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Abstract001

Effective decision-making often relies on iden-002
tifying what makes each candidate distinctive.003
While existing benchmarks for LLMs empha-004
size retrieving or summarizing information rel-005
evant to a given query, they do not evaluate006
a model’s ability to identify globally distinc-007
tive features across a set of documents. We008
introduce Distinctive Feature Mining (DFM),009
a new task that challenges models to analyze a010
small-to-medium collection (10-40 documents)011
and surface features that are rare in the global012
context (e.g., appearing in less than 10% of013
documents). This setting mirrors real-world014
scenarios such as candidate selection or prod-015
uct differentiation, where statistical reasoning,016
not retrieval, is key. To enable systematic evalu-017
ation of this capability, we present DIFBENCH,018
a configurable benchmark creation framework019
with controllable parameters such as document020
set size and distinctiveness thresholds.021

Using DIFBENCH, we perform a large-scale022
assessment of distinctive feature mining across023
ten state-of-the-art LLMs. Our findings re-024
veal a significant performance gap between025
general-purpose and reasoning-enhanced mod-026
els. All models, however, substantially degrade027
as the task complexity and document count in-028
crease. We also find that a common failure029
mode is misidentifying frequent features as dis-030
tinctive. These insights reveal core limitations031
in contemporary LLMs’ abilities to perform032
fine-grained, statistical reasoning and rarity de-033
tection.034

1 Introduction035

When making decisions from large candidate pools–036

whether selecting products, evaluating applicants,037

or analyzing documents–humans naturally seek to038

understand what makes each candidate distinctive.039

This cognitive process of identifying uncommon or040

unique traits is central to effective decision-making.041

・・・
: 7

Document 1

NLP experience

Document 2 Document 3

human

For each document, identify its 
“distinctive features” – features that 
appear in only one of the documents.

AWS Solutions Architect

Serverless fraud-detection NLP experience

Risk assessments

Financial Modeling AWS Solutions Architect

NLP experience

Risk assessments

LLM

For document 1 For document 2 For document 3

- NLP experience

- Serverless fraud-detection

- Financial Modeling

- NLP experience

- NLP experience

AWS Solutions Architect Agentic AI development

Not distinctive Missing distinctive feature😫
Figure 1: Example of Distinctive Feature Mining
(DFM). Given a set of documents, the model needs
to identify globally rare features. Here, the model incor-
rectly identifies “NLP experience” as distinctive, when
it is shared by all documents. In contrast, it misses the
truly rare feature “Agentic AI development”.

As LLMs are increasingly deployed in recommen- 042

dation and decision support systems across do- 043

mains such as hiring (An et al., 2024; Iso et al., 044

2025) and travel planning (Xie et al., 2024), their 045

ability to mimic this core human capability be- 046

comes critical. 047

Our investigation reveals a fundamental limita- 048

tion: even state-of-the-art reasoning models fail 049

to recognize rarity when analyzing a set of doc- 050

uments. For instance, when analyzing technical 051

resumes, a model might mistakenly identify “NLP 052

experience” as distinctive when it is shared by 053

multiple documents, and yet miss genuinely rare 054

skills like “Agentic AI development” (see Figure 055

1). This behavior is akin to the psychological phe- 056

nomenon of base rate neglect (Tversky and Kahne- 057

man, 1974; Grether and Plott, 2012), where statisti- 058

cal frequency is ignored in favor of more salient but 059

less informative cues. This can lead to systemati- 060

cally suboptimal recommendations and decisions. 061
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LLM benchmarks have primarily focused on062

