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Abstract— Traditional compliance control methods face lim-
itations in precision assembly due to delicate contact tran-
sitions and rigid parameter tuning. This paper introduces
an online memory-augmented compliance learning framework
RoboMAN to achieve human-like compliance control in pre-
cision electronics assembly tasks. This framework is trained
on a 6-DOF force-motion dataset collected via our developed
bilateral teleoperation system. Experimental evaluations on four
representative electronics assembly tasks demonstrate Robo-
MAN’s superiority in memory efficiency (48% GPU utilization),
training speed (65.25s per epoch), inference latency (0.25s per
batch), task success rates (up to 98%), while demonstrating
robust dynamic force adaptability during task execution. This
work establishes a new paradigm for adaptive robotic com-
pliance control by bridging biological compliance principles
with efficient robotic execution, offering a scalable solution in
precision contact-rich environments.

I. INTRODUCTION

Robots are widely employed in industries such as manu-
facturing, agriculture, and healthcare to improve efficiency
[1]. While they excel at tasks involving minimal contact
(e.g., welding, drone spraying, ultraviolet disinfection), con-
ventional compliance control methods exhibit limitations
in electronic component assembly requiring stage-specific
force regulation and tight tolerances. Specifically, passive
compliance mechanisms relying on mechanical flexibility
face accuracy constraints [2], while active approaches such
as hybrid force/position control encounter stability issues
during contact transitions [3]. Moreover, impedance control
dependency on manual parameter tuning further restricts
adaptability to dynamic conditions [4].

Human assembly strategies provide critical insights by
leveraging adaptive force sensing and coordinated limb stiff-
ness modulation. Inspired by these biological compliance
mechanisms, we propose an end-to-end paradigm that en-
ables robot force-responsive motion adaptation. One major
implementation challenge arises from the lack of compre-
hensive force-motion interaction dataset on precision elec-
tronics assembly tasks [5]. Therefore, we develop a bilateral
teleoperation platform (Fig.1) combining human operational
expertise with robotic sensing. This system captures syn-
chronized force and motion adjustments sequences through
haptic feedback-enabled human interventions, establishing
the dataset for the compliance learning framework.
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Fig. 1. Overview of the proposed framework for compliant electronics
assembly control: The upper module represents a bilateral teleoperation
system that synergizes human operator inputs with robotic motion control,
enabling precise acquisition of force-motion interaction sequences. The
lower module features the RoboMAN, which leverages multimodal dataset
to perform global feature extraction, achieving human-like compliance
assembly strategies.

Recent advances in large language model and vision-
language model indicate the potential for analogous meth-
ods in compliance control. Among existing frameworks
for sequence handling, Transformer [6] demonstrates robust
modeling capabilities, but suffers from quadratic complexity,
making it inefficient for robotic high-frequency sensor data
processing. To overcome this limitation, we introduce the
modular loss-guided incremental learning framework Robo-
MAN to efficiently address long-sequence processing in
robotics. In contrast to Transformers, RoboMAN achieves
lower complexity without compromising processing speed.
Furthermore, compared to RNN [7] and LSTM [8] that often
face gradient vanishing/explosion and catastrophic forgetting
due to rigid memory mechanisms, RoboMAN adaptively
balances fixed and modular loss components dynamically



to achieve stability and plasticity. Specifically, it preserves
historical knowledge through high-weight loss constraints
while adaptively integrating new information via low-weight
modules, ensuring consistent task performance and flexible
adaptation to evolving data distributions. In summary, the
principal contributions of this paper are as follows:

• Bilateral teleoperation system and multimodal
dataset: We establish a bilateral teleoperation system
providing force feedback to capture the comprehensive
force-motion interaction dataset, which reflects human
compliance strategies in diverse representative electron-
ics assembly scenarios.

• Online Memory-Augmented Compliance Learning:
The proposed RoboMAN framework pioneers an online
memory-augmented network based on loss-guided mod-
ular adaptation, establishing the first implementation of
online learning mechanisms for multidegree-of-freedom
compliance control in precision electronics assembly.

• State-of-the-art performance in adaptive compliance
control: Through extensive experiments on four repre-
sentative electronics assembly tasks, RoboMAN estab-
lishes new benchmarks, outperforming existing methods
in memory efficiency, inference speed, convergence
stability, and task success rates. These results validate
the efficacy and efficiency of the proposed framework
in various electronics assembly tasks.

