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ABSTRACT

Supervised Fine-Tuning (SFT) on domain-specific datasets is a common approach
to adapt Large Language Models (LLMs) to specialized tasks but is often believed
to degrade their general capabilities. In this work, we revisit this trade-off and
present both empirical and theoretical insights. First, we show that SFT does not
always hurt: using a smaller learning rate can substantially mitigate general per-
formance degradation while preserving comparable target-domain performance.
We then provide a theoretical analysis that explains these phenomena and fur-
ther motivates a new method, Token-Adaptive Loss Reweighting (TALR). Build-
ing on this, and recognizing that smaller learning rates alone do not fully eliminate
general-performance degradation in all cases, we evaluate a range of strategies for
reducing general capability loss, including L2 regularization, LoRA, model av-
eraging, FLOW, and our proposed TALR. Experimental results demonstrate that
while no method completely eliminates the trade-off, TALR consistently outper-
forms these baselines in balancing domain-specific gains and general capabilities.
Finally, we distill our findings into practical guidelines for adapting LLMs to new
domains: (i) using a small learning rate to achieve a favorable trade-off, and (ii)
when a stronger balance is further desired, adopt TALR as an effective strategy.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable performance across a wide range of
general-purpose tasks, including question answering, mathematical reasoning, and code generation
(Yang et al., 2024; 2025; Touvron et al., 2023; Dubey et al., 2024). To further enhance their effective-
ness in specialized applications, practitioners often perform additional supervised fine-tuning (SFT)
using domain-specific data. This process enriches the model with domain knowledge and yields
substantial performance gains on domain-specific tasks (Labrak et al., 2024; Lin et al., 2024; Peng
et al., 2024). SFT has thus become a standard paradigm for adapting LLMs to real-world deployment
scenarios.

However, recent studies have shown that fine-tuning LLMs on domain-specific datasets can substan-
tially impair their generalization capabilities (Huan et al., 2025; Lin et al., 2025a; Chen et al., 2025;
Bansal & Sanghavi, 2025; Sanyal et al., 2025; Chu et al., 2025; Shenfeld et al., 2025). For example,
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performing SFT on LLMs like Qwen-3 (Yang et al., 2025) or Gemma-3 (Team et al., 2025) using
domain-specific datasets, such as those from e-commercial or biomedical domains, often leads to
significant performance drops on general-purpose benchmarks such as GSM8K (Cobbe et al., 2021),
HumanEval (Chen et al., 2021), or IFEval (Zhou et al., 2023), which assess core capabilities like
mathematical reasoning, code generation, and instruction following. This phenomenon raises the
need for a closer examination of domain-specific SFT.

In this work, we revisit the phenomenon of general capability degradation induced by domain-
specific SFT. Surprisingly, domain-specific SFT does not always significantly degrade general
capabilities, contrary to prior claims. Our experiments reveal that, in most cases:

Using a smaller learning rate allows domain-specific SFT to achieve a favorable trade-off:
• General-purpose performance degradation is largely mitigated;
• Target domain performance is comparable to that with larger learning rates.

The first observation is relatively expected, since smaller learning rates naturally suppress parameter
drift compared to more aggressive updates (Pareja et al., 2025). The second, however, is more
surprising. Prior to the LLM era, practical experience in machine and deep learning suggested
that larger learning rates are often essential for better downstream performance (Mohtashami et al.,
2023; Li et al., 2019; Sadrtdinov et al., 2024). In contrast, we show that LLMs behave differently:
comparable domain-specific performance can still be achieved under smaller learning rates. We
further provide a theoretical analysis supporting this phenomenon. In addition, a closer inspection
of prior studies shows that their strong degradation claims predominantly arise under relatively large
learning rates. Taken together, our empirical and theoretical evidence demonstrates that a careful
choice of learning rate offers a practical path to balance domain adaptation with general capability
preservation (§3).

While adopting smaller learning rates typically yields a better trade-off, we also observe that this
does not fully mitigate the general-performance degradation in all cases. To address this, we fur-
ther investigate mitigation approaches that could mitigate such degradation (§4). Specifically, we
assess a range of representative strategies evaluated in Sanyal et al. (2025), including L2 regular-
ization, LoRA (Hu et al., 2022), model averaging (Wortsman et al., 2022), and FLOW (Sanyal
et al., 2025), along with our proposed method, Token-Adaptive Loss Reweighting (TALR). TALR
adaptively down-weights hard tokens by solving a constrained optimization problem that admits a
closed-form solution, thereby tempering their potential disproportionate influence on general capa-
bility degradation during training. Our experiments demonstrate that TALR provides advantages in
further suppressing general-performance degradation compared to these baselines. Nevertheless, no
existing method including TALR can completely eliminate the degradation, highlighting the need
for more advanced strategies to be explored in future work.

We further conduct a token-level analysis to better understand domain-specific SFT (§4.3). This
analysis yields two key findings: (1) Most tokens in SFT training data pose low learning diffi-
culty to the LLMs, even when the overall domain-specific task performance is poor. The rel-
atively fewer hard tokens (i.e., low-probability tokens) typically arise either from a lack of domain
knowledge in the pretrained model or from stylistic mismatches between the domain-specific data
and the pretrained model. (2) TALR induces a token-level curriculum-like learning dynamic. In
the early stages of training, easier tokens receive more focus, while hard tokens are down-weighted.
As training progresses, however, some of these hard tokens become relatively easier for the model,
and their weights gradually increase. This dynamic allows TALR to smoothly shift focus over time,
balancing the injection of domain knowledge with the preservation of general capabilities.

Finally, we summarize our findings into a practical guideline for domain-specific SFT:

Guidelines for domain-specific SFT.
• Use a smaller learning rate to achieve a favorable trade-off between domain performance and

general-purpose capability preservation.
• When a stronger balance is further required, adopt TALR as an effective strategy to further

suppress general-performance degradation.
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2 RELATED WORK

Our problem setting can be broadly framed within the scope of continual learning, where models
must acquire new knowledge while retaining previously learned capabilities to avoid catastrophic
forgetting. Existing approaches are typically divided into two categories: data-dependent and data-
oblivious. Data-dependent methods assume access to a subset of the training data from earlier
stages, whereas data-oblivious methods rely solely on the pre-trained model without revisiting any
prior data. The latter is particularly realistic in practice, as access to proprietary or large-scale pre-
training corpora is often infeasible, yet it remains relatively underexplored. For a broader overview
of this landscape, we refer readers to recent surveys (Wang et al., 2024a). Our focus in this paper is
on the data-oblivious setting.

Data-oblivious approaches. One line of work introduces loss regularization to constrain the fine-
tuned model from drifting too far from its initialization, such as L2 regularization in parameter
space (Kumar et al., 2025; Kirkpatrick et al., 2017). Another line of work explores the idea of
model averaging, which combines the parameters of the pre-trained model and the fully fine-tuned
model through a convex combination, aiming to balance adaptation with retention (Wortsman et al.,
2022; Lubana et al., 2022; Ilharco et al., 2023; Kleiman et al., 2025). LoRA (Hu et al., 2022;
Biderman et al., 2024) represents another widely used strategy, enforcing low-rank updates to the
weight matrices so that parameter changes are confined to a restricted subspace, thereby limiting
catastrophic drift while improving efficiency. Besides, data reweighting has been explored as a
promising strategy; for example, FLOW (Sanyal et al., 2025) mitigates forgetting in vision tasks by
adjusting the loss weights of easy and hard samples.

Extensions to LLMs. Existing research has primarily focused on data-dependent methods in the
LLM context (Scialom et al., 2022; Yin et al., 2023; Wang et al., 2024b; Xiong et al., 2023; Mok
et al., 2023). In contrast, data-oblivious approaches remain relatively underexplored, though several
studies have begun adapting ideas from continual learning on traditional models to LLMs (Sanyal
et al., 2025; Razdaibiedina et al., 2023; Wang et al., 2023; Zhao et al., 2024). Refer to the survey
by Wu et al. (2024) for more details. However, LLMs differ substantially from earlier architectures
in scale, pre-training regimes, and emergent capabilities, which makes their adaptation dynamics
distinct. As a result, we revisit continual SFT of LLMs on domain-specific datasets, aiming to better
understand its mechanism.

3 LEARNING RATE MATTERS: REVISITING ITS ROLE IN GENERAL
CAPABILITY DEGRADATION DURING DOMAIN-SPECIFIC SFT

In this section, we revisit the role of learning rate in domain-specific SFT and its impact on general
capability degradation. Surprisingly, we find that using a smaller learning rate (e.g., 1e−6) can sub-
stantially reduce the loss of general capabilities, while achieving domain-specific task performance
on par with much larger learning rates. This suggests that the severe degradation reported in prior
work may stem, at least in part, from overly aggressive optimization (Huan et al., 2025; Lin et al.,
2025a; Chen et al., 2025; Bansal & Sanghavi, 2025; Sanyal et al., 2025; Shenfeld et al., 2025).
Indeed, many of these studies used relatively large learning rates such as 5e−6 or 2e−5.

To systematically investigate this effect, we experiment on two domain-specific datasets: MedCalc
(Khandekar et al., 2024) and ESCI (Reddy et al., 2022). We choose these datasets because existing
open-source LLMs perform poorly on them, making them representative scenarios where domain-
specific SFT is most motivated: to enhance specialized capabilities in domains where the initialized
model is weak. Below are details of the experimental setups and results for each dataset.

3.1 EXPERIMENTAL SETUP

3.1.1 DATASETS

MedCalc (Khandekar et al., 2024) consists of 10.1k training and 1.05k test examples. Each instance
includes a brief patient note and a clinical instruction (e.g., “What is the patient’s CHA2DS2-VASc
score?”), with the goal of predicting a numeric, categorical, or datetime answer. The training set
provides gold chain-of-thought (CoT) rationales, which we use as supervision targets during SFT.
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Figure 1: Effect of learning rate on domain-specific and general capability performance dur-
ing supervised fine-tuning (SFT). We conduct experiments on two domain-specific datasets, Med-
Calc and ESCI. For the ESCI (w/o CoT) variant, the model is trained only to predict the final la-
bel without intermediate reasoning steps, unlike the other three settings where reasoning traces are
available. General capability performance is measured as the average across IFEval, GSM8K, and
HumanEval unless otherwise specified. We observe that smaller learning rates yield a more favor-
able trade-off (upper-right corner) between domain performance and general performance.

The ESCI dataset (Reddy et al., 2022) is an e-commerce product classification benchmark contain-
ing query–product pairs labeled as Exact, Substitute, Complement, or Irrelevant. The training set
consists of 49k examples, and the test set contains 10k examples. We consider two training settings:
w/ CoT, where the target sequence includes both reasoning and the final label, and w/o CoT, where
it contains only the label.

3.1.2 EVALUATION PROTOCOL

For the MedCalc task, we follow the evaluation protocol of Khandekar et al. (2024) and report
accuracy based on the model’s final answer. For general capability evaluation, we measure perfor-
mance on a suite of general-purpose benchmarks using the lm-evaluation-harness frame-
work (Gao et al., 2024), following the same evaluation setup as prior works (Lin et al., 2025a;
Sanyal et al., 2025; Bansal & Sanghavi, 2025). Model checkpoints are selected based on their
best performance on the target domain task, after which the corresponding models are evaluated on
general-purpose benchmarks, reflecting practical scenarios where downstream task performance is
prioritized (Sanyal et al., 2025; Bansal & Sanghavi, 2025). The evaluation metric for each bench-
mark is detailed in Appendix C.1. Since ESCI is highly imbalanced across classes, we follow prior
work on imbalanced classification (Xu et al., 2024; 2025) and report balanced accuracy (BACC) as
our primary metric.

3.2 MAIN RESULTS

Finding 1: Smaller learning rates achieve a more favorable trade-off. From Figure 1, we observe
that for both MedCalc and ESCI, smaller learning rates consistently lead to points located toward
the upper-right region of the plots. This indicates that they can effectively mitigate degradation in
general capabilities while simultaneously delivering strong performance on the target domain tasks.

