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Abstract
Large Language Models (LLMs) are essential001
to many AI applications, while adaptations like002
model pruning and task-specific fine-tuning can003
unintentionally cause safety risks by altering004
weight configurations. Previous efforts to im-005
prove safety have focused primarily on fine-006
tuning or RLHF to realign model behavior with007
ethical standards. However, these methods of-008
ten demand significant resources, making them009
challenging to implement in scalable environ-010
ments. In this paper, we introduce SafeAdapt,011
an efficient approach aimed at preserving safety012
alignment by identifying and safeguarding cru-013
cial safety-related weights within models. To014
achieve this, we propose a saliency criterion015
that evaluates how weight perturbations influ-016
ence safety-aligned responses and quantifies017
the sensitivity of each weight to this safety.018
Based on this, we develop weight preservation019
strategies to preserve the most crucial weights020
during model fine-tuning and pruning, ensuring021
the continued safety of the model. The effec-022
tiveness of SafeAdaptis validated through ex-023
tensive experiments on widely adopted models024
such as Llama, Qwen, and Gemma, demon-025
strating its capability to identify safety-related026
weights and effectiveness in maintaining the027
safety of fine-tuned or pruned models.028

1 Introduction029

Large Language Models (LLMs), such as Meta’s030

Llama (Touvron et al., 2023) and OpenAI’s GPT031

(OpenAI et al., 2024), are increasingly pivotal in032

powering a broad spectrum of AI applications. To033

maintain their effectiveness and efficiency across034

diverse and complex scenarios, these models typi-035

cally undergo model adaptation for specific tasks.036

For instance, service providers may perform task-037

specific fine-tuning using private data to optimize038

models for particular domains. Additionally, in039

resource-constrained environments, these model040

weights might be pruned to reduce computational041

demands and enhance inference speeds.042

While these adaptation approaches are crucial 043

for enhancing both the performance and efficiency 044

of the models, they unintentionally compromise the 045

models’ integrity and safety (Qi et al., 2023; Hong 046

et al., 2024; Touvron et al., 2023). As (Qi et al., 047

2023) suggests, even benign fine-tuning can inad- 048

vertently introduce biases or reduce a model’s abil- 049

ity to handle sensitive content safely. For instance, 050

fine-tuning GPT-3.5-Turbo (OpenAI et al., 2024) 051

on a benign dataset results in a 26.3% increase in 052

its harmfulness rate. To ensure safety in adapted 053

models, one approach is to retrain the model with 054

a focus on safety alignment. However, this method 055

can be resource-intensive. These concerns raise a 056

critical question: How can we maintain model’s 057

performance without sacrificing safety alignment, 058

which is essential to trustworthy AI? 059

We observe that aligned LLMs often exhibit 060

consistent behaviors when encountering malicious 061

queries, typically starting responses with phrases 062

such as "I am sorry...". In contrast, these mod- 063

els respond appropriately to normal queries. This 064

observation leads us to hypothesize that certain spe- 065

cific weights are uniquely activated in response to 066

malicious inputs. These weights, known as safety- 067

related weights, are crucial for ensuring the model 068

can respond safely to harmful queries. Identify- 069

ing and preserving these weights is essential to 070

safeguard the model’s safety capabilities, as they 071

are responsible for detecting malicious input and 072

generating appropriate responses. 073

However, existing approaches, such as those in 074

(Han et al., 2015a; Lee et al., 2019; Chen et al., 075

2020; Sun et al., 2024), focus on identifying impor- 076

tant weight regions but fail to adequately prioritize 077

safety. These methods fail to properly account for 078

weights that are crucial for safety alignment. This 079

limitation arises not just from the datasets being 080

insufficiently aligned with safety objectives, but 081

more fundamentally from the fact that these meth- 082

ods were not designed with the goal of prioritizing 083
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safety over utility.084

