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ABSTRACT

Reinforcement learning has become the standard approach for aligning large lan-
guage models to complex reasoning tasks. However, these methods often overlook
rare valuable responses, as learning signals are dominated by high-probability,
frequently sampled outputs. To address this, we propose EXploration-Enhanced
Policy Optimization (EXPO), a novel approach that dynamically reweights the
advantage of each response based on its generation probability. EXPO amplifies
gradients from rare valuable samples, ensuring they contribute meaningfully to
policy updates and guide the model toward underexplored, high-value solutions.
We evaluate EXPO on multiple mathematical reasoning benchmarks. It consis-
tently outperforms strong baselines across model scales: on Qwen2.5-Math-1.5B,
EXPO surpasses DAPO by +3.0%; on Llama-3.2-3B-Instruct, by +3.6%; and on
the larger Qwen2.5-Math-7B, it outperforms the DAPO by +4.6%, Dr.GRPO by
+5.3% and instruction-tuned baseline by +9.1%, These gains demonstrate EXPO’s
effectiveness in leveraging valuable but underrepresented responses for better pol-
icy learning.

1 INTRODUCTION
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Figure 1: Probability Density of Response Be-
fore and After RLVR Training. RLVR sharpens
the distribution and eliminates low-probability re-
sponses, reducing diversity and suppressing rare
valuable reasoning paths.

The development of reasoning-centric LLMs,
including OpenAI-o3 (OpenAI, 2025),
DeepSeek-R1 (DeepSeek-AI et al., 2025), and
Kimi-K2 (Bai et al., 2025), has significantly
advanced the frontier of LLM capabilities,
particularly in tackling complex reasoning
tasks in mathematics and programming (Yue
et al., 2025). This progress is primarily driven
by Reinforcement Learning with Verifiable
Rewards (RLVR). Most implementations rely
on policy gradient algorithms, with Proximal
Policy Optimization (PPO) (Schulman et al.,
2017) and its recent variants (Fan et al., 2025;
Ren et al., 2025; Cozma et al., 2025) being
widely adopted for their stability and empirical
effectiveness. These methods iteratively refine
the policy by estimating the advantage of
sampled responses and reinforcing high-reward
behaviors.

Despite their promising results, these methods
remain fundamentally constrained by the base
LLM’s initial capabilities (Yan et al., 2025;
Zhao et al., 2025). Reinforcement learning amplifies existing behaviors by biasing the policy to-
ward high-reward paths, which improves sampling efficiency . However, this gain comes at a cost:
it narrows the model’s reasoning scope(Yue et al., 2025). We observe that this limitation stems from
the suppression of low-probability trajectories, even when they produce exceptionally high rewards.
As illustrated in Figure 2, this suppression causes a collapse in response diversity and weakens the
model’s ability to solve problems creatively. We analyze the root cause lies in the expectation-based
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nature of the policy gradient objective, which weights gradient updates by the likelihood of sampled
trajectories. As a result, high-probability actions dominate learning, while rare valuable responses
contribute negligibly to the gradient.

To overcome this limitation, we propose that the policy should be explicitly incentivized to learn
from its valuable and often ignored discoveries. Amplifying the learning signal from these rare
valuable samples is critical not only for escaping local optima but also for unlocking the model’s
full creative and problem-solving capacity. Motivated by this insight, we introduce Exploration-
Enhanced Policy Optimization (EXPO), a novel algorithm that dynamically reshapes the training
objective to prioritize high-reward, low-probability responses.

EXPO achieves this by introducing a dynamic weighting mechanism that modulates the advantage
of each sampled response based on its likelihood under the current policy. Specifically, for desirable
(high-reward) responses, the weight is inversely proportional to their generation probability, thereby
amplifying gradients for rare valuable outputs. Conversely, for undesirable responses, the weight
places stronger emphasis on penalizing frequent mistakes, encouraging the policy to avoid harmful
or suboptimal behaviors. We summarize our contributions as follows:

• We identify and analyze a fundamental limitation of standard policy gradient methods such
as GRPO and its variants in aligning large language models: their tendency to overlook
low-probability, high-reward responses, which hinders effective exploration.

• We propose EXPO, a novel and lightweight algorithm that mitigates this bias by dynami-
cally reweighting advantages based on response probability, thereby focusing learning on
the most informative samples.

• We demonstrate through extensive experiments on mutiple mathematical tasks that EXPO
consistently outperforms strong baselines, yielding models that better explore the reward
landscape and generate higher-quality, more diverse outputs.

2 PRELIMINARIES

We build on recent advances in policy gradient methods for LLM post-training to improve perfor-
mance. Group Relative Policy Optimization (GRPO) (Shao et al., 2024b) replaces PPO’s value
network with group-based advantage normalization. For a prompt q, it samples G responses
{o1, . . . , oG}, computes rewards {R1, . . . , RG}, and normalizes advantages within the group:

Ai,t =
Ri −mean({Ri}Gi=1)

std({Ri}Gi=1) + ϵ
. (1)

where ϵ ensures numerical stability. The GRPO objective includes KL regularization:

JGRPO(θ) = E

 1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(min (ri,tAi,t, clip(ri,t, 1− ε, 1 + ε)Ai,t)− βDKL(πθ∥πref))

 .