query-driven tasks, such as sparse information re-063

trieval (e.g., the needle-in-a-haystack test (Kam-064

radt, 2023)) or multi-document and long-context065

reasoning (Karpinska et al., 2024; Xu et al., 2024;066

Kuratov et al., 2024; Levy et al., 2024; Bai et al.,067

2024a; Zhang et al., 2024a; Hsieh et al., 2024; Bai068

et al., 2024b; Yen et al., 2025; Maekawa et al.,069

2025). These benchmarks assess a model’s ability070

to find or aggregate relevant information, often in071

response to an explicit query. However, they do072

not test whether a model can derive global statisti-073

cal insights across a collection, in particular those074

involving feature rarity.075

To fill this gap, we introduce Distinctive Fea-076

ture Mining (DFM), a new task that requires iden-077

tifying globally rare attributes (appearing in ≤ θ%078

of documents) within document collections. Un-079

like traditional retrieval or summarization, DFM080

requires statistical reasoning over a population, not081

just extracting salient information from individual082

documents. We focus on collections of 10–40 docu-083

ments, a realistic scale for decisions like candidate084

screening or product comparison. This scale is085

large enough to require aggregate reasoning and086

base-rate estimation, yet small enough to demand087

holistic comprehension and accurate attribution.088

We operationalize this through DiFBench, a con-089

figurable benchmark creation framework that pre-090

cisely governs feature distributions. For example, it091

ensures “blockchain development” appears in 2 out092

of 40 resumes (5%) while “project management”093

appears in 25 (62.5%). This enables systematic094

evaluation across document scales and domains,095

with controllable parameters including document096

count (10-40), feature density, and distinctiveness097

thresholds (2.5%-20%).098

Our evaluation over 10 state-of-the-art LLMs re-099

veals three key findings: (1) non-reasoning models100

achieve F1 < 30%, revealing limitations in multi-101

document reasoning; (2) even advanced models102

(o3, Gemini-2.5-Flash) degrade from F1 > 85% on103

10 documents to F1 < 60% on 40 documents; and104

(3) 75.9% of errors involve misclassifying common105

features as distinctive. This precision drop mirrors106

base rate neglect in human cognition. We mitigate107

this via explicit verification prompting, achieving a108

65% relative F1 gain while maintaining recall.109

The main contributions of this work include:110

(1) We introduce DFM task and DiFBench bench-111

mark creation framework, to enable system-112

atic evaluation of collection-level statistical 113

reasoning across domains (resumes, news sum- 114

maries), document scales (10-40), and distinc- 115

tiveness thresholds (2.5%-20%). 116

(2) We conduct the first large-scale study revealing 117

that even leading LLMs degrades significantly 118

with scale, with 75.9% of errors resulting from 119

misidentifying frequent features as distinctive. 120

This provides computational evidence of base 121

rate neglect in LLM reasoning. 122

(3) We demonstrate that explicit verification 123

prompting leads to a 65% relative improve- 124

ment in the F1 score, offering a practical miti- 125

gation while highlighting persistent limitations 126

in multi-document comparative reasoning. 127

We will release the datasets and the evaluation 128

framework upon acceptance of this paper. 129

2 Related Work 130

Complex and Quantitative Reasoning in LLMs 131

Recent benchmarks increasingly test multi- 132

document reasoning, but their primary focus re- 133

mains on aggregating query-relevant content or 134

retrieving salient passages (Levy et al., 2024; Bai 135

et al., 2024a; Zhang et al., 2024a; Hsieh et al., 2024; 136

Bai et al., 2024b; Yen et al., 2025; Maekawa et al., 137

2025). In contrast, DFM shifts the focus to corpus- 138

level statistical reasoning, requiring the identifica- 139

tion of globally rare features. This requires reliable 140

counting, base rate estimation, and population-level 141

comparison. These are all areas where LLMs re- 142

main weak (Maekawa et al., 2025). Our findings 143

reinforce this, showing that models often miscount 144

feature frequencies and overestimate the distinc- 145

tiveness of common traits. These limitations high- 146

light statistical reasoning across documents as an 147

underexplored and unresolved challenge. 148

Multi-document Summarization Multi- 149

document summarization typically aims to 150

synthesize common themes or provide a unified 151

overview of content across documents (Li et al., 152

2012; Laban et al., 2024; Belem et al., 2025). A 153

few recent efforts (Huang et al., 2024; Zhang 154

et al., 2024b) have explored diversity-aware 155

summarization, but they focus on maximizing 156

coverage of perspectives rather than surfacing rare 157

or distinctive features. DFM complements this 158

line of work by targeting corpus-level rarity rather 159

than within-document salience or inter-document 160

consensus. 161
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Figure 2: Overview of DIFBENCH. To obtain distinctive features, Fδ , we first randomly select k features from the
feature set F . The remaining features are treated as common features, F¬δ . Distinctive features Fδ are distributed
across documents while ensuring that each feature appears less than or equal to θ% of the documents. Common
features F¬δ are then distributed across documents, ensuring that each feature appears in more than θ% of the n
documents.