In this paper, we introduce SafeAdapt, a sensi-085

tivity analysis method designed to identify safety-086

critical weights by examining the model’s output087

changes under small perturbations to its weights.088

This approach helps to uncover which weights play089

a decisive role in generating safe responses from090

the model. Specifically, we propose three perturba-091

tion strategies: Unit Perturbation, Weight-Scaled092

Perturbation, and Loss-Gradient Scaled Perturba-093

tion. Each strategy offers a different way to perturb094

the model’s weights, allowing us to assess the rel-095

ative importance of each weight in the context of096

safety.097

After identifying safety-related weights, we pro-098

pose strategies to further leverage these safety-099

related weights to maintain alignment in two typ-100

ical model adaption scenarios: Safe Pruning and101

Safe Fine-tuning. For model pruning, we recom-102

mend ensuring that critical safety-related weights103

are preserved to prevent unintentional removal. Ad-104

ditionally, to mitigate safety performance degra-105

dation caused by fine-tuning, we introduce a post-106

adaptation restoration strategy that restores safety-107

related weights from the original model. This ap-108

proach allows a model to adapt to specific tasks109

without significantly compromising safety.110

We conduct extensive experiments on the widely111

used Llama (Touvron et al., 2023), Qwen (Bai112

et al., 2023), and Gemma (Team, 2024). Our113

results show that SafeAdapt can effectively iden-114

tify critical safety-related weights and successfully115

protect the safety of both fine-tuned and pruned116

models. Specifically, by restoring just 10% of117

safety-related weights, SafeAdaptcan significantly118

reduce the attack success rate on a fine-tuned model119

from 69.33% to 13.03%. Similarly, for a pruned120

Llama model with 35.59% of weights removed,121

SafeAdaptcan reduce its attack success rate from122

45.45% to 13.94%.123

In summary, we make the following contribu-124

tions:125

• We propose SafeAdapt, a novel approach126

that assesses model weights using sensitivity127

scores to identify safety-related weights, en-128

suring that these crucial weights are preserved129

after model adaptations.130

• We design weight preservation strategies131

that utilize safety-related weights, enhancing132

safety alignment during essential tasks such133

as model fine-tuning and pruning.134

• Our results provide robust evidence of 135

SafeAdapt’s effectiveness in identifying and 136

protecting critical safety-related weights, en- 137

suring the maintenance of safety alignment 138

across common model adaptation tasks. 139

2 Related Work 140

2.1 Alignment 141

Alignment aims to ensure that a model’s behav- 142

ior is consistent with human values and inten- 143

tions (Hubinger et al., 2021; Hendrycks et al., 144

2023). For instance, aligned LLMs are equipped 145

with safety guardrails and can reject harmful in- 146

structions. The most common approaches to 147

model alignment typically involve Supervised Fine- 148

Tuning (SFT) (Ouyang et al., 2022; Wei et al., 149

2022) and Reinforcement Learning from Human 150

Feedback (RLHF) (Touvron et al., 2023; Bai et al., 151

2022). During the alignment stage, practitioners 152

would employ SFT or RLHF to enforce the lan- 153

guage models to be Helpful, Harmless, and Honest 154

(the HHH principle) (Askell et al., 2021). 155

However, the alignment of the model is frag- 156

ile (Wei et al., 2024; Yi et al., 2024), and even 157

minimal adjustments to the model’s weights can 158

disrupt its safety mechanisms. This is illustrated 159

by models that, after pruning or task-specific fine- 160

tuning, begin to respond to malicious queries that 161

they would have previously rejected (Hong et al., 162

2024; Qi et al., 2023). This phenomenon may stem 163

from the intricate interplay between model weights 164

and their ability to discern harmful inputs, where 165

subtle modifications can disrupt the model’s safety 166

mechanisms. 167

2.2 Identification of Critical Weights 168

Identifying critical weights within a model is 169

paramount for optimizing both its performance, es- 170

pecially when employing pruning strategies. Prun- 171

ing aims to reduce a model’s size by removing 172

weights deemed less important, and in this con- 173

text, it becomes essential to accurately distinguish 174

between critical and non-critical weights (Han 175

et al., 2015b; Wen et al., 2016). Magnitude-based 176

pruning (Han et al., 2015a), which focuses on re- 177

taining weights with the highest absolute values. 178

More sophisticated methods, such as SNIP (Lee 179

et al., 2019), take a deeper approach by considering 180

weight magnitudes alongside activations or gradi- 181

ents, thereby assessing the influence of removing 182

individual weights on Loss Function. Wanda (Sun 183
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Figure 1: Overview of SafeAdapt. This figure involves
calculating the contribution score of each weight with
a calibration dataset, focusing on identifying safety-
related weights.

