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Abstract
We introduce a new mean-field ODE and corre-
sponding interacting particle systems (IPS) for
sampling from an unnormalized target density.
The IPS are gradient-free, available in closed
form, and only require the ability to sample from a
reference density and compute the (unnormalized)
target-to-reference density ratio. The mean-field
ODE is obtained by solving a Poisson equation for
a velocity field that transports samples along the
geometric mixture of the two densities, π1−t

0 πt
1,

which is the path of a particular Fisher–Rao gra-
dient flow. We employ a RKHS ansatz for the
velocity field, which makes the Poisson equation
tractable and enables discretization of the result-
ing mean-field ODE over finite samples. The
mean-field ODE can be additionally be derived
from a discrete-time perspective as the limit of
successive linearizations of the Monge–Ampère
equations within a framework known as sample-
driven optimal transport. We introduce a stochas-
tic variant of our approach and demonstrate empir-
ically that our IPS can produce high-quality sam-
ples from varied target distributions, outperform-
ing comparable gradient-free particle systems and
competitive with gradient-based alternatives.

1. Introduction
In this work we consider the problem of sampling via trans-
port: given a target distribution π1 on Rd and a reference
distribution π0 on Rd from which we can sample, our
goal is to find T : Rd → Rd such that T♯π0 = π1, i.e.,
X0 ∼ π0 ⇒ T (X0) ∼ π1. We assume that π0 and π1 both
admit densities and that we can evaluate the (unnormalized)
density ratio* π1

π0
but that we do not have samples of π1 with
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*For the remainder of this paper, the terms “density” and “den-
sity ratio” refer to unnormalized quantities unless otherwise stated.

which to train the map, or access to gradients (including
scores) of π1 or π0. The density ratio is available when the
(unnormalized) density of π1 is known and π0 is chosen to
be some “standard” reference (e.g., Gaussian). It is also
accessible in the Bayesian setting so long as the likelihood
function ℓ is known: therein π0 is the prior distribution of
some Rd-valued parameter X and π1 ∝ ℓ π0 is the posterior
distribution of X given Y = y∗, with ℓ(·) = πY |X(y∗|·).
The ratio in the Bayesian setting is π1

π0
∝ ℓ, but we will

use the term “likelihood” to refer to the ratio π1

π0
outside of

the Bayesian setting as well. In applications of Bayesian
inference such as data assimilation (Reich & Cotter, 2015)
it is frequently the case that π0 is only known through sam-
ples; hence, while the target density π1 ∝ π0ℓ cannot be
evaluated, the likelihood ℓ often can. Furthermore, in many
other scientific applications, π1 or ℓ may contain a com-
plicated physical model whose gradients are inaccessible;
hence gradient-free sampling is a necessity.

The canonical sampling approach employing the likelihood
is importance sampling (Owen, 2013), which transforms
an unweighted ensemble of samples of π0 into a weighted
ensemble, enabling the estimation of expectations under
π1. Importance sampling is the foundation for sequential
Monte Carlo (SMC) methods (Del Moral et al., 2006), but is
frequently plagued by issues of weight degeneracy and en-
semble collapse, necessitating large ensemble sizes (Snyder
et al., 2008) or interventions such as resampling (Künsch,
2005) and MCMC rejuvenation.

Alternatively, many sampling approaches use dynamics to
define a transport incrementally, e.g., via the flow map in-
duced by trajectories of an ODE or the stochastic mapping
induced by sample paths of an SDE. In either case, the
idea is to apply dynamics which will transform some ini-
tial state X0 ∼ π0 to a state XS ∼ πXS

≈ π1 for some
time S > 0. This approach underlies flow, diffusion, and
bridge techniques for generative modeling, e.g., Kuang &
Tabak (2019); Song et al. (2021); De Bortoli et al. (2021);
Liu et al. (2022); Lipman et al. (2023); Xu et al. (2023a);
Albergo et al. (2023), wherein samples from both π0 and π1

are almost always required for training (with Vargas et al.
(2023a); Heng et al. (2024) being recent exceptions). In the
setting where π1 is known only through its unnormalized
density, there are a number of dynamic sampling algorithms
which have their grounding as gradient flows of functionals
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on spaces of probability measures. There are several geome-
tries in which one may define gradient flows on probability
measures (see Chen et al. (2023) for a helpful review), but
most well-known algorithms in this vein (e.g., Liu & Wang
(2016); Garbuno-Inigo et al. (2020a;b); Reich & Weissmann
(2021)) use some form of the Wasserstein geometry to de-
fine dynamics which must, in principle, be run for infinite
time in order to ensure correct sampling from π1.

In this work we develop a dynamic sampling approach based
on an ODE which transports samples from π0 to π1 in unit
time such that the time-dependent distribution of the sam-
ples is the geometric mixture πt ∝ π1−t

0 πt
1 = π0(

π1

π0
)t,

t ∈ [0, 1]. Although our algorithms are gradient-free and
only require the likelihood π1

π0
, the path of distributions πt

corresponds to the Fisher–Rao gradient flow of the expected
negative log likelihood. The underlying dynamics are de-
scribed by a mean-field ODE model, which we show is the
limit of two different interacting particle systems. These
interacting particle systems, which we generally refer to as
Kernel Fisher–Rao Flow, are obtained in two distinct but
related ways. On one hand, in continuous time, the mean-
field ODE can be obtained from the weak formulation of a
Poisson equation for a velocity field defined in a reproducing
kernel Hilbert space (RKHS), from which we obtain a finite-
particle ODE system by approximating expectations via
Monte Carlo (Section 3). On the other, in discrete time, one
can approximate the optimal transport map which pushes πt

to πt+∆t via linearization of the Monge–Ampère equations
discretized over finitely many kernel basis functions and
finitely many samples (Section 4). This linearization yields
an interacting particle system which in discrete time is dis-
tinct from, but in continuous time identical to, that obtained
via the RKHS approach to Poisson’s equation.

2. Background
Sampling via measure transport is an active area of research,
with many computational approaches (Marzouk et al., 2016;
Kobyzev et al., 2020; Papamakarios et al., 2021; Trillos
et al., 2023) appearing in recent years. Most practical trans-
port maps are parameterized, and thus a crucial part of
realizing them is selecting an appropriately rich function
class within which to search for the map. Common map ap-
proximation classes include polynomials (Jaini et al., 2019),
radial basis functions (Spantini et al., 2022), composed sim-
ple transformations (Rezende & Mohamed, 2015; Kobyzev
et al., 2020; Papamakarios et al., 2021), neural networks
(Bunne et al., 2022; Taghvaei & Hosseini, 2022; Baptista
et al., 2023a), and reproducing kernel Hilbert spaces (Liu
& Wang, 2016; Kuang & Tabak, 2019; Katzfuss & Schäfer,
2023). Determining an appropriate basis to represent a trans-
port map can be challenging, especially when the target and
reference distributions are high-dimensional or differ from

each other considerably. For this reason it may be neces-
sary to employ, e.g., adaptive feature selection algorithms
(Baptista et al., 2023b) or dimension reduction techniques
(Spantini et al., 2018; Chen et al., 2019; Brennan et al.,
2020; Dai & Seljak, 2021).

As an alternative to searching for a single, potentially highly
complex transport map which pushes the reference π0 di-
rectly to the target π1, one can instead prescribe a path of
distributions (πt)t∈[0,1] having the target and reference as
endpoints and seek a sequence of maps T1, . . . , TN which
push samples along a discretization of the path, as depicted
in Figure 1. The composed map T = TN ◦ TN−1 ◦ · · · ◦ T1

pushes forward π0 to π1. In continuous time this approach
becomes one of finding a velocity field vt : Rd → Rd such
that the solution to the initial value problem

Ẋt = vt(Xt), X0 ∼ π0

has distribution πt. Samplers of unnormalized densities
which employ this homotopy approach frequently take πt

to be the geometric mixture

πt ∝ π1−t
0 πt

1 = π0

(
π1

π0

)t
, t ∈ [0, 1], (1)

which interpolates between π0 and π1 in unit time. This
mixture may be referred to as the “power posterior” path
and appears, for example, in annealed importance sampling
(Neal, 2001; Brekelmans et al., 2020; Korba & Portier, 2022;
Goshtasbpour et al., 2023) and parallel tempering (Geyer,
1991; Earl & Deem, 2005; Syed et al., 2021). In Bayesian
computation, this path is sometimes referred to as “tem-
pered likelihood” and has been used as the basis for al-
gorithms which generate (approximate) posterior samples
(Reich, 2011; Daum & Huang, 2013; Iglesias et al., 2013;
Ding & Li, 2021) or posterior densities (Dia, 2023).

π0

{X(j)
0 }Jj=1

π0(
π1

π0
)t1

{X(j)
t1

}Jj=1

π0(
π1

π0
)tN−1

{X(j)
tN−1

}Jj=1

π1

{X(j)
1 }Jj=1

T1 T2, . . . , TN−1 TN

Figure 1. We employ a homotopy-based sampling scheme in this
work, deriving a mean-field ODE which approximately transports
a reference π0 to a target π1 in unit time. In discrete time this
approach amounts to obtaining incremental maps T1, . . . , TN .