Finding 2: Label-only supervision loosens learning rate constraints for Pareto-optimal
trade-offs. When the target sequence consists solely of the ground-truth label (e.g.,
<answer>[label]</answer>) without intermediate reasoning steps, the range of learning
rates that achieve Pareto-optimal trade-offs becomes broader. As shown in Figure 1(d), a learn-
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ing rate of 5e−6 performs comparably to 1e−6 in the upper-right region, which contrasts with the
trend observed in the other subfigures of Figure 1.

Remark: From our experiments on MedCalc and ESCI, as well as the additional results and analyses
in Appendix C.3, we observe consistent patterns: smaller learning rates can substantially reduce
general capability degradation while maintaining competitive domain-specific performance. This
naturally raises the question:

Why do milder updates preserve general abilities while still enabling strong domain gains?

To shed light on this phenomenon, we next turn to a theoretical analysis, aiming to uncover insights
into how the learning rate shapes the trade-off between domain adaptation and the preservation of
general capabilities in domain-specific SFT.

3.3 THEORETICAL ANALYSIS

To better understand the empirical phenomena observed previously, we provide a theoretical anal-
ysis from the perspective of information theory. Motivated by the equivalence between language
modeling and data compression (Deletang et al., 2024; Ji et al., 2025), we view an LLM as a com-
pressor, where the effectiveness of training can be measured through changes in code length. In
this view, improvements or degradations in performance across datasets correspond to variations in
compression rate. Below, we formalize this perspective by introducing the notion of token trees and
describing the LLM compression protocol in our context.
Definition 3.1 (Token Tree T ). For a dataset D = {zi ∈ V∞ | i = 1, 2, . . .}, |V| < ∞, where
V = {v1, v2, . . . , v|V|} is a finite vocabulary of size |V|, the token tree of D, denoted as TD, is
defined as follows: (1) each node has |V| child nodes labeled v1, v2, . . . , v|V|, along with an end-of-
sequence (EOS) leaf node; (2) The weight of a non-leaf node is the sum of the weights of all its child
nodes; (3) The path from the root to an EOS leaf node defines a response zi, with the corresponding
EOS node weight representing the response’s probability.

Definition 3.2 (LLM Compression Protocol). Let TD be the token tree of datasetD, and let qθ(· | u)
denote the conditional distribution over V ∪{EOS} predicted by an LLM with parameters θ at node
u ∈ TD. Given a response z (a path from the root to an EOS leaf, truncated to a pre-defined
maximum depth d), the LLM compression protocol encodes z using arithmetic coding, where at
each step the coding probabilities are given by qθ(· | u) for the current node u along the path of z.

Having established the compression protocol, we now follow prior work (Deletang et al., 2024; Ji
et al., 2025) and use changes in expected code length as a surrogate metric for an LLM’s modeling
quality on a given dataset distribution. In this view, reductions in code length discrepancy correspond
to better alignment with the data distribution. Formally, this is captured by the following proposition.
Proposition 3.1 (Expected Code Length Discrepancy under Model Shift). Consider two model dis-
tributions qθ1(·) and qθ2(·) over the token tree TD with distribution P . The change in expected
code length on P when shifting from qθ1 to qθ2 is ∆L(P ) = Ez∼P [Lqθ2

(z)] − Ez∼P [Lqθ1
(z)] =

−
∑d

l=1

∑
j pl,j log

q
(2)
l,j

q
(1)
l,j

. Equivalently, ∆L(P ) = KL(P ∥ qθ2)−KL(P ∥ qθ1).

Based on the above, we now turn to our main goal: explaining the empirical phenomena observed
in §3, namely Finding 1 and 2. To keep the presentation clear and concise, we provide simplified
informal statements of our key theorems below, while the full formal versions and proofs are referred
to Appendix B.

Theorem 3.1. (Informal) Under certain assumptions, consider fine-tuning on a domain-specific
dataset D2 with a fixed target domain improvement ∆⋆ > 0 (i.e., ∆L(P2) ≤ −∆⋆). The general-
performance degradation on D1, which is already well modeled by the LLM, admits an upper
bound

∆L(P1) ≤ k1 ∆⋆ + k2 ∆
2
⋆ λ

where λ is the effective per-step size and k1, k2 are constants determined by the model and data.
Thus, using smaller steps (smaller λ) leads to strictly tighter guarantees on general-performance
preservation.
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Table 1: Comparison of domain and general performance on the MedCalc Benchmark under learn-
ing rate 1e−6. Both Standard SFT (with smaller learning rate) and TALR are our contributions,
and together they achieve the best overall trade-offs compared with the other baselines.

Method Qwen2.5-3B Qwen3-4B Gemma3-4B Average
Domain General Domain General Domain General Domain General

Standard (Ours) 0.4947 0.6202 0.5484 0.7837 0.5587 0.6734 0.5339 0.6924

L2-Reg 0.4904 0.6205 0.4692 0.7964 0.5595 0.6750 0.5064 0.6973
LoRA 0.1261 0.5831 0.1945 0.7640 0.2233 0.1241 0.1813 0.4904
Wise-FT 0.1948 0.6285 0.1428 0.7884 0.2573 0.7635 0.1983 0.7268
FLOW 0.3641 0.5974 0.4768 0.7870 0.5673 0.6914 0.4694 0.6920

TALR (Ours) 0.4806 0.6478 0.4889 0.7880 0.5338 0.7150 0.5011 0.7169

Here, λ ∈ (0, 1) denotes the per-step size of the distributional update; formal definitions are pro-
vided in Appendix B.3. In practice, a smaller learning rate induces a smaller λ. Therefore, The-
orem 3.1 explains Finding 1: adopting a smaller learning rate (i.e., smaller λ) reduces the upper
bound on general-performance degradation, consistent with the empirical trend observed in §3.

Theorem 3.2. (Informal) Under certain assumptions, fix a tolerance on general-performance
degradation onD1 (i.e., ∆L(P1) ≤ εfg). Then the maximal safe per-step size satisfies λmax ∝ εfg√

s
,

where s is the expected number of low-probability tokens per example on D2, defined as tokens
whose probabilities under the LLM are below a threshold.

This result explains Finding 2: when training with only labels, the number of hard tokens is reduced
compared to training with both labels and chain-of-thought annotations, thereby increasing the safe
step-size range. This explains why in our ESCI experiments, label-only SFT tolerated larger learning
rates (e.g., 5e−6) without causing substantial general-performance degradation.

3.4 INSIGHTS AND NEXT STEPS

Beyond Smaller Learning Rates. Building on the empirical and theoretical analyses above, we
have shown that using a smaller learning rate can mitigate degradation in general performance while
still achieving strong target-domain performance. However, small learning rates cannot solve ev-
erything. First, although smaller learning rates greatly reduce the extent of general-performance
degradation, they do not fully eliminate it in some cases (Fig. 1g). This suggests that further
strategies are needed to suppress such degradation more effectively. Second, while smaller learning
rates generally achieve domain performance close to that of larger ones, in certain cases the gap is
not entirely negligible (Fig. 1f and 1h). In situations where stronger target-domain performance
is prioritized, larger learning rates may therefore be necessary, but they inevitably incur greater
general-performance degradation. This makes the development of additional mitigation strategies
under larger learning rates equally important in certain cases.

Insights from Theoretical Analysis. In Theorem 3.1, we can further expand the coefficients as

k1 = Θ
(
wS Mh + Me

)
, k2 = Θ

(
wS Mh + Me + k3

)
,

where Mh bounds the update magnitude on hard (low-probability) tokens, Me corresponds to easy
tokens (with Mh ≫ Me), wS denotes the mass of the hard-token set S, and k3 residual constants.
For a fixed target dataset (hence essentially fixed wS ), the dominant factor in both k1 and k2 is Mh.
Therefore, reducing Mh, i.e., shrinking the update amplitude induced by low-probability (hard) to-
kens, tightens the upper bound on ∆L(P1). This observation naturally motivates token-adaptive
reweighting strategies that directly down-weight hard-token losses to curb their potential dispropor-
tionate influence to general performance degradation.

4 TOKEN-ADAPTIVE LOSS REWEIGHTING FOR DOMAIN-SPECIFIC SFT

From the preceding analysis, we see that reducing the update magnitude on low-probability tokens
(hard tokens) can tighten the upper bound on general-performance degradation ∆L(P1). This sug-
gests a promising direction: down-weighting the loss of hard tokens to curb their disproportionate
impact on forgetting. However, this immediately raises several practical challenges. How should we
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Table 2: Comparison of domain and general performance on the MedCalc Benchmark under learn-
ing rate 5e−6. At this larger learning rate, TALR achieves the best overall trade-off by substantially
improving general performance while maintaining comparable domain performance.

Method Qwen2.5-3B Qwen3-4B Gemma3-4B Average
Domain General Domain General Domain General Domain General

Standard 0.5459 0.3337 0.5782 0.5425 0.5507 0.2655 0.5583 0.3805

L2-Reg 0.5406 0.3470 0.5782 0.5591 0.5471 0.2796 0.5553 0.3952
LoRA 0.1734 0.5670 0.2367 0.7571 0.3864 0.1241 0.2655 0.4827
Wise-FT 0.3584 0.5869 0.3815 0.7531 0.4638 0.5929 0.4012 0.6443
FLOW 0.5266 0.4419 0.5819 0.5599 0.5500 0.3476 0.5528 0.4498

TALR (Ours) 0.5066 0.5490 0.5834 0.6138 0.5351 0.3427 0.5417 0.5018

identify which tokens are “hard”? If we rely on a fixed probability threshold, what value should be
chosen? Even after identifying hard tokens, by how much should their losses be down-weighted?
Manually setting such thresholds or scaling factors is cumbersome. To address these challenges, we
propose a principled and adaptive solution, TALR (Token-Adaptive Loss Reweighting), to adap-
tively scales the loss contribution of each token according to its predicted probability. Additional
details and discussions of TALR can be found in Appendix D.

4.1 TOKEN-ADAPTIVE WEIGHT COMPUTATION VIA CONSTRAINED OPTIMIZATION

Formally, let ℓi(θ) = − log pθ(xi) denote the loss of token i given model parameters θ. We
seek per-token weights w = (w1, . . . , wn) that (1) assign smaller weights to harder tokens (loss
larger/probability lower ⇒ weight smaller); and (2) avoid collapsing all weight onto a small sub-
set of tokens, ensuring broader coverage across the sequence. We formulate this as the following
constrained optimization problem:

min
w∈∆n

n∑
i=1

wi · ℓi(θ) + τ

n∑
i=1

wi logwi, (1)

where ∆n is the n-dimensional simplex (wi ≥ 0,
∑n

i=1 wi = 1), and τ > 0 controls the strength of
entropy regularization. The first term enforces preference for low-loss tokens, while the negative-
entropy regularization term prevents the distribution from becoming overly concentrated.

This optimization admits a closed-form solution: w∗
i = exp (−ℓi(θ)/τ)/Z, where Z is the normal-

ization factor. Since ℓi(θ) = − log pθ(xi), we can equivalently write: w∗
i ∝ pθ(xi)1/τ .

In practice, we use the unnormalized form wi = pθ(xi)
1/τ , focusing on the relative magnitudes.

This also keeps wi ∈ (0, 1) naturally bounded and directly tied to the model’s confidence. By scal-
ing token-level loss with these adaptive weights, TALR tempers the excessive gradient contributions
from low-probability tokens while preserving their influence for learning domain-specific knowl-
edge. During training, these weights are recomputed at every optimization step for the tokens in the
current batch, ensuring that the reweighting adapts dynamically to the model’s evolving predictions.
The detailed procedure is summarized in Algorithm 1.

4.2 RESULTS

We evaluate all mitigation strategies considered in Sanyal et al. (2025), including L2 regularization,
LoRA, Wise-FT (model averaging), and FLOW, together with our proposed TALR. Table 1 and
2 reports the trade-off between domain performance and general performance under two learning
rates. The baseline configurations follow Sanyal et al. (2025).

Smaller learning rate (1e−6). From Table 1, most strategies, i.e., except LoRA and Wise-FT,
achieve domain performance and general performance that are relatively close to each other. This
indicates that simply using a small learning rate already mitigates the degradation of general capa-
bilities while maintaining strong domain performance. Among all methods, both our Standard SFT
(with smaller learning rates) and our TALR consistently provide the best trade-offs.

