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Abstract

Learning a compact representation summarizing history is essential for decision-
making, planning, and generalization in partially observable environments.
Memory-based meta-reinforcement learning (RL) has been shown to learn near
Bayes-optimal policy under partial observability. However, its learned represen-
tations can fail to achieve equivalence to minimally-sufficient, Bayes-optimal
belief states, potentially hindering its robustness and generalization. To overcome
this challenge, we propose a meta-RL framework for learning an explicit belief
representation by incorporating self-supervised predictive modules inspired by
predictive coding from neuroscience literature. Our approach outperforms conven-
tional meta-RL by generating more interpretable and task-relevant representations,
which better capture the underlying task structure and dynamics. Using state ma-
chine simulation, we demonstrate the learned representations are more equivalent to
Bayes-optimal states and linked to improved future prediction and policy learning.
Our results suggest that self-supervised future prediction is a promising technique
for enhancing representation learning in partially observable environments.

1 Introduction

In real-world environments, agents — whether biological or artificial — rarely have complete
information about the environmental states crucial for decision-making and planning, as observations
are often noisy, non-stationary, and stochastic. This issue is known in reinforcement learning (RL)
as partial observability [1], and is one of the major challenges in deploying real-world RL systems
[2]. Under partial observability, learning the optimal policy depends on the entire sequence of past
observations and actions, called history. An open question in RL under partial observability is how to
learn a representation that serves as a compact summary of the history while being as effective as the
actual history for future prediction and policy learning.

Partially observable tasks can typically be formalized as partially observable Markov Decision
Processes (POMDPs, Fig. 1A) [3], which allow a Bayesian treatment by explicitly maintaining a
belief state (the posterior over hidden states), and updating the belief using Bayesian inference [4]. It
has been shown that meta-RL, in particular recent advances in memory-based meta-RL, provides
powerful and scalable deep learning methods for developing agents that can efficiently learn and adapt
under uncertainty [5–10]. Often parametrized with recurrent neural networks (RNNs), memory-based
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meta-RL acquires inductive biases from data through training to maximize return on a distribution
over tasks. This approach has been shown to derive agents that behave near Bayes-optimally under
partial observability, both theoretically and empirically [11, 12]. However, its learned representations
are not equivalent to the minimally-sufficient, Bayes-optimal belief states [12], potentially hindering
its robustness, generalization capability, and learning of temporally-extended exploration [5, 12].

On the other hand, humans and animals can learn complex predictive models to guide decision-
making under uncertainty and rapid adaptation in novel environments [13, 14]. Experimental
and theoretical neuroscience studies postulate that the brain generates predictions about incoming
observations and utilizes prediction errors to update its internal models [15]. This hypothesized
neural mechanism, formalized as predictive coding [16, 17], has been instrumental in understanding
diverse cognitive processes, including feature learning in sensory areas [18, 19], motor control in
the cerebellum [20], cognitive maps in the hippocampus [21], and value learning in the striatum
[22]. Furthermore, predictive objectives have been shown in machine learning to be key auxiliary
objectives for representation learning, preventing representation collapse in neural networks [23–25].

Motivated by the modular predictive coding neural circuits and extending on previous works using
auxiliary training objectives for meta-RL [9, 10], in this study, we propose an end-to-end memory-
based meta-RL framework with self-supervised future predictive modules to learn explicit belief
representations in partially observable environments. We focus on evaluating the learned represen-
tations and demonstrate that the proposed meta-RL agents with self-supervised predictive modules
can learn representations with higher equivalence to Bayes-optimal states compared to conventional
meta-RL agents. Specifically, (i) we show the proposed method can learn an interpretable, low-
dimensional representation of the history that captures relevant task structures and dynamics, which
facilitates policy learning and planning, even for tasks requiring exploration and information seeking;
(ii) using state machine simulation [12], we quantitatively demonstrate the proposed method can learn
representations more equivalent to Bayes-optimal states than conventional meta-RL methods. Overall,
we show that meta-RL with self-supervised predictive modules provides a promising approach for
representation learning in partially observable environments.

