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Abstract

Recent works on the parallel complexity of Boosting have established strong lower
bounds on the tradeoff between the number of training rounds p and the total par-
allel work per round t. These works have also presented highly non-trivial parallel
algorithms that shed light on different regions of this tradeoff. Despite these ad-
vancements, a significant gap persists between the theoretical lower bounds and
the performance of these algorithms across much of the tradeoff space. In this
work, we essentially close this gap by providing both improved lower bounds on
the parallel complexity of weak-to-strong learners, and a parallel Boosting algo-
rithm whose performance matches these bounds across the entire p vs. t compro-
mise spectrum, up to logarithmic factors. Ultimately, this work settles the parallel
complexity of Boosting algorithms that are nearly sample-optimal.

1 Introduction

Boosting is an extremely powerful and elegant idea that allows one to combine multiple inaccu-
rate classifiers into a highly accurate voting classifier. Algorithms such as AdaBoost [Freund and
Schapire, 1997] work by iteratively running a base learning algorithm on reweighted versions of the
training data to produce a sequence of classifiers h1, . . . , hp. After obtaining hi, the weighting of the
training data is updated to put larger weights on samples misclassified by hi, and smaller weights on
samples classified correctly. This effectively forces the next training iteration to focus on points with
which the previous classifiers struggle. After sufficiently many rounds, the classifiers h1, . . . , hp are
finally combined by taking a (weighted) majority vote among their predictions. Many Boosting al-
gorithms have been developed over the years, for example Grove and Schuurmans [1998], Rätsch
et al. [2005], Servedio [2003], Friedman [2001], with modern Gradient Boosting [Friedman, 2001]
algorithms like XGBoost [Chen and Guestrin, 2016] and LightGBM [Ke et al., 2017] often achiev-
ing state-of-the-art performance on learning tasks while requiring little to no data cleaning. See e.g.
the excellent survey by Natekin and Knoll [2013] for more background on Boosting.

While Boosting enjoys many advantages, it does have one severe drawback, also highlighted in
Natekin and Knoll [2013]: Boosting is completely sequential as each of the consecutive training
steps requires the output of previous steps to determine the reweighted learning problem. This
property is shared by all Boosting algorithms and prohibits the use of computationally heavy training
by the base learning algorithm in each iteration. For instance, Gradient Boosting algorithms often
require hundreds to thousands of iterations to achieve the best accuracy. The crucial point is that
even if you have access to thousands of machines for training, there is no way to parallelize the steps
of Boosting and distribute the work among the machines (at least beyond the parallelization possible
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for the base learner). In effect, the training time of the base learning algorithm is directly multiplied
by the number of steps of Boosting.

Multiple recent works [Long and Servedio, 2013, Karbasi and Larsen, 2024, Lyu et al., 2024] have
studied parallelization of Boosting from a theoretical point of view, aiming for an understanding of
the inherent tradeoffs between the number of training rounds p and the total parallel work per round
t. These works include both strong lower bounds on the cost of parallelization and highly non-trivial
parallel Boosting algorithms with provable guarantees on accuracy. Previous studies however leave
a significant gap between the performance of the parallel algorithms and the proven lower bounds.

The main contribution of this work is to close this gap by both developing a parallel algorithm with
a better tradeoff between p and t, as well as proving a stronger lower bound on this tradeoff. To
formally state our improved results and compare them to previous works, we first introduce the
theoretical framework under which parallel Boosting is studied.

Weak-to-Strong Learning. Following the previous works Karbasi and Larsen [2024], Lyu et al.
[2024], we study parallel Boosting in the theoretical setup of weak-to-strong learning. Weak-to-
strong learning was introduced by Kearns [1988], Kearns and Valiant [1994] and has inspired the
development of the first Boosting algorithms [Schapire, 1990]. In this framework, we consider
binary classification over an input domain X with an unknown target concept c : X → {−1, 1}
assigning labels to samples. A γ-weak learner for c is then a learning algorithm W that for any
distribution D over X , when given at least some constant m0 i.i.d. samples from D, produces with
constant probability a hypothesis h with LD(h) ≤ 1/2 − γ. Here LD(h) = Prx∼D[h(x) ̸= c(x)].
The goal in weak-to-strong learning is then to boost the accuracy ofW by invoking it multiple times.
Concretely, the aim is to produce a strong learner: A learning algorithm that for any distribution D
over X and any 0 < δ, ε < 1, when given m(ε, δ) i.i.d. samples from D, produces with probability
at least 1− δ a hypothesis h : X → {−1, 1} such that LD(h) ≤ ε. We refer to m(ε, δ) as the sample
complexity of the weak-to-strong learner.

Weak-to-strong learning has been extensively studied over the years, with many proposed algo-
rithms, among which AdaBoost [Freund and Schapire, 1997] is perhaps the most famous. If H
denotes a hypothesis set such that W always produces hypotheses from H, and if d denotes the
VC-dimension of H, then in terms of sample complexity, AdaBoost is known to produce a strong
learner with sample complexity mAda(ε, δ) satisfying

mAda(ε, δ) = O

(
d ln( d

εγ ) ln(
1
εγ )

γ2ε
+

ln(1/δ)

ε

)
. (1)

This can be proved by observing that after t = O(γ−2 lnm) iterations, AdaBoost produces a voting
classifier f(x) = sign(

∑t
i=1 αihi(x)) with all margins on the training data being Ω(γ). The sample

complexity bound then follows by invoking the best known generalization bounds for large margin
voting classifiers [Breiman, 1999, Gao and Zhou, 2013]. Here the margin of the voting classifier f
on a training sample (x, c(x)) is defined as c(x)

∑t
i=1 αihi(x)/

∑t
i=1|αi|. This sample complexity

comes within logarithmic factors of the optimal sample complexity mOPT(ε, δ) = Θ(d/(γ2ε) +
ln(1/δ)/ε) obtained e.g. in Larsen and Ritzert [2022].

Parallel Weak-to-Strong Learning. The recent work by Karbasi and Larsen [2024] formalized
parallel Boosting in the above weak-to-strong learning setup. Observing that all training happens
in the weak learner, they proposed the following definition of parallel Boosting: A weak-to-strong
learning algorithm has parallel complexity (p, t) if for p consecutive rounds it queries the weak
learner with t distributions. In each round i, if Di

1, . . . , D
i
t denotes the distributions queried, the

weak learner returns t hypotheses hi
1, . . . , h

i
t ∈ H such that LDi

j
(hi

j) ≤ 1/2 − γ for all j. At the
end of the p rounds, the weak-to-strong learner outputs a hypothesis f : X → {−1, 1}. The queries
made in each round and the final hypothesis f must be computable from the training data as well as
all hypotheses hi

j seen in previous rounds. The motivation for the above definition is that we could
let one machine/thread handle each of the t parallel query distributions in a round.

Since parallel weak-to-strong learning is trivial if we make no requirements on LD(f) for the output
f : X → {−1, 1} (simply output f(x) = 1 for all x ∈ X ), we from hereon focus on parallel weak-
to-strong learners that are near-optimal in terms of the sample complexity and accuracy tradeoff.
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More formally, from the upper bound side, our goal is to obtain a sample complexity matching at
least that of AdaBoost, stated in Eq. (1). That is, rewriting the loss ε as a function of the number of
samples m, we aim for output classifiers f satisfying

LD(f) = O

(
d ln(m) ln(m/d) + ln(1/δ)

γ2m

)
.

When stating lower bounds in the following, we have simplified the expressions by requiring that
the expected loss satisfies LD(f) = O(m−0.01). Note that this is far larger than the upper bounds,
except for values of m very close to γ−2d. This only makes the lower bounds stronger. We remark
that all the lower bounds are more general than this, but focusing on m−0.01 in this introduction
yields the cleanest bounds.

With these definitions, classic AdaBoost and other weak-to-strong learners producing voting clas-
sifiers with margins Ω(γ) all have a parallel complexity of (Θ(γ−2 lnm), 1): They all need
γ−2 lnm rounds to obtain Ω(γ) margins. Karbasi and Larsen [2024] presented the first alter-
native tradeoff by giving an algorithm with parallel complexity (1, exp(O(d ln(m)/γ2))). Sub-
sequent work by Lyu et al. [2024] gave a general tradeoff between p and t. When requiring
near-optimal accuracy, their tradeoff gives, for any 1 ≤ R ≤ 1/(2γ), a parallel complexity of
(O(γ−2 ln(m)/R), exp(O(dR2)) ln(1/γ)). The accuracy of both of these algorithms was proved
by arguing that they produce a voting classifier with all margins Ω(γ).

On the lower bound side, Karbasi and Larsen [2024] showed that one of three things must hold:
Either p ≥ min{Ω(γ−1 lnm), exp(Ω(d))}, or t ≥ min{exp(Ω(dγ−2)), exp(exp(Ω(d)))} or
p ln(tp) = Ω(d ln(m)γ−2).