Larger learning rate (5e−6). From Table 2, we first observe that raising the learning rate amplifies
general-performance degradation across nearly all methods. In this more challenging regime, TALR
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Figure 2: Token-level analysis on the MedCalc dataset. (a) Heatmap of token probabilities from
Qwen-2.5-3B-Instruct for an example. Darker cells indicate higher model confidence; harder tokens
with low probability often correspond to domain-specific concepts. (b) Distribution of token prob-
abilities across the full SFT training set for multiple models. Most tokens are confidently predicted
(medians near 1.0), suggesting low learning difficulty. (c) Fraction of tokens with p > 0.2 increases
from epoch 1 to epoch 2 when training updates use tokens with p > 0.2, showing a clear curriculum
phenomenon.

stands out: it achieves a clearly more favorable Pareto-optimal trade-off, maintaining competitive
domain gains with noticeably smaller drops in general performance.

Takeaway. When feasible, a small learning rate already delivers a solid trade-off; additional knobs
can be unnecessary. When higher learning rates are required to push domain performance, TALR
demonstrates clear superiority by achieving stronger trade-offs. However, none of the existing meth-
ods, including TALR, can fully mitigate the sharp increase in general-performance degradation
under larger learning rates. This highlights an open challenge and points to the need for further
exploration of more powerful mitigation strategies.

4.3 TOKEN-LEVEL ANALYSIS

In this part, we analyze domain-specific SFT at a fine-grained level, i.e., at the level of individual
target tokens. To this end, we compute the probability of each target token xt during SFT, where
the model is trained to predict the next token conditioned on the prompt xprompt and previous tar-
get tokens x<t, formulated as p(xt | xprompt, x<t). This formulation allows us to quantify token
difficulty.

Finding 1: Most tokens in SFT training data pose low learning difficulty. We begin our analysis
with a token-level visualization of a training example from the MedCalc dataset. Figure 2(a) shows
the model’s predicted probability for each target token conditioned on the input prompt and all
previous target tokens. Tokens with darker colors indicate higher confidence (i.e., higher probability
or lower token loss), while lighter colors highlight tokens that the model finds more difficult. As
shown, the majority of tokens in the target sequence are confidently predicted by the model,
particularly in the later steps of the reasoning process. This aligns with the intuition that once
sufficient context is accumulated, a well-trained LLM can easily predict subsequent tokens.

Notably, a small number of hard tokens, i.e., those with low predicted probabilities, do appear
throughout the sequence, typically in earlier positions or around domain-specific concepts that may
not be well covered in pretraining. For example, in the sixth row of the heatmap in Figure 2(a),
the token representing the numeric value in the phrase “conversion factor, 3 mme/mg” is assigned a
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Input: Domain dataset D, parameters θ, learning rate η, temperature τ > 0, weight floor wmin

Output: Updated parameters θ

foreach training step do
Sample a mini-batch {(x(b)prompt, y

(b))}Bb=1 from D;
Forward pass to obtain token probabilities {pt} for all supervised tokens in the batch;
Token NLLs: ℓt ← − log pt;
Adaptive weights with lower-bound clipping:

w̃t ← exp(−ℓt/τ), wt ← max
(
sg(w̃t), wmin

)
Let N be the number of supervised tokens in the batch;

Mean (averaged) reweighted loss:

LTALR =
1

N

N∑
t=1

wt (− log pt)

Parameter update:
θ ← θ − η∇θLTALR

end

Algorithm 1: Token-Adaptive Loss Reweighting (TALR) for Domain-Specific SFT. The sg(·)
operator denotes stop gradient, meaning that wt is treated as a constant during backpropagation
to prevent gradients from flowing through the weight computation.

low probability, likely because such clinical conversion factors are underrepresented in the model’s
pretraining data.

To move beyond a single example, we perform a broader statistical analysis by collecting token-level
probabilities across all SFT data in the MedCalc training set. Figure 2(b) presents box plots of these
token probabilities across six model variants. Across all models, we observe a consistent pattern: the
upper quartiles are tightly clustered near 1.0, and the medians are consistently high, indicating
that a large portion of tokens in the training sequences are already assigned high confidence by the
models. However, despite this abundance of easy tokens, the models’ zero-shot performance on the
MedCalc test set remains relatively low, as shown in Figure 1 (Init point). This mismatch suggests
that performance bottlenecks may stem from a small subset of more challenging tokens which are
associated with domain-specific reasoning or clinical knowledge. These hard tokens may be sparse
but crucial.

Finding 2: TALR training dynamics exhibit a curriculum-like phenomenon. We conducted an
extreme experiment and observed that TALR implicitly creates a training curriculum. Specifically,
we clipped the gradients of all tokens whose predicted probability was below a threshold, so that
only higher-confidence tokens contributed to updates. As shown in Figure 2(c), the fraction of tokens
exceeding this threshold grows steadily from Epoch 1 to Epoch 2. This dynamic effectively induces
a curriculum-like learning schedule: the model begins with “easier” tokens (those already predicted
with moderate confidence) and gradually incorporates a larger set of tokens, including those that
were harder at the start.

4.4 LEARNING DYNAMICS OF TALR

To analyze the actual behavior of TALR during optimization, we monitor several training-time sig-
nals for Qwen2.5-3B fine-tuned on the MedCalc dataset. Specifically, we track: (1) the token-level
loss before reweighting, (2) the overall training loss after the TALR reweighting is applied, and (3)
the dynamic hyperparameter τ , defined as the median average token loss within each batch.

The results are shown in Figure 3. During the first epoch, both the token loss and the final training
loss decrease sharply, and they continue to stabilize during the second epoch. Importantly, τ also
decreases substantially as training progresses. Since τ reflects the median difficulty level of tokens
within a batch, its steady decline indicates that a growing proportion of tokens transition from being
initially hard to being easier for the model.
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Figure 3: Training dynamics under the true TALR algorithm for Qwen2.5-3B-Instruct on MedCalc.
Panel (a) shows the token-level loss before reweighting, panel (b) shows the training loss of TALR
and panel (c) tracks the value of the dynamic hyperparameter τ (median average token loss) through-
out training.

These observations confirm that the TALR reweighting mechanism does not impede learning. In-
stead, TALR allows the model to follow a normal optimization trajectory in which hard tokens are
gradually absorbed, while simultaneously reducing the destabilizing influence of extremely low-
probability tokens in early training.

5 CONCLUSION AND OUTLOOK

In this work, we presented both empirical and theoretical evidence that challenges the common be-
lief that domain-specific SFT significantly harms general-purpose capabilities of LLMs. Through
controlled experiments, we showed that smaller learning rates yield more favorable trade-offs. Mo-
tivated by our theoretical analysis, we further propose TALR for better trade-off.

5.1 LIMITATIONS

Looking forward, while TALR marks a step toward mitigating general-performance degradation
in domain-specific adaptation, our findings also highlight that no single method fully resolves this
challenge. Future work should explore more principled strategies to further enhance the robustness
of LLMs across domains while preserving their general-purpose strengths. Second, due to no longer
having access to compute resources for this project, we were not able to evaluate these representative
mitigation strategies on a wider range of datasets. Nevertheless, our experiments provide consistent
evidence supporting our main findings, and we leave it to the broader community to further examine
and verify their generality. In addition, due to resource constraints, we were unable to examine
whether larger models or mixture-of-experts (MoE) architectures follow the same dynamics, leaving
open questions about scalability and architectural differences. Besides, on the theoretical side, while
our analysis explains the observations, we did not address the problem of how to optimally select a
learning rate that achieves the best trade-off in practice. Developing such principled selection rules
remains an important direction for future work.

5.2 BROADER IMPACTS

Better domain adaptation. Our findings provide practitioners with insights when developing
domain-specific LLMs. Taking the medical domain as an example, Jeong et al. (2024) show that
existing medical-specialized LLMs often fail to outperform their corresponding initialized LLMs.
This suggests that the quality of domain-specific data alone may not be as high as in the sophisti-
cated post-training pipelines applied to base models. Hence, methods that preserve as much of the
initialized LLM’s general capabilities as possible while injecting domain knowledge may lead to
stronger overall performance.

Mitigating exploration loss in SFT warm-up for RLVR. Before reinforcement learning with ver-
ifiable reward (RLVR), SFT is often used as a warm-up step to inject knowledge (Lin et al., 2025b)
or align formats (Guo et al., 2025). However, excessive SFT can over-stabilize the model, causing
its output trajectories to become rigid and thereby undermining exploration during RL training. In
contrast, models prior to excessive SFT typically exhibit more diverse behaviors. Thus, strategies
that mitigate general-performance degradation and preserve the base model’s diversity may help
alleviate this issue and enable more effective RL.
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A LLM USAGE STATEMENT

In this work, Large Language Models (LLMs) were primarily used for text refinement, such as
improving the clarity of writing. In addition, for the ESCI experiments, the chain-of-thought (CoT)
data was generated using Qwen2.5-72B-Instruct through rejection sampling.

B THEORETICAL ANALYSIS

To better understand the empirical phenomena observed in §3, we provide a theoretical analysis from
the perspective of information theory. Our goal is to explain Finding 1 and 2 mentioned in §3.2. To
this end, we first introduce several compression-based tools that form the basis of our analysis. We
then apply these tools to shed light on the two key findings highlighted earlier.

B.1 PRELIMINARIES

Supervised Fine-tuning (SFT). In SFT, the LLM is trained on a labeled dataset DSFT =
{(x(i), y(i))}Ni=1, where x is a natural language prompt (e.g., an instruction or question), and
y = (y1, y2, . . . , yTy ) is the corresponding target response, represented as a sequence of to-
kens. The objective of SFT is to maximize the conditional likelihood of the target sequence y
given the input x, which corresponds to minimizing the following negative log-likelihood loss:
LSFT(θ) = −E(x,y)∼DSFT

[∑Ty

t=1 log πθ(yt | x, y<t)
]
, where πθ denotes the model’s output distri-

bution over the vocabulary, and y<t is previous target tokens.

Lossless Compression. In lossless compression, the goal is to encode a sequence of symbols x =
(x1, x2, . . . , xT ) drawn from a source distribution P into a binary representation without any loss of
information, such that the original sequence can be perfectly reconstructed. According to Shannon’s
source coding theorem (Shannon, 1948), the limit of compression is given by the Shannon entropy
of the source: H(P ) := Ex∼P

[
− logP (x)

]
, which specifies the minimum expected number of bits

per symbol needed for encoding.

LLM Modeling is Compression. Given a datasetD drawn from the true distribution P and a model
distribution Q, the expected code length under arithmetic coding (Witten et al., 1987) is given by
H(P,Q) := Ex∼P

[
− logQ(x)

]
. Thus, minimizing the log-likelihood loss directly corresponds

to reducing the expected compression rate when the model is employed as a lossless compressor
(Deletang et al., 2024; Hutter, 2005; Ji et al., 2025).

B.2 LLM COMPRESSION PROTOCOL

Our goal is to analyze the dynamics of domain-specific SFT. Motivated by the equivalence between
language modeling and data compression (Deletang et al., 2024; Ji et al., 2025), we view an LLM as
a compressor, where the effectiveness of training can be measured through changes in code length.
In this view, improvements or degradations in performance across datasets correspond to variations
in compression rate. Below, we formalize this perspective by introducing the notion of token trees
and describing the LLM compression protocol in our context.

Definition B.1 (Token Tree T ). For a dataset D = {zi ∈ V∞ | i = 1, 2, . . .}, |V| < ∞,
where V = {v1, v2, . . . , v|V|} is a finite vocabulary of size |V|, the token tree of D, denoted as TD,
is defined as follows: (1) each node has |V| child nodes labeled v1, v2, . . . , v|V|, along with an
end-of-sequence (EOS) leaf node; (2) The weight of a non-leaf node is the sum of the weights of
all its child nodes; (3) The path from the root to an EOS leaf node defines a response zi, with the
corresponding EOS node weight representing the response’s probability.
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Definition B.2 (LLM Compression Protocol). Let TD be the token tree of dataset D, and let
qθ(· | u) denote the conditional distribution over V∪{EOS} predicted by an LLM with parameters
θ at node u ∈ TD. Given a response z (a path from the root to an EOS leaf, truncated to a pre-
defined maximum depth d), the LLM compression protocol encodes z using arithmetic coding,
where at each step the coding probabilities are given by qθ(· | u) for the current node u along the
path of z.