et al., 2024), on the other hand, improves upon this184

by incorporating the interaction between weights185

and input activations, pruning weights that exhibit186

the smallest product of magnitude and activation.187

3 Identify Critical Weights for Safety188

Behavior189

For example, a harmful question like "How to steal190

a purse?" The corresponding response from the191

LLM can be classified as one of the following:192

• Safe Response ysafe: The model refuses to193

answer the question (e.g., "I’m sorry, I can’t194

provide that information.”)”195

• Unsafe Response yunsafe: A full response that196

may include sensitive or harmful information197

(e.g., "There are some steps: Step 1...")198

These contrasting responses highlight the199

model’s internal decision-making pathways. A200

safe response indicates that the model has suc-201

cessfully recognized harmful intent and effectively202

avoided generating unsafe content. Identifying203

which weights are crucial for triggering such safe204

responses is essential. We propose SafeAdapt (as205

shown in Figure 1), a novel approach that assesses206

model weights using sensitivity scores to identify207

safety-related weights. The dataset D used consists208

of malicious questions and safe responses, which209

are employed to generate gradients.210

3.1 Sensitivity Score211

Motivation In the exploration of neural network212

dynamics, the strategic application of perturbations213

across diverse magnitudes and directions serves as 214

a pivotal technique for probing the stability and ro- 215

bustness of learned representations. This approach 216

allows us to dissect the complex interdependencies 217

among weights and their collective impact on the 218

model’s ability to discern and react to both benign 219

and malicious inputs. By quantifying the effects 220

of weight perturbations on output changes, we can 221

systematically assess the sensitivity of each weight 222

to maintain safe responses. 223

Consider a neural network modeled by the out- 224

put function ŷ = f(w, x), where L
(
ŷ, y

)
is the 225

loss function of the model. Here, w represents the 226

model’s weights, x is the input, and y is the label. 227

We define the change in the output ∆y as follows: 228

∆y = f(w +∆w, x)− f(w, x) (1) 229

where ∆w represents a small perturbation to the 230

model’s weights. 231

When the input x is a harmful query, ∆y quan- 232

tifies how much the model’s output changes in re- 233

sponse to a perturbation in the weights. Specifi- 234

cally, the larger the magnitude of ∆y in response 235

to unsafe content, the more sensitive the model is 236

to the perturbation of those weights, suggesting 237

that these weights are crucial for controlling the 238

model’s behavior in unsafe contexts. 239

Theoretical Proof To approximate ∆y, we use a 240

Taylor polynomial expansion. The expansion for a 241

function g(x) at point x = a is 242

g(x) =

p∑
p=0

g(p)(a)

p!
(x− a)p +Rp(x) (2) 243

where g(p)(a) is the p-th derivative of g evaluated 244

at point a, and Rp(x) is the p-th order reminder. 245

Approximating f(w +∆w, x) with a first-order 246

Taylor polynomial near (w +∆w), we have 247

f(w +∆w, x) = f(w, x) +
∑
j

(
∂f

∂wj
∆wj

)
+R1(w +∆w)

(3)

248

The remainder R1(w +∆w) can be calculated 249

through the Lagrange from: 250

R1(w +∆w) =
1

2

∑
i,j

∂2f

∂wi∂wj
(ξ)∆wi∆wj

(4)
251

3



-1

8

6

5

7

3

-5

7

6

-3

9

8

0
8
6

0

0
3
0

0

6
0
0

8

Standard

Prune

Safe

Prune

Safe

Fine-tuneAligned LLM

Standard

Fine-tune

5
9
2
-1

6
4
-5
3

4
0
7
9

Pruned LLM

Fine-tuned LLM

0
8
6

0

7
3
-5

0

6
0
0

8

5
8
2
-1

7
4
-5
3

4
0
7
8

Pruned LLM

Fine-tuned LLM

Safety-Related Weight Pruned Weight  Fine-tuned Weight

Figure 2: Overview of Adaptation Strategy.

where ξ is a real number between 0 and w +∆w.252

However, we neglect this first-order remainder,253

largely due to the significant calculation required254

for LLM.255

Finally, by substituting Eq. 3 into Eq. 1 and256

ignoring the remainder, we have257

|∆y| = |f(w, x) +
∑
j

(
∂f

∂wj
∆wj

)
− f(w, x)|

= |
∑
j

(
∂f

∂wj
∆wj

)
|

(5)

