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Abstract

Effective decision-making often relies on iden-
tifying what makes each candidate distinctive.
While existing benchmarks for LLMs empha-
size retrieving or summarizing information rel-
evant to a given query, they do not evaluate
a model’s ability to identify globally distinc-
tive features across a set of documents. We
introduce Distinctive Feature Mining (DFM),
a new task that challenges models to analyze a
small-to-medium collection (10-40 documents)
and surface features that are rare in the global
context (e.g., appearing in less than 10% of
documents). This setting mirrors real-world
scenarios such as candidate selection or prod-
uct differentiation, where statistical reasoning,
not retrieval, is key. To enable systematic evalu-
ation of this capability, we present DIFBENCH,
a configurable benchmark creation framework
with controllable parameters such as document
set size and distinctiveness thresholds.

Using DIFBENCH, we perform a large-scale
assessment of distinctive feature mining across
ten state-of-the-art LLMs. Our findings re-
veal a significant performance gap between
general-purpose and reasoning-enhanced mod-
els. All models, however, substantially degrade
as the task complexity and document count in-
crease. We also find that a common failure
mode is misidentifying frequent features as dis-
tinctive. These insights reveal core limitations
in contemporary LLMs’ abilities to perform
fine-grained, statistical reasoning and rarity de-
tection.

1 Introduction

When making decisions from large candidate pools—
whether selecting products, evaluating applicants,
or analyzing documents—humans naturally seek to
understand what makes each candidate distinctive.
This cognitive process of identifying uncommon or
unique traits is central to effective decision-making.
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Figure 1: Example of Distinctive Feature Mining
(DFM). Given a set of documents, the model needs
to identify globally rare features. Here, the model incor-
rectly identifies “NLP experience” as distinctive, when
it is shared by all documents. In contrast, it misses the
truly rare feature “Agentic Al development”.

As LLMs are increasingly deployed in recommen-
dation and decision support systems across do-
mains such as hiring (An et al., 2024; Iso et al.,
2025) and travel planning (Xie et al., 2024), their
ability to mimic this core human capability be-
comes critical.

Our investigation reveals a fundamental limita-
tion: even state-of-the-art reasoning models fail
to recognize rarity when analyzing a set of doc-
uments. For instance, when analyzing technical
resumes, a model might mistakenly identify “NLP
experience” as distinctive when it is shared by
multiple documents, and yet miss genuinely rare
skills like “Agentic Al development” (see Figure
1). This behavior is akin to the psychological phe-
nomenon of base rate neglect (Tversky and Kahne-
man, 1974; Grether and Plott, 2012), where statisti-
cal frequency is ignored in favor of more salient but
less informative cues. This can lead to systemati-
cally suboptimal recommendations and decisions.



LLM benchmarks have primarily focused on
query-driven tasks, such as sparse information re-
trieval (e.g., the needle-in-a-haystack test (Kam-
radt, 2023)) or multi-document and long-context
reasoning (Karpinska et al., 2024; Xu et al., 2024;
Kuratov et al., 2024; Levy et al., 2024; Bai et al.,
2024a; Zhang et al., 2024a; Hsieh et al., 2024; Bai
et al., 2024b; Yen et al., 2025; Maekawa et al.,
2025). These benchmarks assess a model’s ability
to find or aggregate relevant information, often in
response to an explicit query. However, they do
not test whether a model can derive global statisti-
cal insights across a collection, in particular those
involving feature rarity.

To fill this gap, we introduce Distinctive Fea-
ture Mining (DFM), a new task that requires iden-
tifying globally rare attributes (appearing in < 0%
of documents) within document collections. Un-
like traditional retrieval or summarization, DFM
requires statistical reasoning over a population, not
just extracting salient information from individual
documents. We focus on collections of 10—40 docu-
ments, a realistic scale for decisions like candidate
screening or product comparison. This scale is
large enough to require aggregate reasoning and
base-rate estimation, yet small enough to demand
holistic comprehension and accurate attribution.

We operationalize this through DiFBench, a con-
figurable benchmark creation framework that pre-
cisely governs feature distributions. For example, it
ensures “blockchain development” appears in 2 out
of 40 resumes (5%) while “project management”
appears in 25 (62.5%). This enables systematic
evaluation across document scales and domains,
with controllable parameters including document
count (10-40), feature density, and distinctiveness
thresholds (2.5%-20%).