2 Related work

Previous works have proposed memory-based meta-RL and examined their Bayes-optimality. Black
box meta-RL such as RL2 learns a recurrent policy through hidden states in RNNs conditioned on
the entire history (Fig. 1B) [6, 7]. In principle, Bayes-optimal policies can be learned by encoding
the belief state in RNN hidden states. These belief representations emerge implicitly as a byproduct
of training deep meta-RL policies [5]. Several studies have demonstrated that belief states can
be decoded from RNN hidden states [10, 26, 27], and the learned policy converges to the Bayes-
optimal one theoretically and empirically in bandit problems [11, 12]. However, comparison of
meta-learned representations in RL2 using state machine simulation suggests their representations are
not equivalent to minimally-sufficient Bayes-optimal states, likely due to failures in injectivity and
potentially hindering its robustness and generalization [12].

In addition to black-box methods, several works have explored auxillary training objectives and
alternative architectures for meta-RL. Zintgraf et al. [9] proposes VariBAD, where a variational
autoencoder is used to learn a posterior over task embeddings, providing effective meta-learning
models for task inference under partial observability. Akuzawa et al. [10] employs hierarchical
state-space models to learn task embedding and belief states separately. Wang et al. [28] assumes
full-observability during training and propose decoupled representation learning and belief modeling
using a separate random policy to generate training samples. Our proposed approach draws inspiration
from this line of studies using auxillary objectives for representation learning.

3 Meta-RL with self-supervised predictive modules for representation
learning

To efficiently learn optimal policies in partially observable environments, the critical challenge
lies in learning a good representation of belief states from history (Fig. 1A). Black-box meta-RL
methods like RL2 (Fig. 1B) require simultaneously learning state representation and decision-
making using only reward signals, typically making the agents struggle to learn good representations
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Figure 1: Representation learning under partial observability using meta-RL with predictive modules.
A) In POMDPs, a belief state over the environmental hidden state is maintained and used for policy
learning. B) Memory-based meta-RL (e.g. RL2) simultaneously learns representation and policy
using only the reward signal. C) The proposed meta-RL with self-supervised predictive modules
separates representation learning with predictive modeling and policy learning with reward signal.

and subsequently hindering them from effectively learning optimal policies [5, 12]. To overcome
this challenge, we propose an end-to-end memory-based meta-RL framework with self-supervised
predictive modules to learn an explicit belief representation. Our motivations are two-fold: (i)
neurobiological motivation under predictive coding hypothesis where modular neural circuits perform
distinct sensory and reward predictions, and (ii) theoretical motivation that a good representation
should summarize the relevant history predictive of the future and reflect uncertainty about the belief.

The proposed framework consists of a variational autoencoder for predictive representation learning
and a policy network for decision-making based on the learned representation (Fig. 1C). The
predictive modules begin with an RNN encoder qϕ, which takes as input the current observation ot,
the current reward rt, and the previous action at−1. Unlike RL2, which outputs policy and value
function directly (Fig. 1B), here the RNN outputs a belief state bt (the posterior) over the latent states
mt conditioned on the history τ0:t. The posterior is trained via reward and observation prediction
akin to predictive coding in neuroscience using the reward decoder Rθ and the observation decoder
Tθ, respectively, to predict upcoming rewards and observations given the action taken by the policy
network. The predictive modules are optimized by maximizing the evidence lower bound (ELBO,
see A.1) using the reparametrization trick [29]. This approach learns an explicit probabilistic belief
representation over the latent state, which summarizes the history and is predictive of future outcomes.
The policy network πψ is implemented as a feedforward neural network that receives the belief state
bt as inputs. Since policy learning is decoupled from representation learning, the policy network can
be efficiently trained using model-free policy gradient algorithms [30] (see A.3 for details).

The whole model is trained in a self-supervised, end-to-end fashion using standard meta-learning
approach. Our framework does not rely on privileged information during training or a separate random
policy to generate samples for training the predictive models (e.g., [28]). Note our parameterization
is similar in principle to previous works [9, 10, 31], with modifications tailored for POMDPs without
assuming stationarity or structures of the hidden states.