Lyu et al. [2024] also presented a lower bound that for some parameters is stronger than that of
Karbasi and Larsen [2024], and for some is weaker. Concretely, they show that one of the following
two must hold: Either p ≥ min{Ω(γ−2d),Ω(γ−2 lnm), exp(Ω(d))}, or t ≥ exp(Ω(d)). Observe
that the constraint on t is only single-exponential in d, whereas the previous lower bound is double-
exponential. On the other hand, the lower bound on p is essentially stronger by a γ−1 factor. Finally,
they also give an alternative lower bound for p = O(γ−2), essentially yielding p ln t = Ω(γ−2d).

Even in light of the previous works, it is still unclear what the true complexity of parallel boosting
is. In fact, the upper and lower bounds only match in the single case where p = Ω(γ−2 lnm) and
t = 1, i.e. when standard AdaBoost is optimal.

Our Contributions. In this work, we essentially close the gap between the upper and lower
bounds for parallel boosting. From the upper bound side, we show the following general result.

Theorem 1.1. Let c : X → {−1, 1} be an unknown concept,W be a γ-weak learner for c using a
hypothesis set of VC-dimension d, D be an arbitrary distribution, and S ∼ Dm be a training set of
size m. For all R ∈ N, Algorithm 1 yields a weak-to-strong learner AR with parallel complexity
(p, t) for

p = O

(
lnm

γ2R

)
and t = eO(dR) · ln lnm

δγ2
,

such that, with probability at least 1− δ over S and the randomness of AR, it holds that

LD(AR(S)) = O

(
d ln(m) ln(m/d) + ln(1/δ)

γ2m

)
.

Observe that this is a factor R better than the bound by Lyu et al. [2024] in the exponent of t.
Furthermore, if we ignore the ln(ln(m)/(δγ2)) factor, it gives the clean tradeoff

p ln t = O

(
d lnm

γ2

)
,

for any p from 1 to O(γ−2 lnm).

We complement our new upper bound by an essentially matching lower bound. Here we show that
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Theorem 1.2. There is a universal constant C ≥ 1 for which the following holds. For any 0 <
γ < 1/C, any d ≥ C, any sample size m ≥ C, and any weak-to-strong learner A with parallel
complexity (p, t), there exists an input domain X , a distribution D, a concept c : X → {−1, 1}, and
a γ-weak learnerW for c using a hypothesis setH of VC-dimension d such that if the expected loss
of A over the sample is no more than m−0.01, then either p ≥ min{exp(Ω(d)),Ω(γ−2 lnm)}, or
t ≥ exp(exp(Ω(d))), or p ln t = Ω(γ−2d lnm).

Comparing Theorem 1.2 to known upper bounds, we first observe that p = Ω(γ−2 lnm) corre-
sponds to standard AdaBoost and is thus tight. The term p = exp(Ω(d)) is also near-tight. In
particular, given m samples, by Sauer-Shelah, there are only O((m/d)d) = exp(O(d ln(m/d)))
distinct labellings by H on the training set. If we run AdaBoost, and in every iteration, we check
whether a previously obtained hypothesis has advantage γ under the current weighing, then we make
no more than exp(O(d ln(m/d))) queries to the weak learner (since every returned hypothesis must
be distinct). The p ln t = Ω(γ−2d lnm) matches our new upper bound in Theorem 1.1. Thus, only
the t ≥ exp(exp(Ω(d))) term does not match any known upper bound.

Other Related Work. Finally, we mention the work by Long and Servedio [2013], which initiated
the study of the parallel complexity of Boosting. In their work, they proved that the parallel com-
plexity (p, t) must satisfy p = Ω(γ−2 lnm), regardless of t (they state it as p = Ω(γ−2), but it is not
hard to improve by a lnm factor for loss m−0.01). This seems to contradict the upper bounds above.
The reason is that their lower bound has restrictions on which query distributions the weak-to-strong
learner makes to the weak learner. The upper bounds above thus all circumvent these restrictions.
As a second restriction, their lower bound instance has a VC-dimension that grows with m.

2 Upper Bound

In this section, we discuss our proposed method, Algorithm 1. Here, Cn refers a universal constant
shared among results.

We provide a theoretical analysis of the algorithm, showing that it realizes the claims in Theorem 1.1.
Our proof goes via the following intermediate theorem:

Theorem 2.1. There exists universal constant Cn ≥ 1 such that for all 0 < γ < 1/2, R ∈ N,
concept c : X → {−1, 1}, and hypothesis setH ⊆ {−1, 1}X of VC-dimension d, Algorithm 1 given
an input training set S ∈ Xm, a γ-weak learnerW ,

p ≥ 4 lnm

γ2R
, and t ≥ e16CndR ·R ln

pR

δ
,

produces a linear classifier g at Line 21 such that with probability at least 1−δ over the randomness
of Algorithm 1, g(x)c(x) ≥ γ/8 for all x ∈ S.

In Theorem 2.1 and throughout the paper, we define a linear classifier g as linear combination of
hypotheses g(x) =

∑k
i=1 αihi(x) with

∑
i|αi| = 1. A linear classifier thus corresponds to a voting

classifier with coefficients normalized and no sign operation. Observe that the voting classifier
f(x) = sign(g(x)) is correct if and only if c(x)g(x) > 0, where c(x) is the correct label of x.
Furthermore, c(x)g(x) is the margin of the voting classifier f on input x.

Theorem 1.1 follows from Theorem 2.1 via generalization bounds for linear classifiers with large
margins. Namely, we apply Breiman’s min-margin bound:

Theorem 2.2 (Breiman [1999]). Let c : X → {−1, 1} be an unknown concept, H ⊆ {−1, 1}X
a hypothesis set of VC-dimension d and D an arbitrary distribution over X . There is a universal
constant C > 0 such that with probability at least 1− δ over a set of m samples S ∼ Dm, it holds
for every linear classifier g satisfying c(x)g(x) ≥ γ for all (x, c(x)) ∈ S that

LD(sign(g)) ≤ C · d ln(m) ln(m/d) + ln(1/δ)

γ2m
.

Thus far, our general strategy mirrors that of previous works: We seek to show that given suitable
parameters Algorithm 1 produces a linear classifier with margins of order γ with good probability.
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Algorithm 1: Proposed parallel boosting algorithm
Input : Training set S = {(x1, c(x1)), . . . , (xm, c(xm))}, γ-weak learnerW , number of

calls to weak learner per round t, number of rounds p
Output: Voting classifier f

1 α← 1
2 ln

1/2+γ/2
1/2−γ/2

2 n← Cnd/γ
2

3 D1 ← ( 1
m , 1

m , . . . , 1
m )

4 for k ← 0 to p− 1 do
5 parallel for r ← 1 to R do
6 parallel for j ← 1 to t/R do
7 Sample TkR+r,j ∼Dn

kR+1

8 hkR+r,j ←W(TkR+r,j ,Uniform(TkR+r,j))
9 HkR+r ← {hkR+r,1, . . . ,hkR+r,t/R} ∪ {−hkR+r,1, . . . ,−hkR+r,t/R}

10 for r ← 1 to R do
11 if there exists h∗ ∈HkR+r s.t. LDkR+r

(h∗) ≤ 1/2− γ/2 then
12 hkR+r ← h∗

13 αkR+r ← α
14 else
15 hkR+r ← arbitrary hypothesis from HkR+r

16 αkR+r ← 0
17 for i← 1 to m do
18 DkR+r+1(i)←DkR+r(i) exp(−αkR+rc(xi)hkR+r(xi))
19 ZkR+r ←

∑m
i=1 DkR+r(i) exp(−αkR+rc(xi)hkR+r(xi))

20 DkR+r+1 ←DkR+r+1/ZkR+r

21 g← x 7→ 1∑pR
j=1 αj

∑pR
j=1 αjhj(x)

22 return f : x 7→ sign(g(x))

Therefore, this section focuses on the lemmas that describe how, with suitable parameters, Algo-
rithm 1 produces a classifier with large margins. With these results in hand, the proof of Theorem 2.1
becomes quite straightforward, so we defer it to Appendix B.3.

Algorithm 1 is a variant of Lyu et al. [2024, Algorithm 2]. The core idea is to use bagging to produce
(in parallel) a set of hypotheses and use it to simulate a weak learner. To be more precise, we reason
in terms of the following definition.
Definition 1 (ε-approximation). Given a concept c : X → {−1, 1}, a hypothesis setH ⊆ {−1, 1}X ,
and a distribution D over X , a multiset T is an ε-approximation for D, c, and H if for all h ∈ H, it
holds that

|LD(h)− LT (h)| ≤ ε,

where LT (h) := LUniform(T )(h) is the empirical loss of h on T . Moreover, we omit the reference
to c andH when no confusion seems possible.