Our evaluation over 10 state-of-the-art LLMs re-
veals three key findings: (1) non-reasoning models
achieve F1 < 30%, revealing limitations in multi-
document reasoning; (2) even advanced models
(03, Gemini-2.5-Flash) degrade from F1 > 85% on
10 documents to F1 < 60% on 40 documents; and
(3) 75.9% of errors involve misclassifying common
features as distinctive. This precision drop mirrors
base rate neglect in human cognition. We mitigate
this via explicit verification prompting, achieving a
65% relative F1 gain while maintaining recall.

The main contributions of this work include:

(1) We introduce DFM task and DiFBench bench-
mark creation framework, to enable system-

atic evaluation of collection-level statistical
reasoning across domains (resumes, news sum-
maries), document scales (10-40), and distinc-
tiveness thresholds (2.5%-20%).

(2) We conduct the first large-scale study revealing
that even leading LL.Ms degrades significantly
with scale, with 75.9% of errors resulting from
misidentifying frequent features as distinctive.
This provides computational evidence of base
rate neglect in LLM reasoning.

(3) We demonstrate that explicit verification
prompting leads to a 65% relative improve-
ment in the F1 score, offering a practical miti-
gation while highlighting persistent limitations
in multi-document comparative reasoning.

We will release the datasets and the evaluation
framework upon acceptance of this paper.

2 Related Work

Complex and Quantitative Reasoning in LLLMs
Recent benchmarks increasingly test multi-
document reasoning, but their primary focus re-
mains on aggregating query-relevant content or
retrieving salient passages (Levy et al., 2024; Bai
et al., 2024a; Zhang et al., 2024a; Hsieh et al., 2024;
Bai et al., 2024b; Yen et al., 2025; Maekawa et al.,
2025). In contrast, DFM shifts the focus to corpus-
level statistical reasoning, requiring the identifica-
tion of globally rare features. This requires reliable
counting, base rate estimation, and population-level
comparison. These are all areas where LLMs re-
main weak (Maekawa et al., 2025). Our findings
reinforce this, showing that models often miscount
feature frequencies and overestimate the distinc-
tiveness of common traits. These limitations high-
light statistical reasoning across documents as an
underexplored and unresolved challenge.

Multi-document Summarization Multi-
document summarization typically aims to
synthesize common themes or provide a unified
overview of content across documents (Li et al.,
2012; Laban et al., 2024; Belem et al., 2025). A
few recent efforts (Huang et al., 2024; Zhang
et al., 2024b) have explored diversity-aware
summarization, but they focus on maximizing
coverage of perspectives rather than surfacing rare
or distinctive features. DFM complements this
line of work by targeting corpus-level rarity rather
than within-document salience or inter-document
consensus.
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Figure 2: Overview of DIFBENCH. To obtain distinctive features, F' % we first randomly select k features from the
feature set F. The remaining features are treated as common features, F ~9 Distinctive features F? are distributed
across documents while ensuring that each feature appears less than or equal to #% of the documents. Common
features F 0 are then distributed across documents, ensuring that each feature appears in more than 6% of the n

documents.

Comparative Summarization and Pairwise
Analysis Prior work on comparative summariza-
tion has explored pairwise document contrast and
entity differentiation (Iso et al., 2022; Gunel et al.,
2023, 2024; Yan et al., 2024). These methods effec-
tively highlight differences between two entities but
do not scale to collections with many candidates.
Crucially, they also lack a statistical frame for iden-
tifying what is rare relative to a population. DFM
extends these efforts to multi-way comparisons, al-
lowing models to reason over the distinctiveness
of features in the context of an entire set—a key
requirement in realistic decision-making scenarios
such as hiring or product recommendation.

3 Distinctive Feature Mining and
Benchmark Creation Framework

We first introduce the task of Distinctive Feature
Mining (DFM), present the design principles of
DIFBENCH, a general benchmark creation frame-
work designed to systematically evaluate models
on this task. Then, we explain the details of the
benchmark creation framework. Finally, we de-
scribe how DIFBENCH is implemented to create
benchmark datasets.