Remark: The truncation to a maximum depth d reflects practical constraints in the use of large lan-
guage models. For example, responses are usually limited to a fixed context window, and generated
sequences are typically bounded in length.

Proposition B.1 (Expected Code Length). Consider a finite parameter model qθ(·) and a token tree
TD truncated to depth d. Under the compression protocol of Definition 3.2, the expected code length
of a random response z is Ez∼P [Lθ(z)] = −

∑d
l=1

∑|V| l−1

j=1 pl,j log ql,j , where P is the distribution
over responses, pl,j denotes the probability assigned to the leaf node ul,j (the j-th node at layer l of
TD), and ql,j is the probability assigned to the node ul,j by the model qθ(·).
Proposition B.2 (Joint Token Tree for Multiple Datasets). Consider N pairwise disjoint datasets
D1, . . . ,DN , each with its own token tree TDi

. Let D =
⋃N

i=1Di be the union dataset, and
let TD denote its token tree. For each node ul,j , the node weight in TD is given by pDl,j =

(
∑N

i=1 |Di|pDi

l,j ) / (
∑N

i=1 |Di|), where pDi

l,j is the node weight in TDi
, and |Di| is the number of

responses in dataset Di.

Proposition B.3 (Expected Code Length Discrepancy under Model Shift). Consider two model
distributions qθ1(·) and qθ2(·) over the token tree TD with distribution P . The change in expected
code length on P when shifting from qθ1 to qθ2 is ∆L(P ) = Ez∼P [Lqθ2

(z)] − Ez∼P [Lqθ1
(z)] =

−
∑d

l=1

∑
j pl,j log

q
(2)
l,j

q
(1)
l,j

. Equivalently, ∆L(P ) = KL(P ∥ qθ2)−KL(P ∥ qθ1).

Based on the above, we adopt the expected code length as a surrogate metric for an LLM’s modeling
quality on a given dataset (Deletang et al., 2024). Specifically, reductions in code length discrepancy
indicate better alignment between the model distribution and the data distribution, whereas increases
suggest deterioration. This perspective will serve as the foundation for our subsequent analysis.

B.3 APPROXIMATING FINE-TUNING DYNAMICS WITH EXPONENTIAL TILTING

Our goal in this part is to uncover the behavior of LLMs during domain-specific fine-tuning. Fine-
tuning alters the conditional distributions assigned to each node in the token tree, thereby shifting
the model’s alignment with the data distribution. For analytical simplicity, we view fine-tuning
at a high level as introducing perturbations to the probability assigned to each token node. To
approximate these dynamics, we adopt the lens of exponential tilting (Maity et al., 2023), which
captures how the distribution is reweighted under incremental updates.

Note that, exponential tilting is not strictly equivalent to SFT; rather, it serves as an analytical
surrogate that enables us to extract insights and motivation about the mechanisms driving
general-performance degradation and domain adaptation. In the following, we formalize the expo-
nential tilting formulation and present how it approximates the token-level probability shifts induced
by fine-tuning. We then provide error estimates that quantify the gap.

Setup. We consider a pretrained LLM with distribution q0, which already models the dataset D1

well. The model is then fine-tuned on a new datasetD2. For a node u in the token tree TD2
ofD2, let

p̂2(· | u) denote the empirical target distribution induced by D2, and let qt(· | u) denote the model
distribution at step t during fine-tuning.

Assumption B.1 (Full support via mild smoothing). To avoid support collapse, the target used in
each step is defined as a smoothed mixture p̃2,t(· | u) = (1− α) p̂2(· | u) + αρt(· | u), α ∈ (0, 1),
where ρt(· | u) is a strictly positive reference distribution (e.g., the current model qt(· | u) or the
uniform distribution). Hence p̃2,t(a | u) > 0 and qt(a | u) > 0 for all tokens a.

Assumption B.2 (Small step in distribution space). Each update is small at the distribution level:
KL
(
qt ∥ qt+1

)
≤ ε, ε≪ 1.
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Assumption B.3 (Smoothness / finite tree). log qθ(a | u) is twice continuously differentiable in θ
with bounded second derivatives in a neighborhood of θt; vocabulary and depth are finite. Conse-
quently, Taylor remainders are O(∥θt+1 − θt∥2).

Definition B.3 (Exponential Tilting Update). For any non-leaf prefix u in the token tree T and a
step parameter λ ∈ [0, 1], define the log-ratio ru(a) ≜ log

(
p̃2,t(a | u)/qt(a | u)

)
, a ∈ V∪{EOS}.

The exponential tilting update at prefix u is given by

q̂t+1(a | u) =
qt(a | u) exp{λ ru(a)}∑
b qt(b | u) exp{λ ru(b)}

=
qt(a | u) 1−λ p̃2,t(a | u)λ∑
b qt(b | u) 1−λ p̃2,t(b | u)λ

.

The boundary cases are consistent: λ = 0 recovers qt(· | u), while λ = 1 recovers p̃2,t(· | u).

Theorem B.1 (First-order approximation by exponential tilting). Fix a prefix u. Consider the
current model distribution qt(· | u) and the smoothed target distribution p̃2,t(· | u). Define the

local L2 norm ∥g∥t,u :=
(
Eqt(·|u)[g(a)

2]
)1/2

. Under the standing assumptions, there exists an
effective step size λt,u, such that∥∥∥ log qt+1(· | u)−

[
(1− λt,u) log qt(· | u) + λt,u log p̃2,t(· | u)− ψt,u

]∥∥∥
t,u

= O(ε).

where ψt,u is the log-normalizer and ε is the KL trust-region radius such that KL
(
qt ∥ qt+1

)
≤ ε.

The proof can be found in §E.1. Based on Theorem B.1, we establish that for a distribution update
qt+1 whose KL divergence from qt is bounded by ϵ, the corresponding exponential-tilting approxi-
mation q̂t+1 differs from qt+1 only up to O(ϵ). In other words, exponential tilting provides a first-
order approximation, thereby justifying its use as an analytical tool to study general-performance
degradation and domain adaptation.

B.4 WHY SMALLER LEARNING RATES YIELD FAVORABLE TRADE-OFFS?

In this subsection, we provide a theoretical explanation for the empirical findings observed in §3.

Notation. Fix a prefix u (we omit ”| u” when clear). Write f(a) = log p̃2(a) − log q(a) at the
current iterate q (the step index t is omitted for readability), and f̄ = Eq[f ], f̃ = f − f̄ . For a set S
of token-tree nodes, denote its q-mass by wS = Eq[1S ].

Assumption B.4 (Sparse token-level shift on D2). There exists a measurable node set S ⊆ T with
small mass wS ≪ 1 under the D2-prefix distribution such that

|f(a)| ≤ Mh for a ∈ S, |f(a)| ≤ Ml for a /∈ S,

with Ml ≪ Mh. In words, most tokens are already well modeled by Q due to pretraining, while
only a small subset requires nontrivial adjustment toward the p̃2 target, denoted as the hard tokens
(low probability tokens).

Remark. This assumption reflects the practical setting where domain-specific finetuning are mainly
affected by a small fraction of tokens, consistent with our empirical analysis in §4.3.

Assumption B.5 (Realizability with controlled leakage). Let ΠS and ΠSc denote the orthogonal
projections of a log-space function onto the coordinates indexed by S and its complement, respec-
tively (with norm measured in L2(q)). There exists small γ ∈ [0, 1) such that for any desired
log-space direction g (defined per-prefix on the token tree) whose energy is primarily on S (i.e.,
∥ΠScg∥L2(q) ≤ β ∥ΠSg∥L2(q) for some small β ≥ 0), there is a parameter update that realizes a
global change ∆ log q satisfying

∥ΠS(∆ log q − g)∥L2(q) ≤ γ ∥ΠSg∥L2(q), ∥ΠSc∆ log q∥L2(q) ≤ (β + γ) ∥ΠSg∥L2(q).

In words, the update moves all tokens, but the relative magnitude outside S is small and controlled.
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Theorem B.2 (Smaller steps yield a smaller general performance degradation bound at a equal
domain performance gain). Fix a desired domain improvement ∆⋆ > 0 on D2 (i.e., ∆LT (P2) ≤
−∆⋆). Among all T -step tilting schedules that achieve this target, the minimal upper bound on
the increase of code length on D1 satisfies

∆LT (P1) ≤ A
∆⋆

µT
+
(AC2

µ3
T

+
C1

µ2
T

)∆2
⋆

T
+ O

( 1

T 2

)
where µT := inft<T KL(Qt∥P2) > 0 and A := HT

(√
wS Mh +Ml + (β + γ)Mh

)
are fixed

value under the total number of update steps T and the desired domain gain ∆⋆.
The upper bound strictly decreases as T increases. Thus, under the equal-steps schedule that
attains the target, the per-step effective weight scales as λt ∝ 1/T ; thus, for the same domain
gain, larger T implies smaller per-step updates. Hence, smaller step size⇒ smaller upper bound.

Theorem B.3 (Label-only supervision enlarges the safe per-step range). Among all T -step tilt-
ing schedules, the maximal per-step size that can guarantee a general-performance degradation
∆LT (P1) ≤ εfg as λmax = Θ(1/

√
s), where s is the expected number of hard tokens (low proba-

bility tokens) per example on D2.

The proof of Theorem B.2 and B.3 can be found in the Appendix E.2. Theorem B.2 shows that,
for achieving the same domain improvement, smaller learning rates (i.e., smaller per-step updates
with larger T ) lead to a smaller upper bound on general capability degradation, thereby explaining
Finding 1. Theorem B.3 indicates that the bound on the safe step size is inversely proportional to the
number of hard tokens. Therefore, in Finding 2, when only labels are used for training, the number
of hard tokens is smaller than that in training with both CoT and label data. This explains why in the
ESCI experiments, under w/o CoT, both 5e−6 and 1e−6 can achieve similarly small degradation in
general performance.

C ADDITIONAL EXPERIMENT AND RESULT DETAILS

C.1 DATASET DETAILS

In this section, we provide additional details for both the domain-specific datasets used for SFT and
the general-purpose benchmarks used to evaluate general capability degradation. An overview of all
datasets and their corresponding evaluation metrics is provided in Table 4 and Table 5.

C.1.1 MEDCALC

We use the MedCalc dataset (Khandekar et al., 2024) for medical reasoning tasks. The benchmark
provides human-annotated chain-of-thought (CoT) rationales, which we include during training so
that the model learns to reason through intermediate steps before producing the final answer. The
prompt can be found in Table 6.

C.1.2 ESCI

We use the ESCI dataset (Reddy et al., 2022) for a multi-class product classification task, where each
query–product pair is labeled as Exact, Substitute, Complement, or Irrelevant. From the original
dataset, we randomly sample a 50K subset from the training split and a 10K subset from the test
split. From the training subset, we further hold out 1K examples as a validation set.

We consider two training settings: w/o CoT and w/ CoT.

• w/ CoT: The target sequence includes both a chain-of-thought rationale and the final label, re-
quiring the model to learn the reasoning process before producing the prediction. These CoT-
augmented examples are generated via rejection sampling from Qwen2.5-72B-Instruct, resulting
in 34,176 training examples. The prompt is shown in Table 8.

• w/o CoT: The target sequence contains only the ground-truth label, so the model is trained to
directly predict the class without generating intermediate reasoning (49k examples). The prompt
is shown in Table 7.
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All prompt examples in Tables 7 and 8 use the Qwen chat template for illustration; for other model
families, we adapt the prompt to their respective chat formats.

The ESCI dataset is highly imbalanced, with the majority of samples belonging to the Exact cate-
gory (Table 3). This imbalance motivates our choice of balanced accuracy (BACC) as the primary
evaluation metric, following prior work on imbalanced classification (Xu et al., 2024; 2025).

Table 3: Label distribution for the ESCI subsets used in our experiments. Percentages are shown in
parentheses.

