality
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before deploying RL methods. One recent study by Schumacher et al. [44] combined differential
extrinsic plasticity with RL to control high-dimensional large systems. Yet, all these works require
specialized data collection, known joint ranges of actions, forced dynamics, or desired behaviors
of policies, before implementing RL. In contrast, our method is entirely data-driven without prior
knowledge of environments, and thus can be generalized to tasks beyond muscle control.

Variable selection, also known as feature selection, is a critical process to choose the most relevant
variables representing the target outcome of interest, enhancing both model performance and interpre-
tation. Over the past few decades, many well-known methods have been established, ranging from
classical LASSO, Fisher score, and kernel dimension reduction [51; 13; 8], towards deep learning
[3; 28; 26]. Yet, these works either suffer from model-based constraints or lack theoretical guarantees.
The model-X knockoff method proposed by Candes et al. [7] aims to achieve both goals via a
general variable selection framework for black-box algorithms with guarantees of false discovery rate
control. Due to its model-agnostic nature, the knockoff method has been extended to complement a
wide range of variable selection approaches [33; 45; 29]. The main price or central challenge within
the knockoff method lies in the generation of faithful knockoff features. Existing techniques either
using model-specific methods [see e.g., 45; 30] that assume the underlying covariate distribution,
or model-free approaches [see e.g., 20; 39] that utilize deep generative models to obtain knockoffs
without further assumptions on feature distribution. Owing to the blessing of online RL, our method
bypasses this challenge through the known joint distribution of actions represented by the ongoing
policy network, and thus can easily resample the action values to create exact knockoff features.

2 PROBLEM SETUP

2.1 NOTATIONS

Consider a Markov Decision Process (MDP) characterized by the tuple (S,A, p, r, γ), in which both
the state space S and the action space A are continuous. The state transition probability, denoted as
p : S × S ×A → [0,∞), is an unknown probability density function that determines the likelihood
of transitioning to a next state st+1 ∈ S, given the current state st ∈ S and the action at ∈ A.
The environment provides a reward, bounded within [rmin, rmax], for each transition, expressed as
r : S ×A → [rmin, rmax]. The discount factor, represented by γ ∈ (0, 1), influences the weighting
of future rewards. We denote a generic tuple consisting of the current state, action, reward, and
subsequent state as (St,At, Rt,St+1). The Markovian property of MDP is that given the current
state St and action At, the current Rt and the next state St+1, are conditionally independent of the
past trajectory history. Consider At ∈ Rp where p is very large indicating a high dimensional action
space. We utilize ρπ(st) and ρπ(st,at) to denote the state and state-action marginal distributions,
respectively, of the trajectory distribution generated by a policy π(at | st). The notation J(π) is used
to represent the expected discounted reward under this policy: J(π) =

∑
t E(st,at)∼ρπ

[γtr (st,at)] .
The goal of RL is to maximize the expected sum of discounted rewards above. This can be extended
to a more general maximum entropy objective with the expected entropy of the policy over ρπ (st).

2.2 MINIMAL SUFFICIENT ACTION SET IN ONLINE RL

To address the high dimensional action space, we propose to utilize the variable selection instead
of representation for practical usefulness. To achieve this goal, we first formally define the minimal
sufficient action set. Denote the subvector of At indexed by components in G as At,G with an index
set G ⊆ {1, 2, . . . , p}. Let Gc = {1, . . . , p}\G be the complement of G.
Definition 2.1. (Sufficient Action Set) We say G is the sufficient action (index) set in an MDP if

Rt ⊥ At,Gc | St,At,G, St+1 ⊥ At,Gc | St,At,G, for all t ≥ 0.

The sufficient action set can be seen as a sufficient conditional set to achieve past and future
independence. The sufficient action set may not be unique.
Definition 2.2. (Minimal Sufficient Action Set) We say G is the minimal sufficient action set in an
MDP if it has the smallest cardinality among all sufficient action sets.

Unlike the sufficient action set, there is only one unique minimal sufficient action set to achieve
conditional independence if there are no identical action variables in the environment. We also call
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Gc the redundant set when G is the minimal sufficient action (index) set. Here, to achieve such a
minimal sufficient action set, one should also require the states St be the sufficient states, so there is
no useless state [34] to introduce related redundant actions that possibly lead to ineffective exploration
or data inefficiency. Without loss of generality, we assume sufficient states throughout this paper and
focus on eliminating redundant actions in a high-dimensional action space. Our goal is to identify the
minimal sufficient action set for online deep reinforcement learning to improve exploration.