3.1 Task Definition

In this study, we simplify each document into a
set of features. This can be realized by feature
extraction methods (Clavié and Soulié, 2023) in
common use cases such as resume screening and
product comparison. Formally, a document set

is denoted as D = {d;,ds,...,d,}, where each
document d; consists of a set of up to h features,
F, = {f{, f,...}. Let F = U, F; denotes the
set of all features across D. The task of Distinc-
tive Feature Mining (DFM) is to identify, for each
document d;, a subset of features FZ-‘S C F; that are
distinctive. A feature is considered distinctive if it
appears in at most 8% of documents, where 6 is a
user-defined threshold.

3.2 Design Principles

We introduce DIFBENCH, a benchmark creation
framework specifically designed to evaluate model
performance on the DFM task. Figure 2 illustrates
the overall process. Given a feature set F, the
framework partitions it into distinctive and com-
mon subsets, then distributes these features across
documents D in a controlled manner to enable sys-
tematic evaluation. DIFBENCH is guided by three
core design principles:

(1) Distinctive features in comparable candi-
dates: Documents must be comparable; that is,
all documents belong to the same domain and
share the same structure. They differ in select
features that make them distinctive.

(2) Flexible number of candidates and distinc-
tive features: Variable numbers of candidate
documents and distinctive features must be sup-
ported to enable evaluation across scale and
distinctiveness thresholds.

(3) Systematic evaluation: The framework must



enable controlled experiments and facilitate
precise measurement of model ability to detect
globally rare features and reason over aggre-
gate statistics.

These principles enable a comprehensive testbed
for studying corpus-level statistical reasoning. It
allows researchers to probe models’ capacity to (1)
extract features across documents, (2) count their
frequencies, and (3) identify what is statistically
distinctive in a given population.

3.3 Benchmark Creation Framework

To realize these design principles in practice, DIF-
BENCH takes as input a set of features F and pro-
grammatically constructs a document set D by dis-
tributing these features based on configurable pa-
rameters. These key parameters are:

(1) Number of documents (n): Controls the scale
of the dataset, allowing us to test how model
performance varies with small to large docu-
ment collections. Increasing n raises the com-
plexity of DFM as models must consider more
candidates and interactions.

(2) Number of distinctive features (k): Specifies
how many features are truly distinctive across
the document set. By varying k, we can simu-
late settings where distinctive traits are sparse
or abundant, which affects the difficulty of min-
ing such features.

(3) Distinctiveness threshold (6): Defines the
maximum proportion of documents a feature
can appear in to be considered distinctive. This
parameter enables us to influence feature rarity
and overlap across documents.

Together, these provide fine-grained control over
the complexity, sparsity, and overlap within the
benchmark, enabling systematic and reproducible
evaluation of statistical reasoning capabilities.

Document Set Construction The benchmark
creation process begins by distributing distinctive
features across a subset of documents, followed by
populating the remaining feature slots with com-
mon features. To this end, we first randomly select
k features from the set of features, F, to serve
as distinctive features, F°. Each distinctive fea-
ture is assigned a target document frequency, ran-
domly sampled from the range [1,n x 6], ensuring
these features appear in only a small portion of

the n documents. These distinctive features are
then distributed across the documents to match
their assigned frequencies. The remaining features
F™0 = F\ F? are treated as common features.
Each is assigned a higher document frequency, sam-
pled from the range [n x 6 + 1, n], and distributed
across documents in the same way. During assign-
ment, we enforce a constraint that each document
can contain at most h features. If a feature cannot
be assigned without violating this rule, its assign-
ment is skipped. This ensures that distinctive fea-
tures remain relatively rare within the document
set, while common features are broadly shared,
thus preserving the intended distinction between
the two categories.

3.4 Benchmark Implementation

While DIFBENCH is designed to accept any set
of features, our implementation focuses on syn-
thesizing features grounded in real-world source
documents. Rather than relying on exact feature ex-
traction, we opt for feature synthesis to support sys-
tematic and controlled evaluations. This approach
ensures the generated features remain realistic and
representative of the original documents while al-
lowing us to precisely control task complexity.