2.1. Related Work

The idea of using dynamics with the tempered likelihood
to sample the posterior distribution in Bayesian inference
was, to our knowledge, first developed by Daum & Huang
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(2011) and Reich (2011) in the context of filtering. In Daum
& Huang (2011; 2013) and related works by the same au-
thors, the tempered likelihood is used to derive ODEs and
SDEs for nonlinear filtering in full generality, and as such
these systems require gradients and even Hessians of the
likelihood and prior. The algorithms for propagating sam-
ples from prior to posterior along the tempered likelihood
in Reich (2011) are of ensemble-Kalman type and employ
a Gaussian approximation for each πt, meaning that their
expressivity is limited. A similar methodology to Reich
(2011), now known as Ensemble Kalman Inversion (EKI),
was proposed for computing point estimates in Bayesian
inverse problems in Iglesias et al. (2013). The iteration un-
derlying EKI is run for infinite time, but, as noted by, e.g.,
Ding & Li (2021), when the iteration is stopped at t = 1
samples from an approximation to the posterior are obtained.
Even in the limit of infinite particles and continuous time,
however, ensemble Kalman methods are not consistent sam-
plers for general (i.e., non-Gaussian) posteriors.

The tempered likelihood path is frequently employed in se-
quential Monte Carlo (SMC) methods, which rely on a series
of interwoven importance re-sampling and mutation steps to
gradually transform samples from π0 into approximate sam-
ples from π1. Several recent works have sought to use trans-
port within SMC to either replace or reduce the frequency
of multinomial resampling. The basic idea, which was in-
troduced in Reich (2013) and motivates our development in
Section 4, is to use importance weights to obtain a transport
between πt and πt+∆t. In Ruchi et al. (2019; 2021); Myers
et al. (2021), discrete optimal transport couplings are used to
define linear transformations which replace the importance
resampling steps typically employed in SMC. In a similar
vein, the annealed flow transport Monte Carlo of Arbel et al.
(2021) uses transport as a preconditioner for SMC; on each
SMC iteration a parametric transport map between πt and
πt+∆t is learned and applied to samples from πt before the
standard resampling and mutation steps are performed. In
each of these works the transport steps remain embedded
within SMC schemes, while our algorithms are based on
dynamics and do not require resampling or application of
mutation kernels.

Concurrently with our work, Wang & Nüsken (2024) devel-
oped similar mean-field ODE systems and algorithms for
transporting samples along the tempered likelihood. Their
algorithms are motivated from a kernel mean embedding
perspective, rather than one of optimal transport and Fisher–
Rao gradient flows, and can be made to match ours by
specifying particular choices of the parameters v0t and Ct

in their setup. In our work we introduce both deterministic
and stochastic interacting particle systems for sampling the
tempered likelihood, but the algorithms considered in Wang
& Nüsken (2024) are purely deterministic.

Notation We use K(·, ·) : Rd × Rd → R to represent
a symmetric positive definite kernel on Rd and denote by
(HK , ⟨·, ·⟩HK

) the reproducing kernel Hilbert space (Stein-
wart & Christmann, 2008) associated with K. We assume
that K(·, x) is C2 and use ∇1K(·, ·) to refer to the gradient
of K with respect to the first argument. Pac(Rd) denotes the
space of probability measures on Rd which admit densities.

3. Methodology: Poisson Equation in
Reproducing Kernel Hilbert Space

Our goal is to find a time-varying velocity field vt : Rd →
Rd such that the distribution of Xt evolving according to

Ẋt = vt(Xt), X0 ∼ π0 (2)

is the geometric mixture (1). Had we access to such a
velocity field, we could obtain samples from π1 by sampling
π0 and simulating the dynamics (2) for unit time. It can be
shown that πt in (1) satisfies

∂tπt = πt

(
log π1

π0
− Eπt

[
log π1

π0

])
,

which is the Fisher–Rao gradient flow of the functional
F : Pac(Rd) → R defined as

F(µ) = −Eµ

[
log π1

π0

]
.

F(µ) is the expected negative log likelihood under µ. By the
continuity equation, a velocity field in (2) yielding Xt ∼ πt

must then satisfy

−∇ · (πtvt) = πt

(
log π1

π0
− Eπt

[
log π1

π0

])
. (3)

There are many possible solutions to the PDE (3), but if,
as in Taghvaei & Mehta (2023); Reich (2011), we insist
that in the limit ∆t → 0 the expected transportation cost
1

∆t2Eπt
[∥Xt − Xt+∆t∥2] is minimized for each t, we ob-

tain a constrained optimization problem for each vt with a
unique solution,

min
vt:Rd→Rd

∫
Rd

∥vt∥2 dπt

s.t. −∇ · (πtvt) = πt

(
log π1

π0
− Eπt

[
log π1

π0

])
.

It can be shown using the geometry of optimal transport
(e.g., Chewi (2023, Theorem 1.3.19)) or calculus of vari-
ations (Reich, 2011) that the solution to this problem is
vt = ∇ut, where ut satisfies the Poisson equation

−∇ · (πt∇ut) = πt

(
log π1

π0
− Eπt

[
log π1

π0

])
. (4)

We make (4) tractable by searching for ut in the RKHS
HK , i.e., taking ut(·) =

∫
Rd K(·, x)ft(x) dπt(x) for some
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ft : Rd → R, and enforcing the weak form of (4), as in
Laugesen et al. (2015), for kernel test functions K(·, x),∫

Rd

⟨∇1K(y, x), ∇ut(y)⟩dπt(y) =∫
Rd

K(y, x)
(
log π1

π0
(y)− Eπt

[
log π1

π0

])
dπt(y). (5)

We require (5) to hold for all x ∈ Rd. Substituting the form
of ut into (5), we have

x

Rd×Rd

ft(z) ⟨∇1K(y, ·), ∇1K(y, z)⟩ dπt(y) dπt(z)

=

∫
Rd

K(·, y)
(
log π1

π0
(y)− Eπt

[
log π1

π0

])
dπt(y). (6)

We write the relationship (6) succinctly as Mπt
ft(x) =

Kπt
(log π1

π0
− Eπt

[log π1

π0
])(x), where the integral operator

Mπt maps functions g : Rd → R to Mπtg(·) =∫
Rd

g(z)Eπt [⟨∇1K(Xt, ·), ∇1K(Xt, z)⟩] dπt(z)

=
x

Rd×Rd

g(z)⟨∇1K(y, ·), ∇1K(y, z)⟩dπt(y)dπt(z)

and the kernel integral operator Kπt
maps g to Kπt

g(·) =∫
Rd g(z)K(·, z) dπt(z). Under the condition that Mπt

is
invertible, ft is given by

ft = M−1
πt

Kπt

(
log π1

π0
− Eπt

[
log π1

π0

])
and we have vt(·) = ∇ut(·) =∫
Rd

∇1K(·, x)M−1
πt

Kπt

(
log π1

π0
− Eπt

[
log π1

π0

])
(x) dπt(x).

(7)
Therefore, starting from X0 ∼ π0, the mean-field ODE

Ẋt = vt(Xt) =

Eρt

[
∇1K(Xt, X

′)M−1
ρt Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
(X ′)

]
,

(8)

can be used to evolve samples from π0 such that ρt =
Law(Xt) is approximately πt ∝ π1−t

0 πt
1, and hence at t = 1

they are approximately distributed as π1.

We note that the potential ut obtained by solving a weak-
form Poisson equation over the RKHS,

ut =

∫
Rd

K(·, x)M−1
πt

Kπt

(
log π1

π0
− Eπt

[
log π1

π0

])
(x) dπt(x)

is only an approximation of the solution of (4), since we are
enforcing the weak form (5) for a specific (limited) class of
test functions. For this reason we distinguish between the

target path of distributions πt ∝ π1−t
0 πt

1 and ρt = Law(Xt).
Understanding the difference between these paths and its
dependence on the choice of RKHS HK is an important
area for future work. Empirically we find the quality of
samples generated by running a discretization of (8) to be
good; see Section 6.

Because the quantities appearing in vt can be written as
expectations with respect to ρt, the mean-field model (8)
can be approximated for finite samples as an interacting
particle system (IPS),

Ẋ
(j)
t =

(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t ·

1
J

J∑
k=1

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1
π0

(X
(i)
t )

)
K(X

(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

,

(9)

with j ∈ {1, . . . , J}, t ∈ [0, 1], {X(j)
0 }Jj=1

i.i.d.∼ π0, and
Mt ∈ RJ×J given by

(Mt)ℓ,m =
1

J

J∑
i=1

⟨∇1K(X
(i)
t , X

(ℓ)
t ), ∇1K(X

(i)
t , X

(m)
t )⟩,

ℓ,m = 1, . . . , J.

This IPS (9) is obtained by approximating the expectations
in (8) with Monte Carlo; see Appendix A.1 for a detailed
derivation. We refer to (9) as Kernel Fisher–Rao Flow
(KFRFlow) and offer a few observations:

• We only require the ability to sample π0 and compute
the log-density ratio log π1

π0
in order to simulate the

ODE (9). In particular contrast to Stein variational
gradient descent (SVGD), unadjusted or Metropolis-
adjusted Langevin samplers (ULA and MALA), and
some recent Langevin-based Bayesian inference ap-
proaches (Garbuno-Inigo et al., 2020b; Reich & Weiss-
mann, 2021), we do not require gradients or scores
of π0 or π1. Furthermore, quantities of the form
log π1

π0
−Eρ[log

π1

π0
] appearing in Equations (8) and (9)

are invariant under scaling of π1

π0
by constant factors.

