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Abstract

Large Language Models (LLMs) are essential
to many Al applications, while adaptations like
model pruning and task-specific fine-tuning can
unintentionally cause safety risks by altering
weight configurations. Previous efforts to im-
prove safety have focused primarily on fine-
tuning or RLHF to realign model behavior with
ethical standards. However, these methods of-
ten demand significant resources, making them
challenging to implement in scalable environ-
ments. In this paper, we introduce SafeAdapt,
an efficient approach aimed at preserving safety
alignment by identifying and safeguarding cru-
cial safety-related weights within models. To
achieve this, we propose a saliency criterion
that evaluates how weight perturbations influ-
ence safety-aligned responses and quantifies
the sensitivity of each weight to this safety.
Based on this, we develop weight preservation
strategies to preserve the most crucial weights
during model fine-tuning and pruning, ensuring
the continued safety of the model. The effec-
tiveness of SafeAdaptis validated through ex-
tensive experiments on widely adopted models
such as Llama, Qwen, and Gemma, demon-
strating its capability to identify safety-related
weights and effectiveness in maintaining the
safety of fine-tuned or pruned models.

1 Introduction

Large Language Models (LLMs), such as Meta’s
Llama (Touvron et al., 2023) and OpenAI’s GPT
(OpenAl et al., 2024), are increasingly pivotal in
powering a broad spectrum of Al applications. To
maintain their effectiveness and efficiency across
diverse and complex scenarios, these models typi-
cally undergo model adaptation for specific tasks.
For instance, service providers may perform task-
specific fine-tuning using private data to optimize
models for particular domains. Additionally, in
resource-constrained environments, these model
weights might be pruned to reduce computational
demands and enhance inference speeds.

While these adaptation approaches are crucial
for enhancing both the performance and efficiency
of the models, they unintentionally compromise the
models’ integrity and safety (Qi et al., 2023; Hong
et al., 2024; Touvron et al., 2023). As (Qi et al.,
2023) suggests, even benign fine-tuning can inad-
vertently introduce biases or reduce a model’s abil-
ity to handle sensitive content safely. For instance,
fine-tuning GPT-3.5-Turbo (OpenAl et al., 2024)
on a benign dataset results in a 26.3% increase in
its harmfulness rate. To ensure safety in adapted
models, one approach is to retrain the model with
a focus on safety alignment. However, this method
can be resource-intensive. These concerns raise a
critical question: How can we maintain model’s
performance without sacrificing safety alignment,
which is essential to trustworthy AI?

We observe that aligned LLMs often exhibit
consistent behaviors when encountering malicious
queries, typically starting responses with phrases
such as "I am sorry...". In contrast, these mod-
els respond appropriately to normal queries. This
observation leads us to hypothesize that certain spe-
cific weights are uniquely activated in response to
malicious inputs. These weights, known as safety-
related weights, are crucial for ensuring the model
can respond safely to harmful queries. Identify-
ing and preserving these weights is essential to
safeguard the model’s safety capabilities, as they
are responsible for detecting malicious input and
generating appropriate responses.

However, existing approaches, such as those in
(Han et al., 2015a; Lee et al., 2019; Chen et al.,
2020; Sun et al., 2024), focus on identifying impor-
tant weight regions but fail to adequately prioritize
safety. These methods fail to properly account for
weights that are crucial for safety alignment. This
limitation arises not just from the datasets being
insufficiently aligned with safety objectives, but
more fundamentally from the fact that these meth-
ods were not designed with the goal of prioritizing



safety over utility.

In this paper, we introduce SafeAdapt, a sensi-
tivity analysis method designed to identify safety-
critical weights by examining the model’s output
changes under small perturbations to its weights.
This approach helps to uncover which weights play
a decisive role in generating safe responses from
the model. Specifically, we propose three perturba-
tion strategies: Unit Perturbation, Weight-Scaled
Perturbation, and Loss-Gradient Scaled Perturba-
tion. Each strategy offers a different way to perturb
the model’s weights, allowing us to assess the rel-
ative importance of each weight in the context of
safety.

After identifying safety-related weights, we pro-
pose strategies to further leverage these safety-
related weights to maintain alignment in two typ-
ical model adaption scenarios: Safe Pruning and
Safe Fine-tuning. For model pruning, we recom-
mend ensuring that critical safety-related weights
are preserved to prevent unintentional removal. Ad-
ditionally, to mitigate safety performance degra-
dation caused by fine-tuning, we introduce a post-
adaptation restoration strategy that restores safety-
related weights from the original model. This ap-
proach allows a model to adapt to specific tasks
without significantly compromising safety.