(2)
with ri,t = πθ(oi,t | q, oi<t)/πθold(oi,t | q, oi<t) and β controlling KL penalty strength. DAPO
(Yu et al., 2025) extends GRPO with four key improvements: (1) asymmetric clipping bounds
(εlow, εhigh) for more flexible updates, (2) dynamic sampling to adjust group composition, (3) token-
level loss for finer control, and (4) reward shaping for long responses. Its objective removes the
per-response normalization and KL term, instead applying a diversity constraint:

JDAPO(θ) = E

 1∑
i |oi|

G∑
i=1

|oi|∑
t=1

min (ri,tAi,t, clip(ri,t, 1− εlow, 1 + εhigh)Ai,t)

 ,

s.t. 0 < |{oi |is equivalent(oi, a)}| < G.

(3)

which ensures sampled responses are not all identical to the reference answer a, preserving output
diversity. These methods form the foundation for our approach, which further addresses their shared
limitation: the suppression of rare valuable responses due to expectation-based gradient weighting.

2
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Figure 2: Illustration of Reasoning Path Dynamics During Policy Optimization. Solutions are
scored +1 if correct and -1 otherwise; numbers in () indicate their respective probabilities. We
observe: (a) Before optimization, the base model explores a diverse set of reasoning paths. (b) Af-
ter standard reinforcement learning optimization, the reasoning space collapses: only high-reward,
high-probability paths remain dominant, at the expense of diversity. (c) Our method preserves and
enhances exploration by dynamically amplifying learning signals from rare but high-reward paths,
achieving both improved performance and sustained reasoning diversity.

3 MOTIVATION

RLVR for large language models typically begins by sampling a large batch of responses, which
is then partitioned into smaller mini-batches for iterative training. Responses that align with de-
sired behavior receive higher rewards, encouraging the model to reinforce them; conversely, poorly
aligned responses are penalized, prompting the model to suppress them. In essence, RLVR amplifies
existing positive behaviors, but this comes at a cost.

As illustrated in Figure 1, we observe that after RLVR training, the model’s output distribution be-
comes more concentrated: response probabilities increase on average, and their variance decreases.
Many low-probability responses that existed in the base model, including numerous correct or high-
quality ones, vanish entirely. This phenomenon is often attributed to entropy collapse, where the
policy distribution narrows over time, leading to a significant loss in solution diversity.

We offer a complementary, yet often overlooked, perspective. Since RLVR training relies on sam-
pling responses from the current policy before updating, high-probability responses are sampled
more frequently and thus dominate gradient updates. In contrast, low-probability responses, even
when they yield high rewards, are rarely sampled and exert minimal influence on learning. This
imbalance intensifies over time: as the model becomes more confident in its frequent outputs, those
outputs increasingly steer future updates, creating a self-reinforcing loop that suppresses diversity
and encourages homogeneity.

This intuition is formally validated by examining the policy gradient objective. The core issue lies
in its expectation-based formulation:

∇θJ(θ) = Eτ∼πθold
[G(τ)∇θ log πθ(τ)] =

∑
τ

πθold(τ) ·G(τ)∇θ log πθ(τ). (4)

where G(τ) denotes the advantage of trajectory τ . Because each term is weighted by the sampling
probability πθold(τ), even exceptionally rewarding responses contribute negligibly to the gradient if
they are unlikely under the current policy.

This leads to what we term statistical short-sightedness: rare but excellent responses, often happy
accidents, are drowned out by the statistical mass of common, mediocre ones. The model thus be-
comes proficient at refining what it already knows, while systematically ignoring its flashes of bril-
liance. The result is premature convergence: models that generate safe, predictable outputs, but fail
to discover superior, creative solutions lurking in the long tail of the response space. This motivates
our proposal: to move beyond the standard expectation and introduce a mechanism that dynami-
cally amplifies the learning signal from high-reward, low-probability discoveries, compelling
the model to attend to and learn from its promising and low-probability outputs.

3
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4 METHOD

4.1 EXPLORATION-ENHANCED POLICY OPTIMIZATION

To address the suppression of rare valuable responses in policy gradient methods, we introduce
Exploration-Enhanced Policy Optimization, a novel algorithm that dynamically reweights the learn-
ing signal based on a response’s probability. EXPO amplifies gradients from outputs that are high-
reward but low-probability under the current policy, ensuring they contribute meaningfully to policy
optimization. The core mechanism modifies the advantage Ai of each response yi using a sequence-
level dynamic weight αi:

Âi = (1 + αi)Ai. (5)
where Ai is the standard group-normalized advantage. The weight αi is large for rare valuable
responses and near zero otherwise. We define αi as:

αi = clip ((1− clip(p̃i, δ, 1))
γ
, 0, αmax) . (6)

with the effective probability p̃i set to: pi = πθold(yi | x) if Ai > 0 (amplify rare valuable responses),
1−pi if Ai < 0 (penalize frequent mistakes). Here, γ ≥ 0 controls the focus on rare responses. The
value of the advantage Ai is very sensitive to model training, to ensure stable training, we introduce
two mechanisms:

• Progressive Adjust (δ): We set δ = t/T , as training progresses (δ → 1), amplification of
rare responses fades smoothly, preventing late-stage instability.

• Weight Clamping (αmax): We set an upper limit on αi ≤ αmax (e.g., 0.5), bounding the
scaling factor (1 + αi) ∈ [1.0, 1.5] to avoid extreme updates.