4 Experiment

We design the following experiments to answer the question: whether meta-RL with self-supervised
predictive modules learns representations with higher equivalence to Bayes-optimal states than
conventional meta-RL? Specifically, we adopt the state machine simulation analysis used in Mikulik
et al. [12] to examine the equivalence of representation and computation between meta-RL agents
and Bayes-optimal solution. In essence, two state machines can be considered computationally
equivalent if they can simulate each other — that is, if for any given states in one machine we can
find a mapping onto the other machine such that both their state transitions and outputs are the same
[32]. This analysis examines whether there exists a consistent way of interpreting every state in
one machine as a state in the other. While decoding is commonly used to evaluate representation
similarity [10, 26, 27], it considers only correlation whereas state machine simulation allows thorough
assessment of representation equivalence based on structural and computational relevance.
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Figure 2: Meta-RL with predictive modules learns interpretable, task-relevant representations, fa-
cilitating effective policy learning. A) For the two-armed bandit task, return (left 1, normalized by
expected return of the Bayes-optimal solution) of RL2 (orange) and meta-RL with predictive modules
(blue) across training. Bayes-optimal states (left 2), learned representation of RL2 (left 3), and that of
meta-RL with predictive modules (right). Each point is one state in the system, with color indicating
the probability of choosing a2. Black curves show one example trajectory. B) For the oracle bandit
task, similar to A, with state space coloring indicating the most likely arm to choose in that state. Note
meta-RL with predictive modules learns a representation capturing task structures and dynamics.

State machine simulation In tasks where Bayes-optimal states are analytically tractable, we can
compare meta-RL representations with Bayes-optimal belief states using state machine simulation.
The goal is to measure the state and output dissimilarities after using the best possible mapping
function. If both state and output dissimilarities are low in both mapping directions, then the two
representations can be considered equivalent. Briefly, the procedures are as follows (and see A.4
for details): (i) two mapping functions (parametrized as multi-layered perceptrons) are trained to
map from meta-learned states to Bayes-optimal states and from Bayes-optimal states to meta-learned
states; (ii) The state dissimilarity Ds is measured as the mean square error (MSE) of the mapped
states against the target states; (iii) The output dissimilarity Do is measured as the difference in return
as generated by the output of the original states and the output of the mapped states. Here we compare
Ds and Do of the proposed meta-RL with predictive modules against those of conventional meta-RL
(RL2) to evaluate the quality of their learned representations.

Tasks We consider two exemplar tasks for evaluating representation learning under partial observ-
ability. The first is the multi-armed bandit task also considered in Mikulik et al. [12], where the
meta-learned representations in RL2 models are shown not to be equivalent to minimally-sufficient
Bayes-optimal states. We will first examine whether our proposed meta-RL with predictive modules
can learn Bayes-optimal states in a two-armed bandit task (see A.2).

Black box meta-RL like RL2 often struggles to learn when exploration and information seeking are
required [5]. We hypothesize this is due to ineffective representation learning. To exemplify this point,
we consider an oracle bandit as the second task: in an 11-arm bandit environment, one of the first ten
arms a1−10 is the target arm that gives a payout of 5, whereas the rest nine are non-target arms that
each gives a payout of 1. The last arm a11 is the “oracle” arm whose payout is ≤ 1 and informs the
target arm in the form of 1

10 of the target arm index (e.g. a reward of 0.3 from a11 indicates a3 is the
target arm). This is similar to Wang et al. [7] but differs in that here no structured feedback is given,
making learning a good representation more challenging and critical (see A.2). A successful policy
requires paying an immediate exploration cost to acquire information for long-term gain.

5 Results

5.1 Two-armed bandit

For multi-armed bandits the Bayes-optimal solution can be derived with the Gittins index method
[33]. In a two-armed bandit task, we find that while both RL2 and meta-RL with predictive modules
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Figure 3: State machine simulation shows meta-RL with predictive modules learns representations
with higher equivalence to Bayes-optimal states. A) For the two-armed bandit task, meta-RL with
predictive modules attains much lower state transition dissimilarity Ds and output dissimilarity Do

than RL2 in both mapping directions, indicating higher equivalence to Bayes-optimal state. (Error
bar: standard error of the mean across different models.) B) Similar results for the oracle bandit task.

