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Abstract

Fairness-aware learning aims at constructing classifiers that not only make accurate pre-
dictions, but also do not discriminate against specific groups. It is a fast-growing area of
machine learning with far-reaching societal impact. However, existing fair learning methods
are vulnerable to accidental or malicious artifacts in the training data, which can cause
them to unknowingly produce unfair classifiers. In this work we address the problem of fair
learning from unreliable training data in the robust multisource setting, where the available
training data comes from multiple sources, a fraction of which might not be representative
of the true data distribution. We introduce FLEA, a filtering-based algorithm that identifies
and suppresses those data sources that would have a negative impact on fairness or accuracy
if they were used for training. As such, FLEA is not a replacement of prior fairness-aware
learning methods but rather an augmentation that makes any of them robust against un-
reliable training data. We show the effectiveness of our approach by a diverse range of
experiments on multiple datasets. Additionally, we prove formally that —given enough data—
FLEA protects the learner against corruptions as long as the fraction of affected data sources
is less than half.

1 Introduction

Machine learning systems have started to permeate many aspects of our everyday life, such as finance (e.g.
credit scoring), employment (e.g. judging job applications) or even judiciary (e.g. recidivism prediction). In
the wake of this trend, other aspects besides prediction accuracy become important to consider. One crucial
aspect is (group) fairness, which aims at preventing learned classifiers from acting in a discriminatory way.
To achieve this goal, fairness-aware learning methods adjust the classifier parameters in order to fulfill an
appropriate measure of fairness. This strategy is highly successful, but only under idealized conditions of
clean i.i.d.-sampled data. Unfortunately, fairness-aware learning methods are not robust against unintentional
errors or intentional manipulations of the training data.

In this work, we propose a new algorithm, FLEA (Fair LEarning against Adversaries) that overcomes this
problem in the setting where the training data is not one monolithic block, but rather comes as a collection
of multiple data sources. This is, in fact, a common scenario. For instance, organizations that specialize
in large-scale data mining, such as large hospital chains or political analysis firms, may receive data that
is collected separately from multiple physical locations or data vendors, of which not every one may be
completely trustworthy, and so robustness concerns arise.

FLEA adds a filtering step that effectively identifies and suppresses data sources that could have a negative
impact on the classifier fairness or accuracy, so long as they constitute less than half of all sources. To
accomplish this, we introduce a new dissimilarity measure, disparity, that measures the maximum achievable
difference in classifier fairness between two data sources. We combine this with the existing discrepancy
measure, which plays an analogous role for the classifier accuracy, and the disbalance, which measures changes
to the group composition of the training data. We show both empirically and theoretically that a combination
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Figure 1: Tllustration of robust multisource learning with FLEA: (top) We are given multiple sources, some of
which might contain noisy or manipulated data. (left) Ordinary multisource learning pools the data from all
sources, which can cause the resulting classifier to be inaccurate and/or unfair, even if fairness-aware training
is employed. (right) FLEA filters the data before pooling, thereby suppressing likely corrupted sources. This
allows fairness-aware training to succeed.
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of these three measures provides a sufficient criterion for detecting harmful data, as long as the fraction of
harmful sources is less than half[1]

While previous method for robust fairness-aware learning were only able to protect against specific data issues,
such as random label flips, FLEA ensures that even a worst-case adversary is unable to negatively affect the
training process: either the changes to the data are minor and will not hurt learning, or they are large enough
so that the affected data sources are identified and removed. Our theoretical analysis provides finite sample
guarantees and certifies the ability of FLEA to learn classifiers with optimal fairness and accuracy in the
infinite sample size limit. Our extensive experimental evaluation demonstrates FLEA’s practical usefulness
in suppressing the effect of corrupted data when learning fair models, even in cases where previous robust
methods fail.

2 Preliminaries and related work

2.1 Fair classification

Throughout this work, we adopt a standard classification setting in which the task is to predict a binary label
ye Y =1{0,1} for any = € X. For a fixed data distribution p(z,y) € P(X x )), the classic goal of learning is
to find a prediction function f: X — Y with high accuracy, i.e. small risk, R,(f) = Ep.) [y # f(2)], where
[P] =1 if a predicate P is true and [P] = 0 otherwise.