Comparative Summarization and Pairwise162

Analysis Prior work on comparative summariza-163

tion has explored pairwise document contrast and164

entity differentiation (Iso et al., 2022; Gunel et al.,165

2023, 2024; Yan et al., 2024). These methods effec-166

tively highlight differences between two entities but167

do not scale to collections with many candidates.168

Crucially, they also lack a statistical frame for iden-169

tifying what is rare relative to a population. DFM170

extends these efforts to multi-way comparisons, al-171

lowing models to reason over the distinctiveness172

of features in the context of an entire set—a key173

requirement in realistic decision-making scenarios174

such as hiring or product recommendation.175

3 Distinctive Feature Mining and176

Benchmark Creation Framework177

We first introduce the task of Distinctive Feature178

Mining (DFM), present the design principles of179

DIFBENCH, a general benchmark creation frame-180

work designed to systematically evaluate models181

on this task. Then, we explain the details of the182

benchmark creation framework. Finally, we de-183

scribe how DIFBENCH is implemented to create184

benchmark datasets.185

3.1 Task Definition186

In this study, we simplify each document into a187

set of features. This can be realized by feature188

extraction methods (Clavié and Soulié, 2023) in189

common use cases such as resume screening and190

product comparison. Formally, a document set191

is denoted as D = {d1, d2, . . . , dn}, where each 192

document di consists of a set of up to h features, 193

Fi = {f i
1, f

i
2, . . .}. Let F =

⋃n
i=1 Fi denotes the 194

set of all features across D. The task of Distinc- 195

tive Feature Mining (DFM) is to identify, for each 196

document di, a subset of features F δ
i ⊆ Fi that are 197

distinctive. A feature is considered distinctive if it 198

appears in at most θ% of documents, where θ is a 199

user-defined threshold. 200

3.2 Design Principles 201

We introduce DIFBENCH, a benchmark creation 202

framework specifically designed to evaluate model 203

performance on the DFM task. Figure 2 illustrates 204

the overall process. Given a feature set F , the 205

framework partitions it into distinctive and com- 206

mon subsets, then distributes these features across 207

documents D in a controlled manner to enable sys- 208

tematic evaluation. DIFBENCH is guided by three 209

core design principles: 210

(1) Distinctive features in comparable candi- 211

dates: Documents must be comparable; that is, 212

all documents belong to the same domain and 213

share the same structure. They differ in select 214

features that make them distinctive. 215

(2) Flexible number of candidates and distinc- 216

tive features: Variable numbers of candidate 217

documents and distinctive features must be sup- 218

ported to enable evaluation across scale and 219

distinctiveness thresholds. 220

(3) Systematic evaluation: The framework must 221
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enable controlled experiments and facilitate222