258

For every weight in the neuron, the attribution to259

the change |∆y| can be defined as:260

S(wj) = | ∂f
∂wj

∆wj | (6)261

The quantity S(wj), known as the sensitivity score,262

quantifies the impact of each weight on the model’s263

output when perturbed. This score is crucial for264

identifying weights that are particularly influential265

in determining the model’s behavior, enabling tar-266

geted adjustments to enhance model robustness and267

safety.268

3.2 Perturbation Strategy269

We now turn to the practical question: How do270

we decide the direction and magnitude of perturba-271

tions applied to each weight? Below, we outline272

three strategies and discuss their relative merits in273

identifying critical weights for safe behavior.274

Unit Perturbation For a simple measure of the275

effect of small perturbations, setting ∆wj = 1 is276

straightforward, the sensitivity score becomes:277

SU(wj) =
∂f

∂wj
(7)278

However, since the perturbation is the same for 279

all weights, it may lead to inconsistent effects: 280

For large weights, the perturbation might be too 281

small to have a significant impact, while for small 282

weights, the perturbation could be disproportion- 283

ately large. For example, consider two weights, 284

w1 = 100 and w2 = 0.1. If the same perturba- 285

tion, say 1, is applied to both, their effects on the 286

model will differ significantly. This limits the abil- 287

ity to accurately assess the relative importance of 288

each weight, particularly when there is a signifi- 289

cant disparity in their magnitudes, leading to an 290

imbalanced impact on the model’s behavior. 291

Weight-Scaled Perturbation Alternatively, the 292

perturbation is proportional to the value of the cur- 293

rent weight wj , i.e., ∆wj = βwj , β ∈ (0, 1], re- 294

sulting in the output function change given by: 295

SW(wj) = βwj
∂f

∂wj
(8) 296

By scaling the perturbation with the weight 297

value, larger weights receive stronger perturba- 298

tions, while smaller weights experience weaker 299

ones. This approach allows for observing the rel- 300

ative influence of different weights, providing in- 301

sight into their impact beyond mere absolute effect. 302

However, although this method effectively consid- 303

ers the relative size of the weights, it fails to fully 304

account for how each weight’s sensitivity specifi- 305

cally affects the model’s performance in terms of 306

handling safe or unsafe content. 307

Loss-Gradient Scaled Perturbation Loss Gra- 308

dient Scaled Perturbation dynamically adjusts the 309

perturbation size based on the gradient of the loss 310

function with respect to each weight, achieving a 311

high degree of adaptivity. Specifically, L(w,D) 312

is the loss function of the model, the perturbation 313
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size is set as ∆wj = ∂L
∂wj