II. RELATED WORK

Compliance control with human-like flexibility is benefi-
cial for applications requiring safety and precision in delicate
environments. Therefore, the methods relied on arm stiffness
estimation via electromyography [9] or least-squares fitting
[10] to modulate robot compliance. Although effective for
coarse tasks, these methods become susceptible to modeling
inaccuracies and sensor noise in high-precision scenarios.

Modern learning-based approaches mitigate these limita-
tions through adaptive compliance regulation. Reinforcement
learning (RL) theoretically enables autonomous impedance
tuning via Markov decision processes, yet struggles with
reward specification, safety assurance, and sample ineffi-
ciency [11]. Imitation learning (IL) bypasses these challenges
by extracting policies from expert demonstrations, excelling
in tasks lacking quantitative success metrics [12]. While
traditional IL architectures inadequately model temporal
dependencies [13], contemporary solutions employ RNN
[7] and Transformers [6] for enhanced sequence modeling.
However, we summarize the critical limitations: (1) Un-
derutilization of multimodal force-torque data in systems
[14], [15], with some relying solely on simulated kinematics
[15]; (2) Oversimplified force integration approaches such
as environmental stiffness estimation [16] or vibration-based
feedback [17]; (3) Computational compromises in temporal
modeling through fixed windowing [18], [19] or sequence
truncation [20]. Our framework addresses these gaps by col-
lecting the comprehensive force-motion interaction dataset
and biomimetic compliance control for complex electronics
assembly tasks.

III. SYSTEM AND METHODS

A. Bilateral Teleoperation System

This work develops a bilateral teleoperation system that
integrates the Sigma.7 haptic interface and the Franka
Emika Panda robot to establish a bidirectional force-motion
coupling framework. The hardware architecture combines
the Sigma.7’s high-fidelity force rendering (0.02mm spatial
resolution, submillisecond latency) [21] with the Franka
robot’s multi-axis force/torque sensing (±0.1N accuracy)
[22], enabling synchronized physical interaction percep-
tion. A distributed ROS-based software framework ensures
real-time kinematic and dynamic computations, low-latency
haptic transmission, and synchronized multimodal dataset,
providing a robust foundation for subsequent data-driven
framework learning.

To model human-like compliance control, we adapt
position-based impedance control as the fundamental mathe-
matical model, where interaction wrenches are translated into
corrective motion adjustments. Formally, our mathematical
model follows a second-order differential equation:

m∆Ẍ + b∆Ẋ + k∆X = F (1)

where ∆Ẍ , ∆Ẋ and ∆X respectively denote the ac-
celeration, velocity, and displacement adjustments of the
Sigma.7 end-effector, while m, b and k represent the system’s
effective inertia, damping, and stiffness coefficients, and F
is the external force/torque sensed at the robot end-effector.

In precision electronics assembly, operational velocities
are generally low, minimizing the influence of velocity
and acceleration errors. Moreover, our approach addresses
multidimensional dynamics by mapping force/torque inputs
to motion outputs across all six degrees of freedom (DoF),
surpassing the limitations of single-DoF solutions.

Consequently, the force-motion interaction dataset is
constructed via closed-loop control. At each time instant
ti, the human operator—using the Sigma.7 haptic inter-
face—perceives the robot’s end-effector wrenches F (ti) and
adjusts the Sigma.7 end-effector pose ∆X (ti) to counteract
undesired contact wrenches. This synchronized time series
dataset (ti,F (ti) ,∆X (ti)) establishes essential correla-
tions between contact forces and compensatory motions for
human-like compliance learning. Detailed dataset character-
istics are analyzed in Section IV-A.

B. Architecture of the Online Memory-Augmented Network

We propose the online memory-augmented network
(RoboMAN) to balance stability and plasticity through a
modular loss function and dynamic weight redistribution.
The algorithm’s main concept is to embed inputs and outputs
into a low-weight module during initial training. This module
contributes to the overall loss function and is adaptively
adjusted as new data arrive. During incremental learning, the
algorithm dynamically redistributes the module’s weights to
incorporate new dataset, while still preserving the knowledge
acquired from previous dataset. Through iterative optimiza-
tion, the network increasingly improves its performance



across the assembly situations. RoboMAN employs a multi-
layer perceptron trained on multimodal dataset, where end-
effector force/torque measurements serve as state variables,
and motion corrections are action variables. The hidden lay-
ers extract nonlinear relationships. The network parameters
are incrementally updated via stochastic gradient descent:

θt+1 = θt − η∇θtL(t) (2)

where θt is the network parameters (including weights and
biases) at time step t, η is the learning rate, and ∇θtL(t) is
the total loss gradient.