ultimately approach the performance of Bayes-optimal policy (Fig. 2A), meta-RL with predictive
modules converges faster. Visualization of states shows meta-RL with predictive modules learns
a low-dimensional representation that is structurally more similar to the Bayes-optimal states than
RL2 (Fig. 2A). The qualitative observation is corroborated by the state machine simulation results
in Fig. 3A (and Fig. 4 in Appendix). Before training (red), both RL2 and meta-RL with predictive
modules have high state and output dissimilarities, indicating the untrained networks are far from
Bayes-optimal (except for Ds of RL2→Bayes, which further implies that using decoding alone is
not enough for comparing representation, see A.4 for discussion). After training (blue), meta-RL
with predictive modules achieves much lower Ds and Do in both mapping directions, showing
that its learned representations are more equivalent to the Bayes-optimal states. In contrast, some
dissimilarity measures remain high for RL2 after training, indicating the learned representations of
RL2 are not equivalent to Bayes-optimal states, similar to findings in Mikulik et al. [12].

5.2 Oracle bandit

Knowledge of the task structure can be used to derive the Bayes-optimal state and policy for the
oracle bandit task (see A.2). After meta-training, meta-RL with predictive modules can learn the
Bayes-optimal policy, paying an immediate cost to sample the oracle arm and utilize the information
for long-term gain (Fig. 2B). In contrast, RL2 converges to a suboptimal policy where it learns
to sample the oracle arm upfront, but the use of such information is less consistent (Fig. 2B).
Visualization of representation shows that meta-RL with predictive modules learns an interpretable,
low-dimensional representation capturing task structures and dynamics, whereas RL2 fails to learn
an interpretable representation (Fig. 2B), which explains its suboptimal behavior. Further, state
machine simulation in Fig. 3B (and Fig. 5 in Appendix) shows that after training (blue), meta-RL
with predictive modules attains much lower state transition and output dissimilarities in both mapping
directions, demonstrating its learned representation are more equivalent to the Bayes-optimal states.
In contrast, dissimilarity measures remain high for RL2 after training, indicating that RL2 fails to
learn an effective representation when the task requires exploration and information seeking.

6 Discussion and conclusions

In this study we showed meta-RL augmented with neurally-inspired self-supervised predictive coding
modules can effectively learn good representations in partially observable environments, facilitating
policy learning. We find that in bandit tasks where black-box meta-RL method was previously shown
incapable of learning Bayes-optimal states, the proposed meta-RL with predictive modules can learn
representation more equivalent to Bayes-optimal states as measured with state machine simulation.
In the oracle bandit task where exploration and information seeking are required, we show that
our approach can learn an interpretable, low-dimensional representation that successfully captures
relevant task structure and dynamics. In contrast, Black-box meta-RL fails to learn a compact and
informative representation, which in turn hinders learning the optimal policy.
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Scope and limitations In this work we only considered tasks with known/ derivable Bayes-optimal
solutions to aid evaluation. Additional work is needed to validate the results in tasks with larger
observation and action spaces and involving non-stationarity. In addition, we have only considered
next-step future prediction. One future direction would be to incorporate different time scales with
temporal abstractions (e.g. options). Finally, representation is important for generalization. We have
not considered how representations may affect the ability for out-of-distribution (OOD) generalization,
or how to learn representations that facilitates OOD generalization.
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A Appendix / supplemental material

A.1 Evidence lower bound

At a given time step t, the learning objective of the RNN encoder qϕ is to maximize

Eρ(τ0:t)[log pθ(ot+1, rt+1|a0:t)] (1)

where ρ(τ0:t) is the distribution of trajectories incurred by the policy πψ . Eq. 1 is intractable, and we
can instead optimize a tractable evidence lower bound (ELBO), computed as:

L = Eρ(τ0:t)

[
EΠT−1

t=0 qϕ(mt|τ0:t)

T−1∑
t=0

{
[log pθ(ot+1|mt, at) + log pθ(rt+1|mt, at)]

−DKL[qϕ(mt|τ0:t)||pθ(mt)]
}] (2)

The terms Eq[log pθ(ot+1|mt, at)+ log pθ(rt+1|mt, at)] are the (predictive) reconstruction loss, and
the term DKL[qϕ(mt|τ0:t)||pθ(mt)] is the Kullback-Leibler (KL) divergence between the variational
posterior qϕ and the prior over the latent variables pθ(mt). To approximate Bayesian filtering for
the belief update, the prior is set to the previous posterior qϕ(mt−1|τ0:t−1) with the initial prior
qϕ(m0|τ0) = N (0, I). To optimize the ELBO (Eq. 2), the expectation is approximated with Monte
Carlo smapling as in standard variational autoencoder (VAE) [29].