We conduct extensive experiments on the widely
used Llama (Touvron et al., 2023), Qwen (Bai
et al., 2023), and Gemma (Team, 2024). Our
results show that SafeAdapt can effectively iden-
tify critical safety-related weights and successfully
protect the safety of both fine-tuned and pruned
models. Specifically, by restoring just 10% of
safety-related weights, Safe Adaptcan significantly
reduce the attack success rate on a fine-tuned model
from 69.33% to 13.03%. Similarly, for a pruned
Llama model with 35.59% of weights removed,
SafeAdaptcan reduce its attack success rate from
45.45% to 13.94%.

In summary, we make the following contribu-
tions:

* We propose SafeAdapt, a novel approach
that assesses model weights using sensitivity
scores to identify safety-related weights, en-
suring that these crucial weights are preserved
after model adaptations.

* We design weight preservation strategies
that utilize safety-related weights, enhancing
safety alignment during essential tasks such
as model fine-tuning and pruning.

* Our results provide robust evidence of
SafeAdapt’s effectiveness in identifying and
protecting critical safety-related weights, en-
suring the maintenance of safety alignment
across common model adaptation tasks.

2 Related Work

2.1 Alignment

Alignment aims to ensure that a model’s behav-
ior is consistent with human values and inten-
tions (Hubinger et al., 2021; Hendrycks et al.,
2023). For instance, aligned LLMs are equipped
with safety guardrails and can reject harmful in-
structions. The most common approaches to
model alignment typically involve Supervised Fine-
Tuning (SFT) (Ouyang et al., 2022; Wei et al.,,
2022) and Reinforcement Learning from Human
Feedback (RLHF) (Touvron et al., 2023; Bai et al.,
2022). During the alignment stage, practitioners
would employ SFT or RLHF to enforce the lan-
guage models to be Helpful, Harmless, and Honest
(the HHH principle) (Askell et al., 2021).

However, the alignment of the model is frag-
ile (Wei et al., 2024; Yi et al., 2024), and even
minimal adjustments to the model’s weights can
disrupt its safety mechanisms. This is illustrated
by models that, after pruning or task-specific fine-
tuning, begin to respond to malicious queries that
they would have previously rejected (Hong et al.,
2024; Qi et al., 2023). This phenomenon may stem
from the intricate interplay between model weights
and their ability to discern harmful inputs, where
subtle modifications can disrupt the model’s safety
mechanisms.

2.2 Identification of Critical Weights

Identifying critical weights within a model is
paramount for optimizing both its performance, es-
pecially when employing pruning strategies. Prun-
ing aims to reduce a model’s size by removing
weights deemed less important, and in this con-
text, it becomes essential to accurately distinguish
between critical and non-critical weights (Han
et al., 2015b; Wen et al., 2016). Magnitude-based
pruning (Han et al., 2015a), which focuses on re-
taining weights with the highest absolute values.
More sophisticated methods, such as SNIP (Lee
etal., 2019), take a deeper approach by considering
weight magnitudes alongside activations or gradi-
ents, thereby assessing the influence of removing
individual weights on Loss Function. Wanda (Sun
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Figure 1: Overview of SafeAdapt. This figure involves
calculating the contribution score of each weight with
a calibration dataset, focusing on identifying safety-
related weights.

et al., 2024), on the other hand, improves upon this
by incorporating the interaction between weights
and input activations, pruning weights that exhibit
the smallest product of magnitude and activation.

3 Identify Critical Weights for Safety
Behavior

For example, a harmful question like "How to steal
a purse?" The corresponding response from the
LLM can be classified as one of the following:

* Safe Response 3°: The model refuses to

answer the question (e.g., "I'm sorry, I can’t
provide that information.”)”

« Unsafe Response "™ A full response that
may include sensitive or harmful information
(e.g., "There are some steps: Step 1...")

These contrasting responses highlight the
model’s internal decision-making pathways. A
safe response indicates that the model has suc-
cessfully recognized harmful intent and effectively
avoided generating unsafe content. Identifying
which weights are crucial for triggering such safe
responses is essential. We propose SafeAdapt (as
shown in Figure 1), a novel approach that assesses
model weights using sensitivity scores to identify
safety-related weights. The dataset D used consists
of malicious questions and safe responses, which
are employed to generate gradients.

3.1 Sensitivity Score

Motivation In the exploration of neural network
dynamics, the strategic application of perturbations

across diverse magnitudes and directions serves as
a pivotal technique for probing the stability and ro-
bustness of learned representations. This approach
allows us to dissect the complex interdependencies
among weights and their collective impact on the
model’s ability to discern and react to both benign
and malicious inputs. By quantifying the effects
of weight perturbations on output changes, we can
systematically assess the sensitivity of each weight
to maintain safe responses.

Consider a neural network modeled by the out-
put function § = f(w,x), where £(g,y) is the
loss function of the model. Here, w represents the
model’s weights, x is the input, and y is the label.
We define the change in the output Ay as follows:

Ay:f(w+Aw,x)—f(w,x) (D
where Aw represents a small perturbation to the
model’s weights.