The core of this framework lies in designing a suitable loss
function that addresses catastrophic forgetting. Specifically,
the total loss combines a fixed term and a modular term.

The fixed loss term ensures alignment between the pre-
dicted and operator-executed adjustments:

Lfixed =
1

N

N∑
i=1

(∆Xpred(ti)−∆Xact(ti))
2 (3)

Modular loss term adapts to new data while preserving
historical knowledge:

Lmod =
1

N

N∑
i=1

(∆Xmod(ti)−∆Xact(ti))
2 (4)

where ∆Xmod(ti) = G(k)(F (ti)) is the posture adjustment
computed using the mapping function G(k) learned through
current training and G(k) is a time-varying mapping function.
Specifically, the initial network parameters G(0) are derived
from the baseline training data, with subsequent parameter
updates G(k) generated upon the assimilation of new data
batches. The weighting factor λ(k) balances the losses:

λ(k) = λ(k) · exp

(
−η ·

L
(k−1)
total − L

(k)
total

L
(k−1)
total

)
(5)

with total loss L
(k)
total = λ(k)Lfixed + (1 − λ(k))Lmod.

This loss function employs a dual-component architecture:
a stable high-weight fixed loss term preserving fundamental
task, and an adaptive low-weight modular loss term accom-
modating emerging patterns. The fixed component ensures
directional consistency in optimization trajectories, while
the dynamic submodule facilitates catastrophic forgetting
mitigation through progressive knowledge assimilation. This
configuration enables simultaneous conservation of acquired
characteristic of dataset while permitting controlled integra-
tion of novel information, thereby addressing the stability-
plasticity dilemma inherent in learning systems. In summary,
the online learning framework is detailed in Algorithm 1.

By capturing the fundamental mapping between inputs
and kinematic adjustments, RoboMAN enables human-like
compliant control, as verified by subsequent experiments and
supplemental video demonstrations. Detailed implementation
guidelines, hyperparameter and stability proof for RoboMAN
are documented in our GitHub repository, with further elab-
oration omitted here due to space constraints.

Algorithm 1 RoboMAN: Online Learning Framework
1: Initialize network parameters θ, weight λprev, learning rate η,

buffer B, total loss Ltotal prev
2: while not converged do
3: New dataset (ti, F (ti),∆X(ti)), store in B
4: ∆Xpred ← NeuralNetworkPredict(θ, F (ti))
5: Fixed loss Lfixed ← MSE(∆Xpred,∆X(ti))
6: if mapping function G ̸= None then
7: Modular loss Lmod ← MSE(G(F (ti)),∆X(ti))
8: else
9: Modular loss Lmod ← 0

10: Total loss Ltotal ← λprev · Lfixed + (1− λprev) · Lmod
11: Update parameters θ ← θ − η · ∇θLtotal
12: if B has sufficient data then
13: G← TrainNewMapping(B)

14: Improvement ← Ltotal prev−Ltotal
Ltotal prev

15: λprev ← λprev · exp(−η · Improvement)
16: Clear B, update Ltotal prev ← Ltotal

17: return ∆Xpred

IV. EXPERIMENTS

A. Implementation Details

Four representative electronic component assemblies were
experimentally studied (Fig. 2). For each component type,
50 assembly trajectories were collected using a bilateral
teleoperation system with randomized initial positions of
both components and end-effector. Variations in component
geometry and structural complexity significantly affected as-
sembly success rates. Therefore, each trial duration spanned
7-13 seconds at a 750 Hz sampling rate, yielding 262.5k-
487.5k temporal steps per category. The teleoperation system
ran on a Legion 5 workstation (Intel i7-11800H, NVIDIA
RTX 3060), while framework training was conducted on a
computing cluster equipped with dual NVIDIA L40S GPUs.

Fig. 2. Four typical electronic component assembly tasks: RJ45 (polyg-
onal), USB-A (rectangular), HDMI (trapezoidal), and Type-C (oval) con-
nectors with 0.1-0.2 mm assembly tolerances. The high precision of the
assembly tolerances and different sizes require compliance control of pose
and wrenches, with experimental validation video in the supplement.