Substituting the reweighted advantage Âi into the DAPO objective yields the EXPO objective.
JEXPO(θ) = E(q,a)∼D,{oi}G

i=1∼πθold (·|q) 1∑G
i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t, clip

(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

) .
(7)

This formulation ensures that rare valuable responses have a much stronger effect on the policy up-
date, enabling EXPO to learn from exceptional but infrequent outputs that standard methods over-
look.

4.2 GRADIENT ANALYSIS

To better understand how EXPO reshapes the learning signal, we analyze its objective gradient. For
clarity, we omit the PPO-style ratio clipping (i.e., assume clipping bounds are not active), and recall
that both the advantage Ai and the dynamic weight αi are computed using the frozen old policy πθold

and are thus treated as constants during gradient computation.

Under these conditions, the gradient of the EXPO objective (Eq. 7) with respect to θ is:

∇θJEXPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

 1∑G
i=1 |oi|

G∑
i=1

(1 + αi)Ai

|oi|∑
t=1

∇θ log πθ(oi,t | q, oi<t)

 .

(8)
where we use the identity ∇θri,t(θ) = ri,t(θ)∇θ log πθ(oi,t | q, oi<t). In contrast, the gradient of
the standard DAPO objective (Eq. 3) is:

∇θJDAPO(θ) = E(q,a)∼D,{oi}G
i=1∼πθold (·|q)

 1∑G
i=1 |oi|

G∑
i=1

Ai

|oi|∑
t=1

∇θ log πθ(oi,t | q, oi<t)

 . (9)

The only difference between the two gradients is the multiplicative factor (1 + αi) in EXPO. For
high-reward responses (Ai > 0), αi decreases with probability, it amplifies the influence of rare
valuable outputs while reducing the impact of common ones. For low-reward responses (Ai < 0), αi

increases with probability, which discourages the model from assigning high likelihood to frequent
mistakes. This ensures that exploration is guided by quality, not just novelty.

4
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5 EXPERIMENTS

5.1 SETUP
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Figure 3: Analysis of Problem Difficulty Distri-
bution and Training Dynamics. (a) Distribution
of problems across difficulty levels. (b) Training
curves of Pass@1 accuracy.

Datasets. For training, we use the MATH
dataset (Hendrycks et al., 2021), focusing on
problems from difficulty levels 3 to 5. As
shown in Figure 3, we further group these prob-
lems into five tiers based on the base model’s
performance, with the Hard tier exhibiting the
most effective training dynamics, our experi-
ments use 1,000 samples for training from this
tier, see Appendix A for details. For evalu-
ation, we benchmark our method across five
mathematical reasoning datasets: (1) AIME24:
A collection of 30 high-school olympiad-level
problems from the 2024 American Invitational
Mathematics Examination (Li et al., 2024). (2)
AMC: A set of 83 intermediate-difficulty prob-
lems from the American Mathematics Compe-
titions, primarily in multiple-choice format (Li
et al., 2024). (3) MATH500: A randomly sam-
pled subset of 500 problems from the MATH
dataset, spanning algebra, geometry, and num-
ber theory (Hendrycks et al., 2021). (4) Min-
ervaMath: A benchmark of 272 multi-step reasoning problems (Lewkowycz et al., 2022). (5)
OlympiadBench: A challenging suite of 675 high-difficulty mathematics problems (He et al.,
2024).

Models and Baselines. Our experiments employ several models from the Llama and Qwen fam-
ilies, including Llama-3.2-3B-Instruct (Dubey et al., 2024), Qwen2.5-Math-1.5B and
Qwen2.5-Math-7B (Yang et al., 2024) . We compare EXPO against several strong baselines: (1)
SimpleRL-Zero: a replicate of the DeepSeek-R1 training on small models with limited data (Zeng
et al., 2025b). (2) OpenReasoner-Zero: an open source implementation of large-scale reasoning-
oriented RL training (Hu et al., 2025). (3) PRIME-Zero: process reinforcement through implicit
rewards (Cui et al., 2025). (4) Oat-Zero: an unbiased optimization method that improves token
efficiency while maintaining reasoning performance (Dr.GRPO; Liu et al., 2025b) . (5) DAPO: a
decoupled clip and dynamic sampling policy optimization algorithm (Yu et al., 2025).

Evaluation Metrics. Following established practice (Liu et al., 2025b; Zeng et al., 2025a), our
primary metric is Pass@1 (Chen et al., 2021). Pass@k measures whether at least one of k indepen-
dently generated solutions is correct. We focus on the more strict Pass@1 setting, which evaluates
the accuracy of a single generated response and serves as a robust indicator of model reliability.

Implementation Details. We conduct reinforcement learning training using the verl framework
(Sheng et al., 2024). We set the clipping threshold to ε = 0.2, and during training, we sample 16
rollouts per prompt at a temperature of 1.0, with a maximum response length of 2048 tokens. The
global batch size is 16, with a per-GPU mini-batch size of 4 and a learning rate of 1 × 10−6. For
inference, we use the vLLM library (Kwon et al., 2023), setting temperature to 0.0 and top-p to
1.0. To ensure rigorous evaluation on mathematical problems, we incorporate verification functions
from Math-Verify. All experiments are conducted on a cluster of 1 compute node, equipped with 4
NVIDIA A40 40GB GPUs.