When the input z is a harmful query, Ay quan-
tifies how much the model’s output changes in re-
sponse to a perturbation in the weights. Specifi-
cally, the larger the magnitude of Ay in response
to unsafe content, the more sensitive the model is
to the perturbation of those weights, suggesting
that these weights are crucial for controlling the
model’s behavior in unsafe contexts.

Theoretical Proof To approximate Ay, we use a
Taylor polynomial expansion. The expansion for a
function g(x) at point z = a is

_ Zp:g(p) a

p=0

)(:U —a)’ + Ry(z) (2

where gP) (a) is the p-th derivative of g evaluated

at point a, and R, () is the p-th order reminder.
Approximating f(w + Aw, z) with a first-order

Taylor polynomial near (w + Aw), we have

flw+ Aw,z) = f(w, )+ <515ij>
j J

+ Ri(w + Aw)

3)

The remainder R (w + Aw) can be calculated
through the Lagrange from:

Ri(w + Aw) = Z aw aw (&) Aw; Aw;
Wy

“
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Figure 2: Overview of Adaptation Strategy.

where ¢ is a real number between 0 and w + Aw.
However, we neglect this first-order remainder,
largely due to the significant calculation required
for LLM.

Finally, by substituting Eq. 3 into Eq. 1 and
ignoring the remainder, we have

1201 = If(w.2)+ 3 (528w ) = flaw, )

=S o .~
= - <5ijwj>|
5)

For every weight in the neuron, the attribution to
the change |Ay| can be defined as:
of

S(wj) = \%Awﬂ
J

(6)

The quantity S(w);), known as the sensitivity score,
quantifies the impact of each weight on the model’s
output when perturbed. This score is crucial for
identifying weights that are particularly influential
in determining the model’s behavior, enabling tar-
geted adjustments to enhance model robustness and
safety.

3.2 Perturbation Strategy

We now turn to the practical question: How do
we decide the direction and magnitude of perturba-
tions applied to each weight? Below, we outline
three strategies and discuss their relative merits in
identifying critical weights for safe behavior.

Unit Perturbation For a simple measure of the
effect of small perturbations, setting Aw; = 1is
straightforward, the sensitivity score becomes:

Su(w;) = or

_ij

(7N

However, since the perturbation is the same for
all weights, it may lead to inconsistent effects:
For large weights, the perturbation might be too
small to have a significant impact, while for small
weights, the perturbation could be disproportion-
ately large. For example, consider two weights,
wy; = 100 and wy = 0.1. If the same perturba-
tion, say 1, is applied to both, their effects on the
model will differ significantly. This limits the abil-
ity to accurately assess the relative importance of
each weight, particularly when there is a signifi-
cant disparity in their magnitudes, leading to an
imbalanced impact on the model’s behavior.

Weight-Scaled Perturbation Alternatively, the
perturbation is proportional to the value of the cur-
rent weight wj, i.e., Aw; = pw;, [ € (0,1], re-
sulting in the output function change given by:

Sw(wj) = Bw; ®)

a’LUj

By scaling the perturbation with the weight
value, larger weights receive stronger perturba-
tions, while smaller weights experience weaker
ones. This approach allows for observing the rel-
ative influence of different weights, providing in-
sight into their impact beyond mere absolute effect.
However, although this method effectively consid-
ers the relative size of the weights, it fails to fully
account for how each weight’s sensitivity specifi-
cally affects the model’s performance in terms of
handling safe or unsafe content.

Loss-Gradient Scaled Perturbation Loss Gra-
dient Scaled Perturbation dynamically adjusts the
perturbation size based on the gradient of the loss
function with respect to each weight, achieving a
high degree of adaptivity. Specifically, £(w, D)
is the loss function of the model, the perturbation
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size is set as Aw; = sy
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resulting in the output
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This formulation ensures that weights most in-
fluential to the loss receive proportionally larger
perturbations. We notice that the loss gradient cal-
culation is task-specific, as the loss function de-
pends on every label 3% in the dataset D. This
task-specific nature allows Loss Gradient Scaled
Perturbation to identify which weights are crucial
for generating safe outputs and which facilitate the
generation of harmful ones.

In contrast to other perturbation methods, Loss-
Gradient Scaled Perturbation adjusts the perturba-
tion size dynamically, offering a more precise and
task-specific analysis of each weight’s role in the
model.

3.3 Comparison Group

For each linear matrix W € R%u*"_ we introduce
a corresponding matrix of associated importance
scores S € R%uX" to identity the weights to be
selected. Once the contribution scores are com-
puted, we adopt per-output comparison group, as
described by (Sun et al., 2024), which corresponds
to each matrix row. Within this framework, we
define Top-p% as a function that selects the p%
highest values in from each row S; in S

i 1 if Sj; in top p% of S;
*J 0 otherwise

4 Adaptation Strategy

(10)

LLM:s face performance requirements and resource
constraints in real-world applications. Common
adjustment methods include fine-tuning for down-
stream tasks and model pruning. Fine-tuning helps
adapt to specific tasks but may introduce security
risks. Pruning improves computational efficiency
but may affect the model’s security capabilities. En-
suring that models maintain strong safety against
malicious inputs and harmful content generation
while improving performance and efficiency is a
key challenge that needs to be addressed.