2.3 PRELIMINARY: KNOCKOFF VARIABLE SELECTION

Without making additional assumptions on the dependence among variables, in this work, we utilize
the model-X knockoffs [7] for flexible variable selection, which ensures finite-sample control of
the false discovery rate (FDR). We first briefly review the model-X knockoffs [7] in the supervised
regression setting with independent samples, which will be leveraged later as the base variable
selector of our proposed method for dependent data in online RL setting. Specifically, given n
independent observations, consider Y as a n-dimensional response vector and X = (x1, · · · ,xp)
as an n× p matrix of covariates. The knockoff inference aims to identify significant covariates that
influence the outcome while controlling FDR. Towards this goal, the model-X knockoff generates an
n× p matrix X̃ = (x̃1, · · · , x̃p) as knockoff features that have the similar properties as the collected
covariates. This matrix is constructed by the joint distribution of X and satisfy:

X̃ ⊥ Y |X and (X, X̃)swap(Ω)
d
= (X, X̃), (1)

for each subset Ω within the set {1, · · · , p}, where swap(Ω) indicates the operation of swapping such
that for each j ∈ Ω, the j-th and (j + p)-th columns are interchanged. The notation d

= signifies
equality in distribution. After obtaining knockoff features, let D̃ = {X, X̃,Y } denote an augmented
dataset and we can calculate the feature importance scores Zj and Z̃j for each variable xj and its
corresponding knockoff x̃j . Define the function f : R2 → R as an anti-symmetric function, meaning
that f(u, v) = −f(v, u) for all u, v ∈ R2, e.g., f(u, v) = u − v. Set Wj = f(Zj , Z̃j) in such a
way that higher values of Wj indicate stronger evidence of the significance of xj being influential
covariate. The j-th variable is selected if its corresponding Wj is at least a certain threshold τα
when the target FDR level is α. For example, the set of chosen variables can be represented as
Î = {j : Wj ≥ τα}, where

τα = min

{
τ > 0 :

# {j ∈ [p] : Wj ≤ −τ}
# {j ∈ [p] : Wj ≥ τ}

≤ α

}
. (2)

3 ONLINE DEEP RL WITH VARIABLE SELECTION

To identify the minimal sufficient action set in online deep RL, we integrate the action selection
into RL to find truly influential actions during the training process. Its advantages are manifold.
Firstly, its model-agnostic nature ensures compatibility across various RL architectures and algorithms.
Moreover, its data-driven characteristic allows for straightforward application across diverse scenarios,
thereby increasing practical utility. Crucially, the action selection boosts the explainability and
reliability of RL systems by clearly delineating actions that contribute to model performance. In the
following, we first introduce an action-selected exploration strategy for online deep RL in Section
3.1, followed by the model-free knockoff-sampling method for action selection in Section 3.2.

3.1 ACTION-SELECTED EXPLORATION ALGORITHM

We propose an innovative action-selected exploration for deep RL. Suppose at a predefined time step
t = Tvs, a set of actions Ĝ is identified from the buffered data, where the cardinality of Ĝ (|Ĝ|) is
d, with d ≤ p indicting a possibly reduced dimension. A critical challenge arises in leveraging the
insights gained from action selection for updating the deep RL models. The conventional approach
of constructing an entirely new model based on the selected actions is not only time-consuming but
also inefficient, particularly in dynamic, non-stationary environments where the requisite action sets
are subject to frequent changes. Although our study primarily focuses on stationary environments,
the inefficiency of model reinitialization post-selection remains a notable concern.
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Algorithm 1 Action-Selected Exploration in Reinforcement Learning

Require: FDR rate α, majority voting ratio Γ, max steps T , variable selection step Tvs

Begin: Initialize the selection set Ĝ = {}, policy πθ, value function parameter ϕ, augmented
replay buffer D
while steps smaller than T do

Sample at ∼ πθ (· | st)
Sample knockoff copy ãt ∼ πθ (· | st)
st+1 ∼ Env (at, st)
D ← D ∪ {st,at, ãt, rt, st+1}
if t = Tvs then

Utilize a variable selection algorithm (optional: Knockoff-Sampling in Algorithm 2) on D to
obtain the estimated minimal sufficient action set Ĝ
Generate a mask m based on Ĝ to prune RL networks based on equation 3 and equation 4

end if
if it’s time to update then

update ϕ and θ based on the specific RL algorithm used
end if

end while

To seamlessly and efficiently integrate action selection results into deep RL, we propose to mask the
non-selected actions and remove their influence once a hard mask is constructed, and thus is flexible
to integrate with arbitrary variable selection method. Specifically, in continuous control tasks, deep
RL algorithms utilize a policy network πθ to sample a certain action a given current state s, namely
a ∼ πθ (· | s). The policy network is usually parameterized by a multivariate Gaussian with the
diagonal covariance matrix as:

a ∼ N
(
µ (s) ,diag (σ (s))

2
)
,

where µ and σ are parameterized functions to output mean and standard deviations. Each time we
obtain an action from the policy network. The updates of the policy network πθ and the action-
value function Qϕ usually involve sampled actions at and log πθ (at | st) which is the log density
of sampled actions. Our strategy is using a binary mask to set them as a certain constant value
during the forward pass and it will block the gradient when doing backpropagation and also remove
influence when fitting a function. Given a selected action set Ĝ, we focus on integrating this selection
into the model components Qϕ(a, s) and πθ(a | s). To facilitate this, we define a selection vector
m = (m1, · · · ,mp) ∈ {0, 1}p, where mi = 1 if i ∈ Ĝ and 0 otherwise. This vector enables the
application of a selection mask to both the Qϕ and πθ components as follows.