Data Domains We use two different domains:
resumes and news summaries—both well-suited
for comparative analysis. For resumes, we source
job posts from mycareerfuture.sg,! selecting the
10 longest descriptions from each of five major
job categories based on US Department of Labor
statistics,?. These include computer & math, life
physical & social science, legal, architecture &
engineering, and healthcare occupations. For news
summaries, we utilized news articles from (Huang
et al., 2024), which cover five distinct topics. Each
topic has 10 news articles. In summary, we have
100 source documents in total, with 50 resumes and
50 news summaries.

Feature Set Generation For each source doc-
ument, we synthesize a set of features that are
both relevant to its content and representative of
its context. To guide feature creation, we use
domain-specific structural templates. For resumes,
these include categories such as Experience, Tech-
nical Skills, Soft Skills, Projects, Certifications,

'We downloaded the dataset from https://github.com/
WING-NUS/JD2Skills-BERT-XMLC

*Labor Force Statistics from the Current Population Sur-
vey: https://www.bls.gov/cps/cpsaat1l.htm
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Domain  Section Synthesized Feature
Resume Experience Architected multi-cloud application frameworks aligning with banking industry compliance.
Technical Skills Proficient in .NET Framework and .NET Core architectures
Soft Skills Facilitated transparent communication across technical and non-technical audiences
Projects Built serverless fraud-detection prototype leveraging AWS Lambda streams
Certifications Achieved AWS Solutions Architect — Professional certification
Awards and Recognition Earned Global Cloud Excellence award for innovative platform design
News fuel requirements Inadequate ethanol content could trigger knock sensors and limp-home modes, ruining track sessions.
Summary vehicle performance Carbon-fiber rim option trims 32 pounds of unsprung mass, quickening initial acceleration.

historical context
optional features
NHRA regulations
production details
branding and marketing

Factory 1,000-hp rating revives 1960s “horsepower wars” in a final escalation.

$10,000 sunroof pricing intentionally discourages extra roof weight.

Street-legal Demons may drive NHRA to revisit Advanced ET class definitions.

Compressed 2023 build window heightens risk of missed quotas before Brampton plant closure.
Devilish $96,666 base price turns MSRP into instant viral talking point.

Table 1: Examples of synthesized features in the resume and news summary dataset.

and Awards. For news summaries, we adopt 7-9
subtopics from the original dataset (e.g., fuel
requirements under the motor trend topic) as sec-
tion headers.

For each section, we prompt an LLM to generate
a pool of 20 thematically relevant candidate fea-
tures, using the seed document and section title as
context. To encourage diversity across sections, we
also supply the model with previously generated
features from other sections of the same document.
This helps ensure that each section’s features are
both semantically relevant and distinct. We employ
03 (OpenAl, 2025) for a feature generation. Table 1
illustrates several examples of synthesized features.

4 Experimental Setup

This section outlines our methodology for evaluat-
ing the statistical reasoning capabilities of LL.Ms.
We first describe the parameters used for generat-
ing the synthetic document collections using D1F-
BENCH. We then introduce the suite of LLMs eval-
uated in our experiments, followed by a description
of our inference and evaluation setup.

Document Set Construction Parameters We
set the number of documents n to 10, 20, and 40
and test with |n/2] distinctive features, to examine
how LLMs handle varying levels of complexity in
identifying distinctive features. We set the distinc-
tive threshold 6 to 2.5%, 5%, 10%, and 20% of
the total documents (i.e., 1, 2, 4, and 8 documents
respectively when n = 40). We set the maximum
number of features per document h to 4 x S, where
S denotes the number of sections of the document.

Models We evaluate 10 LLMs with reasoning-
optimized and general-purpose capabilities. Rea-
soning models include both closed and open

models: 03, o4-mini, Gemini-2.5-Flash, Qwen3-
235B22A (Qwen3 for short). General models
include GPT-40, GPT-40-mini, Gemini-2.5-Flash
w/o think, Qwen3 w/o think, Llama-4-Maverick,
and Llama-4-Scout. The model details are summa-
rized in Appendix B. We set temperature and top-p
parameters to 0.0 and 1.0, respectively, for all our
experiments.