Thus, we do not require knowledge of the normalizing
constants of π1 or π0 to apply KFRFlow.

• KFRFlow is a simple, closed-form ODE and does not
require use of numerical optimization to estimate a
score or velocity field. This feature stands in contrast
to many comparable finite-time dynamic approaches
for sampling from unnormalized densities, including
normalizing flows (Rezende & Mohamed, 2015), diffu-
sion or score-based models (Heng et al., 2024; Vargas
et al., 2023a), and recent approaches which also em-
ploy the tempered likelihood (Vargas et al., 2023b; Tian
et al., 2024).
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• Similarly to SVGD (Liu & Wang, 2016), which can be
viewed as following a Wasserstein gradient flow with a
kernelized ODE, KFRFlow is deterministic and can be
viewed as following a Fisher–Rao gradient flow with a
kernelized ODE.

• Mt is the finite-particle analogue of Mπt . A necessary
condition for invertibility of Mt, J ≤ dJ , is satisfied
by construction in the IPS (9). This fact can be seen by
noting that Mt = 1

J

∑J
i=1 ∇Kt(X

(i)
t )∇Kt(X

(i)
t )⊤,

where Kt : Rd → RJ is the concatenation Kt(·) =

(K(·, X(1)
t ), . . . ,K(·, X(J)

t ))⊤ and ∇Kt ∈ RJ×d is
the Jacobian of Kt.

Although it is intriguing to view the mean-field ODE model
(8) as resulting from kernelization of a Fisher–Rao gra-
dient flow, we can recover it separately as the limit of
a discrete-time interacting particle system obtained using
sample-driven optimal transport (Kuang & Tabak, 2019).
We discuss this perspective in the following section.

4. Discrete-Time Interpretation:
Sample-Driven Optimal Transport

In discrete time, the problem of finding a velocity field
vt such that the flow Ẋt = vt(Xt) has distribution πt ∝
π1−t
0 πt

1 becomes one of finding transport maps T1, . . . , TN

which push samples from π0 along a discretization of πt.
While we we can obtain such maps by discretizing the IPS
(9), for example taking Xt+∆t = Xt + ∆t · vt(Xt), we
can alternately search for the maps directly via a framework
introduced as sample-driven optimal transport in Trigila &
Tabak (2016); Kuang & Tabak (2019), modified for our
setting in which target samples are unavailable.

Suppose that at time t ∈ [0, 1) we have samples
{X(j)

t }Jj=1 ∼ πt which we would like to push forward
to πt+∆t ∝ πt(

π1

π0
)∆t. Given that πt and πt+∆t both admit

densities, there are many maps T : Rd → Rd satisfying
T♯πt = πt+∆t. The optimal transport approach (Villani,
2021), which we will approximate, is to seek the map which
minimizes expected transport cost,

min
T♯πt=πt+∆t

Eπt
[∥T (Xt)−Xt∥2]. (10)

Owing to the choice of quadratic cost, it can be shown that
the optimal map in (10) is the unique convex gradient which
pushes forward πt to πt+∆t (Brenier, 1991). That is, if we
find T = ∇ϕ satisfying T♯πt = πt+∆t with ϕ : Rd → R
convex, we have found the optimal transport map. Thus,
we can search for the optimal transport map by seeking
ϕ : Rd → R convex such that ∇ϕ♯πt = πt+∆t. The
push-forward condition ∇ϕ♯πt = πt+∆t can be written as

a Monge–Ampère PDE (Evans, 1997)

πt+∆t(∇ϕ(x)) det (Hϕ(x)) = πt(x),

where Hϕ is the Hessian of ϕ, and interpreted in weak form
as for all f : Rd → R continuous∫

Rd

f(∇ϕ(x)) dπt(x) =

∫
Rd

f(y) dπt+∆t(y). (11)

Given that we only have finitely many samples of πt and
access to the ratio π1

π0
, we arguably do not have enough

information to find a map T = ∇ϕ which exactly satisfies
T♯πt = πt+∆t. Thus we apply a Galerkin approximation
to (11) over a basis of kernel test functions located at each
particle, {K(·, X(j)

t ) : j = 1, . . . , J}, seeking a map

∇ϕs(x) = x+

J∑
j=1

sj∇1K(x,X
(j)
t ), (12)

and discretizing the weak form (11) with∫
Rd

K(∇sϕ(x), X
(j)
t ) dπt(x) =

∫
Rd

K(y,X
(j)
t ) dπt+∆t(y),

(13)
j = 1, . . . , J . Approximating (13) via Monte Carlo, we
seek map coefficients s = (s1, . . . , sm) such that

J∑
j=1

1
J
Kt(∇ϕs(X

(j)
t )) =

J∑
j=1

w
(j)
t Kt(X

(j)
t ), (14)

where the w
(j)
t are self-normalized importance weights,

w
(j)
t =

(π1

π0
(X

(j)
t ))∆t∑J

i=1(
π1

π0
(X

(i)
t ))∆t

, j = 1, . . . , J

and Kt(·) = (K(·, X(1)
t ), . . . ,K(·, X(J)

t ))⊤ is as before.
Kuang & Tabak (2019) refer to the relationship (14) as
sample equivalence and denote it by {∇ϕs(X

(j)
t )}Jj=1 ∼

{w(j)
t X

(j)
t }Jj=1. Because we have discretized the Monge–

Ampère equations (11) over finite samples and feature func-
tions, a solution s to (14) is not guaranteed to yield a unique
or optimal map. The sample-driven OT problem then, as
formulated in Kuang & Tabak (2019), is to find a minimum
cost map ∇ϕs which satisfies sample-equivalence,

min
{∇ϕs(X

(j)
t )}J

j=1∼{w(j)
t X

(j)
t }J

j=1

J∑
j=1

∥∥∥X(j)
t −∇ϕs(X

(j)
t )
∥∥∥2 .
(15)

Returning to (14), admissible choices of s in (15) can be
identified via root-finding: denote by a and b the means of
Kt over the unweighted and weighted reference ensembles,

a =
1

J

J∑
j=1

Kt(X
(j)
t ), b =

J∑
j=1

w
(j)
t Kt(X

(j)
t ) ∈ RJ .
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For s ∈ RJ , define G : RJ → RJ to be the sample mean of
Kt over {∇ϕs(X

(j)
t )}Jj=1,

G(s) =
1

J

J∑
j=1

Kt(X
(j)
t +∇Kt(X

(j)
t )⊤s).

In order for sample-equivalence to be satisfied, we need to
find s∗ such that G(s∗) = b.

Kuang & Tabak (2019) demonstrate that if the Jacobian of
G at s = 0

∇G(s)|s=0 =
1

J

J∑
i=1

∇Kt(X
(i)
t )∇Kt(X

(i)
t )⊤ ≡ Mt

is nonsingular (for which the necessary condition J ≤ dJ
is automatically satisfied), G is a bijection from a neigh-
borhood U about s = 0 to a neighborhood V about
G(0) = a. If b ∈ V , then the potential ϕs parameter-
ized with s∗ = G−1(b) gives the global minimum of the
sample-based OT problem (15) restricted to maps of the
form (12). Furthermore, Kuang & Tabak (2019) show that
if the kernels are C2, then ϕs∗ is locally convex.

For sufficiently small ∆t, the system G(s∗) = b (14) will
be close to linear. Thus, for the sake of efficiency we may
approximate s∗ with a single Newton step, setting

s∗ ≈ −

(
1

J

J∑
i=1

∇Kt(X
(i)
t )∇Kt(X

(i)
t )⊤

)−1

·

J∑
k=1

( 1
J
− w

(k)
t )Kt(X

(k)
t ), (16)

to arrive at the update

X
(j)
t+∆t = X

(j)
t −

∇Kt(X
(j)
t )⊤M−1

t

J∑
k=1

(
1
J
− w

(k)
t

)
Kt(X

(k)
t ), (17)

with j ∈ {1, . . . , J}, t ∈ [0, 1], and {X(j)
0 }Jj=1

i.i.d.∼ π0. Al-
though (17) is distinct from (9) in discrete time, in continu-
ous time the two interacting particle systems are equivalent:

Theorem 4.1. In the limit ∆t → 0, Equation (17) ap-
proaches Equation (9). Thus the IPS obtained via sample-
driven optimal transport (17) can be viewed as arising from
mean-field model (8).

The proof of this result follows from simple calculus and is
contained in Appendix A.2. Owing to this equivalence in
continuous time, we refer to the interacting particle system
(17) as KFRFlow-Importance (KFRFlow-I).

Theorem 4.1 highlights the fact that linearizing a Monge–
Ampère equation for static optimal transport between πt and
πt+∆t results in a Poisson equation, and demonstrates that
as ∆t → 0 this linearization yields the correct velocity field
for the controlled dynamic minimum-energy transport prob-
lem of Section 3. Furthermore, it elucidates connections be-
tween SMC approaches based on tempered self-normalized
importance sampling and Fisher–Rao gradient flows.