For Qϕ, we use the hard mask to remove the influence of non-selected actions by not using it in the
Q function fitting,

Qm
ϕ (a, s) = Qϕ(m⊙ a, s), (3)

where ⊙ is the element-wise product. The adoption of action selection significantly reduces the
dimensionality of the input action space, thereby reducing bias in the Q function fitting.

For πθ, considering the necessity of updating the policy network via policy gradient, we integrate a
hard mask into the logarithm of the policy probability. The modified log probability is formulated as

log πm
θ (a | s) = m · (log πθ(a1 | s), . . . , log πθ(ap | s)) , (4)

where · is the dot product. This masking of the log probability helps mitigate the likelihood of
encountering extremely high entropy values, thereby facilitating a more stable and efficient training
process. Hence, this leads to improved model performance. We demonstrate the integration of action
selection into deep RL as detailed in Algorithm 1.
Remark 3.1. Here, we focus on the case that actions are parameterized as diagonal Gaussian which
are conditionally independent given states. However, our method can be easily extended to the
correlated actions, with details provided in Appendix D.
Remark 3.2. In scenarios where the algorithm exclusively employs the state-value function Vϕ(s),
the use of the mask operation is unnecessary. Our empirical studies suggest that, even without
masking, the model maintains robust performance. This implies that updates to the policy network
may hold greater significance than those to the critic in certain contexts.
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Algorithm 2 Knockoff-Sampling Variable Selection

Require: FDR rate α, majority voting ratio Γ, data buffer D = {(st,at, ãt, rt, st+1)}Tvs
t=1

Split D into non-overlapping sets {Dk}Kk=1 and let yt = (rt, st+1) as the response vector
for k = 1, . . .K do

for i-th dimension in {yt}Tvs
t=1 do

Apply a machine learning algorithm to all (st,at, ãt,yt) ∈ Dk to construct feature importance
statistics Zj,i and Z̃j,i for the j-th action and its knockoff copy, respectively, for each j ∈ [p].

end for
for each j ∈ [p] do

Set Zj = maxi Zj,i, Z̃j = maxi Z̃j,i, and Wj = f
(
Zj , Z̃j

)
end for
Utilize the threshold τα defined in equation 2, and get Ĝk = {j ∈ [p] : Wj ≥ τα}

end for
return Ĝ :=

{
j ∈ {1, . . . , p} :

∑K
k=1 I

(
j ∈ Ĝk

)
≥ KΓ

}
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Figure 2: Learning curves in the Ant-v4 environment reveal that the Knockoff Sampling (KS) method
outperforms the traditional Variable Selection (VS) method. When implemented with either the
Proximal Policy Optimization (PPO) or Soft-Actor-Critic (SAC) algorithm, KS achieves performance
comparable to that of the true actions by automatically setting optimal thresholds to filter out
redundant actions, whereas VS often selects useless actions, leading to a high false discovery rate.

3.2 KNOCKOFF-SAMPLING FOR ACTION SELECTION

Despite the large volume of variable selection (VS) methods [see e.g., 51; 13; 8; 3; 28; 26], these
works either suffer from model-based constraints or lack theoretical guarantees. The traditional
VS often identifies unimportant actions, leading to a high false discovery rate and further causing
performance degeneration, as shown in Fig. 2. To provide a general action selection approach for
deep RL with false discovery rate control, we propose a novel knockoff-sampling (KS) method that
handles dependent data in the online setting with a model-agnostic nature as follows.

Suppose now we have a data buffer with the size M , collected from N trajectories where each
trajectory has length Tj for j = 1, . . . N and

∑N
j=1 Tj = M . Each time we obtain an action from the

policy network, we also resample a knockoff copy conditional on the same state ãt ∼ πθ (· | st), and
append it to the buffer. The transition tuples thus is redefined as (St,At, Ãt, Rt,St+1). Note that
steps within each trajectory are temporally dependent. To address the issues of highly dependent data
in online RL, we couple our method with sample splitting and majority vote following Ma et al. [34].
The proposed KS method consists of three steps as summarized in Algorithm 2: 1. Sample Splitting;
2. Knockoff-Sampling Variable Selection; 3. Majority Vote. We detail each step below.

1. Sample Splitting: We first split all transition tuples (St,At, Ãt, Rt,St+1) into K non-overlapping
sub-datasets. This process results in a segmentation of the dataset D into distinct subsets Dk for
k ∈ [K]. We combine response variables and denote Yt = (Rt,St+1) to simplify the notation, based
on the target outcomes in Definition 2.1. Here, each sequence (St,At, Ãt,Yt) is assigned to Dk if t
mod K = k − 1. Subsequent to this division, any two sequences located within the same subset Dk

either originate from the same trajectory with a temporal separation of no less than K or stem from
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different trajectories. If the system adheres to β-mixing conditions [6], then a careful selection [5]
can allow us to assert that transition sequences within each subset Dk is approximately independent.