5.2 MAIN RESULTS

We present the main results of EXPO versus strong baselines on five challenging math reasoning
benchmarks in Table 1. EXPO achieves the best overall performance, reaching 52.1% average ac-
curacy using only 1,000 training samples, demonstrating its efficiency and strong ability to improve
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complex reasoning. This is a +17.1% gain over the base model and +9.1% over its instruction-
tuned version, showing the clear benefit of our method. Compared to existing RLVR methods,
EXPO consistently performs better. It outperforms the strongest prior baseline, Oat-Zero, by 2.0%
on average. While some methods excel on specific tasks, for example, Oat-Zero on AIME24 and
OpenReasoner-Zero on Math500 and OlympiadBench, EXPO delivers more balanced results: it
ranks first on MinervaMath and AMC23, and second on AIME24 and Math500. The most convinc-
ing evidence of EXPO’s effectiveness comes from comparisons with our own reimplementations.
EXPO beats standard GRPO by +5.4% on average and also surpasses recent variants like Dr.GRPO
by +5.3% and DAPO by +4.6%. These consistent gains confirm that EXPO’s design enables more
effective learning and delivers better final performance.

Table 1: Performance Comparison of Various Baselines on Multiple Benchmarks. Previous
RLVR methods and our implementation are based on Qwen2.5-Math-7B. Avg. indicates mean ac-
curacy across all test datasets. Top results are in bold, and runner-up results are underlined. Perfor-
mance improvements (∆) are relative to each baseline method.

Algorithm AIME24 Math500 OlympiadBench MinervaMath AMC23 Avg. ∆

Qwen2.5-Math-7B 14.7 64.0 30.7 27.2 38.6 35.0 + 17.1
Qwen2.5-Math-7B-Instruct 12.5 80.4 41.0 32.7 48.5 43.0 + 9.1

Previous RLVR methods
SimpleRL-Zero 27.0 76.0 34.7 25.0 54.9 43.5 + 8.6
OpenReasoner-Zero 16.5 82.4 47.1 33.1 52.1 46.2 + 5.9
PRIME-Zero 17.0 81.4 40.3 39.0 54.0 46.3 + 5.8
Oat-Zero 33.4 78.0 43.4 34.6 61.2 50.1 + 2.0

Our Implementation
GRPO 14.8 80.0 42.1 41.2 55.4 46.7 + 5.4
Dr.GRPO 16.6 81.2 43.4 44.5 48.2 46.8 + 5.3
DAPO 13.3 79.6 39.3 43 62.5 47.5 + 4.6
EXPO (ours) 30.0 81.8 41.3 44.9 62.5 52.1

5.3 ANALYSIS

5.3.1 TRAINING DYNAMICS

We compare the training dynamics of EXPO and DAPO across three key metrics: policy entropy,
reward score, and response length. As shown in the left panel of Figure 4, EXPO maintains higher
entropy throughout training compared to DAPO, indicating a more exploratory behavior and sus-
tained diversity in generated responses. This aligns with EXPO’s design goal of amplifying rare,
high-reward trajectories, preventing premature convergence to narrow policy regions. The middle
panel reveals that EXPO achieves a consistently higher reward score, demonstrating its effective-
ness in optimizing for quality while preserving exploration. Notably, the reward improvement is not
accompanied by a reduction in response length (right panel), where both methods exhibit similar
trends, initially decreasing before stabilizing around 700-800 tokens. However, EXPO maintains
slightly longer responses on average, suggesting it preserves expressiveness without sacrificing co-
herence or reward. Together, these dynamics confirm that EXPO strikes a better balance between
exploration and exploitation, enabling robust learning from rare but valuable samples.

5.3.2 IMPACT OF LLM BACKBONE

To verify that the advantages of EXPO are not limited to a single model architecture, we extended
our evaluation to different LLM backbones. As shown in Table 2, we conducted experiments
on smaller Qwen2.5-Math-1.5B and Llama-3.2-3B-Instruct models. On the Qwen2.5-Math-1.5B,
EXPO once again achieves the highest average accuracy of 43.9%, delivering a substantial improve-
ment of +3.5% over the standard GRPO baseline and +1.8% over the strong competitor, Dr. GRPO.
More importantly, we observe a similar trend on the Llama-3.2 model. Despite this model having
a different architecture and a lower initial performance, EXPO still emerges as the most effective
algorithm with an average accuracy of 24.8%. This represents a clear gain of +1.6% over GRPO and
even larger gains over Dr. GRPO by +4.0% and DAPO +3.6 %. These consistent results across two
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distinct model families robustly demonstrate that the performance improvements offered by EXPO
are a general property of our algorithm and not dependent on a specific model architecture.
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Figure 4: Training Dynamics of EXPO. Left: Policy entropy, showing EXPO maintains higher ex-
ploration throughout training. Middle: Reward score, indicating EXPO achieves consistently higher
performance. Right: Mean response length, revealing both methods stabilize at similar lengths, with
EXPO slightly preserving longer outputs.

Table 2: Performance Comparison under Different LLM Backbones. Qwen2.5-Math-1.5B and
Llama-3.2-3B-Instruct are evaluated. The results highlight the impact of both model architecture and
optimization strategy, with EXPO achieving the highest average scores across both LLM backbones,
demonstrating its consistent effectiveness in enhancing reasoning performance.