Inference Setup At inference time, each model
is presented with a collection of documents gen-
erated by DIFBENCH and tasked with identifying
the set of distinctive features within that collection.
The model receives a single instruction prompt that
asks it to return the features that appear rarely (dis-
tinctive features) for each document. Because DIF-
BENCH controls the construction of documents and
explicitly selects which features are to be distinc-
tive, we have access to ground-truth annotations
F? for each synthetic benchmark instance. This
setup allows for objective evaluation of model pre-
dictions against a known gold standard. We use the
same prompt for all models, see Appendix C.

Evaluation Metrics Model predictions are eval-
uated using exact string match against the ground-
truth set 72 provided by DIFBENCH. Our primary
evaluation metric is the F1 score, with precision
and recall reported in detailed analyses.

S Results and Analysis
5.1

Reasoning models consistently outperform their
general counterparts. Table 2 shows aver-
age F1 scores on the DFM task across varying
document counts (10, 20, 40) and distinctiveness
thresholds (10% and 20%). Overall, reasoning
models consistently outperform general-purpose

Main Results
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Figure 3: F1 scores with various document sizes. The error bars indicate the standard deviation across samples.

Models ‘ Resumes News Summaries
03 68.95 69.81
o4-mini 61.92 58.45
Gemini-2.5-Flash 84.78 717.76
Qwen3 46.41 36.32
GPT-40 12.55 17.12
GPT-40-mini 8.45 7.77
Gemini-2.5-Flash w/o think 20.38 22.29
Qwen3 w/o think 24.08 18.72
Llama4-Maverick 25.89 25.34
Llama4-Scout 11.87 7.21

Table 2: Average F1 scores of the reasoning-optimized
and general-purpose models on the DFM task across
three document sizes, i.e., 10, 20, and 40, and two dis-
tinctive features, i.e., 10% amd 20%. The models with
w/o suffix are general models that do not use reasoning
capabilities.

models across all settings. Surprisingly, no gen-
eral model achieves F1 higher than 0.3%, indi-
cating their limitation in identifying distinctive
features effectively. This is particularly evident
when comparing Gemini-2.5-Flash and Qwen3
with their non-reasoning (‘w/o think’) variants,
where reasoning-optimized versions consistently
perform better. This trend holds across both do-
mains, resumes and news summaries.

Even current reasoning models are poor statisti-
cal reasoners when the collection size increases.
To investigate the impact of number of documents
on DFM performance, we break down the results
by document size in Figure 3, focusing on the 20%
distinctive threshold. Results for 10% threshold are

included in the Appendix A.1, where we observe
similar trends.

Reasoning models consistently outperform gen-
eral models across all document sizes, with F1
scores generally degrading as the number of docu-
ments increases. Their advantage is most evident
with smaller sets (10 documents), where models
like 03 and Gemini-2.5-Flash achieve F1 scores
above 85%. However, performance drops sharply
as the number of documents increases, with F1
scores dropping below 60% for 40 documents in
most cases. This suggests that while reasoning ca-
pabilities significantly benefit DFM, current mod-
els still struggle with the multi-document compari-
son at larger scales.

Statistical reasoning becomes more challenging
as the distinctive threshold increases. We fur-
ther analyze F1 scores across varying distinctive
thresholds, keeping the number of documents fixed
at 40 (see Figure 4). We observe that F1 scores
generally decline as the threshold increases, sug-
gesting it becomes harder for models to isolate
features that distinguish fewer documents from a
larger set. At higher thresholds (e.g., 20%), all
models perform poorly, with narrow gap between
reasoning and general models. This implies that
finer-grained DFM still remains a key challenge
even for advanced reasoning models.

5.2 Analysis of DFM Performance

We conduct a deeper analysis of LLM performance
on the DFM task by examining precision, recall and
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token usage. Due to space constraints,, we present
detailed results on the news summary dataset here
and include additional results on the resume dataset
in Appendix A.2, which follow similar trends.