Split Exact Substitute Irrelevant Complement
Train (49K) 33,958 (69.30%) 9,753 (19.90%) 4,261 (8.70%) 1,028 (2.10%)
Val (1K) 674 (67.40%) 212 (21.20%) 94 (9.40%) 20 (2.00%)
Test (10K) 6,470 (64.70%) 2,268 (22.68%) 992 (9.92%) 270 (2.70%)

C.1.3 METAMATHQA

MetaMathQA (Yu et al., 2024) is a large-scale mathematical reasoning dataset containing 395k train-
ing examples. Following Sanyal et al. (2025), we use MetaMathQA for training and take GSM8K
as the target-domain evaluation benchmark. This setup allows us to validate whether our findings
hold under large-scale data conditions.

C.1.4 GENERAL-PURPOSE BENCHMARKS

For the general-purpose benchmarks, we fully follow the default settings and evaluation metrics
implemented in the lm-evaluation-harness framework (Gao et al., 2024). This ensures
consistency with prior work (Lin et al., 2025a; Sanyal et al., 2025; Bansal & Sanghavi, 2025) and
allows for fair comparison of results across different models and training configurations.

C.2 IMPLEMENTATION DETAILS

We conduct all experiments on 16–32 NVIDIA A100 GPUs with 80GB memory. Except for differ-
ences in learning rate and loss computation, all experiments share the same training configuration.
We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) with hyperparameters β1 = 0.9 and
β2 = 0.999, together with a cosine annealing learning-rate schedule. The attention mechanism is
implemented using FlashAttention-2 (Dao, 2024). We set the batch size to 16 for MedCalc and
ESCI, and 128 for MetaMathQA. The number of training epochs is 20 for MedCalc and ESCI, and
2 for MetaMathQA. The maximum sequence length is 8192 tokens.

C.3 ADDITIONAL DETAILS OF EXPERIMENTAL SETUP AND RESULTS

In our experiments, we measure the trade-off between domain performance and general perfor-
mance. Domain performance is defined as accuracy on the target downstream task, while general
performance is computed as the average score across IFEval, GSM8K, and HumanEval unless other-
wise specified. Importantly, our definition of general performance is consistent with the theoretical
analysis, where we assume the base model already achieves reasonably strong results. To ensure
consistency, we exclude benchmarks where the model’s absolute performance is below a threshold
of 0.5, evaluated by lm-evaluation-harness framework. Thus, for Gemma-3-4B we report
the average over IFEval and GSM8K, while for Gemma-3-1B we only include IFEval.

We also conduct supplementary experiments, as shown in Figure 4, which further validate and extend
our findings from Section 3.

Finetuning on datasets where the model already performs strongly. In Figure 4(a), Qwen3-
8B achieves close to 50% accuracy on ESCI with CoT supervision even before SFT. Despite this
high baseline, the results confirm our main conclusion: using a small learning rate continues to
yield a more favorable trade-off between preserving general performance and improving domain
performance.
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Figure 4: Effect of learning rate on domain-specific and general capability performance during
supervised fine-tuning (SFT). Results are shown for (a) Qwen3-8B on ESCI with CoT supervision,
(b) Qwen3-8B on ESCI without CoT, and (c) DeepSeek-Coder-7B on MetaMathQA. Across all
settings, smaller learning rates achieve more favorable trade-offs.
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Figure 5: Effect of KL regularization on domain-specific SFT. We follow DeepSeek-R1 (Guo
et al., 2025) and apply the k3 approximation for KL regularization. Results are shown for three
learning rates: (a) 1× 10−6, (b) 5× 10−6, and (c) 2× 10−5. Across all settings, KL regularization
yields performance that is very close to standard SFT, suggesting limited additional benefit in miti-
gating general-performance degradation.

Validation on large-scale datasets. We additionally evaluate on MetaMathQA to test whether
our conclusions hold under large-scale training. To emulate a realistic domain adaptation scenario,
we use DeepSeek-Coder-7B, which is highly specialized in code but weaker in mathematics. This
setup mirrors adapting a model from one domain of strength (code) to another (math). As shown in
Figure 4(c), we report general performance using MBPP (rather than HumanEval, since DeepSeek-
Coder-7B performs poorly on HumanEval under lm-evaluation-harness). The results again
align with our central finding: small learning rates achieve the best trade-offs. Interestingly, in
this setting the optimal rate shifts to 5 × 10−6, rather than 1 × 10−6 as in earlier experiments.
Moreover, we test an even smaller rate of 5× 10−7 and observe that overly small rates can hinder
target-domain performance, suggesting that learning rates cannot be arbitrarily reduced without
consequence. Overall, these additional experiments reinforce our main findings.

C.4 EFFECT OF KL REGULARIZATION

We further investigate the effect of KL regularization, a technique recently adopted in DeepSeek-R1
(Guo et al., 2025), where a k3 approximation is used to estimate the KL term. Following prior work
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Figure 6: Effect of learning rate on the trade-off between domain performance and general
multi-choice commonsense and knowledge QA performance. Domain performance is measured
on MedCalc, while general performance is evaluated as the average accuracy across MMLU, ARC-
Easy, ARC-Challenge, PIQA, and HellaSwag. Results are shown for (a) Qwen3-8B, (b) Qwen2.5-
7B, (c) Qwen3-4B, and (d) Qwen2.5-3B.

on KL-constrained training (Jin et al., 2025; Jiang et al., 2025; Lin et al., 2025a;b), we add a KL
penalty term with coefficient 0.001 during SFT.

Figure 5 shows results on the Qwen2.5-3B-Instruct model fine-tuned on MedCalc. At small learn-
ing rates, KL-regularized runs and standard SFT behave almost identically. As the learning rate
increases, KL regularization offering little to no benefit in reducing general-performance degrada-
tion. This indicates that, under our experimental settings, KL regularization provides only limited
improvements and does not shift the trade-off between domain performance and general capability
preservation. These results are consistent with our earlier observation in §3: adopting a smaller
learning rate already achieves a favorable balance, while additional knobs such as KL regularization
contribute little further advantage.

C.5 EVALUATION ON MULTI-CHOICE COMMONSENSE AND KNOWLEDGE QA

We further evaluate the effect of learning rate on the trade-off between domain and general per-
formance in multi-choice commonsense and knowledge question answering tasks. Results are pre-
sented in Figure 6. Unlike our earlier observations on more complex domains such as mathematics
and coding, we find that the general-performance degradation induced by relatively larger learning
rates (e.g., 5e−6) is less pronounced here. A possible explanation is that multi-choice benchmarks
are relatively more trivial, requiring short-form predictions rather than long reasoning chains or
structured outputs. As a result, larger learning rates do not amplify forgetting as severely as in
domains demanding longer and more complex generations.

C.6 PERFORMANCE EVOLUTION ACROSS TRAINING EPOCHS

To better understand how learning rate influences the interaction between domain performance and
general performance over the training process, we plot figures of performance vs. training epochs
in Figure 7. Figure 7a and 7b report results for Gemma3-4B on the MedCalc benchmark. We make
two observations. First, consistent with our main findings, the smallest learning rate achieves strong
domain performance while substantially mitigating forgetting on general benchmarks. Second, for
each learning rate, the domain performance typically peaks at relatively late epochs. For example,
for Gemma3-4B with a learning rate of 1e−6, the best MedCalc score is reached around epoch 12.
This indicates that, during domain-specific SFT, running training for a longer period can continue to
improve domain accuracy.

We further examine a larger scale setting with DeepSeek-Coder-7B on MetaMathQA, as shown in
Figure 7c and 7d. We observe similar behavior. Domain performance improves steadily and often
reaches its peak only after many optimization steps, and smaller learning rates help preserve general
capabilities and achieve comparable or even better domain performance. Note that in this case the
horizontal axis covers only the first two epochs, but since MetaMathQA is a large scale corpus, even
one epoch already corresponds to a large number of parameter update steps. These results confirm
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Figure 7: Training dynamics of domain and general performance under different learning rates.
Panels (a) and (b) show domain performance and general performance respectively for Gemma3-
4B on MedCalc. Panels (c) and (d) show the corresponding curves for DeepSeek-Coder-7B on
MetaMathQA. In both settings, small learning rates achieve strong domain performance while better
preserving general capabilities.

that our conclusions are not restricted to small datasets and that the dynamics we describe persist in
a large scale training datasets.

C.7 OBSERVING THE RATIO OF LOW-PROBABILITY TOKENS
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Figure 8: Fraction of low-probability tokens during training on Qwen2.5-3B-Instruct with Med-
Calc. We track the proportion of tokens whose model probability satisfies p < 0.05 over the course
of training. During the first epoch, the ratio of such “hard” tokens decreases rapidly, and by the
second epoch it approaches zero and remains near zero. This indicates that these initially low-
probability tokens are successfully learned by the model as training progresses.

To examine whether tokens assigned low probabilities are eventually learned during training, we
track the evolution of the proportion of such tokens for Qwen2.5-3B-Instruct fine-tuned on the
MedCalc dataset. We define low-probability tokens as those with predicted probability less than
p < 0.05. Figure 8 plots the ratio of these tokens across training steps.

During the first epoch, the fraction of low-probability tokens decreases sharply, indicating that many
of these hard tokens are quickly absorbed by the model. By the second epoch, this ratio approaches
zero and remains near zero for the rest of training. This pattern shows that low-probability tokens
do not remain persistently difficult; instead, they are gradually learned as training progresses. This
analysis provides direct evidence that TALR does not prevent the model from learning challenging
tokens.
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D DETAILS OF TOKEN-ADAPTIVE LOSS REWEIGHTING

D.1 DERIVING TOKEN WEIGHTS: PROOF OF THE CLOSED-FORM SOLUTION

Proof. Introduce a Lagrange multiplier λ for the simplex constraint
∑

i wi = 1, and multipliers
µi ≥ 0 for the nonnegativity constraints. The Lagrangian is

L(w, λ,µ) =
n∑

i=1

(
wiℓi(θ) + τwi logwi

)
+ λ

( n∑
i=1

wi − 1
)
−

n∑
i=1

µiwi.

For an interior optimum (wi > 0 so that µi = 0), the KKT condition is

∂L
∂wi

= ℓi(θ) + τ(1 + logwi) + λ = 0.

Thus,

logwi = −
ℓi(θ) + λ

τ
− 1 =⇒ wi = exp

(
− ℓi(θ)

τ

)
· exp

(
− λ

τ − 1
)
.

Normalization by
∑

i wi = 1, then we have

Z =

n∑
j=1

exp
(
− ℓj(θ)

τ

)
, w∗

i =
exp
(
− ℓi(θ)/τ

)
Z

.

D.2 IMPLEMENTATION DETAILS OF TALR

We highlight two key design considerations in applying TALR.

Weight cutoff. Without constraints, hard tokens may receive extremely small weights, which slows
down learning or even prevents the model from learning these tokens. To address this, we introduce
a lower bound cutoff to ensure that no token weight becomes too small. In all our experiments,
we set this cutoff to 0.01, which strikes a balance between preventing vanishing weights and still
allowing TALR to downweight challenging tokens.

Choice of τ . The temperature τ controls the sharpness of weight assignment and is a crucial hy-
perparameter. In our experiments, τ is chosen dynamically as the median of the average sequence
loss within a batch, a strategy that consistently yields stable and strong performance across tasks.
To better illustrate the effect of τ , we plot Figure 9. When a batch contains more hard tokens, the
resulting τ is larger; in this case, weights assigned to hard tokens are not excessively small, pre-
venting the model from failing to learn. Conversely, when the overall loss is smaller, the resulting τ
decreases, which effectively acts as a hard clipping mechanism to prevent excessive parameter drift
and catastrophic forgetting. Nonetheless, the problem of selecting τ remains open, and future work
may explore more principled or adaptive strategies for temperature tuning in TALR.

D.3 MORE DISCUSSIONS

Comparison with FLOW. It is worth contrasting TALR with FLOW (Sanyal et al., 2025), which
also reweights losses but in a different manner. First, FLOW operates at the sequence level, whereas
TALR works at the token level. Second, FLOW computes static weights only once before training,
while TALR dynamically updates weights at every batch with negligible additional cost. As shown
in Table 1 and Table 2, TALR consistently outperforms FLOW, which aligns with our expectations.
Sequence-level loss can be misleading: for example, even when the overall average sequence loss
is small, there may exist a few particularly hard tokens with large losses that are overlooked at the
sequence granularity. TALR directly addresses this by reweighting at the token level. Moreover,
token difficulty is not fixed—its relative hardness evolves as training progresses, as discussed in
Section 4.3. This makes dynamic weighting naturally more advantageous than static approaches.