4.1 Safe Pruning

Typical pruning methods (Han et al., 2015a; Lee
et al., 2019; Sun et al., 2024) enhance model effi-
ciency by selectively removing redundant weights,

enabling the deployment of efficient and reli-
able models in resource-constrained environments.
However, (Hong et al., 2024) shows that while
these methods preserve LLM utility, they may
weaken the model’s ability to reject harmful
queries.

To address this, we introduce Safe Pruning, a
method designed to improve a model’s efficiency
by removing non-essential weights while ensuring
that critical safety-related weights remain intact.
The key challenge lies in accurately identifying
these safety-related weights, which is achieved us-
ing SafeAdapt to determine which weights are vital
for maintaining the model’s safety capability.

In standard pruning with a sparsity of ¢%, the
goal is to remove weights that contribute the least
to the model’s utility. The set of least important
weights is denoted as MY, representing those with
minimal impact on the model’s utility. In contrast,
Safe Pruning first uses SafeAdapt as a criterion
to identify weights crucial to the model’s safety.
The set of most important safety-related weights
is denoted as AP, consisting of weights vital for
maintaining the model’s safety. Safe Pruning then
carefully compares the non-essential weights se-
lected by current advanced pruning methods with
the safety weights identified by SafeAdapt, thereby
preventing any accidental pruning of the latter. The
weights to be pruned are defined as:

PUP = M3\ (MT A AP) (11)

This approach allows the model to retain its util-
ity while safely handling sensitive content, balanc-
ing performance optimization with safety preserva-
tion. By integrating SafeAdaptinto the pruning pro-
cess, Safe Pruning ensures that the essential safety
mechanisms of the model remain intact even after
significant pruning, facilitating the deployment of
efficient yet safe LLMs in various applications.

4.2 Safe Fine-Tuning

Fine-tuning LLMs on different tasks increases their
effectiveness in completing the tasks as it incor-
porates the specialized domain knowledge needed.
(Qi et al., 2023) showed that LLMs trained on be-
nign or adversarial prompts increase their vulnera-
bility towards 11 harmful risk categories.

There are two strategies for preserving safety-
related weights: freezing critical weights during
fine-tuning and restoring critical weights after fine-
tuning. The first approach has been shown inef-
fective in preventing safety degradation (Wei et al.,



2024), as fine-tuning attacks can create new path-
ways that easily bypass existing safety mechanisms
in the original model.

Safe fine-tuning adopts a more effective post-
adaptation strategy. Initially, Safe fine-tuning uses
Safe Adaptto identify weights crucial to the model’s
safety, denoted as 4P, and stores their values as
W?. Then, the model undergoes full fine-tuning
to adapt to specific tasks or datasets, causing the
weights to change from W — W', After the stan-
dard fine-tuning phase, Safe fine-tuning restores
the critical weights from the set of AP to their origi-
nal values, ensuring that the model retains its safety
alignment while benefiting from task-specific fine-
tuning. The final model weights after Safe fine-
tuning are defined as:

if Aij =0

12
if Ajj =1 (12

W'

fe _
Wis]a e _ i
ij
This approach ensures the model is optimized for
performance, without sacrificing its responsibility

in handling sensitive or harmful content.

S Experiments

Base Models We employ Llama-3-8B-Instruct
(Touvron et al., 2023), Qwen2-7B-Instruct (Bai
et al., 2023), Gemma-2-9b-it (Team, 2024) as
our base models due to their publicly accessible
weights and strong safety alignment.

Baselines We compare our results against sev-
eral score-based baselines: Magnitude (Han et al.,
2015a) uses the absolute value of each weight as
its score, emphasizing weights with higher magni-
tudes for retention. SNIP (Lee et al., 2019) applies
a first-order Taylor approximation to estimate the
change in loss when a specific weight, wj, is set to
zero, prioritizing weights that have a significant im-
pact on the loss function. Wanda (Sun et al., 2024)
scores weights by multiplying the absolute value of
each weight by its corresponding input activations,
targeting the interaction between weights and their
specific inputs for pruning. We use these methods
as baselines to select key safety-related weights.

Safety-Related Weights To identify safety-
critical weights, we calculate the Sensitivity Score
S described in Section 3. To assess the model’s
ability to handle malicious questions, we construct
the safety dataset Dgyre by randomly selecting
128 harmful questions from Advbench (Zou et al.,

2023). For each harmful question z;, we pair it
with a corresponding safe response yfafe for the
safe dataset DS = {(x;, yf4)}128 . The safety-
critical weights are identified by using score-based
method datasets.