Algorithm AIME24 Math500 OlympiadBench MinervaMath AMC23 Avg. ∆

Qwen2.5-Math-1.5B 10.0 62.2 29.2 16.2 42.5 32.0 +11.9
+ GRPO 13.3 73.2 32.7 30.1 52.5 40.4 +3.5
+ Dr. GRPO 20.0 74.2 37.6 25.7 53.0 42.1 +1.8
+ DAPO 13.3 71.8 32.3 29.4 57.5 40.9 +3.0
+ EXPO 23.3 71.6 34.1 30.5 60.0 43.9

Llama-3.2-3B-Instruct 6.7 41.0 12.1 17.3 15.0 18.4 +6.4
+ GRPO 6.7 44.8 17.2 22.1 25.0 23.2 +1.6
+ Dr. GRPO 6.7 50.0 14.7 14.3 18.1 20.8 +4.0
+ DAPO 6.7 45.2 14.2 19.9 20.0 21.2 +3.6
+ EXPO 6.7 50.6 16.3 22.8 27.5 24.8

5.3.3 IMPACT OF γ COEFFICIENT

Table 3: Average Number of Correct Solutions
across Mathematical Benchmarks. Higher val-
ues indicate greater diversity in valid reasoning
solutions. All results are based on the Qwen2.5-
Math-7B.

Algorithm DAPO EXPO

AIME24 25.8 27.2
Math500 98.5 100.8
OlympiadBench 78.7 79.9
MinervaMath 41.4 42.3
AMC23 48.4 50.0

The hyperparameter γ controls the sensitivity
of the dynamic reweighting factor αi to re-
sponse rarity. We conduct an ablation study to
evaluate its impact on performance and train-
ing dynamics. As shown in left panel of Fig-
ure 5, Pass@1 accuracy peaks at γ = 1.0, with
a drop for both lower and higher values. This
indicates that moderate amplification is opti-
mal: too weak (γ < 1.0) fails to boost rare
high-reward responses, while excessive ampli-
fication (γ > 1.0) may overemphasize noise or
unstable signals. The middle panel shows that
larger γ values accelerate early convergence, as
seen in steeper initial curves for γ = 1.5 and
2.0. However, these models tend to plateau
earlier, suggesting that aggressive amplification
may lead to premature stabilization. Finally, the right panel reveals how γ shapes the evolution
of dynamic weights. Higher γ leads to stronger initial amplification and faster decay of weight
magnitude, indicating more aggressive focus on rare events early in training, followed by rapid de-
emphasis. Together, these results confirm that γ = 1.0 strikes the best balance between exploration
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and stability, enabling EXPO to effectively learn from rare valuable responses without sacrificing
training robustness.
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Figure 5: Ablation Study of Reweighting Factor γ in EXPO. (a) Pass@1 accuracy vs. γ : peak
performance at γ = 1.0 . (b) Training curves for different γ : higher values improve early con-
vergence but may plateau earlier. (c) Evolution of dynamic weights: larger γ leads to stronger
amplification and faster decay of rare-response weights.
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Figure 6: Pass@K Accuracy across Mathematical Reasoning Benchmarks. EXPO consistently
outperforms both the base model and DAPO at all values of K. More results on Math500, Olympiad-
Bench and MinervaMath can be found at Appendix C

5.3.4 DIVERSITY OF REASONING SOLUTIONS

To quantify the diversity of correct reasoning solutions generated by the model, we sample 128 solu-
tions per problem using a high temperature T = 1.0 to encourage stochasticity and avoid repetitive
outputs. We then count the average number of correct solutions across five mathematical bench-
marks. This metric reflects the breadth of the model’s reasoning, an indicator of creative and robust
problem-solving. As shown in the table 3, EXPO consistently generates more diverse correct so-
lutions than DAPO across all benchmarks, with the largest improvements on Math500 (+2.3) and
AMC23 (+1.6). This is a direct consequence of EXPO’s core design. By dynamically amplifying
gradients from rare valuable trajectories, EXPO actively resists premature convergence to dominant
or repetitive solution patterns. As a result, the model preserves and refines a wider variety of valid
reasoning paths throughout training, enabling it to internalize and deploy a richer, more diverse set
of problem-solving strategies at inference time.

5.3.5 EFFECT ON REASONING CAPACITY BOUNDARY

The core function of EXPO is to encourage the generation of diverse reasoning solutions. A natural
question is: does this diversity help improve reasoning capability boundary? To investigate this, we
adopt the pass@k metric following Yue et al. (2025), which measures whether a model can generate
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at least one correct solution in k independent attempts. This provides an upper-bound estimate
of the model’s latent reasoning capacity. As shown in Figure 6, we observe a clear divergence in
trends between small and large k. At small k, RLVR-trained models outperform the base model,
consistent with the well-known finding that RLVR improves single-sample correctness. However,
as k increases, the base model steadily closes the gap. For example, on AIME24, DAPO leads the
base model by +3.3% at k = 1, but falls behind by -3.3% at k = 128, suggesting that DAPO’s
gains come from concentrating probability mass on known correct paths, rather than discovering
new ones. In contrast, EXPO maintains a consistent performance advantage over the base model
even at k = 128, achieving a final average accuracy of 84.6% versus 80.6%, a +4.0% absolute
gain. This demonstrates that EXPO not only improves single-attempt accuracy but also genuinely
expands the model’s reasoning boundary by preserving and reinforcing diverse, high-reward solution
trajectories.