precise measurement of model ability to detect223

globally rare features and reason over aggre-224

gate statistics.225

These principles enable a comprehensive testbed226

for studying corpus-level statistical reasoning. It227

allows researchers to probe models’ capacity to (1)228

extract features across documents, (2) count their229

frequencies, and (3) identify what is statistically230

distinctive in a given population.231

3.3 Benchmark Creation Framework232

To realize these design principles in practice, DIF-233

BENCH takes as input a set of features F and pro-234

grammatically constructs a document set D by dis-235

tributing these features based on configurable pa-236

rameters. These key parameters are:237

(1) Number of documents (n): Controls the scale238

of the dataset, allowing us to test how model239

performance varies with small to large docu-240

ment collections. Increasing n raises the com-241

plexity of DFM as models must consider more242

candidates and interactions.243

(2) Number of distinctive features (k): Specifies244

how many features are truly distinctive across245

the document set. By varying k, we can simu-246

late settings where distinctive traits are sparse247

or abundant, which affects the difficulty of min-248

ing such features.249

(3) Distinctiveness threshold (θ): Defines the250

maximum proportion of documents a feature251

can appear in to be considered distinctive. This252

parameter enables us to influence feature rarity253

and overlap across documents.254

Together, these provide fine-grained control over255

the complexity, sparsity, and overlap within the256

benchmark, enabling systematic and reproducible257

evaluation of statistical reasoning capabilities.258

Document Set Construction The benchmark259

creation process begins by distributing distinctive260

features across a subset of documents, followed by261

populating the remaining feature slots with com-262

mon features. To this end, we first randomly select263

k features from the set of features, F , to serve264

as distinctive features, Fδ. Each distinctive fea-265

ture is assigned a target document frequency, ran-266

domly sampled from the range [1, n× θ], ensuring267

these features appear in only a small portion of268

the n documents. These distinctive features are 269

then distributed across the documents to match 270

their assigned frequencies. The remaining features 271

F¬δ = F \ Fδ are treated as common features. 272

Each is assigned a higher document frequency, sam- 273

pled from the range [n× θ + 1, n], and distributed 274

across documents in the same way. During assign- 275

ment, we enforce a constraint that each document 276

can contain at most h features. If a feature cannot 277

be assigned without violating this rule, its assign- 278

ment is skipped. This ensures that distinctive fea- 279

tures remain relatively rare within the document 280

set, while common features are broadly shared, 281

thus preserving the intended distinction between 282

the two categories. 283

3.4 Benchmark Implementation 284

While DIFBENCH is designed to accept any set 285

of features, our implementation focuses on syn- 286

thesizing features grounded in real-world source 287

documents. Rather than relying on exact feature ex- 288

traction, we opt for feature synthesis to support sys- 289

tematic and controlled evaluations. This approach 290

ensures the generated features remain realistic and 291

representative of the original documents while al- 292

lowing us to precisely control task complexity. 293

Data Domains We use two different domains: 294

resumes and news summaries—both well-suited 295

for comparative analysis. For resumes, we source 296

job posts from mycareerfuture.sg,1 selecting the 297

10 longest descriptions from each of five major 298

job categories based on US Department of Labor 299

statistics,2. These include computer & math, life 300

physical & social science, legal, architecture & 301

engineering, and healthcare occupations. For news 302

summaries, we utilized news articles from (Huang 303

et al., 2024), which cover five distinct topics. Each 304

topic has 10 news articles. In summary, we have 305

100 source documents in total, with 50 resumes and 306

50 news summaries. 307

Feature Set Generation For each source doc- 308

ument, we synthesize a set of features that are 309

both relevant to its content and representative of 310

its context. To guide feature creation, we use 311

domain-specific structural templates. For resumes, 312

these include categories such as Experience, Tech- 313

nical Skills, Soft Skills, Projects, Certifications, 314

1We downloaded the dataset from https://github.com/
WING-NUS/JD2Skills-BERT-XMLC

2Labor Force Statistics from the Current Population Sur-
vey: https://www.bls.gov/cps/cpsaat11.htm
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Domain Section Synthesized Feature

Resume Experience Architected multi-cloud application frameworks aligning with banking industry compliance.
Technical Skills Proficient in .NET Framework and .NET Core architectures
Soft Skills Facilitated transparent communication across technical and non-technical audiences
Projects Built serverless fraud-detection prototype leveraging AWS Lambda streams
Certifications Achieved AWS Solutions Architect – Professional certification
Awards and Recognition Earned Global Cloud Excellence award for innovative platform design

News fuel requirements Inadequate ethanol content could trigger knock sensors and limp-home modes, ruining track sessions.
Summary vehicle performance Carbon-fiber rim option trims 32 pounds of unsprung mass, quickening initial acceleration.

historical context Factory 1,000-hp rating revives 1960s “horsepower wars” in a final escalation.
optional features $10,000 sunroof pricing intentionally discourages extra roof weight.
NHRA regulations Street-legal Demons may drive NHRA to revisit Advanced ET class definitions.
production details Compressed 2023 build window heightens risk of missed quotas before Brampton plant closure.
branding and marketing Devilish $96,666 base price turns MSRP into instant viral talking point.

Table 1: Examples of synthesized features in the resume and news summary dataset.