With the recent trend to consider not only the accuracy but also the fairness of a classifier, a number of
statistical measures have been proposed to formalize this notion. In this work, we focus on the most common
and simplest one, demographic parity (DP) (Calders et all 2009). It postulates that the probability of a
positive classifier decision should be equal for all subgroups of the population. Formally, we assume that
each example (z,y) also possesses a protected attribute, a € A, which indicates its membership in a specific
subgroup of the population. For example, a could indicate race, gender or a disability. For simplicity of
exposition, we treat the protected attribute as binary-valued, but extensions to multi-valued attributes are
straightforward by summing over all pairwise terms. Note that a might be a component or a function of z, in
which case it is available at prediction time, or it might be contextual information, in which case it would
only be available for the learning algorithm at training time, but not for the resulting classifier at prediction
time. We cover both aspects by treating a as an additional random variable, and write the underlying joint
data distribution as p(z,y, a).

IThe case where half or more sources are harmful is impossible to solve in general, see e.g. |Charikar et al.| (2017)
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For a classifier f: X — {0, 1}, the demographic parity violation, I,, and the empirical counterpart, I's for a
dataset S C X x ) x A are defined as (Calders et al., [2009; Dwork et al.| [2012),

L) = [Erteiuen /@) ~ B f@)], Ts(h) = |y 5@~ s S r@)] ()

reSae=1 xreSa=0

where S°=* = {(z,y,a) € S : a = z} and n®=* = |S*=*| for z € {0,1}. Smaller values of the demographic
parity violation indicate more fair classifiers. Analogous quantities can be defined for related fairness measures,
such as equality of opportunity or equalized odds (Hardt et al. 2016} Zafar et al. 2017a). A detailed description
of these and many others choices can be found in Barocas et al.| (2019).

Fairness-aware learning In the last years, a plethora of algorithms have been developed that are able
to learn classifiers that are not only accurate but also fair, see, for example Mehrabi et al.| (2021a) for an
overview. They mostly rely on one or multiple of four core mechanisms. Preprocessing methods (Kamiran &/
|Calders, 2012} |Calmon et al., [2017; Wang et al., 2019} Celis et al., |2020) change the training data to remove a
potential bias. This is often simple and effective, but comes with the danger of reduced accuracy, since the
data distribution at training time will not reflect the distribution at prediction time anymore. Postprocessing
methods (Hardt et al., 2016} Woodworth et al., 2017} |Chzhen et al.| [2020) adjust the acceptance thresholds of
a previously trained classifier for each protected group, so that the desired fairness criterion is met. This is a
simple, reliable and often effective method, but it requires the protected attribute to be available at prediction
time. Penalty-based methods (Kamishima et al., 2012; |Zemel et al., 2013; |Zafar et al., 2017b; Donini et al.,
[2018; Mandal et al., |2020; |Chuang & Mroueh, |2021)) add a regularizer or constraints to the learning objective
that penalize or prevent parameter choices that lead to unfair decisions. Adversarial methods
[2017; [Wadsworth et al., | 2018} |Zhang et al., 2018 [Lahoti et al [2020) train an adversary in parallel to the
classifier that tries to predict the protected attribute from the model outputs; if this cannot be done better
than chance level, fairness is achieved.

Many other methods have been proposed, e.g. based on distributionally robust optimization (Rezaei et al.
2020) or tailored to a specific family of classifiers or optimization procedures (Cho et al., [2020; Tan et al.
2020)). They all share, however, the property that accurate information about the data distribution and the
protected attribute is needed at training time.

If the training data is not representative of the actual data distribution, e.g. it is noisy, biased, or has been
manipulated, then fairness-enforcing mechanisms fall short (Kallus et al., 2020; Mehrabi et al.| 2021b)). Partial
solutions have been proposed, e.g., when only the protected attribute or only the label is noisy
[2019; Wang et al.| 2020; |Celis et al.l [2021ba; Mehrotra & Celis| [2021} Roh et all [2021). However, as shown
in [Konstantinov & Lampert| (2022)), full protection against malicious manipulations of the training data is
provably impossible when learning from a single dataset.

2.2 Robust multisource learning

Learning from multiple sources The multisource learning setting formalizes the increasingly frequent
situation in which the training data is not collected as a single batch, but from multiple data sources
|& Low, 1997} [Russakovsky et al. [2015). For fairness-aware learning7 this means we are given N datasets,
S1,..., SN CX xYxA. Each S; = {(m1 ,yg ), (@ )), (xn ,yﬁf},anl)} contains i.i.d. samples from a data
distrlbutlon pi(x,y,a). Given these datasets, the learnmg algorithm has the goal of selecting a prediction
function f from a hypothesis class H that has as-small-as-possible risk (expected prediction error) and
unfairness (e.g. demographic parity violation) with respect to the unknown distribution at prediction time,
p(z,y,a), (also called target distribution). The classical setting of pj = ps = -+ = py = p, we call
homogeneous multisource learning. Otherwise, we call the setting heterogeneous.