6 RELATED WORK

Mathematical Reasoning with LLMs Mathematical reasoning is a gold standard for evaluat-
ing LLMs (Zhang et al., 2025), requiring symbolic abstraction, logical consistency, and multi-step
deduction, cognitive traits central to science and engineering. Research mainly splits into two
paradigms. Formal reasoning, based on systems like Lean or Coq (Zheng et al., 2022; Azerbayev
et al., 2023; Xin et al., 2025), ensures correctness via machine-checkable proofs, ideal for theo-
rem proving. Informal reasoning, using natural language or code without formal guarantees, better
mirrors human problem solving: flexible, heuristic, and often tool-free (Sun & Zhang, 2025; Singh
et al., 2025). It excels in tasks like word problems and symbolic computation, where plausible,
high-quality outputs matter more than formal proof. We adopt informal reasoning, as it matches
real-world settings where formal systems are unavailable. In such settings, models must learn from
sparse rewards and discover rare, high-value reasoning paths. This is the core challenge EXPO
addresses by amplifying signals from low-probability, high-reward responses.

Policy Optimization for LLMs Reinforcement learning has significantly improved LLM reason-
ing, as shown in models like OpenAI-o3, DeepSeek-R1 and Kimi-K2 (OpenAI, 2025; DeepSeek-AI
et al., 2025; Bai et al., 2025). Progress largely builds on verifiable rewards (Zeng et al., 2025b; Hu
et al., 2025; Cui et al., 2025), which offer reliable training signals. Follow-up work uses test-time
adaptation (Muennighoff et al., 2025; Zuo et al., 2025) and structured prompting (Wang et al., 2023;
Sun & Zhang, 2025) to boost performance within existing limits, while newer RL methods (Shao
et al., 2024a; Liu et al., 2025a; Yu et al., 2025) refine objectives for reasoning, yet remain mostly
on-policy, amplifying known behaviors instead of discovering new ones. Recent work (Zhao et al.,
2025; Yue et al., 2025) identifies a key issue: on-policy learning rarely explores beyond current
behavior, favoring safe, frequent outputs and optimize within model boundaries rather than expand-
ing reasoning horizons. EXPO tackles this by dynamically reweighting gradients to amplify signals
from low-probability, high-reward responses. This enables learning from the model’s most valu-
able, previously ignored outputs, preserving reasoning diversity and preventing model collapse into
narrow solution modes, thereby improving overall performance.

7 CONCLUSION

We identify a critical limitation in standard policy gradient methods for LLM alignment: their ten-
dency to suppress low-probability, high-reward responses, a bias that narrows reasoning scope, col-
lapses diversity, and stifles creative problem-solving. To address this, we propose Exploration-
Enhanced Policy Optimization, a lightweight algorithm that dynamically reweights policy gradients
to amplify learning signals from rare but valuable outputs while penalizing frequent mistakes. By
reshaping the optimization objective around response rarity and reward, EXPO enables models to
escape local optima, sustain exploration, and internalize diverse reasoning strategies. Extensive ex-
periments across multiple mathematical benchmarks confirm that EXPO consistently outperforms
strong baselines like DAPO and GRPO, achieving higher accuracy, greater solution diversity, and
more stable training, demonstrating that explicitly valuing happy accidents is not just beneficial, but
essential for unlocking the full reasoning potential of large language models.
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Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,

10

https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2302.12433
https://doi.org/10.48550/arXiv.2507.20534
https://doi.org/10.48550/arXiv.2507.20534
https://doi.org/10.48550/arXiv.2505.14566
https://doi.org/10.48550/arXiv.2505.14566
https://doi.org/10.48550/arXiv.2501.12948


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson,
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A TRAINING DATA

We build our training set from MATH dataset problems at difficulty levels 3–5. For each problem,
we generate four responses using Qwen2.5-Math-7B and classify it into one of five difficulty tiers
based on correctness: all-right: 4 correct, Easy: 3 correct, Medium: 2 correct, Hard: 1 correct, all-
wrong: 0 correct. We exclude all-right and all-wrong problems, as they offer little learning signal,
being either too easy or too hard. This leaves Easy, Medium, and Hard problems to study how data
difficulty affects RL fine-tuning. As shown in Figure 7, training on Hard problems yields faster
convergence and sustained gains. From the 1,123 problems in the Hard tier, we randomly sample
1,000 for our final training set, balancing challenge and tractability to maximize learning signal.
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Figure 7: Training Dynamics by Difficulty Level. Entropy (blue) and mean response length (pur-
ple) across training steps for Easy, Medium, and Hard problems. Hard problems show sustained
variability.

B CODE IMPLEMENTATION

It is easy to implement EXPO based on open-source RL framework. For example, we show the
minimum viable implementation of EXPO that only modifies a few line of DAPO loss in verl.
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1 def compute_policy_loss(advantages, sentence_logps, step_ratio, gamma
=1.0):

2 mask_adv = advantages.mean(dim=1) < 0
3 sentence_logps_detach = torch.clamp(torch.exp(sentence_logps.detach()

), 0, 1)
4 sentence_logps_detach[mask_adv] = 1 - sentence_logps_detach[mask_adv]
5 sentence_logps_detach = torch.clamp(sentence_logps_detach, step_ratio

, 1)
6 alpha = 1 - sentence_logps_detach
7 alpha = alpha.pow(gamma)
8 alpha = torch.clamp(alpha, 0, 0.5)
9 return alpha

Listing 1: Function compute policy loss for adaptive response weighting.