, resulting in the output314

function change given by:315

SL(wj) =
∂L
∂wj

· ∂f

∂wj
(9)316

This formulation ensures that weights most in-317

fluential to the loss receive proportionally larger318

perturbations. We notice that the loss gradient cal-319

culation is task-specific, as the loss function de-320

pends on every label ysafe in the dataset D. This321

task-specific nature allows Loss Gradient Scaled322

Perturbation to identify which weights are crucial323

for generating safe outputs and which facilitate the324

generation of harmful ones.325

In contrast to other perturbation methods, Loss-326

Gradient Scaled Perturbation adjusts the perturba-327

tion size dynamically, offering a more precise and328

task-specific analysis of each weight’s role in the329

model.330

3.3 Comparison Group331

For each linear matrix W ∈ Rdout×n, we introduce332

a corresponding matrix of associated importance333

scores S ∈ Rdout×n to identity the weights to be334

selected. Once the contribution scores are com-335

puted, we adopt per-output comparison group, as336

described by (Sun et al., 2024), which corresponds337

to each matrix row. Within this framework, we338

define Top-p% as a function that selects the p%339

highest values in from each row Si in S:340

Ap
ij =

{
1 if Sij in top p% of Si

0 otherwise
(10)341

4 Adaptation Strategy342

LLMs face performance requirements and resource343

constraints in real-world applications. Common344

adjustment methods include fine-tuning for down-345

stream tasks and model pruning. Fine-tuning helps346

adapt to specific tasks but may introduce security347

risks. Pruning improves computational efficiency348

but may affect the model’s security capabilities. En-349

suring that models maintain strong safety against350

malicious inputs and harmful content generation351

while improving performance and efficiency is a352

key challenge that needs to be addressed.353

4.1 Safe Pruning354

Typical pruning methods (Han et al., 2015a; Lee355

et al., 2019; Sun et al., 2024) enhance model effi-356

ciency by selectively removing redundant weights,357

enabling the deployment of efficient and reli- 358

able models in resource-constrained environments. 359

However, (Hong et al., 2024) shows that while 360

these methods preserve LLM utility, they may 361

weaken the model’s ability to reject harmful 362

queries. 363

To address this, we introduce Safe Pruning, a 364

method designed to improve a model’s efficiency 365

by removing non-essential weights while ensuring 366

that critical safety-related weights remain intact. 367

The key challenge lies in accurately identifying 368

these safety-related weights, which is achieved us- 369

ing SafeAdapt to determine which weights are vital 370

for maintaining the model’s safety capability. 371

In standard pruning with a sparsity of q%, the 372

goal is to remove weights that contribute the least 373

to the model’s utility. The set of least important 374

weights is denoted as Mq, representing those with 375

minimal impact on the model’s utility. In contrast, 376

Safe Pruning first uses SafeAdapt as a criterion 377

to identify weights crucial to the model’s safety. 378

The set of most important safety-related weights 379

is denoted as Ap, consisting of weights vital for 380

maintaining the model’s safety. Safe Pruning then 381

carefully compares the non-essential weights se- 382

lected by current advanced pruning methods with 383

the safety weights identified by SafeAdapt, thereby 384

preventing any accidental pruning of the latter. The 385

weights to be pruned are defined as: 386

Pq,p = Mq \ (Mq ∩ Ap) (11) 387

This approach allows the model to retain its util- 388

ity while safely handling sensitive content, balanc- 389

ing performance optimization with safety preserva- 390

tion. By integrating SafeAdaptinto the pruning pro- 391

cess, Safe Pruning ensures that the essential safety 392

mechanisms of the model remain intact even after 393

significant pruning, facilitating the deployment of 394

efficient yet safe LLMs in various applications. 395

4.2 Safe Fine-Tuning 396

Fine-tuning LLMs on different tasks increases their 397

effectiveness in completing the tasks as it incor- 398

porates the specialized domain knowledge needed. 399

(Qi et al., 2023) showed that LLMs trained on be- 400

nign or adversarial prompts increase their vulnera- 401

bility towards 11 harmful risk categories. 402

There are two strategies for preserving safety- 403

related weights: freezing critical weights during 404

fine-tuning and restoring critical weights after fine- 405

tuning. The first approach has been shown inef- 406

fective in preventing safety degradation (Wei et al., 407
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2024), as fine-tuning attacks can create new path-408