2. Knockoff-Sampling Variable Selection: For each data subset Dk, we select a minimal sufficient
action set using the model-X knockoffs as the base selector. Unlike the knockoff method detailed
in Section 2.3 that either constructs knockoff features based on second-order machines or estimates
the full distribution, we directly sample a knockoff copy of actions from the policy network, i.e.,
ãt ∼ πθ (· | st). This helps us to bypass the common challenge of creating accurate knockoff features
in model-free knockoffs. We theoretically validate that the sampled knockoffs in online RL meet
the swapping property equation 1 in Section 4. For every single dimension i of the outcome vector
Yt = (Rt,St+1), we use a general machine learning method (e.g., LASSO, random forest, neural
networks) to provide variable importance scores Zj,i and Z̃j,i for the j-th dimension of actions and
its knockoff copy, respectively. By the maximum score Zj = maxi Zj,i and Z̃j = maxi Z̃j,i, the
selected action set Ĝk is then obtained following the same procedure in Section 2.3.

3. Majority Vote: To combine the results on the whole K folds, we calculate the frequency of
subsets where the j-th action is chosen, i.e., p̂j =

∑K
k=1 I(j ∈ Ĝk)/K, and establish the ultimate

selection of actions Ĝ = {j : p̂j ≥ Γ}, with Γ being a predetermined cutoff between 0 and 1.

4 THEORETICAL RESULTS

Without loss of generality, we assume that the data buffer D consisting of N i.i.d. finite-horizon
trajectories, each of length T , which can be summarized as NT transition tuples. We first define two
properties to establish theoretical results.
Definition 4.1. (Flip Sign Property for Augmented Data) property on the augmented data matrix
Dk =

[
Ak, Ãk,Sk,Yk

]
if for any j ∈ [p] and Ω ⊂ [p],

Wi

([
Ak, Ãk

]
swap(Ω)

,Sk,Yk

)
=

−Wi

([
Ak, Ãk

]
,Sk,Yk

)
, if j ∈ Ω,

Wi

([
Ak, Ãk

]
,Sk,Yk

)
, otherwise,

where Ak, Ãk ∈ R(NT/K)×p denote the matrices of the actions and their knockoffs, Sk ∈
R(NT/K)×d denote the matrice of state, Yk ∈ R(NT/K)×d+1 denotes the response matrix, and[
Ak, Ãk

]
swap(Ω)

is obtained by swapping all j-th columns in Ak, Ãk for j ∈ Ω.

The above flip sign property is a common property that needs to be satisfied in knockoff-type methods.
We show our method automatically satisfies this property in Lemma F.3 of Appendix.
Definition 4.2. (Stationarity and Exponential β-Mixing) The process {(St,At, Rt)}t≥0 is station-
ary and exponentially β-mixing if its β-mixing coefficient at time lag k is of the order ρk for some
0 < ρ < 1.

This exponential β-mixing condition has been assumed in the RL literature [see e.g., 2; 10] to derive
the theoretical results for the dependent data. Such a condition quantifies the decay in dependence as
the future moves farther from the past to achieve the dependence of the future on the past. Based on
the above definitions, we establish the following false discovery control results of our method.
Theorem 4.3. Set the number of sample splits K = k0 log(NT ) for some k0 > − log−1 ρ where ρ is
defined in Definition 4.2. Assume that the following assumption hold: the process {(St,At, Rt)}t≥0

is stationary and exponentially β-mixing.

Then Ĝk obtained by Algorithm 2 with the standard knockoffs controls the modified FDR (mFDR),
mFDR ≤ α+O

{
K−1(NT )−c

}
,

where the constant c = −k0 log(ρ)− 1 > 0.

The proof can be mainly divided into two parts, firstly we show valid mFDR control can be achieved
when data are independent, then for dependent data satisfying the β-mixing condition, the upper band
can be relaxed as the cost of dependence. Finally, a combination of the two would provide the final
upper bound on mFDR control. The detailed proof is in Appendix F.
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5 EXPERIMENTS

Experiment Setup We aim to answer whether the variable selection is helpful for deep RL training
when the action dimension is high and redundant. We conduct experiments on standard locomotion
tasks in MuJoCo [52] and treatment allocation tasks calibrated from electronic health records (EHR),
the MIMIC-III dataset [19]. The environment details are in Table B.1 of Appendix. Here, we
focus on two representative actor-critic algorithms, Proximal Policy Optimization (PPO) [43] and
Soft-Actor-Critic (SAC) [15]. We adopt the implementation from Open AI Spinning up Framework
[1]. For SAC, the implementation involves fitting both Qϕ and πθ, and we use a mask on both
components. For PPO, it fits Vθ and πθ, hence we only combine the mask with πθ. Tables A.1 and
A.2 summarize the hyperparameters we used. We set the FDR rate α = 0.1 and voting ratio Γ = 0.5
in all settings. All the experiments are conducted in the server with 4× NVIDIA RTX A6000 GPU.