C MORE EVALUATION RESULTS

We evaluate Qwen2.5-Math-7B under three settings: (1) Base, (2) DAPO, and (3) EXPO. Results are
reported across five mathematical benchmarks using pass@K with K ∈ {1, 2, 4, 8, 16, 32, 64, 128}
, sampling temperature T=1.0 , and correctness judged by any correct sample. As shown in below
tables, EXPO consistently outperforms both Base and DAPO at all K values. With Qwen2.5-math-
7B, The gap is largest at K=1, highlighting EXPO’s strength in single-sample accuracy, crucial
for real-world use. At K=128 , EXPO achieves 84.6% average, surpassing DAPO and Base. These
results confirm that EXPO improves not only accuracy but also the diversity and reasoning capability
boundary.

Table 4: Pass@K performance of Llama-3.2-3B-Instruct without finetuning across multiple math-
ematical reasoning benchmarks. K denotes the number of sampled responses per problem, with
success measured if any response is correct. All evaluations use identical prompting, decoding, and
temperature settings for fair comparison.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 0.0 25.0 5.5 7.7 2.5 8.1
2 3.3 40.2 9.3 11.0 22.5 17.3
4 3.3 50.6 15.6 17.3 25.0 22.4
8 6.7 60.6 21.2 24.6 35.0 29.6
16 6.7 71.2 29.3 30.9 60.0 39.6
32 6.7 77.8 38.7 37.5 70.0 46.1
64 16.7 86.0 46.4 41.9 85.0 55.2

128 26.7 88.4 53.5 48.2 92.5 61.9

Table 5: Pass@K performance of Llama-3.2-3B-Instruct finetuned with DAPO across multiple
mathematical reasoning benchmarks.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 3.3 44.6 13.8 16.2 30.0 21.6
2 6.7 53.4 18.7 23.2 32.5 26.9
4 6.7 61.0 24.4 27.9 40.0 32.0
8 16.7 66.6 28.7 32.7 42.5 37.4
16 20.0 72.2 33.2 39.3 55.0 43.9
32 20.0 76.0 37.9 43.4 62.5 48.0
64 26.7 79.4 42.1 49.3 67.5 53.0

128 30.0 82.6 45.9 53.7 72.5 56.9
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Table 6: Pass@K performance of Llama-3.2-3B-Instruct finetuned with EXPO across multiple
mathematical reasoning benchmarks.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 6.7 44.4 14.5 16.5 32.5 22.9
2 10.0 55.4 19.7 23.5 35.0 28.7
4 10.0 63.6 24.7 28.7 35.0 32.4
8 13.3 70.0 29.9 32.4 50.0 39.1
16 13.3 74.4 36.0 38.2 57.5 43.9
32 16.7 81.2 40.3 44.5 65.0 49.5
64 26.7 85.4 47.0 49.6 72.5 56.2
128 33.3 88.4 51.0 57.0 85.0 62.9

Table 7: Pass@K performance of Qwen2.5-math-7B without finetuning DAPO across multiple
mathematical reasoning benchmarks.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 16.7 42.4 18.2 11.0 47.5 27.2
2 23.3 58.4 30.2 18.4 55.0 37.1
4 33.3 73.2 39.3 25.0 77.5 49.7
8 43.3 84.8 47.9 33.1 85.0 58.8
16 46.7 90.0 55.6 41.5 85.0 63.8
32 56.7 93.6 63.6 48.5 90.0 70.5
64 66.7 95.0 69.3 56.6 92.5 76.0

128 70.0 96.6 75.6 63.2 97.5 80.6

Table 8: Pass@K performance of Qwen2.5-math-7B finetuned with DAPO across multiple mathe-
matical reasoning benchmarks.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 20.0 76.2 37.8 30.9 67.5 46.5
2 26.7 83.4 45.2 40.4 67.5 52.6
4 43.3 88.4 51.9 48.2 77.5 61.9
8 50.0 90.6 58.8 52.9 87.5 68.0
16 60.0 93.0 64.7 58.8 87.5 72.8
32 63.3 94.8 69.2 64.7 95.0 77.4
64 63.3 96.2 72.6 68.8 95.0 79.2

128 66.7 98.0 76.3 72.4 97.5 82.2

Table 9: Pass@K performance of Qwen2.5-math-7B finetuned with EXPO across multiple mathe-
matical reasoning benchmarks.

K AIME24 Math500 OlympiadBench Minerva AMC23 Avg.

1 23.3 79.2 39.6 33.8 65.0 48.2
2 30.0 85.6 47.4 39.0 75.0 55.4
4 40.0 89.6 54.7 48.2 87.5 64.0
8 50.0 92.4 58.8 54.0 92.5 69.5
16 60.0 93.8 64.3 58.5 95.0 74.3
32 73.3 95.0 69.5 65.1 95.0 79.6
64 76.7 96.6 72.9 68.8 97.5 82.5

128 76.7 97.6 76.4 72.1 100.0 84.6
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D CASE STUDY

D.1 COMPARISON BETWEEN EXPO AND BASELINES

Question: Find the greatest common divisor of 3339, 2961, and 1491. (Correct answer is
21 ).

GRPO:
To find the greatest common divisor (GCD) of the numbers 3339, 2961, and 1491, we can
use the Euclidean algorithm. The Euclidean algorithm is an efficient method for computing
the greatest common divisor of two numbers. We can extend this method to more than two
numbers by iteratively applying it to pairs of numbers. The steps are as follows: 1. First, find
the GCD of the first two numbers, 3339 and 2961. 2. Then, find the GCD of the result from
step 1 with the third number, 1491. Let’s start with the first step: finding the GCD of 3339
and 2961 using the Euclidean algorithm. The Euclidean algorithm states that GCD(a, b) =
GCD(b, a mod b) and continues until the remainder is 0. The last non-zero remainder is the
GCD of the two numbers. We will apply this iteratively, the GCD of 3339 and 2961 is 126.
Now, we need to find the GCD of 126 and 1491. The GCD of 126 and 1491 is 9. Therefore,
the GCD of 3339, 2961, and 1491 is 9. The final answer is 9 .