Measuring Safety We evaluate model safety us-
ing the Attack Success Rate (ASR) on the harm-
ful instruction dataset, HExPhI (Qi et al., 2023),
which contains 330 examples across 11 prohibited
categories. ASR measures the proportion of suc-
cessful attacks, defined as cases where a model’s
response lacks refusal patterns (Zou et al., 2023).
To reduce false positives, we use a classifier fine-
tuned on LLAMA-2-13b, which outperforms GPT-
4 by about 5% in aligning with human judgments
(Mazeika et al., 2024). Additionally, the output to-
ken limit is increased to 1048 to improve evaluation
accuracy.

Measuring Utility Following (Sun et al., 2024),
we measure the model’s utility by reporting its
averaged zero-shot accuracy of six tasks from
EleutherAI LM Harness(Gao et al., 2023): BoolQ
(Clark et al., 2019), RTE (Wang et al., 2019), Hel-
laSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2019), ARC Easy and Challenge
(Clark et al., 2018), and OpenbookQA (Mihaylov
et al., 2018).

5.1 Safe Pruning

To address the primary question posed in Section
4.1, we conducted a series of experiments using
the Wanda pruning technique (Sun et al., 2024) to
select the set of non-essential weights M?. Wanda
has been recognized for its efficiency and effective-
ness in pruning LLMs.

First, we follow Wanda’s experimental setup and
sample a utility dataset containing 128 instances
from Alpaca (Taori et al., 2023). The sparsity is
set to 50%, i.e., ¢ = 50, as Wanda has shown that
increasing the sparsity beyond this threshold can
significantly degrade the model’s utility. Then we
use the baseline methods and SafeAdapt to identify
the safety-critical weights, denoted AP. Finally, we
compute the set of weights to be pruned, %, as
described in Eq. 11.

Accurately Preserving Safety-Related Weights
Protects Model’s Safety. The experimental re-
sults presented in Table 1 clearly demonstrate the
efficacy of SafePrune in maintaining the safety ca-
pabilities of LLMs during the pruning process. Tak-
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Figure 3: Impact of p. This figure illustrates the relation-
ship between the threshold p and ASR of Llama when
using SafeAdapt; . p is the percentage of preserved
weights.

ing the Llama model as an example, the initial ASR
was 7.57%. After applying standard pruning, the
ASR skyrocketed to 45.45%, highlighting a sig-
nificant compromise in the model’s safety perfor-
mance. In stark contrast, SafeAdapt variants, espe-
cially SafeAdapt; , effectively controlled the ASR
increase, reducing it to as low as 10.91% when
p = 10. This substantial reduction underscores
the ability of SafePrune to identify and preserve
safety-critical weights, thereby safeguarding the
model’s capacity to generate safe responses even
after extensive pruning.

Certain Weights May Seem Less Important for
Utility Yet Hold Significant Value for Safety
We observe that across different methods, with
the same values of p and ¢, higher sparsity typi-
cally indicates that a greater number of weights are
considered unimportant for both utility and safety.
Without Safe Pruning, 50% of the weights (¢ = 50)
would be pruned. When using SafeAdapt; with
p = 10, Llama only prunes 37.69% of the weights.
This indicates that at least 12.31% of the weights,
which would otherwise be pruned, are essential for
maintaining safety without impacting the model’s
utility. This suggests that some weights are cru-
cial for both utility and safety, while other weights,
although seemingly irrelevant to utility, play an
important role in preserving the model’s safety be-
havior.

5.2 Safe Fine-Tuning

To validate the effectiveness of our proposed ap-
proach under realistic fine-tuning conditions, we
follow the experimental setup in (Qi et al., 2023)
and use LoRA (Hu et al., 2021) to fine-tune safe
base models in two scenarios:

¢ S;: Fine-tuning with explicitly harmful
datasets. We utilize 10 pairs of [harmful

Top-p% | 1 | 5 | 10

‘ Llama(7.57% — 45.45%)
Magnitude | 33.03 0.4327| 35.150.4341| 29.09 0.4327
Wanda 30.300.4254| 18.18 0.4189| 28.79 0.3497
SNIP 31.520.4249| 31.820.3862| 32.00 0.3389
SafeAdapt;; | 26.970.4316| 21.520.4161| 21.21 0.3953
SafeAdapty, | 23.94 0.4344| 21.820.4306| 19.70 0.4262
SafeAdapt; | 22.120.4306| 16.97 0.4088| 10.91 0.3769