and Awards. For news summaries, we adopt 7–9315

subtopics from the original dataset (e.g., fuel316

requirements under the motor trend topic) as sec-317

tion headers.318

For each section, we prompt an LLM to generate319

a pool of 20 thematically relevant candidate fea-320

tures, using the seed document and section title as321

context. To encourage diversity across sections, we322

also supply the model with previously generated323

features from other sections of the same document.324

This helps ensure that each section’s features are325

both semantically relevant and distinct. We employ326

o3 (OpenAI, 2025) for a feature generation. Table 1327

illustrates several examples of synthesized features.328

4 Experimental Setup329

This section outlines our methodology for evaluat-330

ing the statistical reasoning capabilities of LLMs.331

We first describe the parameters used for generat-332

ing the synthetic document collections using DIF-333

BENCH. We then introduce the suite of LLMs eval-334

uated in our experiments, followed by a description335

of our inference and evaluation setup.336

Document Set Construction Parameters We337

set the number of documents n to 10, 20, and 40338

and test with ⌊n/2⌋ distinctive features, to examine339

how LLMs handle varying levels of complexity in340

identifying distinctive features. We set the distinc-341

tive threshold θ to 2.5%, 5%, 10%, and 20% of342

the total documents (i.e., 1, 2, 4, and 8 documents343

respectively when n = 40). We set the maximum344

number of features per document h to 4×S, where345

S denotes the number of sections of the document.346

Models We evaluate 10 LLMs with reasoning-347

optimized and general-purpose capabilities. Rea-348

soning models include both closed and open349

models: o3, o4-mini, Gemini-2.5-Flash, Qwen3- 350

235B22A (Qwen3 for short). General models 351

include GPT-4o, GPT-4o-mini, Gemini-2.5-Flash 352

w/o think, Qwen3 w/o think, Llama-4-Maverick, 353

and Llama-4-Scout. The model details are summa- 354

rized in Appendix B. We set temperature and top-p 355

parameters to 0.0 and 1.0, respectively, for all our 356

experiments. 357

Inference Setup At inference time, each model 358

is presented with a collection of documents gen- 359

erated by DIFBENCH and tasked with identifying 360

the set of distinctive features within that collection. 361

The model receives a single instruction prompt that 362

asks it to return the features that appear rarely (dis- 363

tinctive features) for each document. Because DIF- 364

BENCH controls the construction of documents and 365

explicitly selects which features are to be distinc- 366

tive, we have access to ground-truth annotations 367

Fδ for each synthetic benchmark instance. This 368

setup allows for objective evaluation of model pre- 369

dictions against a known gold standard. We use the 370

same prompt for all models, see Appendix C. 371

Evaluation Metrics Model predictions are eval- 372

uated using exact string match against the ground- 373

truth set Fδ provided by DIFBENCH. Our primary 374

evaluation metric is the F1 score, with precision 375

and recall reported in detailed analyses. 376

5 Results and Analysis 377

5.1 Main Results 378

Reasoning models consistently outperform their 379

general counterparts. Table 2 shows aver- 380

age F1 scores on the DFM task across varying 381

document counts (10, 20, 40) and distinctiveness 382

thresholds (10% and 20%). Overall, reasoning 383

models consistently outperform general-purpose 384
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Figure 3: F1 scores with various document sizes. The error bars indicate the standard deviation across samples.

Models Resumes News Summaries

o3 68.95 69.81
o4-mini 61.92 58.45
Gemini-2.5-Flash 84.78 77.76
Qwen3 46.41 36.32

GPT-4o 12.55 17.12
GPT-4o-mini 8.45 7.77
Gemini-2.5-Flash w/o think 20.38 22.29
Qwen3 w/o think 24.08 18.72
Llama4-Maverick 25.89 25.34
Llama4-Scout 11.87 7.21

Table 2: Average F1 scores of the reasoning-optimized
and general-purpose models on the DFM task across
three document sizes, i.e., 10, 20, and 40, and two dis-
tinctive features, i.e., 10% amd 20%. The models with
w/o suffix are general models that do not use reasoning
capabilities.

models across all settings. Surprisingly, no gen-385

eral model achieves F1 higher than 0.3%, indi-386

cating their limitation in identifying distinctive387

features effectively. This is particularly evident388

when comparing Gemini-2.5-Flash and Qwen3389

with their non-reasoning (‘w/o think’) variants,390

where reasoning-optimized versions consistently391

perform better. This trend holds across both do-392

mains, resumes and news summaries.393

Even current reasoning models are poor statisti-394

cal reasoners when the collection size increases.395

To investigate the impact of number of documents396

on DFM performance, we break down the results397

by document size in Figure 3, focusing on the 20%398

distinctive threshold. Results for 10% threshold are399

included in the Appendix A.1, where we observe 400

similar trends. 401

Reasoning models consistently outperform gen- 402

eral models across all document sizes, with F1 403

scores generally degrading as the number of docu- 404

ments increases. Their advantage is most evident 405

with smaller sets (10 documents), where models 406

like o3 and Gemini-2.5-Flash achieve F1 scores 407

above 85%. However, performance drops sharply 408

as the number of documents increases, with F1 409

scores dropping below 60% for 40 documents in 410

most cases. This suggests that while reasoning ca- 411

pabilities significantly benefit DFM, current mod- 412

els still struggle with the multi-document compari- 413

son at larger scales. 414

Statistical reasoning becomes more challenging 415

as the distinctive threshold increases. We fur- 416

ther analyze F1 scores across varying distinctive 417

thresholds, keeping the number of documents fixed 418

at 40 (see Figure 4). We observe that F1 scores 419

generally decline as the threshold increases, sug- 420

gesting it becomes harder for models to isolate 421

features that distinguish fewer documents from a 422

larger set. At higher thresholds (e.g., 20%), all 423

models perform poorly, with narrow gap between 424

reasoning and general models. This implies that 425

finer-grained DFM still remains a key challenge 426

even for advanced reasoning models. 427

5.2 Analysis of DFM Performance 428

We conduct a deeper analysis of LLM performance 429

on the DFM task by examining precision, recall and 430
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Figure 4: F1 scores with 40 documents and various distinctive thresholds.
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token usage. Due to space constraints„ we present431