Why not fix τ . We also examine the impact of fixing the temperature parameter, e.g., setting τ = 1.
In this case, the weights of hard tokens become excessively small, which severely hampers the
model’s ability to learn from them. Empirically, we observe that such a fixed choice indeed leads to
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Figure 9: Effect of the temperature parameter τ on the token weighting function wi = p1/τ .
Smaller τ values (e.g., τ = 0.5 or τ = 0.01) sharply down-weight low-probability (hard) tokens,
leading to a steep weighting curve. Larger τ values (e.g., τ = 2, 5) flatten the curve, assigning
relatively higher weights to hard tokens. The case τ = 1 corresponds to the identity mapping. This
illustrates how τ modulates the balance between emphasizing easy versus hard tokens.

poor results. For example, on Qwen3-4B fine-tuned with MedCalc at a learning rate of 5 × 10−6,
fixing τ = 1 yields a maximum accuracy of only 0.2168, much lower than results in Figure 1. This
stark degradation confirms that without dynamic adjustment, the model fails to effectively learn from
hard tokens. By contrast, our dynamic strategy for selecting τ , i.e., based on the median of average
sequence losses in each batch, automatically adapts to the current distribution of token difficulties,
ensuring that hard tokens are downweighted without being entirely neglected.
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E ADDITIONAL DEFINITIONS, THEOREMS AND PROOF

E.1 PROOF OF THEOREM B.1

Theorem E.1 (First-order approximation by exponential tilting). Fix a prefix u. Consider the
current model distribution qt(· | u) and the smoothed target distribution p̃2,t(· | u). Define the

local L2 norm ∥g∥t,u :=
(
Eqt(·|u)[g(a)

2]
)1/2

. Under the standing assumptions, there exists an
effective step size λt,u, such that∥∥∥ log qt+1(· | u)−

[
(1− λt,u) log qt(· | u) + λt,u log p̃2,t(· | u)− ψt,u

]∥∥∥
t,u

= O(ε).

where ψt,u is the log-normalizer and ε is the KL trust-region radius such that KL
(
qt ∥ qt+1

)
≤ ε.

Proof. Fix a prefix u. For clarity we write qt(·) = qt(· | u), qt+1(·) = qt+1(· | u), and p̃2,t(·) =
p̃2,t(· | u).

Step 1. Log-shift representation of the true update. Define the centered log-shift

s(a) := log
qt+1(a)

qt(a)
− Eqt

[
log

qt+1

qt

]
.

Then, we have

qt+1(a) =
qt(a) e

s(a)

Eqt [e
s]

. (2)

Step 2. Log-shift representation of exponential tilting. For any λ ∈ [0, 1], define

q̂(λ)(a) =
qt(a) exp{λr(a)}

Eqt [e
λr]

, r(a) := log
p̃2,t(a)

qt(a)
.

Step 3. Size of the true log-shift (forward KL trust region). Write qt(·) = qt(· | u), qt+1(·) =
qt+1(· | u). Recall the centered log-shift

s(a) := log
qt+1(a)

qt(a)
− Eqt

[
log

qt+1

qt

]
, ∥s∥2t,u := Eqt [s

2].

Let the log-partition A(f) := logEqt [e
f ] and the exponential-family map

T (f)(a) :=
qt(a)e

f(a)

eA(f)
.

Then qt+1 = T (s) and

KL
(
qt ∥ qt+1

)
= Eqt

[
log

qt
qt+1

]
= A(s). (3)

Two standard identities (for discrete finite support) are

∇A(f)[h] = ET (f)[h], ∇2A(f)[h, k] = CovT (f)(h, k).

Since s is centered under qt we have A(0) = 0 and ∇A(0)[s] = Eqt [s] = 0. A second-order Taylor
expansion of A at 0 with a third-order remainder yields

A(s) = A(0) +∇A(0)[s] + 1
2 ∇

2A(0)[s, s] +R3(s) =
1
2 Varqt(s) +R3(s), (4)

where, because the vocabulary is finite and qt has full support (by smoothing), there exists a constant
C3 <∞ such that

|R3(s)| ≤ C3 ∥s∥3t,u. (5)
Combining equation 3–equation 5 gives the quadratic expansion

KL
(
qt ∥ qt+1

)
= 1

2 ∥s∥
2
t,u +O

(
∥s∥3t,u

)
.
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Finally, under the trust-region assumption KL(qt∥qt+1) ≤ ε and for ∥s∥t,u sufficiently small, there
exists a constant C > 0 such that

1
2 ∥s∥

2
t,u − C ∥s∥3t,u ≤ ε,

which implies ∥s∥t,u ≤ 4
√
ε as soon as ∥s∥t,u ≤ min{1/(4C), 1}. Hence ∥s∥t,u = O(

√
ε).

Step 4. First-order expansion of tilting. Recall the tilted distribution

q̂(λ)(a) =
qt(a) e

λr(a)

Eqt [e
λr]

, r(a) = log
p̃2,t(a | u)
qt(a | u)

.

Its log-ratio relative to qt is

log
q̂(λ)(a)

qt(a)
= λ r(a)−A(λr), A(f) := logEqt [e

f ].

By Taylor expansion of A(λr) at λ = 0, using ∇A(0)[r] = Eqt [r] and ∇2A(0)[r, r] = Varqt(r),
one obtains

A(λr) = λEqt [r] +
1
2 λ

2 Varqt(r) +
1
6 λ

3 κ3(r) +O(λ4),

where κ3(r) denotes the third central moment of r (bounded on finite support). Hence

log
q̂(λ)(a)

qt(a)
= λ

(
r(a)− Eqt [r]

)
− 1

2 λ
2 Varqt(r) +O(λ3).

Now consider the centered log-shift

s̃(λ)(a) := log
q̂(λ)(a)

qt(a)
− Eqt

[
log

q̂(λ)

qt

]
.

Since

Eqt

[
log

q̂(λ)

qt

]
= λEqt [r]−A(λr) = − 1

2 λ
2 Varqt(r) +O(λ3),

the quadratic terms cancel, yielding

s̃(λ)(a) = λ
(
r(a)− Eqt [r]

)
+O(λ3).

Step 5. Choice of effective step size. Let rc(a) := r(a) − Eqt [r] be the centered tilting direction
and recall from Step 4 that the centered log-shift of the tilted model satisfies

s̃(λ)(a) = λ rc(a) +O(λ3).

Define the effective step size by qt-least-squares matching:

λt,u :=
Eqt

[
s rc
]

Eqt

[
r2c
] .

By Cauchy–Schwarz,

|λt,u| =
|Eqt [s rc]|
Eqt [r

2
c ]
≤ ∥s∥t,u ∥rc∥t,u

∥rc∥2t,u
=
∥s∥t,u
∥rc∥t,u

.

Since Step 3 gives ∥s∥t,u = O(
√
ε) and we assume ∥rc∥2t,u = Eqt [r

2
c ] ≥ v0 > 0 (non-degenerate

target), it follows that
|λt,u| = O(

√
ε).

Next we control the residual. Under the smoothness and small-step assumptions, the true shift s and
the tilting direction rc agree to first order: there exists a scalar α = O(

√
ε) and a remainder ∆ with

∥∆∥t,u = O(ε) such that
s = α rc +∆.
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Substituting this into the formula for λt,u yields

λt,u =
Eqt [(αrc +∆)rc]

Eqt [r
2
c ]

= α+
Eqt [∆ rc]

Eqt [r
2
c ]

= α+O(ε).

Hence the residual can be written as

s− λt,urc = ∆− (λt,u − α)rc,

and therefore
∥ s− λt,urc ∥t,u ≤ ∥∆∥t,u + |λt,u − α| ∥rc∥t,u = O(ε).

Step 6. Putting pieces together. Recall that

log q̂(λ)(a) = (1− λ) log qt(a) + λ log p̃2,t(a)− ψt,u(λ),

so that the log-difference vector is

∆(λ)(a) := log qt+1(a)−log q̂(λ)(a) =
(
log qt+1(a)

qt(a)
−Eqt

[
log qt+1

qt

])
−
(
log q̂(λ)(a)

qt(a)
−Eqt

[
log q̂(λ)

qt

])
+C(λ),

where
C(λ) := Eqt

[
log qt+1

qt

]
− Eqt

[
log q̂(λ)

qt

]
is a constant (independent of a). Denote

s(a) := log qt+1(a)
qt(a)

− Eqt

[
log qt+1

qt

]
, s̃(λ)(a) := log q̂(λ)(a)

qt(a)
− Eqt

[
log q̂(λ)

qt

]
.

Then
∆(λ)(a) =

(
s− s̃(λ)

)
(a) + C(λ).

Since Eqt [s] = Eqt [s̃
(λ)] = 0, the vector s− s̃(λ) is orthogonal (in L2(qt)) to the constant function

1. Hence
∥∆(λ)∥2t,u = ∥ s− s̃(λ) ∥2t,u + |C(λ)|2,

and in particular

∥ s− s̃(λ) ∥t,u ≤ ∥∆(λ)∥t,u ≤ ∥ s− s̃(λ) ∥t,u + |C(λ)|.

Recall A(f) := logEqt [e
f ] and Eq. 2. Using

Eqt

[
log qt+1

qt

]
= −A(s), Eqt

[
log q̂(λ)

qt

]
= λEqt [r]−A(λr),

we have
C(λ) = −A(s)− λEqt [r] +A(λr).

By Step 3, A(s) = 1
2∥s∥

2
t,u + O(∥s∥3t,u) = O(ε). By the Taylor expansion of A(λr) at λ = 0

(Step 4),
A(λr) = λEqt [r] +

1
2λ

2 Varqt(r) +O(λ3).

Hence
C(λ) = − 1

2∥s∥
2
t,u + 1

2λ
2 Varqt(r) +O(∥s∥3t,u) +O(λ3).

In particular, with |λ| = O(
√
ε) (Step 5) and ∥s∥t,u = O(

√
ε) (Step 3),

|C(λ)| = O(ε). (6)

Choose λ = λt,u from Step 5. Then

∥ s− s̃(λt,u) ∥t,u ≤ ∥ s− λt,urc ∥t,u + ∥s̃(λt,u) − λt,urc∥t,u.

By Step 5, ∥ s − λt,urc ∥t,u = O(ε). By Step 4, s̃(λ) = λrc + O(λ3), so ∥s̃(λt,u) − λt,urc∥t,u =

O(λ3t,u) = O(ε3/2). Therefore,
∥ s− s̃(λt,u) ∥t,u = O(ε). (7)
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Using the decomposition inequality above and equation 6,

∥∆(λt,u)∥t,u ≤ ∥ s− s̃(λt,u) ∥t,u + |C(λt,u)| = O(ε) +O(ε) = O(ε).

Finally, recalling

log q̂(λ)(a) = (1− λ) log qt(a) + λ log p̃2,t(a)− ψt,u(λ),

we have shown∥∥∥ log qt+1(· | u)−
[
(1− λt,u) log qt(· | u) + λt,u log p̃2,t(· | u)− ψt,u(λt,u)

]∥∥∥
t,u

= O(ε),

which proves the theorem.

E.2 PROOF OF THEOREM B.2

Notation. Fix a prefix u (we omit ”| u” when clear). Write f(a) = log p̃2(a) − log q(a) at the
current iterate q (the step index t is omitted for readability), and f̄ = Eq[f ], f̃ = f − f̄ . For a set S
of token-tree nodes, denote its q-mass by wS = Eq[1S ].

Recall the standard log-space interpolation Qλ defined per prefix by log qλ = (1 − λ) log q +
λ log p̃2 − ψ(λ), with ψ(λ) = log

∑
a q(a)

1−λp̃2(a)
λ.

Lemma E.1 (First-order change of code length under tilting). For any response distribution P on
the token tree,

∆L(P ) := KL(P∥Qλ)−KL(P∥Q) = −λ
(
EP [f ]− EQ[f ]

)
+ O(λ2),

where the O(λ2) remainder is controlled by VarQ(f). Equivalently, d
dλ

∣∣
λ=0

KL(P∥Qλ) =

−
(
EP [f ]− EQ[f ]

)
.