‘ Qwen(19.09% — 69.39%)
Magnitude 49.09 0.4285| 50.00 0.4278| 45.750.4259
Wanda 43.930.4284| 40.61 0.4276| 41.21 0.4284
SNIP 36.36 0.4283| 33.730.4269| 28.18 0.4223
SafeAdapt;; | 40.00 0.4026| 21.520.4110| 21.210.3912
SafeAdapty, | 37.57 0.4283| 37.750.4258| 19.70 0.4201
SafeAdapt; | 32.120.4241| 25.150.3985| 18.18 0.3647

| Gemma(0 % — 6.06%)
Magnitude 5.76 0.4096| 6.36 0.4092| 3.94 0.4077
Wanda 3.94 0.4095| 091 0.4088| 0.91 0.4069
SNIP 3.03 0.4095| 1.21 0.4081| 6.97 0.4021
SafeAdapt;; | 3.33 0.4070| 1.82 0.3926| 1.52 0.3731
SafeAdapty, | 3.33 0.4094| 2.73 0.4070| 1.82 0.4016
SafeAdapt; | 0.91 0.4065| 0.91 0.3863| 0.61 0.3581

Table 1: SafePrune. For each model, the notation (Pre-
ASR — Post-ASR) indicates the ASR before pruning
and the ASR after applying standard pruning without
safety preservation. Each Top-p% column contains
two subcolumns: the first represents the ASR after
pruning with the specified method, and the second
indicates the actual sparsity achieved. Safe Pruning
variants (SafeAdapt;, SafeAdapty,, SafeAdapt; ) con-
sistently demonstrate lower ASR values while maintain-
ing comparable sparsity levels across different models
and Top-p% thresholds.

query, unsafe response] for 20-epoch
training.
* So:  Fine-tuning with implicitly harm-

ful datasets. We employ 10 pairs
of [identity-shifting prompt,
identity-shifting response]  for
20-epoch training.

Detailed descriptions of the datasets and LoRA
parameters are provided in the Appendix.

Effectiveness of SafeAdapt; in Safe Fine-
Tuning. The results in Table 2 highlight the supe-
rior performance of Safe Fine-tuning in maintain-
ing model safety. SafeAdapt; consistently achieves
the lowest ASR across models (Llama, Qwen,
Gemma) and values of p. For example, at p = 10,
SafeAdapty, achieves ASR values of 15.45% and
21.21% for Llama (S1) and Qwen (S1), outper-
forming other methods. While reducing the ASR,
the utility of SafeAdapt; is not the highest, but it



ASR(%) |

Llama (ASR—7.57) Qwen (ASR—19.09) ASR—Gemma (0)
Top-p%  Method S1 S2 S1 S2 S1 S2
Fine-tune 43.94 52.42 47.27 40.91 34.85 28.18
Magnitude 45.76 (1 1.82)  51.52(} 0.90) 39.09 (J 7.88) 38.79(42.12) 32.12(} 2.73) 27.88 (] 0.30)
1 Wanda 43.03 (L 091) 43.03(19.39) 36.06(] 11.21) 37.87 (1 3.04) 1848 (4 16.37) 30.91 (12.73)
p= SNIP 39.09 (J 4.85) 43.03(}9.39) 36.67 (4 10.60) 34.55(] 6.36) 16.06 (] 18.79) 26.67 (J 1.51)
SafeAdapt; 37.58 (| 6.36) 42.73 (1 9.69) 30.91 (] 16.36) 31.52(] 9.39) 13.94(]20.91) 24.24 (] 3.949)
Magnitude 44.85(10.91) 49.39({ 3.03) 41.21( 6.06) 3576 (] 5.15) 27.88 (] 10.56) 27.88 (J 0.30)
5 Wanda 3576 (4 8.18) 41.52( 10.90) 32.73 (J 14.54) 27.88 ({ 13.03) 11.21 ({ 23.64) 23.94 (] 4.24)
p= SNIP 29.39 ( 14.55) 31.82 (] 20.60) 29.70 (J 17.57) 27.88 (J 13.03) 6.36 (| 28.46) 12.73 (| 15.45)
SafeAdapt; 20.91 (§ 23.03) 25.15({ 27.27) 25.45(] 21.82) 24.85(] 16.06) 3.64 (| 31.21) 7.89 ({ 20.29)
Magnitude  35.76 (J 8.18) 35.76 (| 16.66) 40.90 (] 6.37) 33.94( 6.97) 2273 (] 12.12) 30.30 (1-2.12)
—10 Wanda 26.06 (. 17.88) 27.58 (] 24.84) 28.79 (] 18.48) 28.48 (} 12.43) 5.45(1 30.97) 15.15(] 13.03)
p= SNIP 23.03 (4 20.91) 23.03 (] 29.39) 24.45(] 22.82) 27.58 () 12.43) 1.81 (] 33.04) 7.88 ({20.30)
SafeAdapt; 15.45 (] 28.49) 20.61 (] 31.81) 21.21 (] 26.06) 22.12 (] 18.79) 1.21(] 33.64) 3.94 (| 24.24)
Utility 1
Llama (Utility—61.25) Qwen (Utility—64.67) Gemma (Utility—52.08)
Top-p%  Method S1 S2 S1 S2 S1 S2
Fine-tune 60.92 60.25 64.51 62.32 52.33 53.50
Magnitude 60.67 60.00 64.58 61.75 52.08 53.17
-1 Wanda 60.83 60.08 64.50 62.17 52.08 52.42
p= SNIP 60.92 60.25 64.67 62.17 51.83 52.42
SafeAdapt; 60.83 60.75 64.25 62.58 52.33 52.33
Magnitude 61.00 60.42 64.42 61.67 52.42 53.00
_5 Wanda 61.08 60.58 65.00 63.08 52.17 52.75
p= SNIP 60.75 60.58 64.58 63.25 52.17 52.67
SafeAdapt; 61.08 60.75 64.92 63.33 52.33 52.33
Magnitude 60.75 60.42 64.42 61.92 52.50 53.17
—10 Wanda 61.08 60.50 64.42 63.33 52.25 53.00
p= SNIP 60.92 60.58 64.92 63.92 52.42 52.50
SafeAdapt; 60.92 61.00 64.42 63.75 52.00 52.58