5. Implementation
KFRFlow (9) can be discretized in time, for example, via
the explicit Euler method

X
(j)
t+∆t = X

(j)
t +∇Kt(X

(j)
t )⊤M−1

t ·

∆t
J

J∑
k=1

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1
π0

(X
(i)
t )

)
Kt(X

(k)
t ),

(18)

or any other standard ODE integration scheme, while
KFRFlow-I (17) already has the form of a discrete-time iter-
ation. In either case we start from {X(j)

0 }Jj=1
i.i.d.∼ π0 and

simulate for unit time to obtain {X(j)
1 }Jj=1 ∼ πX1 ≈ π1.

KFRFlow-I (17) and the Euler discretization of KFRFlow
(18) are almost identical, and in fact (17) can be recovered,
up to multiplication by a constant close to one, from (18) by
applying the approximation ∆t log y = log y∆t ≈ y∆t − 1
to all instances of ∆t log π1

π0
in (18).

In practice, the performances of KFRFlow-I (17) and dis-
cretizations of KFRFlow (9) are often similar, but we have
noticed that for large ∆t or particularly challenging sam-
pling tasks, such as those in high dimensions, KFRFlow-I
tends to be more stable. One possible explanation for this ad-
vantage is that in KFRFlow-I we evaluate (π1

π0
)∆t rather than

∆t log π1

π0
, which is a more stable computation when the ra-

tio π1

π0
is small. Another consideration is that the update

in KFRFlow-I (17) is derived as an approximate transport
map between πt and πt+∆t, whereas KFRFlow updates as
in (18) are discretizations of a continuous flow (9). These
discretizations may not be good transport maps, especially
for large ∆t, in which case KFRFlow-I, which is explicitly
designed for discrete-time transport, may perform better.

5.1. Numerical Stability

Choice of KFRFlow versus KFRFlow-I aside, in our experi-
ments we have noticed that the matrix Mt in KFRFlow (9)
and KFRFlow-I (17) may at times be poorly conditioned,
leading to numerical instability or poor quality samples.
We have found two helpful tactics for mitigating this issue:
inflating the diagonal of Mt and introducing noise.
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5.1.1. REGULARIZATION OF Mt

Issues of ill-conditioning of Mt can be ameliorated by re-
placing Mt in Equations (17) and (18) with Mt,λ = Mt+λI
for some λ > 0; this is essentially a Tikhonov regulariza-
tion of (6) or (16). Inflating the diagonal of Mt does not
require additional information about π1 and π0 but does
require finding an appropriate λ and potentially alters the
time-dependent distribution ρt = Law(Xt).

5.1.2. STOCHASTIC MODIFICATION

As noted similarly in, e.g., Song et al. (2021); Albergo
et al. (2023), the continuity equation (3) can be written
equivalently for any ϵ > 0 as a Fokker–Planck equation

∂tπt = −∇ · (πt(vt + ϵ∇ log πt)) + ϵ∇2πt, (19)

by making use of the identity ∇ log πt =
∇πt

πt
(we use ∇2

to denote the Laplacian). The Fokker–Planck equation (19)
corresponds to an SDE for Xt,

dXt = (vt(Xt)+ϵ∇ log πt(Xt)) dt+
√
2ϵdWt, t ∈ [0, 1],

(20)
which possesses the same marginal distributions as the ODE
(2). The SDE (20) can hence be used with the velocity field
vt (7) as the basis for a stochastic interacting particle system,
which we refer to as Kernel Fisher–Rao Diffusion (KFRD),
for traversing the geometric mixture πt; see Appendix B for
further details. Simulation of (20) does require access to the
score of πt and hence KFRD is not gradient-free, but in the
case that gradients of π0 and π1 are available, the score of
πt is simply

∇ log πt = (1− t)∇ log π0 + t∇ log π1.

We find that the introduction of noise through (20) often
increases numerical stability and enhances sample quality,
owing to the incorporation of gradient information.

5.2. Computational Cost

The naive complexity of computing the right-hand side of
the KFRFlow ODE (9) or one step of KFRFlow-I (17) is
O(J3), as we require a solve with a J×J symmetric matrix.
While symmetric linear solves are well-optimized compu-
tations, the cost of KFRFlow could be lowered in practice,
for instance, by use of random features (Rahimi & Recht,
2007) or other kernel dimension-reduction techniques. We
only demonstrate the “vanilla” O(J3) implementation of
KFRFlow in this work for clarity of presentation; more
sophisticated implementation strategies, including use of
random features, are part of ongoing work.

6. Numerical Examples
Now we present proof-of-concept examples demonstrating
the efficacy of KFRFlow, KFRFlow-I, and KFRD in gen-

erating samples from various target distributions. We also
compare the performances of our algorithms to those of
ensemble Kalman inversion stopped at t = 1 (EKI, Iglesias
et al. (2013)), the ensemble Kalman sampler (EKS, Garbuno-
Inigo et al. (2020a)), consensus-based sampling (CBS, Car-
rillo et al. (2022)), Stein variational gradient descent (SVGD,
Liu & Wang (2016)), and the unadjusted Langevin algorithm
(ULA, e.g., Roberts & Tweedie (1996)). Of the competing
algorithms, EKI, EKS, and CBS are gradient-free, and hence
we employ them as bases for comparison for KFRFlow and
KFRFlow-I, while SVGD and ULA require ∇ log π1, so
we compare their performances to those of KFRD. Like
KFRFlow(-I) and KFRD, EKI, EKS, CBS, and SVGD are
interacting particle systems which evolve ensembles of J
particles together such that their collective distribution ap-
proaches π1. By contrast, ULA is a Markov chain algorithm
which does not make use of interaction, but to obtain a simi-
larly structured sampler to the IPS algorithms we use ULA
in “parallel mode,” simulating J independent chains initial-
ized at points randomly drawn from N (0, Id) and retaining
the final state of each chain to form a set of J samples from
the target.

In our experiments we take the kernel in KFRFlow(-I),
KFRD, and SVGD to be inverse multiquadric (IMQ)

K(x, x′) =
(
1 +

∥x−x′∥2
h2

)−1/2

(21)

with bandwidth h > 0 selected at each step of the itera-
tions according to the median heuristic (Liu & Wang, 2016).
We assess sample quality using kernel Stein discrepancy
(KSD) (Gorham & Mackey, 2020) with the IMQ kernel
(21) with bandwidth h = 1. The reference distribution π0 is
always standard Gaussian. We perform all experiments in Ju-
lia using the package DifferentialEquations.jl
(Rackauckas & Nie, 2017) to integrate the ODEs and SDEs
associated with KFRFlow, KFRD, EKI, EKS, CBS, SVGD,
and ULA. Code for the experiments is available at at
https://github.com/amaurais/KFRFlow.jl.

6.1. Two-Dimensional Bayesian Posteriors

We apply KFRFlow (9) and KFRFlow-I (17) to sample
three two-dimensional densities. In all three cases π1 is a
Bayesian posterior proportional to π0ℓ for a likelihood of
the form ℓ(x) ∝ exp

(
− 1

σ2
ε
∥y∗ −G(x)∥22

)
, i.e., y∗ ∈ R is

Gaussian with mean G(x) and variance σ2
ε . Definitions of

the three likelihoods may be found in Appendix C.1.

Figure 2 displays J = 300 samples obtained from a forward
Euler discretization of KFRFlow with uniform timestep
∆t = 0.01. The samples at t = 1 are qualitatively consistent
with the target densities for each example.

In Figure 3 we compare the performances of KFRFlow
and KFRFlow-I to those of fellow gradient-free sampling
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t = 0 t = 0.25 t = 0.5 t = 0.75 t = 1

Figure 2. Two-dimensional posteriors: samples at t ∈
{0, 0.25, 0.5, 0.75, 1} generated by KFRFlow (9) for the donut
(top), butterfly (middle), and spaceships (bottom) examples.
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Figure 3. Two-dimensional posteriors: average KSD at stopping
time between π1 and ensembles of size J ∈ {100, 400} generated
by gradient-free samplers. A missing point indicates that a method
was unstable at that setting of N .

algorithms EKI, EKS, and CBS, and in Figure 4 we com-
pare the performances of gradient-based KFRD, SVGD, and
ULA. We use the algorithms to generate target ensembles
of size J ∈ {25, 50, 100, 200, 400} with number of steps
N ∈ {21, 22, . . . , 28}. For unit-time KFRFlow(-I), KFRD,
and EKI, the resulting step-size is 1/N , but for infinite-time
EKS, CBS, SVGD, and ULA we must choose a stopping
time T > 0, resulting in a step-size of T/N . We test a
range of stopping times T for EKS, CBS, SVGD, and ULA,
regularization levels λ for KFRFlow(-I), noise levels ϵ for
KFRD, and temperature β for CBS and report KSD corre-
sponding to the best parameter settings for each algorithm
and each (J,N). We use a fourth-order Adams–Bashforth
discretization of KFRFlow because we find that it gener-
ates better samples than forward Euler at little additional
cost, while by contrast we use forward Euler for SVGD
because we find that SVGD does not benefit from multistep
discretizations in these examples. We use Euler–Maruyama
discretizations for KFRD, EKI, EKS, CBS, and ULA. The
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Figure 4. Two-dimensional posteriors: average KSD at stopping
time between π1 and ensembles of size J ∈ {100, 400} gener-
ated by gradient-based samplers. A missing point indicates that a
method was unstable at that setting of N .
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Figure 5. Two-dimensional posteriors: evolution of KSD with t
for the unit-time methods KFRFlow, KFRFlow-I, KFRD, and EKI
for ensembles of J = 400 and J = 100 with ∆t = 2−8. KFRD
is plotted with dashed lines because it requires gradients, whereas
KFRFlow(-I) and EKI are gradient-free.

values of KSD we report are averages over 30 trials.