detailed results on the news summary dataset here432

and include additional results on the resume dataset433

in Appendix A.2, which follow similar trends.434

While general models tend to over-predict, rea-435

soning models are more selective in identifying436

truly distinctive features. Figure 5 shows the437

average precision and recall of Gemini-2.5-Flash438

and its w/o think variant across various document439

sizes. Gemini-2.5-Flash generally achieves higher440

precision than its w/o think, suggesting that rea-441

soning models are more effective at identifying442

truly distinctive features. Interestingly, general443

models achieve relatively higher recall but poor444

precision (<30%), suggesting they tend to over-445

predict and include many irrelevant features. This446

reflects a lack of selectivity in general models when447

attempting feature mining under increasing com-448

plexity. Finally, we observe that both precision and449

recall drop as the document size increases even450

for the best-performing reasoning model, Gemini-451

2.5-Flash. This indicates that as the number of452

documents increases, models struggle to accurately453

count feature occurrences and identify those that 454

are truly distinctive. 455

Better statistical reasoning requires more out- 456

put tokens. Figure 6 shows the average number 457

of output tokens under varying document sizes. As 458

shown, reasoning models tend to generate more to- 459

kens in total as the number of documents increases. 460

This indicates that models require more reasoning 461

to identify distinctive features when the complexity 462

of the task increases. Notably, when considered 463

alongside the results in Figure 3, Gemini-2.5-Flash 464

achieves a high F1 score by significantly increasing 465

its token usage compared to other models. We also 466

observe that Gemini-2.5-Flash w/o think generates 467

a larger number of tokens than most of other mod- 468

els, despite its low precision score (see Figure 5). 469

This suggests that the model struggles with the sta- 470

tistical reasoning even if it generates a large amount 471

of tokens to identify rare information. The results 472

on the resume dataset is included in Appendix A.3, 473

which shows similar trends. 474

5.3 Error Analysis 475

To better understand model limitations, we ana- 476

lyze the errors made by the best-performing model, 477

Gemini-2.5-Flash, in the most challenging setting 478

(40 documents and a distinctive threshold of 20%). 479

We categorize the errors into three main types: (1) 480

Non-distinctive. Features that are mentioned in 481

the document but are not distinctive. (2) Contam- 482

ination. Features that are not mentioned in the 483

document itself but occur in other documents. (3) 484

Typo/Abbreviation. Features that are not men- 485

tioned in any documents, often due to typos or 486

malformed abbreviations. 487

The best performing model still struggles to es- 488

timate frequencies of features. Table 3 shows 489

7



10 20 40
# Documents

0

10000

20000

30000

40000

50000

Ou
tp

ut
 To

ke
ns

Threshold: 20%

o3
o4-mini
Gemini-2.5-Flash

Qwen3
GPT-4o
GPT-4o-mini

Gemini-2.5-Flash w/o think
Qwen3 w/o think

Llama4-Maverick
Llama4-Scout

Figure 6: The average number of output tokens.

Category Percentage (%)

Non-distinctive 75.90
Contamination 1.89
Typo/Abbreviation 0.01

Correct 22.20

Table 3: The distribution of error categories.

the distribution of these errors. The majority of490

errors are non-distinctive features, which indicates491

that the model tends to identify features that appear492

in the document but are not truly distinctive. This493

result suggests that models struggle to correctly494

estimate the frequencies of features if they handle495

many features. We also observe that the model496

makes contamination errors, which indicates that497

the model tends to identify features that are not498

mentioned in the document but are present in other499

documents. Since the recent model follows the500

instruction well, we observe that the model rarely501

makes typo/abbreviation errors.502

5.4 Mitigation Strategy503

Motivated by the observations that models achieve504

high precision but low recall in Figure 5 and the ma-505

jority of errors comes from non-distinctive features506

in Table 3, we propose a simple post-processing507

strategy to mitigate the errors. The mitigation strat-508

egy is as follows: 1) for each model-generated fea-509

ture, we have the model judge whether the feature510

is distinctive or not by comparing the feature with511

all documents, and 2) if the feature is distinctive,512

we keep it; otherwise, we discard it. This strategy is513

based on the assumption that if the model processes514

features one by one, it can better identify whether515

the feature is distinctive or not than processing all516

features at once.517

Precision Recall F1 Score
0%

20%

40%

60%

80%

100%

Av
g 

Sc
or

es

# Documents: 40, Threshold: 20%

Original
w Mitigation

Figure 7: Effect of our mitigation strategy.