Consider a reference distribution D0 over a training dataset S. The bagging part of the method
leverages the fact that if a subsample T ∼ Dn

0 is a γ/2-approximation for D0, then inputting T
(with the uniform distribution over it) to a γ-weak learner produces a hypothesis h that, besides
having advantage γ on T, also has advantage γ/2 on the entire dataset S (relative to D0). Indeed, in
this setting, we have that LD0

(h) ≤ LT(h)+γ/2 ≤ 1/2−γ+γ/2 = 1/2−γ/2. We can then take h
as if produced by a γ/2-weak learner queried with (S,D0), and compute a new distribution D1 via
a standard Boosting step1. That is, we can simulate a γ/2-weak learner as long as we can provide a
γ/2-approximation for the target distribution. The strategy is to have a parallel bagging step in which
we sample T1,T2, . . . ,Tt

iid∼ Dn
0 and query the γ-weak learner on each Tj to obtain hypotheses

h1, . . . ,ht. Then, we search within these hypotheses to sequentially perform R Boosting steps,
obtaining distributions D1, D2, . . . , DR. As argued, this approach will succeed whenever we can

1Notice that we employ a fixed learning rate that assumes a worst-case advantage of γ/2.
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find at least one γ/2-approximation for each Dr among h1,h2, . . . ,ht. A single parallel round of
querying the weak learner is thus sufficient for performing R steps of Boosting, effectively reducing
p by a factor R. Crucially, testing the performance of the returned hypotheses h1, . . . ,ht uses only
inference/predictions and no calls to the weak learner.

The challenge is that the distributions Dr diverge (exponentially fast) from D0 as we progress in the
Boosting steps. For the first Boosting step, the following classic result ensures a good probability of
obtaining an approximation for D0 when sampling from D0 itself.

Theorem 2.3 (Li et al. [2001], Talagrand [1994], Vapnik and Chervonenkis [1971]). There is a
universal constant C > 0 such that for any 0 < ε, δ < 1, H ⊆ {−1, 1}X of VC-dimension d,
and distribution D over X , it holds with probability at least 1 − δ over a set T ∼ Dn that T is an
ε-approximation for D, c, andH provided that n ≥ C((d+ ln(1/δ))/ε2).

However, we are interested in approximations for Dr when we only have access to samples from
D0. Lyu et al. [2024] approaches this problem by tracking the “distance” between the distributions
in terms of their max-divergence

D∞(Dr, D0) := ln
(
sup
x∈X

Dr(x)/D0(x)
)
. (2)

By bounding both D∞(Dr, D0) and D∞(D0, Dr), the authors can leverage the advanced composi-
tion theorem [Dwork et al., 2010]2 from the differential privacy literature to bound the probability of
obtaining an approximation for Dr when sampling from D0. In turn, this allows them to relate the
number of samples t and the (sufficiently small) number of Boosting steps R in a way that ensures
a good probability of success at each step.

Besides setting up the application of advanced composition, the use of the max-divergence also sim-
plifies the analysis since its “locality” allows one to bound the divergence between the two distribu-
tions via a worst-case study of a single entry. However, this approach sacrifices global information,
limiting how much we can leverage our understanding of the distributions generated by Boosting
algorithms. With that in mind, we instead track the distance between Dr and D0 in terms of the
Kullback-Leibler divergence (KL divergence) [Kullback and Leibler, 1951] between them:

KL(Dr ∥D0) :=
∑
x∈X

Dr(x) ln
Dr(x)

D0(x)
.

Comparing this expression to Eq. (2) reveals that the max-divergence is indeed a worst-case estima-
tion of the KL divergence.

The KL divergence —also known as relative entropy— between two distributions P and Q is always
non-negative and equal to zero if and only if P = Q. Moreover, in our setting, it is always finite due
to the following remark.3

Remark 1. In the execution Algorithm 1, every distribution Dℓ, for ℓ ∈ [pR], has the same support.
This must be the case since Line 20 always preserves the support of D1.

On the other hand, the KL divergence is not a proper metric as it is not symmetric and it does not
satisfy the triangle inequality, unlike the max-divergence. This introduces a number of difficulties
in bounding the divergence between D0 and Dr. Overcoming these challenges requires a deeper
and highly novel analysis. Our results reveal that the KL divergence captures particularly well the
behavior of our Boosting algorithm. We remark that we are not the first to relate KL divergence and
Boosting, see e.g. Schapire and Freund [2012, Chapter 8 and the references therein], yet we make
several new contributions to this connection.

To study the probability of obtaining a γ/2-approximation for Dr when sampling from D0, rather
than using advanced composition, we employ the duality formula for variational inference [Donsker
and Varadhan, 1975] —also known as Gibbs variational principle, or Donsker-Varadhan formula—
to estimate such a probability in terms of KL(Dr ∥D0).

2Lemma 4.6 of Lyu et al. [2024].
3We only need P to be absolutely continuous with respect to Q; i.e., that for any event A, we have P (A) = 0

whenever Q(A) = 0. We express our results in terms of identical supports for the sake of simplicity as they
can be readily generalized to only require absolute continuity.
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Lemma 2.4 (Duality formula4). Given finite probability spaces (Ω,F , P ) and (Ω,F , Q), if P and
Q have the same support, then for any real-valued random variable X on (Ω,F , P ) we have that

lnEP

[
eX
]
≥ EQ[X]−KL(Q ∥ P ). (3)

Lemma 2.4 allows us to prove that if KL(Dr ∥ D0) is sufficiently small, then the probability of
obtaining a γ/2-approximation for Dr when sampling from D0 is sufficiently large. Namely, we
prove the following.

Lemma 2.5. There exists universal constant Cn ≥ 1 for which the following holds. Given 0 < γ <
1/2, R,m ∈ N, concept c : X → {−1, 1}, and hypothesis set H ⊆ {−1, 1}X of VC-dimension d,
let D̃ and D be distributions over [m] and G ∈ [m]∗ be the family of γ/2-approximations for D, c,
andH. If D̃ and D have the same support and

KL(D ∥ D̃) ≤ 4γ2R,

then for all n ≥ Cn · d/γ2 it holds that

Pr
T∼D̃n

[T ∈ G] ≥ exp(−16CndR).

Proof sketch. Our argument resembles a proof of the Chernoff bound: After taking exponentials
on both sides of Eq. (3), we exploit the generality of Lemma 2.4 by defining the random variable
X : T 7→ λ1{T∈G} and later carefully choosing λ. We then note that Theorem 2.3 ensures that X
has high expectation for T ∼ Dn. Setting λ to leverage this fact, we obtain a lower bound on the
expectation of X relative to T ∼ D̃n, yielding the thesis.

We defer the detailed proof to Appendix B.1.

With Lemma 2.5 in hand, recall that our general goal is to show that, with high probability, the linear
classifier g produced by Algorithm 1 satisfies that c(x)g(x) = Ω(γ) for all x ∈ S. Standard tech-
niques allow us to further reduce this goal to that of showing that the product of the normalization
factors,

∏pR
ℓ=1 Zℓ, is sufficiently small. Accordingly, in our next lemma, we bound the number of

samples needed in the bagging step to obtain a small product of the normalization factors produced
by the Boosting steps.

Here, the analysis in terms of the KL divergence delivers a clear insight into the problem, revealing
an interesting trichotomy: if KL(Dr ∥D0) is small, Lemma 2.5 yields the result; on the other hand,
if Dr has diverged too far from D0, then either the algorithm has already made enough progress for
us to skip a step, or the negation of some hypothesis used in a previous step has sufficient advantage
relative to the distribution at hand. Formally, we prove the following.

Lemma 2.6. There exists universal constant Cn ≥ 1 such that for all R ∈ N, 0 < δ < 1, 0 <
γ < 1/2, and γ-weak learnerW using a hypothesis setH ⊆ {−1, 1}X with VC-dimension d, if t ≥
R · exp(16CndR) · ln(R/δ), then with probability at least 1− δ the hypotheses hkR+1, . . . ,hkR+R

obtained by Algorithm 1 induce normalization factors ZkR+1, . . . ,ZkR+R such that

R∏
r=1

ZkR+r < exp(−γ2R/2).

Proof sketch. We assume for simplicity that k = 0 and argue by induction on R′ ∈ [R]. After
handling the somewhat intricate stochastic relationships of the problem, we leverage the simple

4Corollary of, e.g., Dembo and Zeitouni [1998, Lemma 6.2.13] or Lee [2022, Theorem 2.1]. Presented here
in a weaker form for the sake of simplicity.
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remark that KL(DR′ ∥DR′) = 0 to reveal the following telescopic decomposition:

KL(DR′ ∥D1) =KL(DR′ ∥D1)−KL(DR′ ∥DR′)

=KL(DR′ ∥D1)−KL(DR′ ∥D2)

+ KL(DR′ ∥D2)−KL(DR′ ∥D3)

+ · · ·
+KL(DR′ ∥DR′−1)−KL(DR′ ∥DR′)

=

R′−1∑
r=1

KL(DR′ ∥Dr)−KL(DR′ ∥Dr+1).

Moreover, given r ∈ {1, . . . , R′ − 1},

KL(DR′ ∥Dr)−KL(DR′ ∥Dr+1) =

m∑
i=1

DR′(i) ln
DR′(i)

Dr(i)
−

m∑
i=1

DR′(i) ln
DR′(i)

Dr+1(i)

=

m∑
i=1

DR′(i) ln
Dr+1(i)

Dr(i)

= − lnZr −
m∑
i=1

DR′(i)αrc(xi)hr(xi).