In Figure 3 we see that KFRFlow and KFRFlow-I generally
produce better-quality samples, as measured with KSD, than
EKI, EKS, and CBS. There are some settings in the donut
example at which KFRFlow or EKI is unstable, but, interest-
ingly, KFRFlow-I is stable across all settings of (J,N), even
in some cases when the gradient-based algorithms KFRD
and SVGD (Figure 4) are not. In Figure 4 we see that the
performance of KFRD is comparable to that of ULA and
generally exceeded by SVGD in these examples, though for
small N it is often the case that KFRFlow or KFRFlow-I
yields comparable or better performance than SVGD. For
additional details and results see Appendix C.1.

6.2. Higher-Dimensional Funnel Distributions

Here for dimension d ∈ {5, 10, 15, 20} we compare the
performance of KFRFlow-I, KFRD, CBS, SVGD, and
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ULA in sampling from “funnel” distributions of the form
π1(x) = N (x1; 0, 9)N (x2:d;0, exp(x1)I). This family of
distributions appears in Neal (2003) and is a common bench-
mark for sampling algorithms, e.g., Arbel et al. (2021);
Zhang et al. (2023); Xu et al. (2023b).

For each setting of d we apply these algorithms to generate
J = 100 samples from π1. For KFRFlow-I and KFRD
we set ∆t = 0.01, corresponding to N = 100 steps for
the infinite-time algorithms CBS, SVGD, and ULA. As in
Section 6.1 we optimize the hyperparameters for KFRFlow-
I, KFRD, CBS, SVGD, and ULA via coarse direct search
to minimize KSD between the final samples and π1. EKI
and EKS are not applicable to the funnel because it is not a
Bayesian posterior with a Gaussian likelihood, and we focus
on KFRFlow-I rather than KFRFlow due to its demonstrated
stability. The data in Figure 6 and Figure 7 are reflective of
averaging the results of 30 independent trials.

In Figure 6 we plot KSD between the ensembles and the fun-
nel targets as a function of dimension d. We see that KSD
increases with dimension for the gradient-based algorithms
and that KFRD is competitive with SVGD and ULA at all
values of d. We also see that KFRFlow-I generates better
quality samples than CBS and, interestingly, that the qual-
ity of the samples generated by both of these gradient-free
IPS algorithms does not seem to be meaningfully impacted
by dimension. A more thorough investigation of this phe-
nomenon, also visible in Figure 7, is a topic for future work.
For additional details and results see Appendix C.2.
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Figure 6. Funnels: average KSD at stopping time between π1

and samples generated by KFRFlow-I, KFRD, CBS, SVGD, and
ULA for d ∈ {5, 10, 15, 20}. Gradient-free algorithms are plotted
with solid lines, while gradient-based algorithms are plotted with
dashed lines.
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Figure 7. Funnels: evolution of KSD between π1 and samples at
time t for KFRFlow-I (left) and KFRD (right).

7. Discussion and Future Work
We have introduced a mean-field ODE and corresponding
interacting particle systems which approximately transport
samples from π0 to π1 in unit time. We obtain the mean-field
ODE by solving an elliptic PDE arising from the Fisher–
Rao gradient flow of the negative log likelihood under the
ansatz that the solution lies in a reproducing kernel Hilbert
space. The RKHS form of the mean-field ODE gives rise
to tractable, gradient-free interacting particle systems for
sampling.

Several lines of inquiry would enhance our understanding
of the mean-field model and KFRFlow interacting parti-
cle systems. The tempered likelihood path πt ∝ π1−t

0 πt
1

employed here is itself an interesting object of study: in
addition to being a segment of the Fisher-Rao gradient flow
of F(µ) = −Eµ[log

π1

π0
], (πt)t∈[0,1] can also be character-

ized as a unit-time rescaling of a Fisher-Rao gradient flow
of µ 7→ DKL(µ∥π1) (Domingo-Enrich & Pooladian, 2023)
and as a path of Kullback–Leibler divergence barycenters
(e.g., Amari (2016, Theorem 4.9)); that is,

πt = argmin
µ

(1−t)DKL(µ∥π0)+tDKL(µ∥π1), t ∈ [0, 1].

Thus, KFRFlow can be equally well viewed as (i) early-
stopping of maximum likelihood, (ii) gradient descent of
DKL(·∥π1), or (iii) a continuation method for minimiz-
ing DKL(·∥π1). Perhaps equally intriguing is that to pro-
duce the KFRFlow mean-field model (8), we take the
path (πt)t∈[0,1] natively corresponding to Fisher-Rao gra-
dient flow and “Wasserstein-ize” it: we seek potentials
ut : Rd → R such that −∇ · (πt∇ut) = ∂tπt, leading
to particle algorithms that transport samples collectively
along (πt)t∈[0,1] via the action of a gradient velocity field.
Understanding how to interpret the path (πt)t∈[0,1] through
a (kernelized) Wasserstein lens is thus of great interest.

On a less abstract level, KFRFlow has appealing properties
for practical scientific sampling applications—it is gradient-
free, closed-form, inherently finite-time, and only requires
an unnormalized likelihood—but focused effort is needed
to move from “vanilla” algorithms as in (17) and (18) to
more sophisticated implementations suitable for challenging
problems in high dimensions. We are currently investigating
computational strategies for this purpose, including reducing
computational complexity through kernel appproximations
and dimension reduction, exploiting or imposing structure
and sparsity through well-designed choices of kernel, and
adaptive time-stepping for the resulting systems of ODEs.
Finally, strengthening the numerical and statistical analysis
of KFRFlow by understanding questions of approximation
error and sample complexity, particularly as these quantities
relate to choice of kernel and time-stepping schedule, is a
closely related and important area for future work, which
will inform the development of KFRFlow generalizations.
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Myers, A., Thiéry, A. H., Wang, K., and Bui-Thanh, T.
Sequential ensemble transform for Bayesian inverse prob-
lems. Journal of Computational Physics, 427:110055,
February 2021. ISSN 0021-9991. doi: 10.1016/j.jcp.
2020.110055.

Neal, R. M. Annealed importance sampling. Statistics and
computing, 11:125–139, 2001.

Neal, R. M. Slice sampling. The annals of statistics, 31(3):
705–767, 2003.

Owen, A. B. Monte Carlo theory, methods and examples.
https://artowen.su.domains/mc/, 2013.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

Rackauckas, C. and Nie, Q. DifferentialEquations.jl–a per-
formant and feature-rich ecosystem for solving differen-
tial equations in Julia. Journal of Open Research Soft-
ware, 5(1), 2017.

11

https://doi.org/10.1214/009053605000000426
https://doi.org/10.1214/009053605000000426
http://arxiv.org/abs/2210.02747
http://arxiv.org/abs/2210.02747
http://arxiv.org/abs/2209.03003
http://arxiv.org/abs/2209.03003
https://artowen.su.domains/mc/


Sampling in Unit Time with Kernel Fisher–Rao Flow

Rahimi, A. and Recht, B. Random Features for Large-Scale
Kernel Machines. In Advances in Neural Information
Processing Systems, volume 20. Curran Associates, Inc.,
2007.

Reich, S. A dynamical systems framework for intermittent
data assimilation. BIT Numerical Mathematics, 51(1):
235–249, March 2011. ISSN 1572-9125. doi: 10.1007/
s10543-010-0302-4.

Reich, S. A Nonparametric Ensemble Transform Method
for Bayesian Inference. SIAM Journal on Scien-
tific Computing, 35(4):A2013–A2024, January 2013.
ISSN 1064-8275, 1095-7197. doi: 10.1137/130907367.
URL http://epubs.siam.org/doi/10.1137/
130907367.

Reich, S. and Cotter, C. Probabilistic forecasting and
Bayesian data assimilation. Cambridge University Press,
2015.

Reich, S. and Weissmann, S. Fokker–Planck Particle
Systems for Bayesian Inference: Computational Ap-
proaches. SIAM/ASA Journal on Uncertainty Quantifica-
tion, 9(2):446–482, January 2021. ISSN 2166-2525. doi:
10.1137/19M1303162.

Rezende, D. and Mohamed, S. Variational inference with
normalizing flows. In International conference on ma-
chine learning, pp. 1530–1538. PMLR, 2015.

Robert, C. P. and Casella, G. The Metropolis—Hastings
algorithm. In Monte Carlo Statistical Methods, pp. 267–
320. Springer New York, New York, NY, 2004. ISBN
978-1-4757-4145-2. doi: 10.1007/978-1-4757-4145-2 7.

Roberts, G. O. and Tweedie, R. L. Exponential convergence
of langevin distributions and their discrete approxima-
tions. Bernoulli, pp. 341–363, 1996.