A.2 Task details

Two-armed bandit task We consider a Beta-Bernoulli two-armed bandit task with an episode
length of 40 time steps. At the beginning of each episode, θ1 and θ2, the reward probability baises for
the two arms, are independently drawn from a fixed Beta distribution, p(θ) = Beta(1, 1). θ1 and θ2
are then used to define the Bernoulli reward distributions for arm a ∈ {1, 2}, respectively. The reward
biases θa are hidden from the agent. At each time step, an agent choose an arm a ∼ π sampled
from its policy, and receives a binary reward sampled from Ber(θa), i.e. rt ∼ p(r|θa) = Ber(θa).
The discounted cumulative return is computed with a discount factor γ = 0.95. For multi-armed
bandit tasks, Bayes-optimal policy can be derived using the Gittins index method [33], and the
minimally-sufficient Bayes-optimal state is to keep track of the count of total pulls and the count of
rewarded pulls for each arm. Therefore for the two-armed bandit task, the Bayes-optimal states are
4-dimensional: (na1 , nra1

, na2 , nra2
), where na and nra denote the count of total pulls and the count

of rewarded pulls for arm a, respectively.

Oracle bandit task The oracle bandit task is designed to exemplify an environment where a
successful policy requires paying an immediate exploration cost to acquire information to improve
long-term return. In an 11-arm bandit environment with an episode length of 6 time steps, one of the
first ten arms a1−10 is selected uniformly randomly as the target arm a∗, which will give a payout of
5 upon choosing. The other nine arms out of a1−10 are non-target arms, each of which will give a
payout of 1 upon choosing. The last arm, a11, is the oracle arm whose payout informs the index of
the target arm in a form of 1/10 of the target arm a∗, i.e. r(a11) = 0.1 ∗ a∗ (e.g. a reward of 0.3 from
a11 indicates that a3 is the target arm). The discounted cumulative return is computed with a discount
factor γ = 0.95. Note this setting is similar to Wang et al. [7] but differs in that in their set up this
oracle information was provided using a one-hot encoding format, but in our formulation no other
feedback than the reward itself is given, which requires learning a good representation of the history.
With knowledge of the task structure, the Bayes-optimal policy is to always pull the oracle arm at the
beginning, and continue pulling the target arm as informed by the reward information from the oracle
till the end of the episode. Under the Bayes-optimal policy, the minimally sufficient statistic is to
keep track of (pa11 , ra11), where pa11 ∈ {0, 1} is binary denoting whether the oracle arm has already
been pulled, and ra11 denotes the reward amount from the oracle if pulled previously.
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A.3 Agent details

RL2 Our implementation of RL2 for black-box memory-based meta-RL follows previous literature
[6, 7]. Here we use RNNs with 256 hidden units and hyperbolic tangent activation functions. As
shown in Fig. 1B, the input includes the current observation ot, the previous action in one-hot format
at−1, and the associated reward in scalar format rt. Output of the network is composed of a scalar
value baseline Vt and a vector of logits for each action at. Actions are then sampled from a softmax
distribution defined by the logits. The network is trained end-to-end with the Advantage Actor Critic
algorithm [30] (Parts of the implementation code are based on [34], under MIT license). The gradient
of the objective function is given by:

∇LA2C = ∇Lπ +∇LV +∇Lentropy

=
∂ log π(at|τ:t;ψ)

∂ψ
δt(τ:t;ψV ) + βV δt(τ:t;ψV )

∂V

∂ψV
+ βe

∂H(π(at|τ:t;ψ))
∂ψ

(3)

where

δt(τ:t;ψV ) = Rt − V (τ:t;ψV )