Altogether, we obtain that

KL(DR′ ∥D1) = − ln

R′−1∏
r=1

Zr +

R′−1∑
r=1

αr

m∑
i=1

DR′(i)c(xi)(−hr(xi)).

Now, if KL(DR′ ∥D1) is small (at most 4γ2R), Lemma 2.5 ensures that with sufficient probability
there exists a γ/2-approximation for DR′ within TR′,1, . . . ,TR′,t/R, yielding the induction step

(by Claim 1). Otherwise, if KL(DR′ ∥ D1) is large, then either (i) the term − ln
∏R′−1

r=1 Zr is
large enough for us to conclude that

∏R′−1
r=1 Zr is already less than exp(−γ2R′/2) and we can skip

the step; or (ii) the term
∑R′−1

r=1 αr

∑m
i=1 DR′(i)c(xi)(−hr(xi)) is sufficiently large to imply the

existence of h∗ ∈ {−h1, . . . ,−hR′−1} satisfying that
m∑
i=1

DR′(i)c(xi)h
∗(xi) > γ,

which implies that such h∗ has margin at least γ with respect to DR′ and we can conclude the
induction step as before.

We defer the detailed proof to Appendix B.2.

3 Overview of the Lower Bound

In this section, we overview of the main ideas behind our improved lower bound. The details are
available in Appendix C. Our lower bound proof is inspired by, and builds upon, that of Lyu et al.
[2024]. Let us first give the high level idea in their proof. Similarly to Karbasi and Larsen [2024],
they consider an input domain X = [2m], where m denotes the number if training samples available
for a weak-to-strong learner A with parallel complexity (p, t). In their construction, they consider
a uniform random concept c : X → {−1, 1} and give a randomized construction of a weak learner.
Proving a lower bound on the expected error of A under this random choice of concept and weak
learner implies, by averaging, the existence of a deterministic choice of concept and weak learner
for which A has at least the same error.

The weak learner is constructed by drawing a random hypothesis set H, using inspiration from the
so-called coin problem. In the coin problem, we observe p independent outcomes of a biased coin
and the goal is to determine the direction of the bias. If a coin has a bias of β, then upon seeing n

8



outcomes of the coin, any algorithm for guessing the bias of the coin is wrong with probability at
least exp(−O(β2n)). Now to connect this to parallel Boosting, Lyu et al. construct H by adding
c as well as p random hypotheses h1, . . . ,hp to H. Each hypothesis hi has each hi(x) chosen
independently with hi(x) = c(x) with probability 1/2 + 2γ. The weak learnerW now processes
a query distribution D by returning the first hypothesis hi with advantage γ under D. If no such
hypothesis exists, it instead returns c. The key observation is that ifW is never forced to return c,
then the only information A has about c(x) for each x not in the training data (which is at least half
of all x, since |X | = 2m), is the outcomes of up to p coin tosses that are 2γ biased towards c(x).
Thus, the expected error becomes exp(−O(γ2p)). For this to be smaller than m−0.01 then requires
p = Ω(γ−2 lnm) as claimed in their lower bound.

The last step of their proof, is then to argue thatW rarely has to return c upon a query. The idea here
is to show that in the ith parallel round,W can use hi to answer all queries, provided that t is small
enough. This is done by observing that for any query distribution D that is independent of hi, the
expected loss satisfies Ehi

[LD(hi)] = 1/2 − 2γ due to the bias. Using inspiration from [Karbasi
and Larsen, 2024], they then show that for sufficiently "well-spread" queries D, the loss of hi under
D is extremely well concentrated around its expectation (over the random choice of hi) and thus hi

may simultaneously answer all (up to) t well-spread queries in round i. To handle "concentrated"
queries, i.e. query distribution with most of the weight on a few x, they also use ideas from [Karbasi
and Larsen, 2024] to argue that if we add 2O(d) uniform random hypotheses to H, then these may
be used to answer all concentrated queries.

Note that the proof crucially uses that hi is independent of the queries in the ith round. Here the key
idea is that ifW can answer all the queries in round i using hi, then hi+1, . . . ,hp are independent
of any queries the weak-to-strong learner makes in round i+ 1.

In our improved lower bound, we observe that the expected error of exp(−O(γ2p)) is much larger
than m−0.01 for small p. That is, the previous proof is in some sense showing something much too
strong when trying to understand the tradeoff between p and t. What this gives us, is that we can
afford to make the coins/hypotheses hi much more biased towards c when p is small. Concretely,
we can let the bias be as large as β = Θ(

√
ln(m)/p), which may be much larger than 2γ. This in

turns gives us that it is significantly more likely that hi may answer an independently chosen query
distribution D. In this way, the same hi may answer a much larger number of queries t, resulting
in a tight tradeoff between the parameters. As a second contribution, we also find a better way of
analyzing this lower bound instance, improving one term in the lower bound on t from exp(Ω(d))
to exp(exp(d)). We refer the reader to the full proof for details.

4 Conclusion

In this paper, we have addressed the parallelization of Boosting algorithms. By establishing both
improved lower bounds and an essentially optimal algorithm, we have effectively closed the gap
between theoretical lower bounds and performance guarantees across the entire tradeoff spectrum
between the number of training rounds and the parallel work per round.

Given that, we believe future work may focus on better understanding the applicability of the theo-
retical tools developed here to other settings since some lemmas obtained seem quite general. They
may aid, for example, in investigating to which extent the post-processing of hypotheses obtained in
the bagging step can improve the complexity of parallel Boosting algorithms, which remains as an
interesting research direction.
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A Auxiliary Results

In this section we state and proof claims utilized in our argument. The arguments behind those are
fairly standard, so they are not explicitly stated in the main text.

Claim 1. Let ℓ ∈ N and 0 < γ < 1/2. If a hypothesis hℓ has advantage γℓ satisfying LDℓ
(hℓ) =

1/2− γℓ ≤ 1/2− γ/2 and αℓ = α, then

Zℓ ≤
√
1− γ2 ≤ e−γ2/2.

Proof. It holds that

Zℓ =

m∑
i=1

Dℓ(i) exp(−αℓc(xi)hℓ(xi))

=
∑

i:hℓ(xi)=c(xi)

Dℓ(i)e
−α +

∑
i:hℓ(xi )̸=c(xi)

Dℓ(i)e
α

=

(
1

2
+ γℓ

)√
1− γ

1 + γ
+

(
1

2
− γℓ

)
·
√

1 + γ

1− γ

=

(
1/2 + γℓ
1 + γ

+
1/2− γℓ
1− γ

)√
(1 + γ)(1− γ)

=

(
1− 2γ · γℓ
1− γ2

)√
1− γ2.

Finally, since γℓ ≥ γ/2 and γ ∈ (0, 1/2), and, thus, 1− γ2 > 0, we have that

1− 2γ · γℓ
1− γ2

≤ 1− γ2

1− γ2
= 1.

Claim 2. Algorithm 1 produces a linear classifier g whose exponential loss satisfies

m∑
i=1

exp

(
−c(xi)

pR∑
j=1

αjhj(xi)

)
= m

pR∏
j=1

Zj .

Proof. It suffices to consider the last distribution DpR+1 produced by the algorithm. It holds that

1 =
m∑
i=1

DpR+1(i) (as DpR+1 is a distribution)

=

m∑
i=1

DpR(i) ·
exp(−αpRc(xi)hpR(xi))

ZpR
(by Line 20)

=

m∑
i=1

D1(i) ·
pR∏
j=1

exp(−αjc(xi)hj(xi))

Zj
(by further unrolling the Djs)

=
1

m
·

m∑
i=1

exp(−c(xi)
∑pR

j=1 αjhj(xi))∏pR
j=1 Zj

. (as D1 is uniform)

B Detailed Proofs

In this section, provide full proofs for the results from Section 2. For convenience, we provide copies
of the statements before each proof.
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B.1 Proof of Lemma 2.5

Lemma 2.5. There exists universal constant Cn ≥ 1 for which the following holds. Given 0 < γ <
1/2, R,m ∈ N, concept c : X → {−1, 1}, and hypothesis set H ⊆ {−1, 1}X of VC-dimension d,
let D̃ and D be distributions over [m] and G ∈ [m]∗ be the family of γ/2-approximations for D, c,
andH. If D̃ and D have the same support and

KL(D ∥ D̃) ≤ 4γ2R,

then for all n ≥ Cn · d/γ2 it holds that

Pr
T∼D̃n

[T ∈ G] ≥ exp(−16CndR).

Proof. Let λ ∈ R>0 (to be chosen later) and X : [m]n → {0, λ} be the random variable given by

X(T ) = λ1{T∈G}.