ways that easily bypass existing safety mechanisms409

in the original model.410

Safe fine-tuning adopts a more effective post-411

adaptation strategy. Initially, Safe fine-tuning uses412

SafeAdaptto identify weights crucial to the model’s413

safety, denoted as Ap, and stores their values as414

WAp
. Then, the model undergoes full fine-tuning415

to adapt to specific tasks or datasets, causing the416

weights to change from W → W ′. After the stan-417

dard fine-tuning phase, Safe fine-tuning restores418

the critical weights from the set of Ap to their origi-419

nal values, ensuring that the model retains its safety420

alignment while benefiting from task-specific fine-421

tuning. The final model weights after Safe fine-422

tuning are defined as:423

W safe
ij =

{
W ′

ij if Aij = 0

WAp

ij if Aij = 1
(12)424

This approach ensures the model is optimized for425

performance, without sacrificing its responsibility426

in handling sensitive or harmful content.427

5 Experiments428

Base Models We employ Llama-3-8B-Instruct429

(Touvron et al., 2023), Qwen2-7B-Instruct (Bai430

et al., 2023), Gemma-2-9b-it (Team, 2024) as431

our base models due to their publicly accessible432

weights and strong safety alignment.433

Baselines We compare our results against sev-434

eral score-based baselines: Magnitude (Han et al.,435

2015a) uses the absolute value of each weight as436

its score, emphasizing weights with higher magni-437

tudes for retention. SNIP (Lee et al., 2019) applies438

a first-order Taylor approximation to estimate the439

change in loss when a specific weight, wj , is set to440

zero, prioritizing weights that have a significant im-441

pact on the loss function. Wanda (Sun et al., 2024)442

scores weights by multiplying the absolute value of443

each weight by its corresponding input activations,444

targeting the interaction between weights and their445

specific inputs for pruning. We use these methods446

as baselines to select key safety-related weights.447

Safety-Related Weights To identify safety-448

critical weights, we calculate the Sensitivity Score449

S described in Section 3. To assess the model’s450

ability to handle malicious questions, we construct451

the safety dataset Dsafe by randomly selecting452

128 harmful questions from Advbench (Zou et al.,453

2023). For each harmful question xi, we pair it 454

with a corresponding safe response ysafe
i for the 455

safe dataset Dsafe = {(xi, ysafe
i )}128i=1. The safety- 456

critical weights are identified by using score-based 457

method datasets. 458

Measuring Safety We evaluate model safety us- 459

ing the Attack Success Rate (ASR) on the harm- 460

ful instruction dataset, HExPhI (Qi et al., 2023), 461

which contains 330 examples across 11 prohibited 462

categories. ASR measures the proportion of suc- 463

cessful attacks, defined as cases where a model’s 464

response lacks refusal patterns (Zou et al., 2023). 465

To reduce false positives, we use a classifier fine- 466

tuned on LLAMA-2-13b, which outperforms GPT- 467

4 by about 5% in aligning with human judgments 468

(Mazeika et al., 2024). Additionally, the output to- 469

ken limit is increased to 1048 to improve evaluation 470

accuracy. 471

Measuring Utility Following (Sun et al., 2024), 472

we measure the model’s utility by reporting its 473

averaged zero-shot accuracy of six tasks from 474

EleutherAI LM Harness(Gao et al., 2023): BoolQ 475

(Clark et al., 2019), RTE (Wang et al., 2019), Hel- 476

laSwag (Zellers et al., 2019), WinoGrande (Sak- 477

aguchi et al., 2019), ARC Easy and Challenge 478

(Clark et al., 2018), and OpenbookQA (Mihaylov 479

et al., 2018). 480

5.1 Safe Pruning 481

To address the primary question posed in Section 482

4.1, we conducted a series of experiments using 483

the Wanda pruning technique (Sun et al., 2024) to 484

select the set of non-essential weights Mq. Wanda 485

has been recognized for its efficiency and effective- 486

ness in pruning LLMs. 487

First, we follow Wanda’s experimental setup and 488

sample a utility dataset containing 128 instances 489

from Alpaca (Taori et al., 2023). The sparsity is 490

set to 50%, i.e., q = 50, as Wanda has shown that 491

increasing the sparsity beyond this threshold can 492

significantly degrade the model’s utility. Then we 493

use the baseline methods and SafeAdapt to identify 494

the safety-critical weights, denoted Ap. Finally, we 495

compute the set of weights to be pruned, P50,p, as 496

described in Eq. 11. 497

Accurately Preserving Safety-Related Weights 498

Protects Model’s Safety. The experimental re- 499

sults presented in Table 1 clearly demonstrate the 500

efficacy of SafePrune in maintaining the safety ca- 501

pabilities of LLMs during the pruning process. Tak- 502
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Figure 3: Impact of p. This figure illustrates the relation-
ship between the threshold p and ASR of Llama when
using SafeAdaptL. p is the percentage of preserved
weights.

ing the Llama model as an example, the initial ASR503

was 7.57%. After applying standard pruning, the504

ASR skyrocketed to 45.45%, highlighting a sig-505

nificant compromise in the model’s safety perfor-506

mance. In stark contrast, SafeAdapt variants, espe-507

cially SafeAdaptL, effectively controlled the ASR508

increase, reducing it to as low as 10.91% when509

p = 10. This substantial reduction underscores510

the ability of SafePrune to identify and preserve511

safety-critical weights, thereby safeguarding the512

model’s capacity to generate safe responses even513

after extensive pruning.514

Certain Weights May Seem Less Important for515

Utility Yet Hold Significant Value for Safety516

We observe that across different methods, with517

the same values of p and q, higher sparsity typi-518

cally indicates that a greater number of weights are519

considered unimportant for both utility and safety.520

Without Safe Pruning, 50% of the weights (q = 50)521

would be pruned. When using SafeAdaptL with522

p = 10, Llama only prunes 37.69% of the weights.523

This indicates that at least 12.31% of the weights,524

which would otherwise be pruned, are essential for525

maintaining safety without impacting the model’s526

utility. This suggests that some weights are cru-527

cial for both utility and safety, while other weights,528

although seemingly irrelevant to utility, play an529

important role in preserving the model’s safety be-530

havior.531

5.2 Safe Fine-Tuning532

To validate the effectiveness of our proposed ap-533

proach under realistic fine-tuning conditions, we534

follow the experimental setup in (Qi et al., 2023)535

and use LoRA (Hu et al., 2021) to fine-tune safe536

base models in two scenarios:537

• S1: Fine-tuning with explicitly harmful538

datasets. We utilize 10 pairs of [harmful539

Top-p% 1 5 10

Llama(7.57% → 45.45%)

Magnitude 33.03 0.4327 35.15 0.4341 29.09 0.4327
Wanda 30.30 0.4254 18.18 0.4189 28.79 0.3497
SNIP 31.52 0.4249 31.82 0.3862 32.00 0.3389
SafeAdaptU 26.97 0.4316 21.52 0.4161 21.21 0.3953
SafeAdaptW 23.94 0.4344 21.82 0.4306 19.70 0.4262
SafeAdaptL 22.12 0.4306 16.97 0.4088 10.91 0.3769

Qwen(19.09% → 69.39%)