The mitigation strategy dramatically improves 518

the precision of the DFM task but it is still far 519

from perfect. Figure 7 shows the F1 scores of the 520

DFM task with and without the mitigation strategy. 521

We use Gemini-2.5-Flash as a judge model and 522

other settings are the same as Table 3. We observe 523

that the mitigation strategy successfully improves 524

the precision with a slight decrease in recall, result- 525

ing in a higher F1 score which is 65% improvement 526

over the original score. However, the mitigation 527

strategy requires high cost and adds latency , as 528

it needs to compare each model-generated feature 529

with all documents to check whether the feature 530

is distinctive or not. Also, while the mitigation 531

strategy improves the precision, it is still around 532

70%, which indicates that the model still struggles 533

to identify distinctive features correctly even if it 534

processes features one by one. We leave the ex- 535

ploration of more efficient and reliable mitigation 536

strategies for future work. 537

6 Conclusion 538

We introduced DIFBENCH, a configurable bench- 539

mark creation framework for the distinctive fea- 540

ture mining (DFM) task, designed to systemat- 541

ically evaluate the statistical reasoning capabili- 542

ties of LLMs. Through extensive experiments 543

with ten models—four reasoning and six general- 544

purpose—we found that reasoning models consis- 545

tently outperform general ones but degrade sharply 546

as the number of documents increases. Our analy- 547

sis revealed that even strong models struggle with 548

precision and often misidentify common features as 549

distinctive. While our mitigation strategy substan- 550

tially improved precision, it also emphasized the 551

need for more robust methods to support reliable 552

statistical reasoning in complex multi-document 553

settings. 554
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Limitations555

While this work systematically evaluates how556

LLMs identify distinctive single feature, a logical557

next step is to explore combinational distinctive-558

ness. Examining unique combinations of features559

would more accurately reflect the complexity of560

real-world scenarios.561

Since the purpose of our work is to assess the562

capabilities of LLMs in statistical reasoning, we563

simply evaluate every feature in the document set564

without considering their weight or importance.565

The evaluation framework does not account for the566

weight of features, which can be a significant fac-567

tor in determining their importance. In real-world568

scenarios, some features may carry more weight569

than others, influencing their relevance and distinc-570

tiveness. For instance, in a resume analysis context,571

certain skills or experiences may be more critical572

than others. Future work could explore methods to573

incorporate feature weighting into the evaluation574

process, allowing for a more nuanced assessment575

of the distinctive feature mining.576

Additionally, our current evaluation relies on an577

exact string match, which simplifies the task. A578

natural next step for future work is to increase the579

complexity by incorporating paraphrased features.580

This would require models to identify semantically581

equivalent but textually different features, making582

the benchmark more challenging and aligned with583

real-world complexities.584

Ethical considerations585

We acknowledge the ethical implications of Distinc-586

tive Feature Mining (DFM), particularly in high-587

stakes domains like hiring. While our work is a588

technical exploration of statistical reasoning, its ap-589

plication requires careful foresight. Key concerns590

include:591

• Bias Amplification and Proxy Discrimina-592

tion: DFM identifies statistically rare features593

without semantic understanding. This risks594

flagging features that are proxies for protected595

attributes (e.g., race, gender, age), potentially596

amplifying societal biases in downstream ap-597

plications.598

• Novelty vs. Competency: The task’s focus599

on rarity may lead to prioritizing novel fea-600

tures over core competencies. This could un-601

dervalue well-qualified candidates with stan-602

dard skill sets in favor of those with unique 603

but less relevant attributes. 604

• Reductionism and Dehumanization: A 605

feature-centric view is inherently reductionist, 606

simplifying complex entities like candidates 607

into a list of keywords. This risks a dehu- 608

manizing evaluation process that overlooks 609

holistic qualities like critical thinking or cre- 610

ativity. 611

Future work must address these risks, for in- 612

stance by developing fairness-aware frameworks 613

that can distinguish between meaningful and po- 614

tentially discriminatory features. We release our 615

benchmark to encourage community research into 616

both the capabilities and societal risks of this tech- 617

nology. 618

While we used AI assitants such as ChatGPT 619

and Copilot to assist in coding and revising this 620

paper, we carefully reviewed and edited all content 621

to ensure it meets our standards and aligns with our 622

research goals. 623
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A Additional Results800