In a clean data scenario, when all data distribution are the same or very similar to each other, then there is no
drawback to simply merging all sources and training on the resulting large dataset. However, merging all data
is not the best strategy when some of the data sources are unrepresentative, i.e. their data distribution differs
a lot from the target one. Such data can occur accidentally, for instance due to biases in the data collection or
annotation process. In some cases, such issues can be overcome by domain adaptation techniques (Ben-David
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let al., 2010; (Crammer et al. [2008; Natarajan et al., |2013). Unrepresentative sources can also be the result of
intentional manipulations, which are typically harder to detect and compensate for (Feng et al., 2019} [Fowl|
. In fact, the datasets might not be samples from any probability distribution in that case, but
adversarially constructed.

Robust multisource learning In this work we aim to cover as wide a range of possible problems with
some of the data sources as possible. Therefore, we study the multisource learning problem in the presence
of an adversar In this setting, the adversary observes an original collection of N datasets, Si,..., Sy,
where each S; contains i.i.d. samples from a data distribution pi(x,y,a). Next, the adversary manipulates
the data in an arbitrary (deterministic or randomized) way with the only restriction that for a fixed subset
of indices, G C {1,..., N}, the data source remains unaffected. That is, S; = S; for all i € G, and S; is
arbitrary for i € G. The subset G is unknown to the algorithm, of course. The adversary model places no
restrictions on the corruptions, and thus subsumes many scenarios that have to otherwise be studied in
isolation. In particular, both data-quality issues, such as sampling bias, data entry errors or label noise, as
well as malicious manipulations, such as class erasure or data poisoning, are covered as special cases.

Multisource learning with protection against potential manipulations is known as robust multisource learn-
ing (Erfani et al.,2017). In order to detect harmful sources, a natural approach is to compare all pairs of
datasets with an appropriate distance measure and then use the pairwise distances to filter out sources that
are far from the others. Key to the success of such an approach is using the right definition of distance. On
the one hand one must be able to estimate the measure from finite sample sets in a statistically efficient
way. Many common information-theoretic measures, such as Kullback-Leibler divergence (Kullback & Leibler]
, total variation or Wasserstein distance , do not fulfill this criterion. On
the other hand, the measure must be sensitive enough such that if two sources appear similar then training
on either of them must yield similar classifiers. Classical two-sample tests, such as Student’s ¢-test
or MMD (Gretton et al.l 2012)), fail to guarantee this.

In the context of multisource learning a measure that combines both useful properties is the (empirical)
discrepancy distance (Kifer et al [2004; Mohri & Medina, 2012). For two datasets, S1, S, and a hypothesis
set H C {h: X — Y}, it measures the maximal amount by which their estimates of the classification accuracy
can differ:

disc(S1,S2) = sup |Rs, (h) — Rs,(h)
heH

; (2)

where Rg(h) = ﬁ >z yyesly # h(z)] is the empirical risk of h on S. In |K0nstantinov et a1.| 42020D the
discrepancy is used as a distance measure to identify and suppress data source that might harm the classifier’s
accuracy. However, the associated algorithm is mostly of theoretical interest: it only suppresses those sources
of which it is certain that they are malignant using thresholds that are derived from its generalization bound.
As a consequence, it requires training sets that are too large to be practical. Similarly, [Jain & Orlitsky:
(2020b)) provide an analysis of the learning-theoretic limitations of robust multisource learning. [Konstantinov:
|& Lampert| (2019) also use the discrepancy measure for detecting harmful data sources, but the proposed
algorithm requires access to a reference set that is guaranteed to be free of data manipulations. In
[Valiant| (2018); (Chen et al.| (2019); |Jain & Orlitsky| (2020a)) robust multisource learning is addressed using
tools from robust statistics, but only in the context of discrete density estimation.

All of the above works are tailored to the task of ensuring high accuracy of the learned classifiers or estimators,
but they are not sensitive to issues of fairness. To our awareness, the only prior work that considers achieving
fairness in a multisource learning setting and in the presence of data corruption is the one of .
However, this paper focuses on personalized federated learning and on a fairness objective which postulates
that models’ performances should be relatively similar across edge devices. In contrast, we study a setup
where a single global model is trained and aim to ensure that this model does not act discriminatory against
members of protected subgroups.