Magnitude 49.09 0.4285 50.00 0.4278 45.75 0.4259
Wanda 43.93 0.4284 40.61 0.4276 41.21 0.4284
SNIP 36.36 0.4283 33.73 0.4269 28.18 0.4223
SafeAdaptU 40.00 0.4026 21.52 0.4110 21.21 0.3912
SafeAdaptW 37.57 0.4283 37.75 0.4258 19.70 0.4201
SafeAdaptL 32.12 0.4241 25.15 0.3985 18.18 0.3647

Gemma(0 % → 6.06%)

Magnitude 5.76 0.4096 6.36 0.4092 3.94 0.4077
Wanda 3.94 0.4095 0.91 0.4088 0.91 0.4069
SNIP 3.03 0.4095 1.21 0.4081 6.97 0.4021
SafeAdaptU 3.33 0.4070 1.82 0.3926 1.52 0.3731
SafeAdaptW 3.33 0.4094 2.73 0.4070 1.82 0.4016
SafeAdaptL 0.91 0.4065 0.91 0.3863 0.61 0.3581

Table 1: SafePrune. For each model, the notation (Pre-
ASR → Post-ASR) indicates the ASR before pruning
and the ASR after applying standard pruning without
safety preservation. Each Top-p% column contains
two subcolumns: the first represents the ASR after
pruning with the specified method, and the second
indicates the actual sparsity achieved. Safe Pruning
variants (SafeAdaptU, SafeAdaptW, SafeAdaptL) con-
sistently demonstrate lower ASR values while maintain-
ing comparable sparsity levels across different models
and Top-p% thresholds.

query, unsafe response] for 20-epoch 540

training. 541

• S2: Fine-tuning with implicitly harm- 542

ful datasets. We employ 10 pairs 543

of [identity-shifting prompt, 544

identity-shifting response] for 545

20-epoch training. 546

Detailed descriptions of the datasets and LoRA 547

parameters are provided in the Appendix. 548

Effectiveness of SafeAdaptL in Safe Fine- 549

Tuning. The results in Table 2 highlight the supe- 550

rior performance of Safe Fine-tuning in maintain- 551

ing model safety. SafeAdaptL consistently achieves 552

the lowest ASR across models (Llama, Qwen, 553

Gemma) and values of p. For example, at p = 10, 554

SafeAdaptL achieves ASR values of 15.45% and 555

21.21% for Llama (S1) and Qwen (S1), outper- 556

forming other methods. While reducing the ASR, 557

the utility of SafeAdaptL is not the highest, but it 558
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ASR(%) ↓

Llama (ASR→7.57) Qwen (ASR→19.09) ASR→Gemma (0)

Top-p% Method S1 S2 S1 S2 S1 S2

Fine-tune 43.94 52.42 47.27 40.91 34.85 28.18

p = 1

Magnitude 45.76 (↑ 1.82) 51.52 (↓ 0.90) 39.09 (↓ 7.88) 38.79 (↓ 2.12) 32.12 (↓ 2.73) 27.88 (↓ 0.30)
Wanda 43.03 (↓ 0.91) 43.03 (↓ 9.39) 36.06 (↓ 11.21) 37.87 (↓ 3.04) 18.48 (↓ 16.37) 30.91 (↑ 2.73)
SNIP 39.09 (↓ 4.85) 43.03 (↓ 9.39) 36.67 (↓ 10.60) 34.55 (↓ 6.36) 16.06 (↓ 18.79) 26.67 (↓ 1.51)

SafeAdaptL 37.58 (↓ 6.36) 42.73 (↓ 9.69) 30.91 (↓ 16.36) 31.52 (↓ 9.39) 13.94 (↓ 20.91) 24.24 (↓ 3.94)

p = 5

Magnitude 44.85 (↑ 0.91) 49.39 (↓ 3.03) 41.21 (↓ 6.06) 35.76 (↓ 5.15) 27.88 (↓ 10.56) 27.88 (↓ 0.30)
Wanda 35.76 (↓ 8.18) 41.52 (↓ 10.90) 32.73 (↓ 14.54) 27.88 (↓ 13.03) 11.21 (↓ 23.64) 23.94 (↓ 4.24)
SNIP 29.39 (↓ 14.55) 31.82 (↓ 20.60) 29.70 (↓ 17.57) 27.88 (↓ 13.03) 6.36 (↓ 28.46) 12.73 (↓ 15.45)