Since D̃ and D have the same support, so do D̃n and Dn. Thus, taking the exponential of both sides
of Eq. (3), Lemma 2.4 yields that

exp(−KL(Dn ∥ D̃n) + EDn [X]) ≤ ED̃n

[
eX
]
. (4)

We have that

EDn [X] = λ · Pr
T∼Dn

[T ∈ G]. (5)

Moreover,

ED̃n

[
eX
]
= ET∼D̃n

[
eλ · 1{T∈G} + 1{T ̸∈G}

]
= ET∼D̃n

[
eλ · 1{T∈G} + 1− 1{T∈G}

]
= 1 + (eλ − 1)ET∼D̃n

[
1{T∈G}

]
= 1 + (eλ − 1) Pr

T∼D̃n
[T ∈ G]. (6)

Applying Eqs. (5) and (6) to Eq. (4), we obtain that

exp
(
−KL(Dn ∥ D̃n) + λ Pr

T∼Dn
[T ∈ G]

)
≤ 1 + (eλ − 1) Pr

T∼D̃n
[T ∈ G]

and, thus,

Pr
T∼D̃n

[T ∈ G] ≥
exp
[
−KL(Dn ∥ D̃n) + λPrT∼Dn [T ∈ G]

]
− 1

eλ − 1

for any λ > 0. Choosing

λ =
KL(Dn ∥ D̃n) + ln 2

PrT∼Dn [T ∈ G]
,

we obtain that

Pr
T∼D̃n

[T ∈ G] ≥ 1

eλ − 1

≥ e−λ. (7)

Now, by Theorem 2.3 (using δ = 1/2), there exists a constant Cn ≥ 1 such that having

n ≥ Cn ·
d

γ2

ensures that

Pr
T∼Dn

[T ∈ G] ≥ 1

2
.
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Also, since, by hypothesis, KL(D ∥ D̃) ≤ 4γ2R, we have that

KL(Dn ∥ D̃n) = nKL(D ∥ D̃)

≤ 4CndR.

Applying it to Eq. (7), we conclude that

Pr
T∼D̃n

[T ∈ G] ≥ exp

(
−4CndR+ ln 2

1/2

)
≥ exp(−16CndR).

B.2 Proof of Lemma 2.6

Lemma 2.6. There exists universal constant Cn ≥ 1 such that for all R ∈ N, 0 < δ < 1, 0 <
γ < 1/2, and γ-weak learnerW using a hypothesis setH ⊆ {−1, 1}X with VC-dimension d, if t ≥
R · exp(16CndR) · ln(R/δ), then with probability at least 1− δ the hypotheses hkR+1, . . . ,hkR+R

obtained by Algorithm 1 induce normalization factors ZkR+1, . . . ,ZkR+R such that

R∏
r=1

ZkR+r < exp(−γ2R/2).

Proof. Assume, for simplicity, that k = 0.

Letting

ER′ =

{ R′∏
r=1

Zr < exp(−γ2R′/2)

}
,

we will show that for all R′ ∈ [R] it holds that

Pr[ER′ | E1, . . . , ER′−1] ≥ 1− δ/R. (8)

The thesis then follows by noting that

Pr[E1 ∩ · · · ∩ ER] =
R∏

r=1

Pr[Er | E1, . . . , Er−1] (by the chain rule)

≥
(
1− δ

R

)R

(by Eq. (8))

≥ 1−R · δ
R

(by Bernoulli’s inequality)

= 1− δ.

Let GDR′ ⊆ [m]n be the family of γ/2-approximations for DR′ and recall that if T ∈ GDR′ ,
then any h = W(T,Uniform(T )) satisfies LDR′ (h) ≤ 1/2 − γ/2. Therefore, the existence of
TR′,j∗ ∈ GDR′ , for some j∗ ∈ [t/R], implies that hR′,j∗ ∈ HR′ has margin at least γ/2 relative
to DR′ . Hence, Algorithm 1 can select hR′,j∗ at Line 11, setting αR′ = α so that, by Claim 1, we
have that ZR′ ≤ exp(−γ2/2).

Now notice that, by the law of total probability,

Pr
[
ER′

∣∣∣ ∩R′−1
r=1 Er

]
= Pr

[
KL(DR′ ∥D1) ≤ 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
· Pr
[
ER′

∣∣∣ ∩R′−1
r=1 Er, KL(DR′ ∥D1) ≤ 4γ2R

]
+ Pr

[
KL(DR′ ∥D1) > 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
· Pr
[
ER′

∣∣∣ ∩R′−1
r=1 Er, KL(DR′ ∥D1) > 4γ2R

]
.

(9)
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We will show that, conditioned on ∩R
′−1

r=1 Er, if KL(DR′ ∥D1) ≤ 4γ2R, we can leverage Lemma 2.5
to argue that with probability at least 1 − δ/R there exists a γ/2-approximation for DR′ within
TR′,1, . . . ,TR′,t/R, and that ER′ follows. On the other hand, if KL(DR′ ∥D1) > 4γ2R, we shall
prove that ER′ necessarily holds. Under those two claims, Eq. (9) yields that

Pr
[
ER′

∣∣∣ ∩R′−1
r=1 Er

]
≥ Pr

[
KL(DR′ ∥D1) ≤ 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
·
(
1− d

R

)
+ Pr

[
KL(DR′ ∥D1) > 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
· 1

≥ Pr
[
KL(DR′ ∥D1) ≤ 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
·
(
1− d

R

)
+ Pr

[
KL(DR′ ∥D1) > 4γ2R

∣∣∣ ∩R′−1
r=1 Er

]
·
(
1− d

R

)
= 1− δ

R
,

which, as argued, concludes the proof.

To proceed, we ought to consider the relationships between the random variables involved. To do
so, for r ∈ [R] let T r = {Tr,1, . . . ,Tr,t/R}. Notice that Dn

R′ is itself random and determined by
D1, and T 1, . . . ,T R′−1.

For the first part, let D1 and T1, . . . , TR′−1 be realizations of D1 and T 1, . . . ,T R′−1 such that
∩R

′−1
r=1 Er holds and KL(DR′ ∥ D1) ≤ 4γ2R. Notice that if there exists a γ/2-approximation for

DR′ within T R, then we can choose some hR′ ∈HR′ with advantage at least γ/2 so that
R′∏
r=1

Zr = ZR′ ·
R′−1∏
r=1

Zr

< ZR′ · exp(−γ2(R′ − 1)/2) (as we condition on ∩R
′−1

r=1 Er)

≤ exp(−γ2R′/2) (by Claim 1)
and, thus, ER′ follows. That is,

Pr
[
ER′

∣∣∣ ∩R′−1
r=1 Er, KL(DR′ ∥D1) ≤ 4γ2R

]
≥ Pr

TR′,1,...,TR′,t/R
iid∼Dn

1

[
∃j ∈ [t/R],TR′,j ∈ GDR′

]
.

(10)

Finally, since by Remark 1 the distributions DR′ and D1 must have the same support, and we assume
that KL(DR′ ∥D1) ≤ 4γ2R, Lemma 2.5 ensures that

Pr
T∼Dn

1

[T ∈ GDR′ ] ≥ exp(−16CndR).

Therefore,

Pr
TR′,1,...,TR′,t/R

iid∼Dn
1

[
∀j ∈ [t/R],TR′,j /∈ GDR′

]
=

(
Pr

T∼Dn
1

[
T /∈ GDR′

])t/R

(by IIDness)

≤ (1− exp(−16CndR))
t/R

≤ exp

(
− t

R
· exp(−16CndR)

)
≤ δ

R
,

where the second inequality follows since 1+ x ≤ ex for all x ∈ R and the last from the hypothesis
that t ≥ R · exp(16CndR) · ln(R/δ). Considering the complementary event and applying Eq. (10),
we obtain that ER′ holds with probability at least 1− δ/R.

For the second part, consider instead D1 and T1, . . . , TR′−1 realizations of D1 and T 1, . . . ,T R′−1

such that ∩R
′−1

r=1 Er holds and

4γ2R <KL(DR′ ∥D1), (11)
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and argue that ER′ necessarily follows.

Observe that

KL(DR′ ∥D1) =KL(DR′ ∥D1)−KL(DR′ ∥DR′)

=KL(DR′ ∥D1)−KL(DR′ ∥D2)

+ KL(DR′ ∥D2)−KL(DR′ ∥D3)

+ · · ·
+KL(DR′ ∥DR′−1)−KL(DR′ ∥DR′)

=

R′−1∑
r=1

KL(DR′ ∥Dr)−KL(DR′ ∥Dr+1). (12)

Moreover, given r ∈ {1, . . . , R′ − 1},

KL(DR′ ∥Dr)−KL(DR′ ∥Dr+1) =

m∑
i=1

DR′(i) ln
DR′(i)

Dr(i)
−

m∑
i=1

DR′(i) ln
DR′(i)

Dr+1(i)

=

m∑
i=1

DR′(i) ln
Dr+1(i)

Dr(i)

=

m∑
i=1

DR′(i) ln
exp(−αrc(xi)hr(xi))

Zr

= − lnZr −
m∑
i=1

DR′(i)αrc(xi)hr(xi).