Rt =

k−1∑
i=0

γirt+1 + γkV (τ:t+k;ψV )
(4)

defines the n-step temporal difference error advantage function δt, the discounted n-step bootstrapped
return Rt with discount factor γ, k the number of remaining time steps in the current episode,
and V the value function parametrized by ψV . The neural network policy is denoted as π and
parametrized by ψ, and Hπ is the entropy of the policy. Finally, βV and βe are hyperparemeters
for controlling the relative weighting of value estimation loss and entropy regularization. For the
two-armed bandit task we use βV ∈ {0.01, 0.05} and βe ∈ {0.03, 0.05}, and for the oracle bandit
task we use βV ∈ {0.01, 0.05} and βe ∈ {0.3, 0.5}. The parameters are trained via backpropagation
through time using the Adam Optimizer with a learning rate of 5e-5.

Meta-RL with predictive modules The self-supervised predictive modules are formulated as a
VAE. For encoder qϕ we use RNNs with 256 hidden units and hyperbolic tangent activation functions.
Latent dimension mt is set to be 4 for the two-armed bandit task and 8 for the oracle bandit task.
Therefore the output dimension of the encoder RNN is twice the above latent dimension for estimating
both the mean and the variance of the latents, as standard in VAE. The decoders Rθ and Tθ are
multi-layered perceptrons (MLPs) with one hidden layer of 32 units and ReLU activation functions.
As shown in Fig. 1C, the encoder-decoder framework takes as input the current observation ot, the
previous action in one-hot format at−1, and the associated scalar reward rt, and is set up to make
prediction of the upcoming observations ot+1 and rewards rt+1, conditioned on the trajectory as
incurred by the policy network πψ described below. The entire VAE is trained to maximize the ELBO
(Eq. 2) as derived in A.1. A coefficient of 0.01 is used for the relative contribution of the KL-term for
the VAE training objective. We use the Adam Optimizer with a learning rate of 7e-5 to train the VAE
using backpropagation through time.

The policy network πψ is parametrized as a MLP with one hidden layer of 32 units and hyperbolic
tangent activation functions. Similar to the previous paragraph on RL2, the policy network is trained
with the Advantage Actor Critic algorithm to optimize the same loss function as described in Eq. 3.
We use the same choice of βV and βe as before. An Adam Optimizer with a learning rate of 5e-5
is used to optimize the policy network. Note although the policy loss depends on the parameters of
the encoder qϕ, we do not backpropagate the policy loss gradient through the encoder as the goal of
the encoder is to learn a belief over the latent states such that the belief alone should be a sufficient
representation for policy learning (similar to Zintgraf et al. [9]). Parts of the implementation code are
based on [9] (under MIT license).

Model training The above meta-RL models (RL2 and ours, meta-RL with predictive modules) are
trained on internal GPU clusters (NVIDIA GeForce RTX 4090), which takes about 1G GPU memory
and about 10-12 hours for training per model.
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A.4 State machine simulation

Following the procedures of state machine simulation introduced in Mikulik et al. [12], we consider
whether a meta-RL system (RL2 or our proposed approach, meta-RL with predictive modules) can
both simulate and be simulated by, a Bayes-optimal agent for a given task.

To evaluate how well a state machine M simulates another machine N , a function ϕ is first learned to
map the states SN inN to into the state space SM ofM . As enumeration over all possible trajectories
are not practical if not possible, quality of a simulation is measured along trajectories sampled from
some reference distribution. Given trajectories from a reference distribution, quality of the simulation
is then measured by (i) the state-transition dissimilarity Ds, measured as the mean-squared error
(MSE) between the embedded states ϕ(SN ) and the target states SM , and (ii) the output dissimilarity
Do, measured as the difference in the expected return generated from the states SN using the machine
N and those generated from the states ϕ(SN ) using the machine M . If both the state-transition and
output dissimilarities Ds and Do are low/ negligible, then we establish that M simulates N . If both
M simulates N and N simulates M , then we can say M and N are computationally equivalent, and
their states are equivalent.