Semi-synthetic MuJoCo Environments We choose three tasks: Ant, HalfCheetah, and Hopper. To
increase the dimension of action space, we artificially add extra p actions to the raw action space and
consider two scenarios p = 20 and 50. For each setting, we run experiments over 2× 105 and 106

steps for SAC and PPO, respectively, averaged over 10 training runs. The running steps for SAC and
PPO are set adaptively to obtain better exploration for each method and save computation costs, as the
main goal is to show how action selection can improve sample efficiency rather than compare these
two methods. For each evaluation point, we run 10 test trajectories and average their reward as the
average return. Besides RL algorithm performance, we also evaluate variable selection performance
in terms of True Positive Rate (TPR), False Positive Rate (FPR), and FDR.

Action Selection in the Initial Stage of Training We utilize action selection in the beginning
stage of the training. For both methods, we utilize the first 4000 samples for variable selection
and then use the selection results to build a hard mask for action in deep RL models. We compare
our knockoff sampling (KS) method with the baseline of selecting all actions (All) to evaluate the
impact of integrating a masking mechanism with a selection strategy in deep RL. We also provide
the experimental results with only ground-truth actions selected (True) as a reference. To reduce
the computational complexity, we choose LASSO [51] as our base variable selection algorithm
for KS. Here, selecting all actions (All) and ground-truth actions (True) are the cases where RL
models trained on whole action space and minimal sufficient action space, respectively. Hence, the
model corresponding to ground-truth action has smaller parameters than all other methods because
its initialization is based on the minimal sufficient action set. The results are shown in Fig. 3 for
PPO, Fig. B.1 for SAC, and Table 1 for all numerical details. Due to space constraints, we mainly
present the PPO figures in the main text. In all cases, we find that KS-guided models outperform
those trained on the whole action space in terms of average return and much lower FDR and FPR,
with larger improvement gains as p increases. This empirically validates our theory of FDR control
with the proposed KS method, demonstrating that action selection can enhance learning efficiency
during the initial stages of RL training where action space is high and redundant.

Action Selection in the Middle Stage of Training To show whether action selection can be used
in the middle stage of training to remedy the inefficiency brought by exploring the whole action
space, we conduct experiments where in the first half of the training steps the models are trained
on the whole action space, and in the middle of the stage, we utilize action selection and build hard
masks for them and then continue training for the rest of the steps. We compare our KS method
with selecting all actions (All) and ground-truth actions (True) similarly. The results in Fig. 4 and
Fig. B.2 reveal a notable pattern: agents initially struggle to learn effectively, but mid-stage variable
selection significantly improves their performance, with models trained on the correct actions. This
demonstrates the effectiveness of mid-stage variable selection in enhancing learning outcomes.

Treatment Allocation for Sepsis Patients We test our method with PPO and utilize the first 1000
samples for action selection in the initial stage. We also include two additional baselines: Lattice
[9], and gSDE [38]. Lattice and gSDE also use all actions but additionally incorporate temporally
correlated Gaussian noise into the training. We run experiments over 5× 104 time steps and average
results over 5 runs. For each evaluation point, we run 5 test trajectories and average their reward
as the average return. The results are shown in Table 2 and Fig. 5. Lattice and gSDE exhibit high
variance and instability in this environment, likely due to over-exploration. In contrast, our method
consistently delivers stable and superior performance compared to the others. The analysis in Fig. 5
reveals that our methods effectively identify sepsis-influencing treatments that are relevant to key
body factors, demonstrating the potential for real-world medical applications.
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(c) PPO Hopper p = 20 (Initial)
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Figure 3: Learning curves for PPO in the MujoCo environments with different approaches during the
initial stage. In all experiments, our knockoff sampling (KS) method not only performs comparably
to the true actions but also consistently delivers higher rewards than using all actions.
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Figure 4: Learning curves for PPO in the MujoCo environments during the middle stage where the
red line indicates the time point we utilize the proposed KS. After identifying the essential action set,
the policy can be more efficient and achieve higher rewards than continuing training on all actions.

Action Selection is Fast and Lightweight With just a few thousand data points and a lightweight
machine learning algorithm like random forest or LASSO, the whole action selection process outlined
in Algorithm 2, completes in under 20 seconds—including knockoff threshold determination. This
is significantly faster and less computationally intensive than the RL training part. Even when
incorporating more sophisticated feature selection methods, the additional computational overhead
remains negligible compared to the time required for RL training. Moreover, for the RL agent’s deep
neural network, only a few lightweight masking parameters are introduced, which have minimal effect
on both training and inference speed. Yet, these in turn substantially enhance policy optimization.