2 Adversary is the common computer science term for a process whose aim it is to prevent a system from operating as intended.
Our adversaries manipulate the training data and should not be confused with adversaries in adversarial machine learning, such
as adversarial ezamples (Goodfellow et al.,[2015), or generative adversarial networks (Goodfellow et al., |2014).
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3 Fair multisource learning

The goal of this work is to develop a method that allows fairness-aware learning, even if some of the available
data sources are unrepresentative of the true training distribution. For this, we introduce FLEA, a filtering-
based algorithm that identifies and suppresses those data sources that would negatively impact the fairness
of the trained classifier. Its main innovation is the disparity measure for comparing datasets in terms of their
fairness estimates.

Definition 1 (Empirical Disparity). For two datasets S1,S52 C X x Y x A, their empirical disparity with
respect to a hypothesis class H is

disp(S1,S2) = sup |Ts, (h) — Ts,(h)|. (3)
heH

where T's : H — R is an empirical (un)fairness measure, such as the demographic parity violation .

The disparity measures the maximal amount by which the estimated fairness of a classifier in H can differ
between using S; or S as the basis of the estimate. A small disparity value implies that if we construct a
classifier that is fair with respect to Si, then it will also be fair with respect to Ss.

Definition |1} is inspired by the empirical discrepancy . Just as low discrepancy implies that a classifier
learned on one dataset will have comparable accuracy as one learned on the other, low disparity implies that
the two classifiers will have comparable fairness. FLEA relies on the discrepancy as well as the disparity,
because ensuring fairness alone does not suffice (e.g. a constant classifier is perfectly fair). As a third relevant
quantity we introduce the (empirical) disbalance.

Sa:1 Sa:l

| 1 | _ ‘ 2 | ) (4)
|51 |52

The disbalance compares the relative sizes of the protected groups of two datasets. Its inclusion is a

technical requirement to be able to also formally prove that demographic parity fairness remains unaffected
by corruptions.

diSb(Sl, SQ) =

In combination, disparity, discrepancy, and disbalance form an effective criterion for detecting dataset
manipulations. This is most apparent in the homogeneous setting: if two datasets of sufficient size are
sampled i.i.d. from distributions close to the target one, then by the law of large numbers we can expect all
three measures to be small. If one of the datasets is sampled like this (called clean from now on) but the
other is manipulated, then there are two possibilities. It is still possible that all three values are small. In this
case, equations f ensure that neither accuracy nor fairness would be negatively affected, and we call
such manipulations benign. If at least one of the values is large, training on such a manipulated datasource
could have undesirable consequences. Such manipulations we will call malignant. Finally, when comparing
two manipulated datasets, discrepancy, disparity, and disbalance can each have arbitrary values.

In the inhomogeneous setting, a path of similar reasoning applies, though the measures for clean sources will
not approach exactly zero due to the difference in their data distributions.

3.1 FLEA: Fair learning against adversaries

We now introduce the FLEA algorithm, which is able to learn fair classifiers even if up to half of the datasets
are noisy, biased or have been manipulated. Similar to classic outlier rejection techniques (Barnett & Lewis),
1984)) and statistical two-sample tests (Corder & Foreman) |2014), the main algorithm (Algorithm [1)) takes a
filtering approach. Given the available data sources and additional parameters, it calls a subroutine that
identifies a subset of clean or benign sources, merges the training data from these, and trains a (presumably
fairness-aware) learning algorithm on the resulting dataset.

FLEA'’s crucial component is the filtering subroutine. This estimates the pairwise disparity, discrepancy and
disbalance between all pairs of data sources and combines them into a matrix of dissimilarity scores (short:
D-scores). As discussed above, large values indicate that at least one of the two compared sources must be
malignant. It is not a priori clear, though, how to use this information. On the one hand, we do not know
which of the two datasets is malignant or if both are.
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On the other hand, malignant sources can also
occur in pairs with small D-score, when both
datasets were manipulated in similar ways. Fi-
nally, even the D-scores between two clean or
benign sources will have non-zero values, which
depend on a number of factors, in particular the
data distributions and the hypothesis class.