Applying it to Eqs. (11) and (12) yields that

4γ2R < KL(DR′ ∥D1) = − ln

R′−1∏
r=1

Zr −
R′−1∑
r=1

αr

m∑
i=1

DR′(i)c(xi)hr(xi).

Thus, either

− ln

R′−1∏
r=1

Zr >
4γ2R

2
, (13)

or

−
R′−1∑
r=1

αr

m∑
i=1

DR′(i)c(xi)hr(xi) >
4γ2R

2
. (14)

We proceed to analyze each case.

If Eq. (13) holds, then
R′−1∏
r=1

Zr < exp(−2γ2R)

≤ exp(−γ2R′/2)

and ER′ follows by noting that ZR′ = 1 regardless of the outcome of Line 11 so
∏R′

r=1 Zr ≤∏R′−1
r=1 Zr.

On the other hand, if Eq. (14) holds, then, lettingR = {r ∈ [R′ − 1] | αr ̸= 0},

2γ2R < −
R′−1∑
r=1

αr

m∑
i=1

DR′(i)c(xi)hr(xi)

= −
∑
r∈R

α

m∑
i=1

DR′(i)c(xi)hr(xi).
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Since |R| ≤ R, we obtain that∑
r∈R

1

|R|

m∑
i=1

DR′(i)c(xi)(−hr(xi)) >
2γ2

α

so that there exists h∗ ∈ {−hr | r ∈ R} such that
m∑
i=1

DR′(i)c(xi)h
∗(xi) >

2γ2

α
. (15)

Moreover, from the definition of α,

α =
1

2
ln

1/2 + γ/2

1/2− γ/2

=
1

2
ln

(
1 +

2γ

1− γ

)
≤ γ

1− γ

< 2γ, (16)

where the last inequality holds for any γ ∈ (0, 1/2). Applying it to Eq. (15) yields that
m∑
i=1

DR′(i)c(xi)h
∗(xi) >

2γ2

2γ

≥ γ,

thus LDR′ (h
∗) < 1/2 − γ/2 and, as before, ER′ follows by Claim 1 and the conditioning on

∩R
′−1

r=1 Er.

B.3 Proof of Theorem 2.1

Theorem 2.1. There exists universal constant Cn ≥ 1 such that for all 0 < γ < 1/2, R ∈ N,
concept c : X → {−1, 1}, and hypothesis setH ⊆ {−1, 1}X of VC-dimension d, Algorithm 1 given
an input training set S ∈ Xm, a γ-weak learnerW ,

p ≥ 4 lnm

γ2R
, and t ≥ e16CndR ·R ln

pR

δ
,

produces a linear classifier g at Line 21 such that with probability at least 1−δ over the randomness
of Algorithm 1, g(x)c(x) ≥ γ/8 for all x ∈ S.

Proof. Let k ∈ {0, 1, . . . , p− 1}. Applying Lemma 2.6 with failure probability δ/p, we obtain that
with probability at least 1− δ/p,

R∏
r=1

ZkR+r < exp(−γ2R/2).

Thus, by the union bound, the probability that this holds for all k ∈ {0, 1, . . . , p−1} is at least 1−δ.

Under this event, we have that
m∑
i=1

exp

(
−c(xi)

pR∑
j=1

αjhj(xi)

)
= m

pR∏
j=1

Zj (by Claim 2)

= m

p−1∏
k=0

R∏
r=1

ZkR+r

≤ m

p−1∏
k=0

exp(−γ2R/2)

= m exp(−γ2pR/2). (17)
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Now, let θ ≥ 0. If c(x)g(x) < θ, then, by the definition of g at Line 21, it must hold that
c(x)

∑pR
j=1 αjhj(x) <

∑pR
j=1 αjθ, thus the difference

∑pR
j=1 αjθ − c(x)

∑pR
j=1 αjhj(x) is strictly

positive. Taking the exponential, we obtain that, for all x ∈ S,

1{c(x)g(x)<θ} ≤ 1

< exp

 pR∑
j=1

αjθ − c(x)

pR∑
j=1

αjhj(x)


≤ exp(pRαθ) exp

−c(x) pR∑
j=1

αjhj(x)

. (as αj ≤ α)

Therefore,

m∑
i=1

1{c(xi)g(xi)<θ} < exp(pRαθ)

m∑
i=1

exp

−c(xi)

pR∑
j=1

αjhj(xi)

.

Applying Eq. (17), we obtain that
m∑
i=1

1{c(xi)g(xi)<θ} < m exp(pRαθ) exp(−γ2pR/2)

= m exp
(
pR(αθ − γ2/2)

)
.

Finally, since 0 ≤ α ≤ 2γ (see Eq. (16)), we have that, for 0 ≤ θ ≤ γ/8,

αθ − γ2/2 ≤ 2γ · γ/8− γ2/2

≤ −γ2/4

and thus
m∑
i=1

1{c(xi)g(xi)<γ/8} < m exp
(
−pRγ2/4

)
≤ m ·m−1 (as p ≥ 4R−1γ−2 lnm)
= 1,

and we can conclude that all points have a margin greater than γ/8.

C Lower Bound

In this section, we prove Theorem 1.2. Theorem 1.2 is a consequence of the following Theorem C.2.
Before we state Theorem C.2 we will: state the assumptions that we make in the lower bound for
a learning algorithm A with parallel complexity (p, t), the definition of a γ-weak learner in this
section and describe the hard instance. For this let c : X → {−1, 1} denote a labelling function.
Furthermore, throughout Appendix C let Csize := Cs ≥ 1, Cbias := Cb ≥ 1 and Closs := Cl ≥ 1
denote the same universal constants.
Assumption C.1. Let Qi with |Qi| ≤ t be the queries made by a learning algorithmA with parallel
complexity (p, t) during the ith round. We assume that a query Qi

j ∈ Qi for i = 1, . . . , p and
j = 1, . . . , t is on the form (Si

j , c(S
i
j),D

i
j), where the elements in Si

j are contained in S, and that
the distribution Di

j has support supp(Di
j) ⊂ {(Si

j)1, . . . , (S
i
j)m}. Furthermore, we assume Q1 only

depends on the given sample S ∈ Xm and the sample labels c(S) where c(S)i = c(Si), and that Qi

for i = 2, . . . , p only depends on the label sample S, c(S) and the previous i − 1 queries and the
responses to these queries.

We now clarify what we mean by a weak learner in this section.
Definition 2. A γ-weak learner W acting on a hypothesis set H, takes as input (S, c(S), D),
where S ∈ X ∗ = ∪∞i=1X i, c(S)i = c(Si) and supp(D) ⊆ {S1, S2 . . .}. The output of
h =W(H)(S, c(S), D) is such that

∑
i D(i)1{h(i) ̸= c(i)} ≤ 1/2− γ.
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We now define the hard instance which is the same construction as used in Lyu et al. [2024](which
found inspiration in Karbasi and Larsen [2024]). For d ∈ N, samples size m, and 0 < γ < 1

4Cb
we

consider the following hard instance

1. The universe X we take to be [2m].
2. The distribution D we will use on [2m] will be the uniform distribution U over [2m].
3. The random concept c that we are going to use is the uniform random concept {−1, 1}2m, i.e.

all the labels of c are i.i.d. and Prc[c(i) = 1] = 1/2 for i = 1, . . . ,m.
4. The random hypothesis set will depend on the number of parallel rounds p, a scalar R ∈ N, and

the random concept c, thus we will denote it Hp,c,R. We will see Hp,c,R as a matrix where the
rows are the hypothesis so vectors of length 2m, where the ith entry specifies the prediction the
hypothesis makes on element i ∈ [2m]. To define Hp,c,R we first define two random matrices
Hu and Hc. Hu is a random matrix consisting of R ⌈exp (Csd)⌉ rows, where the rows in Hu are
i.i.d. with distribution r ∼ {−1, 1}2m (r has i.i.d. entries Prr∼{−1,1}2m [r(1) = 1] = 1/2). Hc is
a random matrix with R rows, where the rows in Hc are i.i.d.ẇith distribution b ∼ {−1, 1}2mCb

,
meaning the entries of b are independent and has distribution Prb∼{−1,1}2m

Cb

[b(i) ̸= c(i)] =

1/2−Cbγ (so Cbγ biased towards the sign of c). We now let H1
u,H

1
c, . . . ,H

p
u,H

p
c denote i.i.d.

copies of respectively Hu and Hc, and set Hp,c,R to be these i.i.d. copies stack on top of each
other and Hp,c,R ∪ c to be the random matrix which first rows are Hp,c,R and its last row is c,

Hp,c,R =


H1

u

H1
c

...
Hp

u
Hp

c

 Hp,c,R ∪ c =

[
Hp,c,R

c

]
.

5. The algorithmW which given matrix/hypothesis set M ∈ Rℓ×R2m (where Mi,· denotes the ith
row of M ) is the following algorithmW(M).

Algorithm 2:W(M)

Input : Triple (S, c(S), D) where S ∈ [2m]∗, c(S)i = c(Si) and probability distribution
D with supp(D) ⊂ {S1, S2, . . . , }.