SafeAdaptL 20.91 (↓ 23.03) 25.15 (↓ 27.27) 25.45 (↓ 21.82) 24.85 (↓ 16.06) 3.64 (↓ 31.21) 7.89 (↓ 20.29)

p = 10

Magnitude 35.76 (↓ 8.18) 35.76 (↓ 16.66) 40.90 (↓ 6.37) 33.94 (↓ 6.97) 22.73 (↓ 12.12) 30.30 (↑ 2.12)
Wanda 26.06 (↓ 17.88) 27.58 (↓ 24.84) 28.79 (↓ 18.48) 28.48 (↓ 12.43) 5.45 (↓ 30.97) 15.15 (↓ 13.03)
SNIP 23.03 (↓ 20.91) 23.03 (↓ 29.39) 24.45 (↓ 22.82) 27.58 (↓ 12.43) 1.81 (↓ 33.04) 7.88 (↓ 20.30)

SafeAdaptL 15.45 (↓ 28.49) 20.61 (↓ 31.81 ) 21.21 (↓ 26.06) 22.12 (↓ 18.79) 1.21 (↓ 33.64) 3.94 (↓ 24.24)

Utility ↑

Llama (Utility→61.25) Qwen (Utility→64.67) Gemma (Utility→52.08)

Top-p% Method S1 S2 S1 S2 S1 S2

Fine-tune 60.92 60.25 64.51 62.32 52.33 53.50

p = 1

Magnitude 60.67 60.00 64.58 61.75 52.08 53.17
Wanda 60.83 60.08 64.50 62.17 52.08 52.42
SNIP 60.92 60.25 64.67 62.17 51.83 52.42

SafeAdaptL 60.83 60.75 64.25 62.58 52.33 52.33

p = 5

Magnitude 61.00 60.42 64.42 61.67 52.42 53.00
Wanda 61.08 60.58 65.00 63.08 52.17 52.75
SNIP 60.75 60.58 64.58 63.25 52.17 52.67

SafeAdaptL 61.08 60.75 64.92 63.33 52.33 52.33

p = 10

Magnitude 60.75 60.42 64.42 61.92 52.50 53.17
Wanda 61.08 60.50 64.42 63.33 52.25 53.00
SNIP 60.92 60.58 64.92 63.92 52.42 52.50

SafeAdaptL 60.92 61.00 64.42 63.75 52.00 52.58

Table 2: Performance Comparison across Different Scenarios and Methods. Experiments were conducted within
three distinct scenarios (S1, S2). Llama (7.57) denotes the safe base model Llama-3-8B-Instruct, characterized by a
7.57% ASR prior to any modifications. The term Fine-tune refers to safe base models that have been fine-tuned but
without any migration of weights. The Top-p% column signifies the migration of the top-p% neurons from these
safe base models.

continues to improve.559

Impact of p on Model Safety. As shown in Table560

2 and Figure 3, increasing p leads to a significant561

decrease in the ASR of SafeAdaptL, indicating that562

retaining more safety-related weights enhances the563

model’s ability to resist attacks. However, when p564

reaches around 15, the improvement in ASR begins565

to slow down, and the curve starts to flatten, sug-566

gesting diminishing returns in further increasing567

the number of retained safety-critical weights. Be-568

yond this point, retaining additional weights results569

in only marginal improvements in safety, indicating570

that an optimal balance between retaining enough571

safety-critical weights and preserving model per-572

formance has been reached.573

6 Conclusion 574

We propose SafeAdapt, a novel method with a the- 575

oretical explanation, which can assess the contri- 576

bution of individual weights towards maintaining 577

safety alignment in adapted models. SafeAdapt 578

offer a powerful mean to analyze the contribution 579

of individual weights in neural networks, highlight 580

weights that have a significant impact on model 581

safety and performance. We introduce weight 582

preservation strategies that not only restore safety- 583

critical weights after fine-tuning but also ensure 584

these critical weights are protected during pruning 585

processes. Our experimental results demonstrate 586

SafeAdapt’s effectiveness in maintaining safety 587

alignment on various model adaptation tasks. 588
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7 Limitations589

Our research focuses on preserving the safety align-590

ment of LLMs by identifying and safeguarding crit-591

ical safety-related weights within the models. How-592

ever, there are a few limitations to our approaches.593

The datasets we used in our analysis are exclu-594

sively in English. As a result, our findings may not595

fully capture the complexities of LLMs when they596

process input in other languages. It’s possible that597

different languages could introduce implicit contex-598

tual nuances or cultural differences that may affect599

the model’s behavior, potentially leading to shifts600

in alignment or performance that were not observed601

in English-centric tests. Additionally, the models602

we tested are not entirely up-to-date with the latest603

developments in the field. The rapid pace of ad-604

vancements in LLM technology means that newer605

models, with different architectures and training606

methodologies, may exhibit significantly different607

behaviors or safety challenges than the models in-608

cluded in our study.609
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