In this section, we present additional results on801

the resume dataset to complement the main results802

presented in the paper.803

A.1 Results with Distinctive Threshold 10%804

Figure 8 shows the F1 scores with various docu-805

ment sizes when the distinctive threshold is set to806

10%. Overall, the results follow similar trends to807

those with 20% threshold (Figure 3), i.e., reasoning808

models outperform general-purpose models espe-809

cially when the document size is small. Aslo, we810

observe that the F1 scores are generally higher than811

those with 20% threshold (Figure 3), indicating812

that it is easier for models to identify distinctive813

features when the threshold is lower. This corre-814

sponds to our findings in Figure 4, where the F1815

scores generally decrease as the distinctive thresh-816

old increases.817

A.2 Precision and Recall on Resume Dataset 818

Figure 9 shows the precision and recall of Gemini- 819

2.5-Flash and its w/o think variant on the DFM task 820

with various document sizes when the distinctive 821

threshold is set to 20%. We observe that the trends 822

are similar to those in Figure 5 for the news sum- 823

mary dataset. While Gemini-2.5-Flash achieves 824

higher precision than its w/o think variant, the pre- 825

cision declines as the document size increases. 826

A.3 Token Usage on Resume Dataset 827

Figure 10 shows the average number of output to- 828

kens with various document sizes when the distinc- 829

tive threshold is set to 20%. We observe a trend that 830

the number of output tokens increases as the docu- 831

ment size increases, similar to the trend observed 832

in Figure 6 for the news summary dataset. 833

B Model Details 834

Table 4 shows the model details used in our experi- 835

ments. 836

C Prompts 837

Figure 11 shows a prompt used for the DFM task 838

in this paper. 839

1https://openai.com/policies/
services-agreement/ [Accessed: July 26, 2025]

2https://ai.google.dev/gemini-api/terms [Ac-
cessed: July 26, 2025]

3https://www.llama.com/llama4/license/ [Ac-
cessed: July 26, 2025]
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Figure 8: F1 scores with various document sizes when θ = 0.1.

Model Size Context HuggingFace / API License

o3 (OpenAI, 2025) - 200k o3-2025-04-16 OpenAI Service Terms1

o4-mini (OpenAI, 2025) - 200k o4-mini-2025-04-16 OpenAI Service Terms
Gemini-2.5-Flash (Comanici et al., 2025) — 1M gemini-2.5-flash-preview-04-17 Gemini API Additional Terms of Service2

GPT-4o (OpenAI, 2024) — 128k gpt-4o-2024-08-06 OpenAI Service Terms
GPT-4o-mini (OpenAI, 2024) — 128k gpt-4o-mini-2024-07-18 OpenAI Service Terms
Llama-4-Maverick (Meta, 2025) 400B 1M meta-llama/Llama-4-Maverick-17B-128E-Instruct Llama 4 Community License Agreement3

Llama-4-Scout (Meta, 2025) 109B 10M meta-llama/Llama-4-Scout-17B-16E-Instruct Llama 4 Community License Agreement
Qwen-3 (Team, 2025) 235B 128k Qwen/Qwen3-235B-A22B Apache license 2.0

Table 4: Models used in experiments. Model sizes are not publicly disclosed (-).
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Figure 9: The precision and recall with various docu-
ment sizes (Resume dataset).
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Figure 10: The average number of output tokens with
various document sizes (Resume dataset).
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# Role
You are an expert AI assistant specializing in comparative resume analysis.

# Objective
You will be given {num_documents} resumes. For each candidate, identify their "distinctive features" (such as skills,
tools, or certifications) that are held by {distinctive_threshold} or fewer of the total candidates.

# Instructions
• Identify features from each resume (e.g., programming languages, software tools, professional certifications,

unique projects).
• Provide your thinking and reasoning process before listing the features.
• Count the occurrences of each feature across all resumes to determine which ones meet the "distinctive" criteria

(appearing {distinctive_threshold} or fewer times).
• For each candidate, create a list of the distinctive features they possess.
• When listing features, use the exact wording as it appears in the resume. Do not summarize or rephrase.
• If a candidate has no qualifying distinctive features, return an empty list ‘[]‘.
• Your output must be in valid JSON format.

# Input Resumes:
{resumes}

Output Format ({num_documents} candidates)

{{
"outputs": [

{{
"candidate_id": 1,
"reasoning": "Your reasoning and analysis for candidate 1",
"output": [
distinctive_feature_1,
distinctive_feature_2,
...
]

}},
...
{{

"candidate_id": {num_documents},
"reasoning": "Your reasoning and analysis for candidate {num_documents}",
"output": [
distinctive_feature_1,
distinctive_feature_2,
...
]

}}
]

}}

Figure 11: DFM task prompt template for the resume dataset. Variables {num_documents} and {distinc-
tive_threshold} are replaced with the number of documents and the distinctive threshold, respectively. The
{documents} variable is replaced with the actual documents.
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