B. Comparative Evaluation of Methods Performance

In evaluating electronics assembly performance, we com-
pared the proposed RoboMAN framework with four SOTA
methods: Action Chunking with Transformers (ACT) [14],
Compliance Control via Action Chunking with Transformers
(Comp-ACT) [17], a Long-Short-Term Memory (LSTM)
approach [8] and Imitation Learning Based on Bilateral
Control and Transformers (ILBiT) [16]. All experiments
followed standardized hardware configurations and training
protocols. The evaluations span five metrics: computational



TABLE I
OVERALL RESULTS WITH DIFFERENT METHODS

Method Memory
Usage (%)

Training
Time (s)

Inference
Time (s)

Minimum
Loss

Convergence
Epochs

Success Rate
RJ45

Success Rate
USB-A

Success Rate
HDMI

Success Rate
Type-C

ACT 62 154.36 0.65 0.2598 105 0.72 0.80 0.88 0.95
Comp-ACT 67 180.67 0.89 0.1258 113 0.79 0.81 0.92 0.98

LSTM 50 85.98 0.35 0.2293 95 0.70 0.81 0.82 0.82
ILBiT 70 190.24 1.26 0.3061 150 0.75 0.76 0.83 0.89

RoboMAN (Ours) 48 65.25 0.25 0.0774 80 0.86 0.85 0.93 0.98

efficiency (GPU memory utilization), temporal performance
(training/inference latency), optimization quality (validation
loss), convergence speed (epochs to peak performance) and
the success rates of electronics assembly.

As shown in Table I, RoboMAN achieves SOTA
performance, demonstrating 48% GPU memory effi-
ciency—surpassing LSTM (50%) and ACT (62%). It exhibits
dual temporal superiority: 65.25s/epoch (24.1% faster than
LSTM) and 0.25s/batch inference (28.6% faster than LSTM).
Transformer-based methods incur 2.37–2.92× longer train-
ing durations compared to RoboMAN. With a record-low
validation loss (0.0774, 38.5% lower than Comp-ACT) and
accelerated convergence (80 epochs, 15.6–46.7% faster than
baselines), RoboMAN achieves task success rates of 86%
(RJ45), 85% (USB-A), 93% (HDMI) and 98% (Type-C).
Prior methods exhibited suboptimal force feedback integra-
tion, leading to compliance adaptation failures and perfor-
mance decline during electronics assembly phases.

C. Adaptive Force Control in Electronics Assembly

A comparison of axial force regulation was conducted
between the top-performing models in assembly success
rate, RoboMAN and Comp-ACT. Two representative cases
were examined: Type-C connector insertion and RJ45-to-
HDMI transitions. In Type-C insertion (Fig.3, top), Comp-
ACT exhibited significant fluctuations exceeding 12N with
broader operational variability. RoboMAN maintained stable
axial forces (0-3N range, mean 2N) with minimal variance,
demonstrating superior force consistency.

To better illustrate performance differences, force trajec-
tories were temporally aligned across 370 time steps during
RJ45-HDMI transitions (Fig.3, bottom), RoboMAN achieved
force stabilization (0-3N) through adaptive gain modulation,
sustaining 4N forces with narrow variance. Comp-ACT dis-
played recurrent surges up to 9.5N due to static CVAE
architecture limitations. Post-step 210, RoboMAN preserved
force consistency while Comp-ACT showed amplified oscil-
lations. The results demonstrate RoboMAN’s dynamic latent
space optimization, which enables robust force adaptation,
contrasting with Comp-ACT’s rigid control framework that
induces force instability. These findings underscore Robo-
MAN’s superior environmental robustness and compliance
control, critical for electronics assembly scenarios.

V. CONCLUSIONS

This study introduces RoboMAN, an innovative frame-
work for human-like compliance control through an online

Fig. 3. Comparative analysis of assembly contact forces. Top: The contact
force measured during Type-C assembly with RoboMAN and Comp-ACT
Bottom: Comparison of contact force between RoboMAN and Comp-ACT
during the transition between variable assembly tasks. The transition occurs
at approximately the 150th time step and ends around the 210th step.

memory-augmented network architecture. The proposed sys-
tem demonstrates superior performance compared to exist-
ing methodologies in different electronics assembly envi-
ronments, achieved via online learning from a multimodal
dataset acquired through our developed bilateral teleopera-
tion system. RoboMAN effectively addresses a critical gap
in force-aware manipulation research by establishing new
benchmarks in adaptive control precision.

Future investigations will explore the integration of ad-
ditional sensory input, such as visual perception, and the
extension of this framework to broader applications.
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