Supporting Analyses We conduct additional experiments for the variation of action distributions
during training, the convergence behavior of PPO with more steps, and whether network capability is
a key factor in solving the high-dimension action problem. The details are in Appendix C.

6 CONCLUSION, LIMITATION, AND FUTURE WORK

In this work, we address the high-dimensional action selection problem in online RL. We formally
define the objective of action selection by identifying a minimal sufficient action set. We innovate
by integrating a knockoff-sampling variable selection into broadly applicable deep RL algorithms.
Empirical evaluations in synthetic robotics and treatment allocation environments demonstrate the
enhanced efficacy of our approach. Yet, a notable constraint of our method is its singular application
during the training phase, coupled with the potential risk of overlooking essential actions with weak
signals. Inadequate action selection could degrade the agent’s performance. Intriguing future research
includes extending our methodology to incorporate multiple and adaptive selection stages. This
adaptation could counterbalance initial omissions in action selection. Additionally, formulating an
effective termination criterion for this process represents another compelling research direction.
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Table 1: Results on the PPO and SAC for three Mujoco tasks: Ant, HalfCheetah, and Hopper.
Action selection is utilized at the beginning stage of RL training. The final reward is the performance
evaluation for the agent after training. The best-performing results between KS and All are highlighted
in bold.

Env RL Algo. p Selection Ant

TPR (↑) FDR (↓) FPR (↓) Reward (↑)

Ant

PPO

0 True 1.00 0.0 0.00 567.77

20
KS 1.00 0.01 0.01 507.90
All 1.00 0.71 1.00 202.65

50
KS 1.00 0.00 0.00 572.39
All 1.00 0.86 1.00 151.66

SAC

0 True 1.00 0.00 0.00 817.95

20
KS 1.00 0.01 0.01 937.74
All 1.00 0.71 1.00 12.61

50
KS 1.00 0.00 0.00 731.73
All 1.00 0.86 1.00 −208.04

HalfCheetah

PPO

0 True 1.00 0.0 0.00 2130.55

20
KS 1.00 0.01 0.01 2237.08
All 1.00 0.77 1.00 1356.46

50
KS 1.00 0.00 0.00 1932.27
All 1.00 0.89 1.00 619.67

SAC

0 True 1.00 0.00 0.00 6640.05

20
KS 1.00 0.00 0.00 6607.55
All 1.00 0.77 1.00 5631.20

50
KS 1.00 0.00 0.00 6873.95
All 1.00 0.89 1.00 4748.24

Hopper

PPO

0 True 1.00 0.0 0.00 1736.65

20
KS 1.00 0.00 0.00 1540.83
All 1.00 0.87 1.00 1205.12

50
KS 1.00 0.00 0.00 1710.82
All 1.00 0.94 1.00 703.08

SAC

0 True 1.00 0.00 0.00 2511.00

20
KS 1.00 0.00 0.00 2165.81
All 1.00 0.87 1.00 398.75

50
KS 1.00 0.00 0.00 2424.09
All 1.00 0.94 1.00 137.67

Table 2: In the treatment allocation environments, we report
the average reward and standard deviation (Std) at both the
midpoint (50%) and the end (100%) of the training process,
where the proposed KS performs the best with the highest
reward. Both KS and All show significantly lower variance
with improving performance over time. In contrast, Lattice
and gSDE show high variance and degraded performance.

Method Average Reward (Std)
50% 100%

KS 14.0(0.8) 15.3(1.2)
All 13.6(1.6) 14.4(1.0)

Lattice 12.7(1.7) 10.8(5.9)
gSDE 9.7(5.3) 9.3(5.3)

Figure 5: In the treatment alloca-
tion environments, our KS meth-
ods identify the most relevant treat-
ments and the policy can be more
efficient to achieve higher rewards
than continuing training on all ac-
tions.
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A IMPLEMENTATION DETAILS

We adopt the implementation from Open AI Spinning up Framework [1]. Tables A.1 and A.2 show
the hyperparameters for the RL algorithms we used in our experiments. We set the FDR rate α = 0.1
and voting ratio r = 0.5 for our knockoff method in all settings. All the experiments are conducted
in the server with 4× NVIDIA RTX A6000 GPU.