Proof. By definition, log qλ = log q + λ(f − ψ(λ)) with ψ(λ) = logEQ[e
λf ]. Thus log qλ

q =

λf − ψ(λ) and
KL(P∥Qλ) = KL(P∥Q)− λEP [f ] + ψ(λ).

Since ψ(λ) = logEQ[e
λf ] = λEQ[f ] +

λ2

2 VarQ(f) + O(λ3), we obtain ∆L(P ) = −λ(EP [f ] −
EQ[f ]) +

λ2

2 VarQ(f) +O(λ3).

Lemma E.2 (Variance under sparsity). Fix a prefix u and write Q(·) = q(· | u). Let f(a) =
log p̃2(a | u)− log q(a | u). Under Assumption B.4, we have

VarQ(f) ≤ Ea∼Q[f(a)
2] ≤ wS M

2
h + (1− wS)M

2
l ≤ wS M

2
h + M2

l .

Moreover, when we account for the controlled leakage in Assumption B.5, the effective out-of-set
amplitude can be taken as Ml + (β + γ)Mh, which yields the coarse bound

VareffQ (f) ≤ wS M
2
h +

(
Ml + (β + γ)Mh

)2
.

Proof. Since VarQ(f) ≤ EQ[f
2], it suffices to bound the second moment. Split the expectation

over S and Sc:

EQ[f
2] = EQ

[
f2 1S

]
+ EQ

[
f2 1Sc

]
≤ wSM

2
h + (1− wS)M

2
l ,

using |f | ≤Mh on S and |f | ≤Ml on Sc. Dropping the factor (1− wS) gives ≤ wSM
2
h +M2

l .

To upper bound the effective out-of-set magnitude after realizing a targeted update on S, choose the
per-prefix target direction

g := ΠSf,

which is supported on S, so that ∥ΠScg∥L2(Q) = 0 ≤ β ∥ΠSg∥L2(Q) and the premise of Assump-
tion B.5 holds. Let ∆ log q be the induced global change guaranteed by Assumption B.5, and define
the leakage vector on Sc by

ℓ := ΠSc ∆ log q.
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Then the out-of-set control in Assumption B.5 gives

∥ℓ∥L2(Q) ≤ (β + γ) ∥ΠSg∥L2(Q).

Moreover,

∥ΠSg∥L2(Q) = ∥ΠSf∥L2(Q) =
(
Ea∼Q

[
(ΠSf(a))

2
])1/2

≤Mh
√
wS ≤Mh.

Define the effective out-of-set component that accounts for leakage by

f effSc := fSc + ℓ.

By the triangle inequality and the bounds above,

∥f effSc ∥L2(Q) ≤ ∥fSc∥L2(Q) + ∥ℓ∥L2(Q) ≤Ml + (β + γ) ∥ΠSg∥L2(Q) ≤Ml + (β + γ)Mh.

Therefore, an effective second-moment upper bound that incorporates the controlled leakage is

EQ[f
2] = ∥fS∥2L2(Q) + ∥fSc∥2L2(Q) ≤ wS M

2
h +

(
Ml + (β + γ)Mh

)2
.

This motivates the shorthand

VareffQ (f) ≤ wS M
2
h +

(
Ml + (β + γ)Mh

)2
,

which we use as a coarse variance upper bound when controlled leakage is present.

Lemma E.3. Let P,Q, P̃2 be response distributions on the (truncated) token space with strictly
positive densities p, q, p̃2. Define f(z) := log p̃2(z)− log q(z). Then

EP [f ]− EQ[f ] = KL(P∥Q) + KL(Q∥P̃2)−KL(P∥P̃2).

In particular, if P̃2 = P2 then EP2 [f ]− EQ[f ] = KL(P2∥Q) + KL(Q∥P2) ≥ 0.

Proof. Expand the left-hand side:∑
z

p(z)
(
log p̃2(z)− log q(z)

)
−
∑
z

q(z)
(
log p̃2(z)− log q(z)

)
.

Group like terms:(∑
z

p(z) log p̃2(z)−
∑
z

p(z) log q(z)
)
−
(∑

z

q(z) log p̃2(z)−
∑
z

q(z) log q(z)
)
.

Use the discrete KL definitions:

KL(P∥Q) =
∑
z

p(z) log
p(z)

q(z)
=
∑
z

p(z) log p(z)−
∑
z

p(z) log q(z),

KL(Q∥P̃2) =
∑
z

q(z) log
q(z)

p̃2(z)
=
∑
z

q(z) log q(z)−
∑
z

q(z) log p̃2(z),

KL(P∥P̃2) =
∑
z

p(z) log
p(z)

p̃2(z)
=
∑
z

p(z) log p(z)−
∑
z

p(z) log p̃2(z).

Substitute and simplify to obtain∑
z

p(z)f(z)−
∑
z

q(z)f(z) = KL(P∥Q) + KL(Q∥P̃2)−KL(P∥P̃2).

For P̃2 = P2, the right-hand side equals KL(P2∥Q) + KL(Q∥P2) ≥ 0, with equality iff Q =
P2.
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We now bound the domain performance improvement and the general capability degradation in a
single small step.

Theorem E.2 (One-step code-length change bounds). Let P1, P2 be the response distributions of
D1,D2 on the truncated token tree, and let Q 7→ Qλ be one log-space tilting step with |λ| ≤ λ0
small. Denote the expected code-length change by ∆L(P ) := KL(P∥Qλ) − KL(P∥Q). Then
there exist constants C1, C2 ≥ 0 such that:

Domain performance improvement on D2.

∆L(P2) = −λ
(
EP2

[f ]− EQ[f ]
)
+ λ2

2 VarQ(f) +O(λ3)

≤ −λ
(
KL(Q∥P̃2)−KL(P2∥P̃2)

)
+ C2 λ

2.

General performance degradation on D1.

∆L(P1) = −λ
(
EP1

[f ]− EQ[f ]
)
+ λ2

2 VarQ(f) +O(λ3)

≤ λ
√
VarQ(f)

√
χ2(P1∥Q) + C1 λ

2

≤ λ
(√

wS Mh +Ml + (β + γ)Mh

)√
χ2(P1∥Q) + C1 λ

2,

where χ2(P1∥Q) is the chi-square divergence.

In particular, if P̃2 = P2, then

∆L(P2) ≤ −λKL(Q∥P2) + C2 λ
2.

Proof. Recall the definition of the one-step log-space interpolation (per prefix) log qλ = (1 −
λ) log q + λ log p̃2 − ψ(λ), with ψ(λ) = logEQ[e

λf ] and f = log p̃2 − log q. For any distribu-
tion P on responses, Lemma E.1 gives the second-order expansion

∆L(P ) := KL(P ∥Qλ)−KL(P ∥Q) = −λ
(
EP [f ]− EQ[f ]

)
+ λ2

2 VarQ(f) +O(λ3). (8)

Domain performance improvement on D2. Apply equation 8 with P = P2:

∆L(P2) = −λ
(
EP2 [f ]− EQ[f ]

)
+ λ2

2 VarQ(f) +O(λ3).

By Lemma E.3,

EP2
[f ]− EQ[f ] = KL(P2 ∥Q) + KL(Q∥ P̃2)−KL(P2 ∥ P̃2) ≥ KL(Q∥ P̃2)−KL(P2 ∥ P̃2).

Multiplying by −λ reverses the inequality, hence for |λ| ≤ λ0,

∆L(P2) ≤ −λ
(
KL(Q∥ P̃2)−KL(P2 ∥ P̃2)

)
+ C2 λ

2,

where C2 ≥ 0. In particular, when P̃2 = P2,

EP2
[f ]− EQ[f ] = KL(P2 ∥Q) + KL(Q∥P2) ≥ KL(Q∥P2),

so
∆L(P2) ≤ −λKL(Q∥P2) + C2 λ

2.

General performance degradation on D1. Apply equation 8 with P = P1:

∆L(P1) = −λ
(
EP1

[f ]− EQ[f ]
)
+ λ2

2 VarQ(f) +O(λ3).

Using the inequality |EP [g]− EQ[g]| ≤
√

VarQ(g)
√
χ2(P∥Q), we have:

∣∣EP1
[f ]− EQ[f ]

∣∣ ≤√χ2(P1 ∥Q)
√
VarQ(f).
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Therefore, for |λ| ≤ λ0,

∆L(P1) ≤ λ
√

VarQ(f)
√
χ2(P1 ∥Q) + C1 λ

2,

with C1 ≥ 0 as above.

Next, invoke the variance upper bound that incorporates the controlled leakage (Lemma E.2):

VarQ(f) ≤ VareffQ (f) ≤ wS M
2
h +

(
Ml + (β + γ)Mh

)2
.

Taking square-roots and using
√
x+ y ≤

√
x+
√
y,√

VarQ(f) ≤
√
VareffQ (f) ≤

√
wS Mh +Ml + (β + γ)Mh.

Combine the last two displays to obtain

∆L(P1) ≤ λ
(√

wS Mh +Ml + (β + γ)Mh

)√
χ2(P1 ∥Q) + C1 λ

2.

This establishes both bounds with the left-hand side written as the expected code-length change
∆L(P ).

Theorem E.3 (Multi-step code-length change bounds). Let (Qt)
T
t=0 be obtained by repeated log-

space tilting steps Qt 7→ Qt+1 with weights λt (per-prefix interpolation), and write

∆LT (P ) := KL(P∥QT )−KL(P∥Q0), ΛT :=

T−1∑
t=0

λt, ST :=

T−1∑
t=0

λ2t .

Then there exist constants C1, C2 ≥ 0 such that:

Domain performance improvement on D2.

∆LT (P2) =

T−1∑
t=0

(
KL(P2∥Qt+1)−KL(P2∥Qt)

)
≤ −

T−1∑
t=0

λt

(
EP2

[ft]− EQt
[ft]
)

+ C2 ST .

In particular, if P̃2 = P2 (oracle targets), then

∆LT (P2) ≤ −
T−1∑
t=0

λt KL(Qt∥P2) + C2 ST .

General performance degradation on D1. Let

HT := sup
0≤t<T

√
χ2(P1∥Qt) (<∞ under small-step updates and KL(P1∥Q0)≪ 1).

Then

∆LT (P1) ≤ HT

T−1∑
t=0

λt

√
VarQt(ft) +C1 ST ≤ HT

(√
wS Mh+Ml+(β+γ)Mh

)
ΛT +C1 ST ,

where the last inequality uses the effective variance bound from Lemma E.2, applied uniformly
over t.

Proof. For each step t, Lemma E.1 gives, for any P ,

KL(P∥Qt+1)−KL(P∥Qt) = −λt
(
EP [ft]− EQt

[ft]
)
+

λ2
t

2 VarQt
(ft) +O(λ3t ).

Summing over t = 0, . . . , T − 1 and absorbing
∑

tO(λ3t ) into a constant multiple of ST (since
|λt| ≤ λ0) yields the generic decomposition

∆LT (P ) ≤ −
T−1∑
t=0

λt
(
EP [ft]− EQt [ft]

)
+ C ST .
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Domain term (P = P2). By Lemma E.3, EP2
[ft] − EQt

[ft] = KL(P2∥Qt) + KL(Qt∥P̃2) −
KL(P2∥P̃2) ≥ KL(Qt∥P̃2)−KL(P2∥P̃2).Multiplying by−λt and summing gives the first display,
with C2 absorbing the quadratic/cubic remainders. In the oracle case P̃2 = P2, EP2

[ft]−EQt
[ft] ≥

KL(Qt∥P2), hence the stated inequality.

General term (P = P1). The change-of-measure bound with centering gives, for each t,∣∣EP1
[ft]− EQt

[ft]
∣∣ ≤ √

χ2(P1∥Qt)
√

VarQt
(ft) ≤ HT

√
VarQt

(ft).

Thus, by applying −(EP1
[ft]− EQt

[ft]) ≤
∣∣EP1

[ft]− EQt
[ft]
∣∣, we have

∆LT (P1) ≤ HT

T−1∑
t=0

λt

√
VarQt(ft) + C1 ST .

Finally, apply Lemma E.2 uniformly in t to bound
√

VarQt(ft) ≤
√
wS Mh +Ml + (β + γ)Mh

and factor out ΛT .