Ruchi, S., Dubinkina, S., and Iglesias, M. A. Transform-
based particle filtering for elliptic Bayesian inverse prob-
lems. Inverse Problems, 35(11):115005, October 2019.
ISSN 0266-5611. doi: 10.1088/1361-6420/ab30f3.

Ruchi, S., Dubinkina, S., and de Wiljes, J. Fast hybrid tem-
pered ensemble transform filter formulation for Bayesian
elliptical problems via Sinkhorn approximation. Nonlin-
ear Processes in Geophysics, 28(1):23–41, January 2021.
ISSN 1023-5809. doi: 10.5194/npg-28-23-2021.

Snyder, C., Bengtsson, T., Bickel, P., and Anderson, J. Ob-
stacles to high-dimensional particle filtering. Monthly
Weather Review, 136(12):4629–4640, 2008.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. In International
conference on learning representations, 2021.

Spantini, A., Bigoni, D., and Marzouk, Y. Inference via low-
dimensional couplings. The Journal of Machine Learning
Research, 19(1):2639–2709, 2018.

Spantini, A., Baptista, R., and Marzouk, Y. Coupling Tech-
niques for Nonlinear Ensemble Filtering. SIAM Review,
64(4):921–953, November 2022. ISSN 0036-1445, 1095-
7200. doi: 10.1137/20M1312204.

Steinwart, I. and Christmann, A. Kernels and Reproducing
Kernel Hilbert Spaces, pp. 110–163. Springer New York,
New York, NY, 2008. ISBN 978-0-387-77242-4. doi:
10.1007/978-0-387-77242-4 4. URL https://doi.
org/10.1007/978-0-387-77242-4_4.

Syed, S., Romaniello, V., Campbell, T., and Bouchard-Côté,
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port meets Variational Inference: Controlled Monte Carlo
Diffusions. In The Twelfth International Conference on
Learning Representations, October 2023b.

Villani, C. Topics in Optimal Transportation. American
Mathematical Soc., August 2021. ISBN 978-1-4704-
6726-5.

12

http://epubs.siam.org/doi/10.1137/130907367
http://epubs.siam.org/doi/10.1137/130907367
https://doi.org/10.1007/978-0-387-77242-4_4
https://doi.org/10.1007/978-0-387-77242-4_4


Sampling in Unit Time with Kernel Fisher–Rao Flow
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A. Derivations and Proofs
A.1. Derivation of Kernel Fisher-Rao Flow Interacting Particle System

We would like to approximate the mean-field ODE (8)

Ẋt = vt(Xt) = Eρt

[
∇1K(Xt, X

′)M−1
ρt

Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
(X ′)

]
, (22)

with an interacting particle system {X(j)
t }Jj=1. To obtain such an IPS, we approximate the expectations in (22) via Monte

Carlo. Beginning with the outer expectation, we have

Ẋ
(j)
t ≈ 1

J

J∑
n=1

∇1K(X
(j)
t , X

(n)
t )M−1

ρt
Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
(X

(n)
t ). (23)

Next, we obtain a Monte Carlo approximation of ft ≡ M−1
ρt

Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
by examining the system

Mρt
ft = Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
,

x

Rd×Rd

ft(z) ⟨∇1K(y, ·), ∇1K(y, z)⟩ dπt(y) dπt(z) =

∫
Rd

K(·, y)
(
log π1

π0
(y)− Eπt

[
log π1

π0

])
dπt(y).

and approximating expectations on both sides via Monte Carlo,

1

J2

J∑
m=1

J∑
i=1

ft(X
(m)
t )

〈
∇1K(X

(i)
t , ·), ∇1K(X

(i)
t , X

(m)
t )

〉
=

1

J

J∑
k=1

K(·, X(k)
t )

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
.

(24)
We enforce (24) at {X(ℓ)

t }Jℓ=1 in order to obtain a system of J equations for ft(X
(1)
t ), . . . , ft(X

(J)
t ),

1

J2

J∑
m=1

J∑
i=1

ft(X
(m)
t )

〈
∇1K(X

(i)
t , X

(ℓ)
t ), ∇1K(X

(i)
t , X

(m)
t )

〉
=

1

J

J∑
k=1

K(X
(ℓ)
t , X

(k)
t )

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
, ℓ = 1, . . . , J, (25)

which we write succinctly as

Mtft =

J∑
k=1

Kt(X
(k)
t )

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
, (26)

where ft = (ft(X
(1)
t ), . . . , ft(X

(J)
t )), Kt(·) = (K(·, X(1)

t ), . . . ,K(·, X(J)
t )), and Mt ∈ RJ×J is given by

(Mt)ℓ,m =
1

J

J∑
i=1

⟨∇1K(X
(i)
t , X

(ℓ)
t ), ∇1K(X

(i)
t , X

(m)
t )⟩, ℓ,m = 1, . . . , J.

Notice that to arrive at (26) we have canceled a common factor of 1
J on either side of (25). Hence, we have

ft = M−1
t

J∑
k=1

Kt(X
(k)
t )

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
,

and we approximate M−1
ρt

Kρt

(
log π1

π0
− Eρt

[
log π1

π0

])
(X

(ℓ)
t ) in (23) with ft(X

(ℓ)
t ), writing the result in vector form,

Ẋ
(j)
t = 1

J

(
∇1K(X

(j)
t , X

(1)
t ), . . . ,∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

J∑
k=1

Kt(X
(k)
t )

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
,

and obtaining the IPS (9).
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A.2. Proof of Theorem 4.1

Notice that time only enters the update equation (17) through the importance weights w(k)
t . To obtain the continuous time

limiting ODE we rearrange, divide by ∆t on both sides, and take ∆t → 0,

lim
∆t→0

X
(j)
t+∆t −X

(j)
t

∆t
= lim

∆t→0
−
(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

J∑
k=1

1
J − w

(k)
t

∆t


K(X

(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 .

Examining the terms above involving ∆t, we see that for k ∈ {1, . . . , J} we have

lim
∆t→0

1
J − w

(k)
t

∆t
= − lim

∆t→0

(
π1
π0

(X
(k)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

− 1
J

∆t
= − lim

∆t→0

(
π1
π0

(X
(k)
t ))∆t∑J

i=1(
π1
π0

(X
(i)
t ))∆t

−
(
π1
π0

(X
(k)
t ))0∑J

i=1(
π1
π0

(X
(i)
t ))0

∆t

= − d

ds

(π1

π0
(X

(k)
t ))s∑J

i=1(
π1

π0
(X

(i)
t ))s

∣∣∣∣∣
s=0

= −
(π1

π0
(X

(k)
t ))s log π1

π0
(X

(k)
t )

J∑
i=1

(π1

π0
(X

(i)
t ))s − (π1

π0
(X

(k)
t ))s

J∑
i=1

(π1

π0
(X

(i)
t ))s log π1

π0
(X

(i)
t )(∑J

i=1(
π1

π0
(X

(i)
t ))s

)2
∣∣∣∣∣∣∣∣∣∣
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= −
J log π1

π0
(X

(k)
t )−

∑j
i=1 log

π1

π0
(X

(i)
t )

J2
= − 1

J

(
log

π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log
π1

π0
(X

(i)
t )

)
.

Hence, the ODE arising from the limit of (17) as ∆t → 0 is the KFRFlow interacting particle system (9)

Ẋ
(j)
t =

(
∇1K(X

(j)
t , X

(1)
t ) · · · ∇1K(X

(j)
t , X

(J)
t )

)
M−1

t

1

J

J∑
k=1

(
log

π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log
π1

π0
(X

(i)
t )

)
K(X

(k)
t , X

(1)
t )

...
K(X

(k)
t , X

(J)
t )

 ,

with initial condition {X(j)
0 }Jj=1

i.i.d.∼ π0.

B. Kernel Fisher–Rao Diffusion
The continuity equation (3) which we solve for the velocity vt can equivalently be written for any ϵ > 0 as a Fokker–Planck
equation

∂tπt = −∇ · (πt(vt + ϵ∇ log πt)) + ϵ∇2πt,

corresponding to the SDE

dXt = (vt(Xt) + ϵ∇ log πt(Xt)) dt+
√
2ϵ dWt, t ∈ [0, 1]. (27)

This SDE possesses the same marginal distributions as the ODE (2). Using the same interacting particle approximation for
the mean-field velocity vt (8) that we use to define deterministic KFRFlow (9), we can also define a stochastic interacting
particle system for approximately traversing the geometric mixture πt ∝ πt

0π
1−t
1 ,

dX
(j)
t = ∇Kt(X

(j)
t )⊤M−1

t
1

J

J∑
k=1

(
log π1

π0
(X

(k)
t )− 1

J

J∑
i=1

log π1

π0
(X

(i)
t )

)
Kt(X

(k)
t ) dt+ϵ∇ log πt(X

(j)
t ) dt+

√
2ϵdWt,

(28)
where we have used the notation Kt(·) = (K(·, X(1)

t ), . . . ,K(·, X(J)
t ))⊤ and ∇Kt ∈ RJ×d is the Jacobian of Kt.