While general models tend to over-predict, rea-
soning models are more selective in identifying
truly distinctive features. Figure 5 shows the
average precision and recall of Gemini-2.5-Flash
and its w/o think variant across various document
sizes. Gemini-2.5-Flash generally achieves higher
precision than its w/o think, suggesting that rea-
soning models are more effective at identifying
truly distinctive features. Interestingly, general
models achieve relatively higher recall but poor
precision (<30%), suggesting they tend to over-
predict and include many irrelevant features. This
reflects a lack of selectivity in general models when
attempting feature mining under increasing com-
plexity. Finally, we observe that both precision and
recall drop as the document size increases even
for the best-performing reasoning model, Gemini-
2.5-Flash. This indicates that as the number of
documents increases, models struggle to accurately

count feature occurrences and identify those that
are truly distinctive.

Better statistical reasoning requires more out-
put tokens. Figure 6 shows the average number
of output tokens under varying document sizes. As
shown, reasoning models tend to generate more to-
kens in total as the number of documents increases.
This indicates that models require more reasoning
to identify distinctive features when the complexity
of the task increases. Notably, when considered
alongside the results in Figure 3, Gemini-2.5-Flash
achieves a high F1 score by significantly increasing
its token usage compared to other models. We also
observe that Gemini-2.5-Flash w/o think generates
a larger number of tokens than most of other mod-
els, despite its low precision score (see Figure 5).
This suggests that the model struggles with the sta-
tistical reasoning even if it generates a large amount
of tokens to identify rare information. The results
on the resume dataset is included in Appendix A.3,
which shows similar trends.

5.3 Error Analysis

To better understand model limitations, we ana-
lyze the errors made by the best-performing model,
Gemini-2.5-Flash, in the most challenging setting
(40 documents and a distinctive threshold of 20%).
We categorize the errors into three main types: (1)
Non-distinctive. Features that are mentioned in
the document but are not distinctive. (2) Contam-
ination. Features that are not mentioned in the
document itself but occur in other documents. (3)
Typo/Abbreviation. Features that are not men-
tioned in any documents, often due to typos or
malformed abbreviations.

The best performing model still struggles to es-
timate frequencies of features. Table 3 shows
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Category Percentage (%)
Non-distinctive 75.90
Contamination 1.89
Typo/Abbreviation 0.01
Correct 22.20

Table 3: The distribution of error categories.

the distribution of these errors. The majority of
errors are non-distinctive features, which indicates
that the model tends to identify features that appear
in the document but are not truly distinctive. This
result suggests that models struggle to correctly
estimate the frequencies of features if they handle
many features. We also observe that the model
makes contamination errors, which indicates that
the model tends to identify features that are not
mentioned in the document but are present in other
documents. Since the recent model follows the
instruction well, we observe that the model rarely
makes typo/abbreviation errors.

5.4 Mitigation Strategy

Motivated by the observations that models achieve
high precision but low recall in Figure 5 and the ma-
jority of errors comes from non-distinctive features
in Table 3, we propose a simple post-processing
strategy to mitigate the errors. The mitigation strat-
egy is as follows: 1) for each model-generated fea-
ture, we have the model judge whether the feature
is distinctive or not by comparing the feature with
all documents, and 2) if the feature is distinctive,
we keep it; otherwise, we discard it. This strategy is
based on the assumption that if the model processes
features one by one, it can better identify whether
the feature is distinctive or not than processing all
features at once.
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Figure 7: Effect of our mitigation strategy.

The mitigation strategy dramatically improves
the precision of the DFM task but it is still far
from perfect. Figure 7 shows the F1 scores of the
DFM task with and without the mitigation strategy.
We use Gemini-2.5-Flash as a judge model and
other settings are the same as Table 3. We observe
that the mitigation strategy successfully improves
the precision with a slight decrease in recall, result-
ing in a higher F1 score which is 65% improvement
over the original score. However, the mitigation
strategy requires high cost and adds latency , as
it needs to compare each model-generated feature
with all documents to check whether the feature
is distinctive or not. Also, while the mitigation
strategy improves the precision, it is still around
70%, which indicates that the model still struggles
to identify distinctive features correctly even if it
processes features one by one. We leave the ex-
ploration of more efficient and reliable mitigation
strategies for future work.