In practice, the mapping function ϕ is implemented as an MLP with ReLU activations and three
hidden layers of 64, 128, and 64 units, respectively. The MLP is trained with the Adam Optimizer
with learning rate 0.001 and batch size 64. The training set is consisted of 500 trajectories, and the
results reported are from another test set of 300 trajectories. Compared with Mikulik et al. [12],
where the reference distribution is generated by the meta-RL agent, here we modify the procedure by
generating the reference distribution with the Bayes-optimal agent, as this provides an even more
stringent condition where the simulation is evaluated in the regime of Bayes-optimal solutions.

When evaluating how well a Bayes-optimal agent simulates a meta-RL system, we first train an MLP
mapping meta-RL states into Bayes-optimal states by minimizing the MSE between the mapped
states and the target Bayes-optimal states. After training, quality of the simulation is measured on a
test set by evaluating the state-transition dissimilarity (Ds: metaRL→Bayes, as denoted in Fig. 3)
and the output dissimilarity (Do: metaRL→Bayes as denoted in Fig. 3). If both Ds: metaRL→Bayes
and Do: metaRL→Bayes are low after training, then the Bayes-optimal agent simulates the meta-RL
agent.

On the other hand, to evaluate how well a Bayes-optimal agent is simulated by a meta-RL one, an
MLP is trained to map Bayes-optimal states into meta-RL states, and the state-transition dissimilarity
is denoted Ds: Bayes→metaRL and the output dissimilarity denoted Do: Bayes→metaRL in Fig. 3.
If both Ds: Bayes→metaRL and Do: Bayes→metaRL are low after training, then the Bayes-optimal
agent is simulated by the meta-RL agent.

If all the above four dissimilarity measures are low/ negligible, then we can say that the meta-RL agent
and the Bayes-optimal agent are computationally equivalent and their representations are equivalent.
Our results in Fig. 3 show that after training the proposed meta-RL with predictive modules can
attain much lower dissimilarities in all four measures than conventional RL2.

Note before training the state transition dissimilarity Ds can be low, similar to what Mikulik et al.
[12] reported and discussed — untrained RNN may maintain a verbose representation of the history
by embedding each trajectory to a unique hidden state, which can be subsequently mapped to Bayes-
optimal minimally sufficient statistic with low error using expressive enough functions, like the MLPs
used in the above procedure. This observation also implies using decoding alone may not provide
a thorough assessment of representation equivalence, and we need to consider their structural and
computational relevance when comparing representations.
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A.5 Additional results

A.5.1 State machine simulation: two-armed bandit

Figure 4: State machine simulation on the two-armed bandit task. For each meta-RL system of
A) trained RL2, B) untrained RL2, C) trained meta-RL with predictive modules, and D) untrained
meta-RL with predictive modules, we evaluate how well the meta-RL system in question can simulate
and be simulated by the Bayes-optimal solution. For each subplot, visualization of state mapping are
presented in clockwise order: (i) top left, Bayes-optimal states, (ii) top right, mapping meta-RL states
into Bayes states, (iii) mapping Bayes-optimal states into meta-RL states, and (iv) meta-RL states.
Note even for untrained meta-RL systems, it is possible to map their states into the Bayes states with
low error, which indicates the untrained RNNs may maintain a verbose representation of the history
and a thorough assessment of representation equivalence should consider not just correlation but also
structural and computational relevance.
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A.5.2 State machine simulation: oracle bandit

Figure 5: State machine simulation on the oracle bandit task. For each meta-RL system of A) trained
RL2, B) untrained RL2, C) trained meta-RL with predictive modules, and D) untrained meta-RL
with predictive modules, we evaluate how well the meta-RL system in question can simulate and
be simulated by the Bayes-optimal solution. For each subplot, visualization of state mapping are
presented in clockwise order: (i) top left, Bayes-optimal states, (ii) top right, mapping meta-RL states
into Bayes states, (iii) mapping Bayes-optimal states into meta-RL states, and (iv) meta-RL states.
Note only the proposed approach, trained models of meta-RL with predictive modules, are able to
learn an interpretable representation capturing the underlying task structure with one dot for the
oracle arm and ten other clusters for the ten possible target arms that are geometrically arranged
according to their payout differences. All other models, including the trained models of RL2, fail to
learn such compact representations.
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