Equation (28) is obtained by applying Monte Carlo approximations to vt in the SDE (27), where vt is as in (8). Because
we know πt ∝ π1−t

0 πt
1 explicitly, the score of πt can be computed directly as ∇ log πt = (1− t)∇ log π0 + t∇ log π1. We

refer to the interacting particle system (28) as Kernel Fisher–Rao Diffusion (KFRD) and note that it can be simulated with
any off-the-shelf SDE solver, for example Euler–Maruyama.
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C. Additional Numerical Results
C.1. Two-Dimensional Bayesian Posteriors

C.1.1. EXPERIMENTAL SETUP

We apply KFRFlow (9), KFRFlow-I (17), and KFRD to sample three two-dimensional densities. In all three cases π1 is a
Bayesian posterior proportional to π0ℓ for a likelihood ℓ = π(y∗ | ·) of the form

ℓ(x) ∝ exp

(
− 1

σ2
ε

∥y∗ −G(x)∥22
)
,

i.e., y∗ ∈ R is Gaussian with mean G(x) and variance σ2
ε . Definitions of the three likelihoods and descriptions of the

deformation behavior they entail may be found in Table 1.

Table 1. Likelihoods for the two-dimensional Bayesian example problems
G(x) y∗ σ2

ϵ Behavior Nickname√
x2
1 + x2

2 2 0.252 Concentration Donut

sin(x2)
+

cos(x1)
-1 0.62 Bimodality Butterfly

sin(x1x2)
+

cos(x1x2)
-1 0.52 Multimodality Spaceships

We compare the sampling performances of KFRFlow, KFRFlow-I, and KFRD to those of EKI, EKS, CBS, SVGD, and
ULA. We use the algorithms to generate target ensembles of size J ∈ {25, 50, 100, 200, 400} with number of steps
N ∈ {21, 22, . . . , 28}. For unit-time KFRFlow(-I), KFRD, and EKI, the resulting step-size is 1/N , but for infinite-time
EKS, CBS, SVGD, and ULA we must choose a stopping time T > 0, resulting in a step-size of T/N . We test a range of
stopping times T for EKS, CBS, SVGD, and ULA, regularization levels λ for KFRFlow(-I), noise levels ϵ for KFRD, and
temperature β for CBS and report KSD corresponding to the best parameter settings for each (J,N). We do not inflate Mt

in KFRD in these two-dimensional examples (i.e., λ = 0 for KFRD). The resulting choices of parameters for each algorithm
and setting of (J,N) can be seen in Figure 8.

We use a fourth-order Adams–Bashforth discretization of KFRFlow because we find that it generates better samples than
forward Euler at little additional cost, while by contrast we use forward Euler for SVGD because we find that SVGD does
not benefit from multistep discretizations in these examples. For comparisons of the sampling performance of these different
ODE discretization methods, see Figures 9 and 10. We use Euler–Maruyama discretizations for KFRD, EKI, EKS, CBS,
and ULA. The values of KSD we report are averages over 30 trials.
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Figure 8. Optimal parameter choices for (from top to bottom) KFRFlow, KFRFlow-I, KFRD, SVGD, EKS, CBS, and ULA for the donut
(left), butterfly (middle), and spaceships (right) examples.

17



Sampling in Unit Time with Kernel Fisher–Rao Flow

Donut

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

2

4

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

2

4

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

2

4

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

2

4

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

2

4

Butterfly

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0.0

0.5

1.0

1.5

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0.0

0.5

1.0

1.5

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0.0

0.5

1.0

1.5

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0.0

0.5

1.0

1.5

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0.0

0.5

1.0

1.5

Spaceships

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

1

2

3

J=25

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

1

2

3

J=50

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

1

2

3

J=100

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

1

2

3

J=200

Δt
2 − 2 2 − 4 2 − 6 2 − 8

K
S
D

0

1

2

3

J=400

KFRFlow, Euler KFRFlow, AB4 KFRFlow-I

Figure 9. Two-dimensional posteriors: average KSD of ensembles generated by forward Euler and AB4 discretizations of KFRFlow and
by KFRFlow-I for varying ensemble size and ∆t. KFRFlow-I and the AB4 discretization of KFRFlow generally outperform the forward
Euler discretization of KFRFlow.

Donut

N
24 26 28

K
S
D

0

2

4

N
24 26 28

K
S
D

0

2

4

N
24 26 28

K
S
D

0

2

4

N
24 26 28

K
S
D

0

2

4

N
24 26 28

K
S
D

0

2

4

Butterfly

N
22 24 26 28

K
S
D

0.0

0.5

1.0

1.5

N
22 24 26 28

K
S
D

0.0

0.5

1.0

1.5

N
22 24 26 28

K
S
D

0.0

0.5

1.0

1.5

N
22 24 26 28

K
S
D

0.0

0.5

1.0

1.5

N
22 24 26 28

K
S
D

0.0

0.5

1.0

1.5

Spaceships

N
22 24 26 28

K
S
D

0
1
2
3
4

J=25

N
22 24 26 28

K
S
D

0
1
2
3
4

J=50

N
22 24 26 28

K
S
D

0
1
2
3
4

J=100

N
22 24 26 28

K
S
D

0
1
2
3
4

J=200

N
22 24 26 28

K
S
D

0
1
2
3
4

J=400

Euler AB4

Figure 10. Two-dimensional posteriors: average KSD of ensembles generated by forward Euler and AB4 discretizations of SVGD.
Using AB4 in place of forward Euler with SVGD tends only to make things worse.
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C.1.2. EXTENDED VALUES OF J

In Figures 11 and 12 we compare the quality of samples generated by KFRFlow and KFRFlow-I to those of EKI, EKS, and
CBS, and the quality of samples generated by KFRD to those of SVGD, and ULA. In Figure 13 we show the evolution of
KSD between π1 and samples generated by the unit-time methods KFRFlow, KFRFlow-I, KFRD, and EKI as a function
of t, with ∆t = 2−8. These figures contain results for a wider range of J than the main-body Figures 3 to 5. In these
and following figures, results corresponding to gradient-free methods are plotted with solid lines and circles, while results
corresponding to gradient-based methods are plotted with dashed lines and diamonds.
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Figure 11. Two-dimensional posteriors: average KSD at stopping time between π1 and ensembles of size J ∈ {25, 50, 100, 200, 400}
generated by gradient-free samplers. A missing point indicates that a method was unstable at that setting of N .
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Figure 12. Two-dimensional posteriors: average KSD at stopping time between π1 and ensembles of size J ∈ {25, 50, 100, 200, 400}
generated by gradient-based samplers. A missing point indicates that a method was unstable at that setting of N .
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Figure 13. Two-dimensional posteriors: evolution of KSD between π1 and samples generated by the unit-time methods KFRFlow,
KFRFlow-I, KFRD, and EKI with t ∈ [0, 1] for ensembles of size J ∈ {25, 50, 100, 200, 400} and ∆t = 2−8.

C.1.3. KSD BETWEEN SAMPLES AND INTERMEDIATE DISTRIBUTIONS

In Figure 14 we plot the KSD between samples {X(j)
t }Jj=1 generated by KFRFlow, KFRFlow-I, and KFRD and the

intermediate distributions πt ∝ π1−t
0 πt

1, for t ∈ [0, 1]. KSD(πt, {X(j)
t }Jj=1) can be viewed as a sort of “discretization

error”: even at t = 0 we see that the KSD between π0 and the samples {X(j)
0 }Jj=1, which are taken directly from

π0 = N (0, Id), is nonzero due to finite J .
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Figure 14. Two-dimensional posteriors: KSD between intermediate distributions πt and samples at time t generated by KFRFlow,
KFRFlow-I, and KFRD for ensemble sizes J ∈ {25, 50, 100, 200, 400} and ∆t = 2−8. A missing line in a plot indicates that the method
was unstable at that setting of J .
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One naturally expects KSD(πt, {X(j)
t }Jj=1) to increase in time owing to error incurred from kernelization of the solution to

(4), Monte Carlo approximation of the mean-field ODE (8), and time-discretization of the finite-sample ODE (9), and we
indeed see such increases in Figure 14. The increases are lower for KFRD than KFRFlow and KFRFlow-I, perhaps due to
the presence of gradient information in KFRD. Here the increases generally appear to be approximately linear in time.

C.1.4. COMPARISON TO RANDOM WALK METROPOLIS

In Figure 15 we compare the quality of samples generated by KFRFlow and KFRFlow-I to that of samples generated by
random walk Metropolis (RWM, Robert & Casella (2004)). We use RWM to sample the target distributions in both “serial”
mode, in which a single long chain is generated and the last J states of this chain are retained as samples from the target,
and “parallel” mode, in which J independent chains are run and the last state from each chain is taken to form a set of J
samples from π1. When we compare the sampling performances of serial and parallel RWM to KFRFlow and KFRFlow-I
we compare for equivalent total numbers of steps; that is, we run N steps of KFRFlow and KFRFlow-I, N steps on each of
the J chains in parallel RWM, and and NJ steps on the single chain in serial RWM. For both RWM settings we tune the
variance of the isotropic Gaussian proposal distribution to attain the optimal acceptance rate of 23% (Yang et al., 2020).