6 Conclusion

We introduced DIFBENCH, a configurable bench-
mark creation framework for the distinctive fea-
ture mining (DFM) task, designed to systemat-
ically evaluate the statistical reasoning capabili-
ties of LLMs. Through extensive experiments
with ten models—four reasoning and six general-
purpose—we found that reasoning models consis-
tently outperform general ones but degrade sharply
as the number of documents increases. Our analy-
sis revealed that even strong models struggle with
precision and often misidentify common features as
distinctive. While our mitigation strategy substan-
tially improved precision, it also emphasized the
need for more robust methods to support reliable
statistical reasoning in complex multi-document
settings.



Limitations

While this work systematically evaluates how
LLMs identify distinctive single feature, a logical
next step is to explore combinational distinctive-
ness. Examining unique combinations of features
would more accurately reflect the complexity of
real-world scenarios.

Since the purpose of our work is to assess the
capabilities of LLMs in statistical reasoning, we
simply evaluate every feature in the document set
without considering their weight or importance.
The evaluation framework does not account for the
weight of features, which can be a significant fac-
tor in determining their importance. In real-world
scenarios, some features may carry more weight
than others, influencing their relevance and distinc-
tiveness. For instance, in a resume analysis context,
certain skills or experiences may be more critical
than others. Future work could explore methods to
incorporate feature weighting into the evaluation
process, allowing for a more nuanced assessment
of the distinctive feature mining.

Additionally, our current evaluation relies on an
exact string match, which simplifies the task. A
natural next step for future work is to increase the
complexity by incorporating paraphrased features.
This would require models to identify semantically
equivalent but textually different features, making
the benchmark more challenging and aligned with
real-world complexities.

Ethical considerations

We acknowledge the ethical implications of Distinc-
tive Feature Mining (DFM), particularly in high-
stakes domains like hiring. While our work is a
technical exploration of statistical reasoning, its ap-
plication requires careful foresight. Key concerns
include:

* Bias Amplification and Proxy Discrimina-
tion: DFM identifies statistically rare features
without semantic understanding. This risks
flagging features that are proxies for protected
attributes (e.g., race, gender, age), potentially
amplifying societal biases in downstream ap-
plications.

* Novelty vs. Competency: The task’s focus
on rarity may lead to prioritizing novel fea-
tures over core competencies. This could un-
dervalue well-qualified candidates with stan-

dard skill sets in favor of those with unique
but less relevant attributes.

* Reductionism and Dehumanization: A
feature-centric view is inherently reductionist,
simplifying complex entities like candidates
into a list of keywords. This risks a dehu-
manizing evaluation process that overlooks
holistic qualities like critical thinking or cre-
ativity.

Future work must address these risks, for in-
stance by developing fairness-aware frameworks
that can distinguish between meaningful and po-
tentially discriminatory features. We release our
benchmark to encourage community research into
both the capabilities and societal risks of this tech-
nology.

While we used Al assitants such as ChatGPT
and Copilot to assist in coding and revising this
paper, we carefully reviewed and edited all content
to ensure it meets our standards and aligns with our
research goals.
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A Additional Results

In this section, we present additional results on
the resume dataset to complement the main results
presented in the paper.

A.1 Results with Distinctive Threshold 10 %

Figure 8 shows the F1 scores with various docu-
ment sizes when the distinctive threshold is set to
10%. Overall, the results follow similar trends to
those with 20% threshold (Figure 3), i.e., reasoning
models outperform general-purpose models espe-
cially when the document size is small. Aslo, we
observe that the F1 scores are generally higher than
those with 20% threshold (Figure 3), indicating
that it is easier for models to identify distinctive
features when the threshold is lower. This corre-
sponds to our findings in Figure 4, where the F1
scores generally decrease as the distinctive thresh-
old increases.
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A.2 Precision and Recall on Resume Dataset

Figure 9 shows the precision and recall of Gemini-
2.5-Flash and its w/o think variant on the DFM task
with various document sizes when the distinctive
threshold is set to 20%. We observe that the trends
are similar to those in Figure 5 for the news sum-
mary dataset. While Gemini-2.5-Flash achieves
higher precision than its w/o think variant, the pre-
cision declines as the document size increases.