Table A.1: PPO Hyperparameters

Parameter Mujoco EHR
optimizer Adam Adam
learning rate π 3.0 · 10−4 3.0 · 10−3

learning rate V 1.0 · 10−3 1.0 · 10−3

learning rate schedule constant constant
discount (γ) 0.99 0.99
number of hidden layers (all networks) 2 2
number of hidden units per layer [64, 32] [64, 32]
number of samples per minibatch 256 100
number of steps per rollout 1000 100
non-linearity ReLU ReLU
gSDE
initial log σ 0 0
Full std matrix Yes Yes
Lattice
initial log σ 0 0
Full std matrix Yes Yes
Std clip (0.001,1) (0.001,1)

Table A.2: SAC Hyperparameters

Parameter Mujoco
optimizer Adam
learning rate π 3.0 · 10−4

learning rate Q 3.0 · 10−4

learning rate schedule constant
discount (γ) 0.9
replay buffer size 1 · 106
number of hidden layers (all networks) 2
number of hidden units per layer [256, 256]
number of samples per minibatch 256
non-linearity ReLU
entropy coefficient (α) 0.2
warm-up steps 1.0 · 104

B MORE EXPERIMENTAL RESULTS AND ANALYSES

Table B.1: Summary of Environments

Env Dimension of Action Dimension of State

Ant 8 27
HalfCheetah 6 17
Hopper 3 11

EHR 20 46
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We list the dimension of action and state in terms of environments we used in Table B.1.
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Figure B.1: Results of SAC and PPO when using different variable selection approaches during the
initial stage.

B.1 MUJOCO

The results for the initial stage are shown in Fig. B.1 and Table 1. For different environments, action
selection difficulty varies and Hopper is the easiest one where the proposed KS method can correctly
select the minimal sufficient action set. Also, the patterns of the results for PPO and SAC are similar.
One observation is that KS can select all the sufficient actions with all TPRs equal to 1. It is shown
that KS is efficient in selecting only the minimal sufficient action set in almost all scenarios, which
also empirically validates our theory of FDR control under the proposed method.

B.2 TREATMENT ALLOCATION FOR SEPSIS PATIENTS

We collect 250000 data points from the MIMIC-III Clinical Database. Then we utilize a long short-
term memory (LSTM) to model the state transition. The observed state information encompasses a
broad spectrum of clinical and laboratory variables for assessing patient health and outcomes in a
medical setting. It includes demographic information (gender, age), physiological metrics (weight,
vital signs such as heart rate, blood pressure, respiratory rate, oxygen saturation, temperature), and
neurological status (Glasgow Coma Scale). Additionally, it captures details about the patient’s
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Figure B.2: Learning curves in the MujoCo environments with our method during the middle stage
where the red line indicates the time we utilize KS. After identifying a less redundant action set, the
policy can be more efficient and achieve higher rewards than continuing training on all actions.

readmission status, mechanical ventilation use, and severity scores such as SOFA and SIRS. Com-
prehensive lab tests cover a variety of blood chemistry components, including electrolytes, liver
enzymes, and arterial blood gases.

The action includes treatments such as the median and maximum doses of vasopressors administered
to manage blood pressure and perfusion, alongside vasopressors and intravenous fluids. The reward
is calculated based on whether the patient’s SOFA Score has improved. Termination of an episode is
achieved based on the patient’s mortality rate reaching the minimum (SOFA Score being 0) or the
patient’s mortality rate reaching the maximum (SOFA score being 24).

C SUPPORTING ANALYSES

We conducted additional experiments regarding the distribution of actions that were sampled over the
training period. The new results are summarized in Figure C.1. Based on the results together with
existing figures in the main text, we can conclude that there exist changes regarding the distribution
of actions that are sampled during different periods of training which could be a positive indicator of
a more focused and potentially more effective learning process.
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Figure C.1: The distributions of actions in 3 stages: initial training, middle of training without KS,
and middle of training with KS. It can be seen that with KS the actions have slightly less variance
than other methods, which could be a positive indicator of a more focused and potentially more
effective learning process.
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Figure C.2: Learning curves in the MujoCo environments with 4e6 steps.
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Figure C.3: Learning curves in the MujoCo environments with different network sizes.

Since we only use steps for PPO training which might be able to converge in the end, we further add
the steps to 4e6. The new results are summarized in Figure C.2. Based on the results together with
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existing figures in the main text, we can conclude that the benefit of the proposed framework is both
sample efficiency and performance.

We also conducted additional experiments by increasing the network size. The new results under
MujoCo with different network sizes are summarized in Figure C.3, where we can conclude that
the network capacity has a certain influence on the performance of All Action. However, simply
increasing the network capacity unnecessarily makes learning easier. In addition, the proposed
method consistently performs better than All Action no matter how we increase the network size,
which indicates the performance difference results from the redundancy of action space. In addition,
we admit there are other factors that affect how the agent learns with a larger action dimension, such
as regularization techniques, albeit with limited influence compared with the redundancy of action
space.

D EXTEND TO CORRELATED ACTIONS

Now assume the policy network is parameterized by a multivariate Gaussian with covariance matrix
as:

a ∼ N (µ (s) ,Σ (s)) ,

where µ and Σ are parameterized functions to output the mean and covariance matrix.

Since the actions are correlated, we couldn’t mask the individual log πθ (ai | s). To solve this problem,
we can transform the non-selected actions to be conditional independent first.