DR.GRPO:
To find the greatest common divisor (GCD) of the numbers 3339, 2961, and 1491, we can
use the Euclidean algorithm. The Euclidean algorithm finds the GCD of two numbers by
repeatedly applying the division algorithm: the GCD of a and b is the same as the GCD of
b and the remainder of a divided by b. First, we can find the GCD of 3339 and 2961 using
the Euclidean algorithm. Then, we can use that GCD to find the GCD with the third number,
1491. Here’s the step-by-step approach: 1. Calculate the GCD of 3339 and 2961. 2. Use the
result to calculate the GCD with 1491. Let’s start by calculating the GCD of 3339 and 2961.
We use the Euclidean algorithm, the GCD of 3339 and 2961 is 1. Since the GCD of 3339
and 2961 is 1, the GCD of 1 and any other number is 1. So, the GCD of 1 and 1491 is 1. The
final answer is 1 .

DAPO:
To find the greatest common divisor (GCD) of 3339, 2961, and 1491, we will first find the
GCD of 3339 and 2961 using the Euclidean algorithm, and then we will find the GCD of
the result with 1491. The Euclidean algorithm for finding the GCD of two numbers a and b
(where a > b) is: 1. Divide a by b to get the remainder r. 2. Replace a with b and b with
r. 3. Repeat the process until the remainder is 0. The last non-zero remainder is the GCD of
a and b. Let’s first find the GCD of 3339 and 2961. We will then find the GCD of the result
with 1491. The greatest common divisor (GCD) of 3339, 2961, and 1491 is 213. The final
answer is 3 .

EXPO:
To find the greatest common divisor (GCD) of 3339, 2961, and 1491, we can use the Eu-
clidean algorithm. The Euclidean algorithm is an efficient method for computing the greatest
common divisor (GCD) of two numbers. We can extend this method to more than two num-
bers by iteratively applying the algorithm. The steps to find the GCD of multiple numbers are
as follows: 1. Find the GCD of the first two numbers. 2. Use the result to find the GCD with
the next number. 3. Repeat until you have the GCD of all the numbers. We start by finding
the GCD of 3339 and 2961, and then we find the GCD of that result with 1491. Let’s do this
step-by-step. First, we find the GCD of 3339 and 2961, the GCD of 3339 and 2961 is the last
non-zero remainder, which is 3. Next, we find the GCD of 3 and 1491: 1491 = 3 * 497 + 0
The GCD of 3 and 1491 is 3. The final answer is 21 .

D.2 DIFFERENT SOLUTIONS FOR THE SAME PROBLEM

Question:
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You have 5 shirts, 6 pairs of pants, and 8 hats. How many outfits can you make consisting of
one shirt, one pair of pants, and one hat?
(Correct answer is 240 ).

EXPO (Solution 1):
To determine the total number of different outfits that can be made, we need to calculate the
product of the number of choices for each item of clothing. Specifically, there are 5 choices for
a shirt, 6 choices for a pair of pants, and 8 choices for a hat. The total number of different outfits
can be calculated as follows: Total outfits = Number of shirts × Number of pairs of pants ×
Number of hats = 5× 6× 8 We can calculate this product step by step. First, we calculate the
product of the number of shirts and pairs of pants: 5× 6 = 30 Then, we multiply the result by
the number of hats: 30 × 8 = 240 So, the total number of different outfits that can be made is
240. The final answer is 240 .

EXPO (Solution 2):
We have 5 shirts, 6 pairs of pants, and 8 hats. To find the total number of possible outfits consist-
ing of one shirt, one pair of pants, and one hat, we can use the principle of counting combina-
tions. The total number of possible outfits is the product of the number of choices for each item.
So, we need to calculate: Total outfits = (Number of shirts) × (Number of pairs of pants) ×
(Number of hats) Given: Number of shirts = 5, Number of pairs of pants = 6, Number of hats
= 8. So, the total number of outfits is: Total outfits = 5× 6× 8. The total number of possible
outfits consisting of one shirt, one pair of pants, and one hat is 240. The final answer is 240 .

EXPO (Solution 3):
You have 5 shirts, 6 pairs of pants, and 8 hats. To determine how many different outfits can be
made consisting of one shirt, one pair of pants, and one hat, we can use the basic principle of
counting. According to the principle of counting, if there are m ways to do one thing and n
ways to do another, then there are m × n ways to do both. Extending this to three choices, if
there are a ways to do the first thing, b ways to do the second, and c ways to do the third, then
there are a × b × c ways to do all three. In this problem: There are 5 ways to choose a shirt.
There are 6 ways to choose a pair of pants. There are 8 ways to choose a hat. Therefore, the
total number of different outfits is 5 × 6 × 8. The total number of different outfits that can be
made consisting of one shirt, one pair of pants, and one hat is 240. The final answer is 240 .

E LLM USAGE STATEMENT

LLMs were used in the preparation of this paper solely for grammatical correction and language
polishing, and they help improve the clarity and fluency of the writing. All intellectual contributions,
including concept development, algorithm design, experimentation, and interpretation of results, are
entirely the work of the authors.
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