Output: Hypothesis h = Mi,· for some i = 1, . . . , ℓ such that:∑
i D(i)1{h(i) ̸= c(i)} ≤ 1/2− γ.

1 for i ∈ [ℓ] do
2 if

∑
j D(j)1{Mi,j ̸= c(j)} ≤ 1/2− γ // Notice that W doesn’t know c but

can calculate this quantity using the information in (S, c(S), D)
which is given as input.

3 then
4 return Mi,·.
5 return M1,·.

We notice that with this construction, we have that |Hp,c,R| ≤ R ⌈exp (Csd)⌉+Rp andW(Hp,c,R∪
c) a weak learner since it either finds a row in Hp,c,R with error less than 1/2 − γ for a query or
outputs c which has 0 error for any query - this follows by the Assumption C.1 that the learning
algorithm given (S, c(S)) make queries which is consistent with c.

With these definitions and notation in place, we now state Theorem C.2, which Theorem 1.2 is a
consequence of.
Theorem C.2. For d ∈ N, m ∈ N, margin 0 < γ < 1

4Cb
, R, p, t ∈ N, universe [2m], U the

uniform distribution on [2m], and c the uniform concept on [2m] any learning algorithm A with
parallel complexity (p, t), given labelled training set (S, c(S)), where S ∼ Um, and query access
toW(Hp,c,R ∪ c) we have that

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))]

≥ exp(−ClC
2
b γ

2Rp)

4Cl

(
1− exp

(
−m exp(−ClC

2
b γ

2Rp)

8Cl

)
− pt exp (−Rd)

)
,
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We now restate and give the proof of Theorem 1.2.
Theorem 1.2. There is a universal constant C ≥ 1 for which the following holds. For any 0 <
γ < 1/C, any d ≥ C, any sample size m ≥ C, and any weak-to-strong learner A with parallel
complexity (p, t), there exists an input domain X , a distribution D, a concept c : X → {−1, 1}, and
a γ-weak learnerW for c using a hypothesis setH of VC-dimension d such that if the expected loss
of A over the sample is no more than m−0.01, then either p ≥ min{exp(Ω(d)),Ω(γ−2 lnm)}, or
t ≥ exp(exp(Ω(d))), or p ln t = Ω(γ−2d lnm).

Proof of Theorem 1.2. Fix d ≥ 1, sample size m ≥ (e80Cl)
100, margin 0 < γ ≤ 1

4Cb
, p such

that p ≤ min

{
exp(d/8),

ln(m0.01/(80Cl))
2ClC2

bγ
2

}
, t ≤ exp(exp(d)/8) and p ln(t) ≤ d ln(m0.01/(80Cl))

8ClC2
bγ

2 .

We now want to invoke Theorem C.2 with different values of R depending on the value of p. We
consider 2 cases. Firstly, the case

ln
(
m0.01/(80Cl)

)
2ClC2

b γ
2 ⌊exp(d)⌋

≤ p ≤
ln
(
m0.01/(80Cl)

)
2ClC2

b γ
2

.

In this case one can choose R ∈ N such that 1 < R ≤ ⌊exp(d)⌋ and

ln(m0.01/(80Cl))
2ClC2

bγ
2R

≤ p ≤ ln(m0.01/(80Cl))
2ClC2

bγ
2(R−1)

.

Let now R be such. We now invoke Theorem C.2 with the above parameters and get

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))] (18)

≥ exp(−ClC
2
b γ

2Rp)

4Cl

(
1− exp

(
−m exp(−ClC

2
b γ

2Rp)

8Cl

)
− pt exp (−Rd)

)
,

We now bound the individual terms on the right-hand side of Eq. (18). First by p ≤
ln(m0.01/(80Cl))
2ClC2

bγ
2(R−1)

≤ ln(m0.01/(80Cl))
ClC2

bγ
2R

we get that exp(−ClC
2
bγ

2Rp)
4Cl

≥ 20m−0.01 which further im-

plies exp
(
−m exp(−ClC

2
bγ

2Rp)
8Cl

)
≤ exp(−10m0.99) ≤ e−10. We further notice that for R as above

we have that p ln(exp(Rd/4)) ≥ d ln(m0.01/(80Cl))
8ClC2

bγ
2 . This implies that t ≤ exp(Rd/4), since else we

would have t > exp(Rd/4) and p ln(t) > p exp(Rd/4) ≥ d ln(m0.01/(80Cl))
8ClC2

bγ
2 which is a contradic-

tion with our assumption that p ln(t) ≤ d ln(m0.01/(80Cl))
8ClC2

bγ
2 . Since we also assumed that p ≤ exp(d/8)

we have that pt ≤ exp(d/8 + Rd/4·). Combining this with R > 1 and d ≥ 1 we have that
pt exp (Rd) ≤ exp (Rd/2) ≥ e−1. Combining the above observations we get that the right-hand
side of Eq. (18) is at least

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))] ≥ 20m−0.01

(
1− e−10 − e−1

)
≥ m−0.01.

Now in the case that

p <
ln
(
m0.01/(80Cl)

)
2ClC2

b γ
2 ⌊exp(d)⌋

, (19)

we choose R = ⌊exp(d)⌋. Invoking Theorem C.2 again give use the expression in Eq. (18)
(with the parameter R = ⌊exp(d)⌋ now) and we again proceed to lower bound the right-hand
side of Eq. (18). First we observe that by the upper bound on p in Eq. (19), R = ⌊exp(d)⌋ and

exp(−x/2) ≥ exp (−x) for x ≥ 1 we get that exp(−ClC
2
bγ

2Rp)
4Cl

≥ exp(− ln(m0.01/(80Cl))/2)
4Cl

≥
20m−0.01, which further implies that exp

(
−m exp(−ClC

2
bγ

2Rp)
8Cl

)
≤ e−10. Now since ⌊x⌋ ≥ x/2

for x ≥ 1, R = ⌊exp(d)⌊ and we assumed that t ≤ exp(exp(d)/8) and p ≤ exp(d/8) we get that
pt exp(−Rd) ≤ exp (exp(d)/8 + d/8− d exp(d)/2) ≤ exp (−d exp(d)/4) ≤ e−e/4. Combining
the above observations we get that the right-hand side of Eq. (18) is at least

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))] ≥ 20m−0.01

(
1− e−10 − e−e/4

)
≥ m−0.01.
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Thus, for any of the above parameters d,m, γ, p, t in the specified parameter ranges, we have that
the expected loss of A over S, c,Hp,c,R is at least m−0.01, so there exists concept c and hypothesis
H such that the expected loss of A over S is at least m−0.01. Furthermore, if A were a random
algorithm Yao’s minimax principle would give the same lower bound for the expected loss over A
and S as the above bound holds for any deterministic A.

Now as remarked on before the proof the size of the hypothesis set Hp,c,R is at most |Hp,c,R| ≤
R ⌈exp (Csd)⌉ + Rp, see Item 4. Combining this with us in the above arguments having p ≤
exp(d/8), R ≤ exp(d) we conclude that |H ∪ c| ≤ exp(C̃d/2) for C̃ large enough. Thus,
we get at bound of log2(|H ∪ c|) ≤ log2(exp(C̃d/2)) ≤ C̃d which is also an upper bound of
the VC-dimension of H ∪ c. Now redoing the above arguments with d scaled by 1/C̃ we get
that the VC-dimension of H ∪ c is upper bounded by d and the same expected loss of m−0.01.
The constraints given in the start of the proof with this rescaling of d is now d ≥ C̃, m ≥
(e80Cl)

100, 0 < γ ≤ 1
4Cb

, p ≤ min
{
exp(d/(8C̃)), ln (m0.01/(80Cl))

2ClC2
bγ

2

}
, t ≤ exp (exp (d/C̃)/8) and

p ln(t) ≤ d ln(m0.01/(80Cl))
8C̃ClC2

bγ
2

. Thus, with the universal constant C = max
{
(e80Cl)

100, 4Cb, C̃
}

and m, d ≥ C and γ ≤ 1/C we have that the expected loss is at least m−0.01 when p ≤
min

{
exp(O(d)), O(ln (m)/γ2)

}
, t ≤ exp (exp (O(d))) and p ln(t) ≤ O(d ln (m)/γ2) which con-

cludes the proof.

We now move on to prove Theorem C.2. For this, we now introduce what we will call the extension
of A which still terminates if it receives a hypothesis with loss more than 1/2− γ. We further show
two results about this extension one which says that with high probability we can replace A with
its extension and another saying that with high probability the loss of the extension is large, which
combined will give us Theorem C.2.