Theorem E.4 (Smaller steps yield a smaller general performance degradaton bound at a equal
domain performance gain). Fix a desired domain improvement ∆⋆ > 0 on D2 (i.e., ∆LT (P2) ≤
−∆⋆). Among all T -step tilting schedules that achieve this target, the minimal upper bound on
the increase of code length on D1 satisfies

∆LT (P1) ≤ A
∆⋆

µT
+
(AC2

µ3
T

+
C1

µ2
T

)∆2
⋆

T
+ O

( 1

T 2

)
where µT := inft<T KL(Qt∥P2) > 0 and A := HT

(√
wS Mh +Ml + (β + γ)Mh

)
are fixed

value under the total number of update steps T and the desired domain gain ∆⋆.
The upper bound strictly decreases as T increases. Thus, under the equal-steps schedule that
attains the target, the per-step effective weight scales as λt ∝ 1/T ; thus, for the same domain
gain, larger T implies smaller per-step updates. Hence, smaller step size⇒ smaller upper bound.

Proof. We work in the oracle case P̃2 = P2. From the multi-step bound,

∆LT (P2) ≤ −
T−1∑
t=0

λt KL(Qt∥P2) + C2

T−1∑
t=0

λ2t ≤ −µT ΛT + C2 ST ,

where ΛT =
∑

t λt, ST =
∑

t λ
2
t , and µT := inft<T KL(Qt∥P2) > 0. Thus any schedule that

achieves ∆LT (P2) ≤ −∆⋆ must satisfy the feasibility constraint

µT ΛT − C2 ST ≥ ∆⋆. (9)

For the general-performance side, the multi-step bound gives

∆LT (P1) ≤ AΛT + C1 ST , (10)

where A := HT

(√
wS Mh +Ml + (β + γ)Mh

)
and HT := supt<T

√
χ2(P1∥Qt).

For any fixed T and ΛT , Cauchy–Schwarz implies ST ≥ Λ2
T /T , with equality iff λt ≡ ΛT /T .

Hence the bound equation 10 is minimized (for fixed T,ΛT ) by the equal-steps schedule; moreover,
equal steps minimize the feasibility penalty in equation 9 as well. Under equal steps ST = Λ2

T /T ,
the feasibility constraint becomes the concave quadratic inequality

µT ΛT −
C2

T
Λ2
T ≥ ∆⋆.

Its smallest feasible solution (the smaller root) is

Λmin
T =

T

2C2

(
µT −

√
µ2
T −

4C2∆⋆

T

)
,

which exists for T > 4C2∆⋆/µ
2
T . Substituting Λmin

T and ST = (Λmin
T )2/T into equation 10 yields

the optimal-in-this-bound upper bound.
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To expose the dependence on T , expand the smaller root for large T :

µT ΛT −
C2

T
Λ2
T = ∆⋆,

the smaller root is

Λmin
T =

T

2C2

(
µT −

√
µ2
T −

4C2∆⋆

T

)
.

Set
ε :=

4C2∆⋆

T
, x :=

ε

µ2
T

=
4C2∆⋆

µ2
T T

.

Then √
µ2
T − ε = µT

√
1− x = µT

(
1− x

2
− x2

8
+O(x3)

)
.

Hence

µT −
√
µ2
T − ε = µT

(
x

2
+
x2

8
+O(x3)

)
=

ε

2µT
+

ε2

8µ3
T

+O

(
ε3

µ5
T

)
.

Multiplying by the prefactor T/(2C2) and substituting ε = 4C2∆⋆/T ,

Then, we have

Λmin
T =

∆⋆

µT
+
C2 ∆

2
⋆

µ3
T

· 1
T

+O
( 1

T 2

)
.

Therefore,

∆LT (P1) ≤ A
∆⋆

µT
+
(AC2

µ3
T

+
C1

µ2
T

)∆2
⋆

T
+ O

( 1

T 2

)
,

which decreases strictly in T and converges to A∆⋆/µT as T →∞. This completes the proof.

Theorem E.5 (Label-only supervision enlarges the safe per-step range). Define

Vs :=
√

E
[
sM2

h + (m− s)M2
e

]
, Me :=Ml + (β + γ)Mh,

where s is the expected number of hard tokens per example on D2 and m is the example to-
ken length. For any T -step equal-steps schedule (λt ≡ λ), a general-performance degradation
∆LT (P1) ≤ εfg is ensured whenever the per-step effective weight satisfies

λ ≤ λmax(T ; s) :=
−HTVs +

√
(HTVs)2 +

4C1

T εfg

2C1
.

In particular, as T grows,

λmax(T ; s) =
εfg
HTVs

· 1
T

+ O
( 1

T 2

)
,

so the safe per-step range widens inversely with Vs. When Me ≪ Mh, we have Vs ≍ Mh
√
s,

hence
λmax(s) ≍

1√
s

(for fixed εfg, HT ,Mh, T ).

Therefore, if label-only supervision reduces s relative to chain-of-thought, it strictly enlarges the
admissible per-step range.

Proof. Define Me :=Ml + (β + γ)Mh. From Lemma E.2, we have

VarQt(ft) ≤ Ea∼Qt [ft(a)
2] ≤ wS,tM

2
h + (1− wS,t)M

2
e , (11)

Consider sampling an example z from D2, with response length m(z) ∈ N, and let J(z) ⊆
{1, . . . ,m(z)} be the set of hard positions for that example, with cardinality s(z) = |J(z)|. If
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we (conceptually) select a token position uniformly at random along the generated path, then the
probability of landing in the hard set equals the hard fraction:

wS,t = E
[
s(z)

m(z)

]
=: E

[
s
m

]
, (12)

where the expectation is over the (data-induced) randomness of examples and the path under Qt.
Substituting equation 12 into equation 11 yields

VarQt(ft) ≤ E
[

s
m

]
M2

h +
(
1− E

[
s
m

])
M2

e . (13)

We now relax the hard fraction into an affine form in (s,m) that pairs naturally with (M2
h ,M

2
e ).

Since m(z) ≥ 1 and 0 ≤ s(z) ≤ m(z) for every example,

s(z)

m(z)
≤ s(z), 1− s(z)

m(z)
≤ m(z)− s(z).

Taking expectations and using linearity,

E
[

s
m

]
M2

h +
(
1− E

[
s
m

])
M2

e ≤ E
[
sM2

h + (m− s)M2
e

]
. (14)

Combining equation 13 and equation 14 gives the uniform (in t) token-level bound√
VarQt(ft) ≤

√
E
[
sM2

h + (m− s)M2
e

]
:= Vs, for all t = 0, 1, . . . , T − 1. (15)

The general-performance part of Theorem E.3 states that

∆LT (P1) ≤ HT

T−1∑
t=0

λt

√
VarQt

(ft) + C1

T−1∑
t=0

λ2t , HT := sup
0≤t<T

√
χ2(P1∥Qt).

Using equation 15, we obtain the uniform (in t) upper bound

∆LT (P1) ≤ HT Vs ΛT + C1 ST , ΛT :=

T−1∑
t=0

λt, ST :=

T−1∑
t=0

λ2t . (16)

For an equal-steps schedule λt ≡ λ, we have ΛT = Tλ and ST = Tλ2, hence from equation 16

∆LT (P1) ≤ T
(
HT Vs λ + C1 λ

2
)
. (17)

Impose a general-performance budget ∆LT (P1) ≤ εfg. Then equation 17 yields the quadratic
constraint

C1 λ
2 + (HTVs)λ −

εfg
T
≤ 0 . (18)

The feasible interval in λ is [ 0, λmax(T ; s) ], where the positive root is

λmax(T ; s) =
−HTVs +

√
(HTVs)2 + 4C1

T εfg

2C1
. (19)

A first-order expansion in 1/T (Taylor for
√
a2 + δ with δ ∼ T−1) gives

λmax(T ; s) =
εfg

HT Vs
· 1
T

+ O
( 1

T 2

)
, as T →∞. (20)

Finally, when Me ≪ Mh, the Me-term is negligible and Vs =
√
E[s]M2

h + E[m− s]M2
e ≈

Mh
√
s, so

λmax(T ; s) ≍
1√
s

(for fixed εfg, HT , Mh, T ).

This shows that reducing s (as is typical under label-only supervision versus chain-of-thought)
strictly enlarges the admissible per-step range, and the range also increases with T .
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Table 4: General-purpose benchmarks, their evaluation metrics, the number of few-shot settings,
and the primary capability they assess.

Dataset Metric Shot Capability Evaluated
Instruction Following
IFEval (Zhou et al., 2023) inst level strict acc, none 0-shot Instruction-following

Mathematical Reasoning
GSM8K (Cobbe et al., 2021) exact match, flexible-extract 5-shot Mathematical reasoning

Code Generation
HumanEval (Chen et al., 2021) pass@1, create test 0-shot Code generation

Commonsense Reasoning
HellaSwag (Zellers et al., 2019) acc, none 0-shot Commonsense reasoning
ARC-Easy (Clark et al., 2018) acc, none 0-shot Science reasoning
ARC-Challenge (Clark et al., 2018) acc, none 0-shot Science reasoning
PIQA (Bisk et al., 2020) acc, none 0-shot Physical commonsense reasoning

Knowledge-Intensive QA
MMLU (Hendrycks et al., 2020) acc, none 0-shot Multi-domain knowledge understanding

Table 5: Domain-specific datasets, their evaluation metrics, and the primary capability they assess.
Dataset Metric Domain-Specific Capability Evaluated
MedCalc (Khandekar et al., 2024) Accuracy Medical mathematical reasoning
ESCI (Reddy et al., 2022) Balanced Accuracy E-commerce product classification

Table 6: Prompt template used for the MedCalc Benchmark.
Prompt Template for MedCalc Benchmark.
<|im start|>system
You are a helpful assistant. You first think about the
reasoning process in the mind and then provide the user with
the answer.
<|im end|>

<|im start|>user
You are a helpful assistant for calculating a score for a
given patient note. Please think step-by-step to solve the
question and then generate the required score.
Here is the patient note:
{note}
Here is the task:
{question}
Please show your entire reasoning process in a single <think>
</think> block (do not open or close the tag more than once).
Your final response must be in JSON format within <answer>
</answer> tags. For example,
<think>
[entire reasoning process here]
</think>

<answer>
{"answer": str(short and direct answer of the question)}
</answer>

<|im end|>

<|im start|>assistant
Let me solve this step by step.
<think>
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Table 7: Prompt template used for the ESCI classification task in the w/o CoT setting, where the
LLM directly predicts one of four relation types given a query–product pair without generating
intermediate reasoning.

Prompt Template for ESCI Classification (w/o CoT setting)
<|im start|>system
You are a helpful assistant. You provide the user with the
answer.
<|im end|>

<|im start|>user
Your task is to classify each product as being an Exact,
Substitute, Complement, or Irrelevant match for the query.
Here is the user’s query:
{user query}
Here is the product information:
{product info}
--------------

Your final response must be within <answer> </answer> tags.
Label the relation type as a number: 0 = Exact, 1 =
Substitute, 2 = Complement and 3 = Irrelevant. For example,
<answer>one of [0, 1, 2, 3]</answer>.
<|im end|>

<|im start|>assistant
<answer>
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Table 8: Prompt template used for the ESCI classification task in the w/ CoT setting, where the LLM
is required to produce a complete reasoning trace inside a single <think> block before giving the
final prediction in <answer> tags.

Prompt Template for ESCI Classification (w/ CoT setting)
<|im start|>system
You are a helpful assistant. You first think about the
reasoning process in the mind and then provide the user with
the answer.
<|im end|>

<|im start|>user
Your task is to classify each product as being an Exact,
Substitute, Complement, or Irrelevant match for the query.
Here is the user’s query:
{user query}
Here is the product information:
{product info}
--------------

Please show your entire reasoning process in **a single**
<think> </think> block (do not open or close the tag more than
once).
Your final response must be within <answer> </answer> tags.
Label the relation type as a number: 0 = Exact, 1 =
Substitute, 2 = Complement and 3 = Irrelevant. For example,
<think>
[entire reasoning process here]
</think>
<answer>one of [0, 1, 2, 3]</answer>
<|im end|>

<|im start|>assistant
<think>
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