A.3 Token Usage on Resume Dataset

Figure 10 shows the average number of output to-
kens with various document sizes when the distinc-
tive threshold is set to 20%. We observe a trend that
the number of output tokens increases as the docu-
ment size increases, similar to the trend observed
in Figure 6 for the news summary dataset.

B Model Details

Table 4 shows the model details used in our experi-
ments.

C Prompts

Figure 11 shows a prompt used for the DFM task
in this paper.

"https://openai.com/policies/
services-agreement/ [Accessed: July 26, 2025]

2https: //ai.google.dev/gemini-api/terms [Ac-
cessed: July 26, 2025]
3https: //www.l1lama.com/1lama4/license/ [Ac-

cessed: July 26, 2025]


https://doi.org/10.18653/v1/2024.acl-long.541
https://doi.org/10.18653/v1/2024.acl-long.541
https://doi.org/10.18653/v1/2024.acl-long.541
https://openreview.net/forum?id=293V3bJbmE
https://openreview.net/forum?id=293V3bJbmE
https://openreview.net/forum?id=293V3bJbmE
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.acl-long.814
https://doi.org/10.18653/v1/2024.naacl-long.187
https://doi.org/10.18653/v1/2024.naacl-long.187
https://doi.org/10.18653/v1/2024.naacl-long.187
https://openai.com/policies/services-agreement/
https://openai.com/policies/services-agreement/
https://ai.google.dev/gemini-api/terms
https://www.llama.com/llama4/license/

# Doc ts: 10, Threshold: 10% # Documents: 20, Threshold: 10% # Documents: 40, Threshold: 10%

100%

(0]

—

O 80%

[v]

n 60%

—

L 40% |

g’ ” - l I . l II ' | l

“ | NN

< 0% nn nin - nin nin [ i [
Il o3 B Gemini-2.5-Flash B GPT-40 Gemini-2.5-Flash w/o think Llama4-Maverick
s o4-mini B Qwen3 . GPT-40-mini B Qwen3 w/o think B Llama4-Scout

(a) Resumes

# Doc ts: 10, Threshold: 10% # Documents: 20, Threshold: 10% # Documents: 40, Threshold: 10%
[0} 100%
—
O 80%
[v]
2] 60%
—
L 40%
< I I 11 |
: - 1T i T
< . B nin ﬁ mim i o
N o3 Il Gemini-2.5-Flash GPT-40 Gemini-2.5-Flash w/o think Llama4-Maverick
B o4-mini I Qwen3 - GPT-40-mini I Qwen3 w/o think W Llama4-Scout
(b) News summaries
Figure 8: F1 scores with various document sizes when 6§ = 0.1.
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Figure 9: The precision and recall with various docu-
various document sizes (Resume dataset).

ment sizes (Resume dataset).
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# Role
You are an expert Al assistant specializing in comparative resume analysis.

# Objective
You will be given {num_documents} resumes. For each candidate, identify their "distinctive features" (such as skills,
tools, or certifications) that are held by {distinctive_threshold} or fewer of the total candidates.

# Instructions
* Identify features from each resume (e.g., programming languages, software tools, professional certifications,
unique projects).
* Provide your thinking and reasoning process before listing the features.
* Count the occurrences of each feature across all resumes to determine which ones meet the "distinctive" criteria
(appearing {distinctive_threshold} or fewer times).
» For each candidate, create a list of the distinctive features they possess.
When listing features, use the exact wording as it appears in the resume. Do not summarize or rephrase.
If a candidate has no qualifying distinctive features, return an empty list ‘[]°.
Your output must be in valid JSON format.

# Input Resumes:
{resumes}
Output Format ({num_documents} candidates)

{{
"outputs”: [
{{

"candidate_id": 1,

"reasoning”: "Your reasoning and analysis for candidate 1",

"output”: [
distinctive_feature_1,
distinctive_feature_2,

]
13,
{{
"candidate_id": {num_documents},
"reasoning”: "Your reasoning and analysis for candidate {num_documents}",
"output”: [
distinctive_feature_1,
distinctive_feature_2,

]
13
]
13

Figure 11: DFM task prompt template for the resume dataset. Variables {num_documents} and {distinc-
tive_threshold} are replaced with the number of documents and the distinctive threshold, respectively. The
{documents} variable is replaced with the actual documents.
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