Though serial mode is the generally the setting of choice for RWM, owing to the fact that parallel mode inefficiently
replicates transient (“burn-in”) behavior across chains, we see in Figure 15 that for sufficiently large N , parallel RWM
produces better-quality samples than serial RWM, KFRFlow, and KFRFlow-I. For these large values of N , parallel RWM
benefits from multiple starting points, which help it collectively sample all regions of the target distributions, and from the
fact that each individual chain has moved adequately by step N ; these particular target distributions do not require long
burn-in times. By contrast, for small N we deduce from Figure 15 that the J parallel chains are often not adequately burnt
in, as serial RWM (with its J-fold longer burn-in time) and KFRFlow-I generally produce better samples in this setting.
For most instances of N > 8 steps, KFRFlow or KFRFlow-I produces samples of comparable or better quality than serial
RWM, as these interacting particle algorithms are able to explore the target distributions more effectively than a single chain
of RWM. For N ≤ 8 the resulting ∆t is often too large for KFRFlow and KFRFlow-I to be integrated accurately, and serial
RWM benefits from the fact that it has (N − 1)J burn-in steps.
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Figure 15. Two-dimensional posteriors: average KSD at stopping time between π1 and ensembles of size J ∈ {25, 50, 100, 200, 400}
generated by KFRFlow, KFRFlow-I, and RWM. A missing point indicates that a method was unstable at that setting of N .

C.1.5. EFFECT OF ∆t

In Figure 16 we investigate the impact of step-size ∆t on the evolution of sample quality, as measured by KSD, with
t ∈ [0, 1]. For each example and setting of ∆t ∈ {2−1, 2−2, . . . , 2−8} we generate J = 300 approximate samples of π1
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with KFRFlow and KFRFlow-I and compute KSD between the samples and π1 at each step of the iterations. We regularize
Mt in the Euler discretization of KFRFlow with λ set to 10−1, 10−8, and 10−11 for the donut, butterfly, and spaceships
examples, respectively, but do not regularize Mt in KFRFlow-I. The data plotted in Figure 16 are the result of averaging the
values of KSD over 30 repeated trials at each setting of ∆t.
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Figure 16. Two-dimensional posteriors: KSD between π1 and samples generated by KFRFlow-I (top) and an explicit Euler discretization
of KFRFlow (bottom) versus t for various ∆t. In each example ∆t must be below a certain threshold to ensure that KSD decreases
monotonically throughout the iteration. KFRFlow-I is apparently more stable at large ∆t than the Euler discretization of KFRFlow.

C.1.6. EMPIRICAL RUNTIME

In Figure 17 we display the median time taken to compute one update (i.e., transform {X(j)
t }Jj=1 into {X(j)

t+∆t}Jj=1) in each
of KFRFlow, KFRD, EKI, EKS, CBS, SVGD, and ULA as a function of ensemble size J in the two-dimensional setting.
Benchmarks were performed in Julia using BenchmarkTools.jl (Chen & Revels, 2016) on a 2020 MacBook Air with
Apple M1 processor.

We see in Figure 20 that the runtimes increase polynomially with ensemble size J , as one would expect based on, e.g., the
complexity of KFRFlow (Section 5.2), and that the methods can be organized into three clusters based on cost: KFRFlow,
KFRD, and SVGD are most expensive, EKI and EKS are cheapest, and CBS and ULA fall somewhere in between. As
∇ log π1 is cheap to evaluate in these examples, the data in Figure 17 do not capture extra costs that may be incurred by
gradient-based methods (SVGD, KFRD, and ULA) in the setting where ∇ log π1 is expensive.
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Figure 17. Two-dimensional posteriors: time (ms) taken to compute one ensemble update for each of KFRFlow, KFRD, EKI, EKS,
CBS, SVGD, and ULA in two dimensions as a function of ensemble size J .
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C.2. Higher-Dimensional Funnels

C.2.1. EXPERIMENTAL SETUP

For dimension d ∈ {5, 10, 15, 20} we compare the performance of KFRFlow-I, KFRD, CBS, SVGD, and ULA in sampling
from “funnel” distributions of the form

π1(x) = N (x1; 0, 9)N (x2:d;0, exp(x1)I),

i.e., X1 is distributed normally with mean zero and variance nine, and (X2, . . . , Xd) are multivariate normal with mean zero
and covariance matrix exp(X1)I. This family of distributions appears in Neal (2003) and is commonly used as a benchmark
for sampling algorithms, e.g., Arbel et al. (2021); Zhang et al. (2023); Xu et al. (2023b).

For each setting of d we apply these algorithms to generate J = 100 samples from π1. For KFRFlow-I and KFRD we set
∆t = 0.01, corresponding to N = 100 steps for the infinite-time algorithms CBS, SVGD, and ULA. As in Section 6.1 we
optimize the hyperparameters for KFRFlow-I, KFRD, CBS, SVGD, and ULA via coarse direct search to minimize KSD
between the final samples and π1. The resulting hyperparameter values are shown in Table 2. The data in Figures 6 to 7, 18
and 19 are produced by averaging the results of 30 independent trials.

d = 5 d = 10 d = 15 d = 20

λ (KFRFlow-I) 0.01 0.001 0.001 0.001

ϵ (KFRD) 5 5 5 2.5
λ (KFRD) 0.001 0.01 0.1 0.1

T (CBS) 25 12.5 25 25
β (CBS) 0.125 0.5 0.25 0.25

T (SVGD) 100 100 100 100

T (ULA) 12.5 12.5 25 12.5

Table 2. Funnels: Selected hyperparameters for each algorithm and target dimension d.
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Figure 18. Funnels: KSD between samples at time t and the intermediate distribution πt, for t ∈ [0, 1]; KFRFlow-I (left) and KFRD
(right). This “discretization error” somewhat surprisingly seems to decrease with t for KFRD but is noticeably non-monotonic for
KFRFlow-I.

C.2.2. KSD BETWEEN SAMPLES AND INTERMEDIATE DISTRIBUTIONS

In Figure 18 we plot the KSD between samples {X(j)
t }Jj=1 generated by KFRFlow and KFRD and the intermediate

distributions πt ∝ π1−t
0 πt

1, t ∈ [0, 1]. This quantity can be viewed as a sort of “discretization error,” for even at t = 0 we
see that the KSD between π0 and the samples {X(j)

0 }Jj=1, which are sampled directly from π0 = N (0, Id), is nonzero due
to the finiteness of J .

As mentioned in Appendix C.1.3, one naturally expects KSD(πt, {X(j)
t }Jj=1) to increase in time due to accumulation

of error, but interestingly we see in Figure 18 that KSD(πt, {X(j)
t }Jj=1) is not generally monotone increasing in time.
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This quantity, in fact, is mostly decreasing in time for KFRD and tends to follow an undulating pattern, which becomes
more evident with increasing d, for KFRFlow-I. Understanding these phenomena and their relationship to choice of IPS
(KFRFlow-I vs KFRD) and dimension d is an interesting area for future work.

C.2.3. COMPARISON TO RANDOM WALK METROPOLIS

In Figure 19 we compare the quality of samples generated by KFRFlow-I to that of samples generated by random walk
Metropolis (RWM, Robert & Casella (2004)). As in Appendix C.1.4, we apply RWM in both serial mode and parallel mode
and make comparisons among algorithms for equivalent total numbers of steps. For both RWM settings we tune the variance
of the isotropic Gaussian proposal distribution to attain the optimal acceptance rate of 23% (Yang et al., 2020).

Similarly to the behavior in Figure 15, we see in Figure 19 that for all settings of d parallel RWM produces better samples, as
measured with KSD, than serial RWM. We posit that the burn-in time for RWM is not very long for these funnel distributions,
and thus parallel RWM is benefiting from multiple initializations and from the fact that each individual chain is adequately
burnt in after N = 100 steps. Interestingly, we see in Figure 19 that the quality of samples produced by RWM in both
modes degrades with dimension but that the same is not true of KFRFlow-I: for d = 5 KFRFlow-I produces samples that are
slightly worse than serial RWM, but for d > 5 the samples from KFRFlow-I are better than those from serial RWM, with
the quality of samples produced by KFRFlow-I becoming comparable to that of samples from parallel RWM by d = 20.
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Figure 19. Funnels: average KSD at stopping time between π1 and samples generated by KFRFlow-I and RWM for d ∈ {5, 10, 15, 20}

C.2.4. EMPIRICAL RUNTIME

In Figure 20 we display the median time taken to compute one update (i.e., transform {X(j)
t }Jj=1 into {X(j)

t+∆t}Jj=1) in each
of KFRFlow-I, KFRD, CBS, SVGD, and ULA for the settings in the funnel example. Benchmarks were performed in Julia
using BenchmarkTools.jl (Chen & Revels, 2016) on a 2020 MacBook Air with Apple M1 processor.

We see in Figure 20 that the runtimes do not demonstrate distinct dependence on dimension d and that the runtimes of
KFRFlow-I, KFRD, and SVGD are comparable, with those of CBS and ULA being significantly lower. Given that the
sampling performance of ULA, SVGD, and KFRD were essentially the same in this example, cost considerations suggest
that ULA is the best choice of gradient-based method here, but for gradient-free samplers the situation is more nuanced:
CBS is cheaper than KFRFlow-I, but KFRFlow-I produces better samples.
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Figure 20. Funnels: median time (ms) taken to compute one ensemble update in each of KFRFlow-I, KFRD, CBS, SVGD, and ULA for
the in the funnel example as a function of dimension d. Gradient-free methods are plotted with solid lines and circles, while gradient-based
methods are plotted with dashed lines and diamonds.
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