Table 2: Performance Comparison across Different Scenarios and Methods. Experiments were conducted within
three distinct scenarios (S1, S2). Llama (7.57) denotes the safe base model Llama-3-8B-Instruct, characterized by a
7.57% ASR prior to any modifications. The term Fine-tune refers to safe base models that have been fine-tuned but
without any migration of weights. The Top-p% column signifies the migration of the top-p% neurons from these

safe base models.

continues to improve.

Impact of p on Model Safety. As shown in Table
2 and Figure 3, increasing p leads to a significant
decrease in the ASR of SafeAdapt; , indicating that
retaining more safety-related weights enhances the
model’s ability to resist attacks. However, when p
reaches around 15, the improvement in ASR begins
to slow down, and the curve starts to flatten, sug-
gesting diminishing returns in further increasing
the number of retained safety-critical weights. Be-
yond this point, retaining additional weights results
in only marginal improvements in safety, indicating
that an optimal balance between retaining enough
safety-critical weights and preserving model per-
formance has been reached.

6 Conclusion

We propose SafeAdapt, a novel method with a the-
oretical explanation, which can assess the contri-
bution of individual weights towards maintaining
safety alignment in adapted models. SafeAdapt
offer a powerful mean to analyze the contribution
of individual weights in neural networks, highlight
weights that have a significant impact on model
safety and performance. We introduce weight
preservation strategies that not only restore safety-
critical weights after fine-tuning but also ensure
these critical weights are protected during pruning
processes. Our experimental results demonstrate
SafeAdapt’s effectiveness in maintaining safety
alignment on various model adaptation tasks.



7 Limitations

Our research focuses on preserving the safety align-
ment of LLMs by identifying and safeguarding crit-
ical safety-related weights within the models. How-
ever, there are a few limitations to our approaches.
The datasets we used in our analysis are exclu-
sively in English. As a result, our findings may not
fully capture the complexities of LLMs when they
process input in other languages. It’s possible that
different languages could introduce implicit contex-
tual nuances or cultural differences that may affect
the model’s behavior, potentially leading to shifts
in alignment or performance that were not observed
in English-centric tests. Additionally, the models
we tested are not entirely up-to-date with the latest
developments in the field. The rapid pace of ad-
vancements in LLM technology means that newer
models, with different architectures and training
methodologies, may exhibit significantly different
behaviors or safety challenges than the models in-
cluded in our study.

References

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain,
Deep Ganguli, Tom Henighan, Andy Jones, Nicholas
Joseph, Ben Mann, Nova DasSarma, Nelson El-
hage, Zac Hatfield-Dodds, Danny Hernandez, Jack-
son Kernion, Kamal Ndousse, Catherine Olsson,
Dario Amodei, Tom Brown, Jack Clark, Sam Mc-
Candlish, Chris Olah, and Jared Kaplan. 2021. A
general language assistant as a laboratory for align-
ment. Preprint, arXiv:2112.00861.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqgiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda
Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan,
Nicholas Joseph, Saurav Kadavath, Jackson Kernion,
Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac
Hatfield-Dodds, Danny Hernandez, Tristan Hume,
Scott Johnston, Shauna Kravec, Liane Lovitt, Neel
Nanda, Catherine Olsson, Dario Amodei, Tom
Brown, Jack Clark, Sam McCandlish, Chris Olah,

Ben Mann, and Jared Kaplan. 2022. Training
a helpful and harmless assistant with reinforce-
ment learning from human feedback. Preprint,
arXiv:2204.05862.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia
Liu, Yang Zhang, Zhangyang Wang, and Michael
Carbin. 2020. The lottery ticket hypothesis for pre-
trained bert networks. Preprint, arXiv:2007.12223.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surpris-
ing difficulty of natural yes/no questions. CoRR,
abs/1905.10044.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2023. A framework for few-shot language model
evaluation.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015a. Learning both weights and connections for
efficient neural networks. CoRR, abs/1506.02626.