6. The output of the extension BA of A on input (S, c(S),W) is given through the outcome of
recursive query sets Q1, . . ., where each of the sets contains t queries. The recursion is given in
the following way: Make Q1 toW as A would have done on input (S, c(S), ·) (this is possible
by Assumption C.1 which say Q1 is a function of only (S, c(S))). For i = 1, . . . , p such that
for all j = 1, . . . , t it is the case that W(Qi−1

j ) has loss less than 1/2 − γ under Di−1
j let Qi

be the query set Q that A would have made after having made query sets Q1, . . . , Qi−1 and
received hypothesis {W(Ql

j)}(l,j)∈[i−1]×[t]. If this loop ends output the hypothesis thatA would
have made with responses {W(Ql

j)}(l,j)∈[i]×[t] to its queries. If there is an l, j such thatW(Ql
j)

return a hypothesis with loss larger than 1/2− γ return the all 1 hypothesis.

We now go to the two results we need in the proof of Theorem C.2. The first result Corollary 1 says
that there exists an event E which happens with high probability over Hp,c,R such that A run with
W(Hp,c,R, c) is the same as BA run withW(Hp,c,R). This corollary can be proved by following
the proofs of Theorem 5 and 8 in Lyu et al. [2024] and is thus not included here.
Corollary 1. For d ∈ N, m ∈ N, margin 0 < γ < 1

4Cb
, labelling function c : [2m] → {−1, 1},

R, p, t ∈ N, random matrix Hp,c,R, learning algorithm A, BA, training sample S ∈ [2m]m, we
have that there exist and event E over outcomes of Hp,c,R such that

A(S, c(S),W(Hp,c,R ∪ c))1E = BA(S, c(S),W(Hp,c,R))1E

and

Pr
Hp,c,R

[E] ≥ 1− pt exp (−Rd) .

The second result that we are going to need is Lemma C.3 which relates parameters R, β, p to the
success of any function of (S, c(S),Hp,c,R) which tries to guess the signs of c — which is the
number of failures in our hard instance. For a training sample S ∈ [2m]∗ we will use |S| to denote
the number of distinct elements in S from [2m], so for S ∈ [2m]m we have |S| ≤ m.
Lemma C.3. There exists universal constant Cs, Cl ≥ 1 such that: For m ∈ N, p ∈ N, Hp,β,c,R,
function B that takes as input S ∈ [2m]m with labels c(S), and hypothesis set Hp,β,c,R, we have
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that

Pr
c,Hp,c,R

[
2m∑
i=1

1{B(S, c(S),Hp,c,R)(i) ̸= c(i)} ≥ (2m− |S|) exp(−ClC
2
b γ

2Rp)

2Cl

]

≥ 1− exp

(
− (2m− |S|) exp(−ClC

2
b γ

2Rp)

8Cl

)
.

We postpone the proof of Lemma C.3 and now give the proof of Theorem C.2.

Proof of Theorem C.2. We want to lower bound ES,c,H[Lc
U (A(S,W(H ∪ c)))]. To this end since

S and c are independent and Hp,c,R depended on c the expected loss can be written as

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))]

=ES

[
Ec

[
EHp,c,R [Lc

U (A(S, c(S),W(Hp,c,R ∪ c)))]
]]
.

Now let S ∈ [2m]m, c be any outcome of S and c. Then for these S, c we have by Lemma C.3 that
there exists some event E over Hp,c,R such that

Lc
U (A(S, c(S),W(Hp,c,R, c)))1E = Lc

U (BA(S, c(S),W(Hp,c,R)))1E ,

and

Pr
Hp,c,R

[E] ≥ 1− pt exp (−Rd) ,

furthermore, define E′ be the event that

E′ =

{
2m∑
i=1

1{BA(S, c(S),W(Hp,c,R))(i) ̸= c(i)} ≥ (2m− |S|) exp(−ClC
2
b γ

2Rp)

2Cl

}
.

Using the above and U being the uniform measure on [2m] so assigns 1/(2m) mass to every point
and that |S| ≤ m we now get that,

EHp,c,R
[Lc

U (A(S, c(S),W(Hp,c,R, c)))] ≥ EHp,c,R
[Lc

U (A(S, c(S),W(Hp,c,R, c)))1E1E′ ]

=EHp,c,R
[Lc

U (BA(S, c(S),W(Hp,c,R)))1E1E′ ] ≥ (2m− |S|) exp(−ClC
2
b γ

2Rp)

4Clm
EHp,c,R

[1E1E′ ]

≥exp(−ClC
2
b γ

2Rp)

4Cl

(
1− Pr

Hp,c,R

[E′]− pt exp (−Rd)

)
.

We can do this for any pair c and S ∈ [2m]m, so we have that

Ec

[
EHp,c,R [Lc

U (A(S, c(S),W(Hp,c,R ∪ c)))]
]

≥exp(−ClC
2
b γ

2Rp)

4Cl

(
1− Pr

c,Hp,c,R

[E′]− pt exp (−Rd)

)
.

Now by Lemma C.3 and |S| ≤ m we have that Prc,Hp,c,R

[
E′
]

is at most

Pr
c,Hp,c,R

[
E′
]
≤ exp

(
− (2m− |S|) exp(−ClC

2
b γ

2Rp)

8Cl

)
≤ exp

(
−m exp(−ClC

2
b γ

2Rp)

8Cl

)
.

I.e. we have shown that

Ec

[
EHp,c,R [Lc

U (A(S, c(S),W(Hp,c,R ∪ c)))]
]

≥exp(−ClC
2
b γ

2Rp)

4Cl

(
1− exp

(
−m exp(−ClC

2
b γ

2Rp)

8Cl

)
− pt exp (−Rd)

)
,

for any S ∈ [2m]m. Now by taking expectation over S ∼ Um we get that

ES,c,H[Lc
U (A(S, c(S),W(Hp,c,R ∪ c)))]

≥ exp(−ClC
2
b γ

2Rp)

4Cl

(
1− exp

(
−m exp(−ClC

2
b γ

2Rp)

8Cl

)
− pt exp (−Rd)

)
,

which concludes the proof.
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We now prove Lemma C.3 which is a consequence of maximum-likelihood, and the following
Fact 1, where Fact 1 gives a lower bound on how well one from n trials of a biased {−1, 1} random
variable, where the direction of the bias itself is random, can guess this random direction of the bias.
Fact 1. For function f : {−1, 1}n → {−1, 1} and 0 < γ ≤ 1

4Cb

Ec∼{−1,1}[Eb∼{−1,1}n
Cb
[1{f(b) ̸= c}]] ≥ exp(−ClC

2
b γ

2n)/Cl.

Proof. This is the classic coin problem. The lower bound follows by first observing, by maximum-
likelihood, that the function f⋆ minimizing the above error is the majority function. The result then
follows by tightness of the Chernoff bound up to constant factors in the exponent.

With Fact 1 in place we are now ready to proof Lemma C.3, which we restate before the proof

Proof of Lemma C.3. Let HCb
be the matrix consisting of the i.i.d Cbγ biased matrices in Hp,c,R,

Hc
1, . . . ,Hc

p stack on top of each other,

HCb
=

H
1
c

...
Hp

c

 .

Furthermore, for i = 1, . . . , 2m let HCb,i denote the ith column of HCb
which is a vector of length

pR. Now for i inside S, B has the sign of c(i), so the best function that B can be is to be equal
to c(i). For i outside S, B does not know c(i) from the input but has information about it through
HCb,i, we notice that the sign’s of the hypotheses in H1

u, . . . ,H
p
u and HCb,j j ̸= i and c(S) is

independent of c(i) and does not hold information about c(i), thus the best possible answer any B
can make is to choose the sign which is the majority of the sign’s in HCb,i - the maximum likelihood
estimator. We now assume that B is this above-described "best" function - as this function will be
a lower bound for the probability of failures for any other B, so it suffices to show the lower bound
for this B. Now with the above described B, we have that

X :=

2m∑
i=1

1{B(S, c(S),Hp,c,R)(i) ̸= c(i)} =
∑
i ̸∈S

1{sign

 pR∑
j=1

HCb i,j

 ̸= c(i)}.

Thus, we have that X is a sum of 2m − |S| (where |S| is the number of distinct elements in S)
independent {0, 1}-random variables and by Fact 1 we have that the expectation of each these ran-
dom variables is at least Ec,Hp,c,R [X] ≥ (2m − |S|) exp(−ClC

2
b γ

2Rp)/Cl. Thus, we now get by
Chernoff that

Pr
c,Hp,c,R

[
X ≥ (2m− |S|) exp(−ClC

2
b γ

2Rp)

2Cl

]
≥ Pr

c,Hp,c,R

[X ≥ E[X]/2]

≥ 1− exp(−E[X]/8) ≥ 1− exp

(
− (2m− |S|) exp(−ClC

2
b γ

2Rp)

8Cl

)
,

as claimed.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The theoretical claims in the introduction and abstract exactly match what we
prove in the paper and claim as the scope and contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [NA]
Justification: The paper is theoretical, so given the assumptions of the claims, there are no
limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: The main paper includes a proof sketch for both the upper and lower bound.
Parts of the formal proofs of the upper bound and lower bound are in the main text and the
remaining are in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?
Answer: [NA]
Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [NA]
Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We see no violations of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The result of the paper is theoretical/foundational research, so we have no
experiments, data or code in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.

27

https://neurips.cc/public/EthicsGuidelines


• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the
paper.

Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
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