Given a selected action set Ĝ, we define a selection vector m = (m1, · · · ,mp) ∈ {0, 1}p, where
mi = 1 if i ∈ Ĝ and 0 otherwise. Then we mask the covariance matrix as follows:

Σm(s)ij

{
Σ(s)ij if mi = 1, and mj = 1, i ̸= j

0 if mi = 0, or mj = 0, i ̸= j.

The masking only changes non-selected actions to be independent and removes its influence on
selected actions which still keeps the covariance structure of selected actions. Then we can easily
mask the log density of non-selected actions.

E MACHINE LEARNING ALGORITHM FOR CALCULATING IMPORTANCE
SCORES

In Knockoff, the computation of the importance scores is very flexible since many machine learning
algorithms can be used. The only requirement for the ML method is to satisfy a fairness constraint, so
that that swapping X̃j with Xj would have the only effect of swapping Zj with Z̃j , which is usually
true in standard tabular machine learning algorithms, like regression, decision tree. One example
is that when we fit a linear regression model, then the coefficients of the variables can be seen as
importance scores.

F TECHNICAL PROOFS

F.1 PRELIMINARY RESULTS

Before we prove Theorem 1, we first provide a preliminary lemma of our procedure that can enable the
flip-sign property of W-statistics. This property can be used to prove Theorem 1 when observations
are independent. Now we focus on one data split Dk and assume the data are independent.

Lemma F.1. Ak and Sk are a action and a state matrix. For any subset Ω ⊂ {1, . . . , p}, and Ãk

obatined by resampling, we have([
Ak, Ãk

]
swap(Ω)

,Sk

)
d
=

([
Ak, Ãk

]
,Sk

)
,

where swap(Ω) represents swapping the j-th entry of Ak and Ãk for all j ∈ Ω.
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The proof of Lemma F.1 is based on the property of constructed variables where Ak and Ã have the
same marginal distribution and the whole joint distribution is symmetrical in terms of Ak and Ã.

In the following, we show the exchangeability holds jointly on actions, states, and rewards when
swapping null variables.
Lemma F.2. LetH0 ⊆ {1, . . . , p} be the indices of the null variables, for any subset Ω ⊂ H0([

Ak, Ãk

]
swap(Ω)

,Sk,Yk

)
d
=

([
Ak, Ãk

]
,Sk,Yk

)
,

where Yk is a response including the next state and reward.

Proof: Based on the exchangeability proved in Lemma F.1, we can directly utilize the proof of
Lemma 3.2 in Candès et al. (2018). We just need to extend the derivation by conditional on Sk and
show equivalence by swapping action variables in Ω one by one. We omit further details of the proof.
Lemma F.3.

Wi

([
Ak, Ãk

]
swap(Ω)

,Sk,Yk

)
= Wi

([
Ak, Ãk

]
,Sk,Yk

)
·
{
−1, if i ∈ Ω

+1, otherwise
.

Proof: We require the method constructing W to satisfy a fairness requirement so that swapping
two variables would have the only effect of swapping corresponding feature importance scores. The
fairness constraint is satisfied with many general machine learning algorithms, like LASSO and
random forest. Once the fairness constraint is satisfied, W will be anti-symmetric and the equal
above automatically holds.

Lemma F.4. Assume the flip-coin property in Lemma F.3 is satisfied, on data Dk, the selection Ĝk

obtained from applying knockoff method in Algorithm 2 controls modified FDR (mFDR), e.g.

mFDR
(
Ĝk

)
≤ α.

Proof: For statistics W calculated, we denote Wswap(Ω) to be the W -statistics computed after
the swap w.r.t. Ω ⊂ {1, . . . , p}. Now consider a sign vector ϵ ∈ {±1}p independent of W =

[W1, . . . ,Wp]
⊤, where ϵi = 1 for all non-null state variables and P (ϵi = 1) = 1/2 are independent

for all null state variables. Then for such ϵ, denote Ω := {i : ϵi = −1}, which is a subset ofH0 by
the assumption (and recall thatH0 is the collection of all null variables). By Lemma F.3 we know

(W1 · ϵ1, . . . ,Wp · ϵp) = Wswap(Ω).

For convenience, we also use h to denote a measurable mapping function from a data set to its
W -statistics, i.e., on [sk, s̃k,ak,yk],

W = h
(
Ak, Ãk,Sk,Yk

)
.

Then we can get:

Wswap(Ω) = h

([
Ak, Ãk

]
swap(Ω)

,Sk,Yk

)
d
= h

([
Ak, Ãk

]
,Sk,Yk

)
= W,

where the second equality (in distribution) is due to Lemma F.2 and h is measurable. The rest of the
proof will be the same as that for Theorems 1 and 2 in Barber & Candès [4].

F.2 PROOF OF THEOREM 4.3

Using Lemma F.4, we can show that if the data points in Dk are independent, then mFDR can be
controlled. Now we want to weaken the independence assumption to stationarity and exponential
β-mixing assumption in 4.2. Based on Lemma F.4, the following proof is essentially the same as
Theorem 1 in Ma et al. [34]. We will omit those steps for brevity.
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