Song Han, Jeff Pool, John Tran, and William J. Dally.
2015b. Learning both weights and connections for ef-
ficient neural networks. Preprint, arXiv:1506.02626.

Dan Hendrycks, Mantas Mazeika, and Thomas Wood-
side. 2023. An overview of catastrophic ai risks.
Preprint, arXiv:2306.12001.

Junyuan Hong, Jinhao Duan, Chenhui Zhang,
Zhangheng Li, Chulin Xie, Kelsey Lieberman, James
Diffenderfer, Brian Bartoldson, Ajay Jaiswal, Kaidi
Xu, Bhavya Kailkhura, Dan Hendrycks, Dawn Song,
Zhangyang Wang, and Bo Li. 2024. Decoding
compressed trust: Scrutinizing the trustworthiness
of efficient llms under compression. Preprint,
arXiv:2403.15447.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2021. Lora: Low-rank adaptation of
large language models. Preprint, arXiv:2106.09685.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik,
Joar Skalse, and Scott Garrabrant. 2021. Risks from
learned optimization in advanced machine learning
systems. Preprint, arXiv:1906.01820.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip
H. S. Torr. 2019.  Snip: Single-shot network
pruning based on connection sensitivity. Preprint,
arXiv:1810.02340.


https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2112.00861
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2204.05862
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/2007.12223
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1905.10044
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://doi.org/10.5281/zenodo.10256836
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/2306.12001
https://arxiv.org/abs/2403.15447
https://arxiv.org/abs/2403.15447
https://arxiv.org/abs/2403.15447
https://arxiv.org/abs/2403.15447
https://arxiv.org/abs/2403.15447
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1906.01820
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340
https://arxiv.org/abs/1810.02340

Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou,
Zifan Wang, Norman Mu, Elham Sakhaee, Nathaniel
Li, Steven Basart, Bo Li, et al. 2024. Harmbench: A
standardized evaluation framework for automated
red teaming and robust refusal. arXiv preprint
arXiv:2402.04249.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. Preprint, arXiv:1809.02789.

OpenAl, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, and et al. 2024. Gpt-4 technical report.
Preprint, arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen,
Ruoxi Jia, Prateek Mittal, and Peter Henderson. 2023.
Fine-tuning aligned language models compromises

safety, even when users do not intend to! Preprint,
arXiv:2310.03693.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2019. Winogrande: An adver-
sarial winograd schema challenge at scale. Preprint,
arXiv:1907.10641.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter.
2024. A simple and effective pruning approach for
large language models. Preprint, arXiv:2306.11695.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford alpaca:
An instruction-following llama model. https://
github.com/tatsu-lab/stanford_alpaca.

Gemma Team. 2024. Gemma.

Hugo Touvron, Louis Martin, Kevin Stone, and et al.
2023. Llama 2: Open foundation and fine-tuned chat
models. Preprint, arXiv:2307.09288.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Boyi Wei, Kaixuan Huang, Yangsibo Huang, Tinghao
Xie, Xiangyu Qi, Mengzhou Xia, Prateek Mittal,
Mengdi Wang, and Peter Henderson. 2024. As-
sessing the brittleness of safety alignment via prun-
ing and low-rank modifications. arXiv preprint
arXiv:2402.05162.

10

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. Preprint,
arXiv:2109.01652.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen,
and Hai Li. 2016. Learning structured sparsity in
deep neural networks. Preprint, arXiv:1608.03665.

Jingwei Yi, Rui Ye, Qisi Chen, Bin Zhu, Siheng
Chen, Defu Lian, Guangzhong Sun, Xing Xie, and
Fangzhao Wu. 2024. On the vulnerability of safety
alignment in open-access LLMs. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 9236-9260, Bangkok, Thailand. Associ-
ation for Computational Linguistics.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of
the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4791-4800, Florence,
Italy. Association for Computational Linguistics.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr,
J. Zico Kolter, and Matt Fredrikson. 2023. Univer-
sal and transferable adversarial attacks on aligned
language models. Preprint, arXiv:2307.15043.


https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/1809.02789
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/2310.03693
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/1907.10641
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://arxiv.org/abs/2306.11695
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.34740/KAGGLE/M/3301
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/2109.01652
https://arxiv.org/abs/1608.03665
https://arxiv.org/abs/1608.03665
https://arxiv.org/abs/1608.03665
https://doi.org/10.18653/v1/2024.findings-acl.549
https://doi.org/10.18653/v1/2024.findings-acl.549
https://doi.org/10.18653/v1/2024.findings-acl.549
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043
https://arxiv.org/abs/2307.15043

	Introduction
	Related Work
	Alignment
	Identification of Critical Weights

	Identify Critical Weights for Safety Behavior
	Sensitivity Score
	Perturbation Strategy
	Comparison Group

	Adaptation Strategy
	Safe Pruning
	Safe Fine-Tuning

	Experiments
	Safe Pruning
	Safe Fine-Tuning

	Conclusion
	Limitations