FLEA overcomes this problem by using tools
from robust statistics. For any dataset S;, it
computes a value ¢; (called g-value) as the (-
quantile of the D-scores to all other datasets,
where (3 is a hyperparameter we discuss below. It

Algorithm 1 FLEA

Input: datasets Sy,...,Sn

Input: quantile parameter 3

Input: (fairness-aware) learning algorithm £
1. I + FILTERSOURCES(Sy,...,SN;0)
2: S« UiEI S
3 f+ L(S)

Output: trained model f: X — )

Subroutine FILTERSOURCES

Input: Sy,...,Sn; B
1: for:=1,...,N do

then computes the S-quantile of all such values 2. for j=1,...,N do

and selects those datasets with ¢g-values up to this 3. D; ; «+ disc(S;, S;) + disp(S;, S;) + dish(S;, S;)
threshold. 4.  end for
To see that this procedure has the desired effect 5. gi ¢ f-quantile(Diy, ..., Din)

6: end for

of filtering out malignant datasets, we first look
at the case in which the sources are homogeneous
and 8 = £, where K = |G| > £ is the number
of clean data sources.

71+ {z . ¢; < B-quantile(qy, . . .
Output: index set [

an)}

For any clean dataset S;, by assumption there are at least K — 1 other clean sources with which it is compared.
We can expect the D-scores of these pairs are small, and, of course, that D;; = 0. Because 8 = %, the B-
quantile, ¢;, is simply the Kth-smallest of S;’s D-scores. Consequently, g; will be at least as small as the
result of comparing two clean sources. For benign sources, the same reasoning applies, since their D-scores
are indistinguishable from clean ones. For a malignant .S;, at least K of the D-scores will be large, namely
the ones where S; is compared to a clean source. Hence, there can be at most N — K small D-scores for S;.
Because SN = K and K > N — K, the S-quantile ¢; will be at least as large as comparing a clean dataset to
a malignant one.

Choosing those sources that fall into the S-quantile of the g; values means selecting the K sources of smallest
q; value. By the above argument, these will either be not manipulated at all, or only in a way that does not
have a negative effect on either the fairness or the accuracy of the training process. In practice, the regimes of
large and small D-scores can overlap due to noise in the sampling process, and the perfect filtering property
will only hold approximately. We later discuss a generalization bound that makes this reasoning rigorous.

N-—K

Revisiting the above arguments one sees that the guarantees on the ¢; follow also for any g >
particular for g > % To obtain the guarantee on the selected sources, g < % suffices. Therefore, even if
the exact value of K is unknown in practice, setting 5 = % + % for even N and 3 = % + ﬁ for odd N will
always be working choices. These are also the values we use in our experiments.

, SO in

In the heterogeneous situation, the D-scores between clean sources might not tend to zero for large n anymore.
However, they will approach the true discrepancy, disparity and disbalance values between the sources’
distributions. From this, one can obtain a guarantee that the selected sources are not more dissimilar from
each other than the clean sources are, which is the best one can hope for in the heterogeneous setting.

3.2 Implementation

FLEA is straightforward to implement, with only the discrepancy and disparity estimates in the FILTER-
SOURCES routine requiring some consideration. Naively, these would require optimizing combinatorial
functions (the differences of fraction of errors or positive decisions) over all functions in the hypothesis class.
This task is at least as hard as the problem of separating two point sets by a hyperplane, which is known to
be NP-hard (Marcotte & Savard], [1992) and even difficult to approximate under any real-world conditions.
Instead, we exploit the structure of the optimization problems to derive tractable approximations. For the
discrepancy such a method was originally proposed in the domain adaptation literature (Ben-David et al.,
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2010): finding the hypothesis with maximal accuracy difference between two datasets is equivalent to training
a binary classifier on their union with the labels of one of the datasets flipped. From the solution one recovers
the discrepancy value as 1 — 2F, where E denotes the (training) error rate.

For the disparity , we propose an analogous route. Intuitively, the optimization step requires finding
a hypothesis that is as unfair as possible on S (i.e. maximizes I's,) while being as fair as possible on Sy
(i.e. minimizes I's, ), or vice versa. From Equation one sees that a hypothesis f is maximally unfair if it
outputs f(z) =1 on S¢=! and f(z) = 0 on S§=Y, or vice versa. This can be achieved by training a classifier
to predict f(x) = a on S;. To give both protected groups equal importance, as the definition requires, we
use per-sample weights that are inversely proportional to the group sizes. To trade off the unfairness on
S1 with the fairness on Sa, we simply add I's, as a regularizer to this optimization problem. Consequently,
estimating disp(S1, S2) becomes as efficient as training a classifier with fairness regularization. As the above
construction breaks the symmetry between the roles of S; and S5, we apply it a second time with the roles of
S1 and S5 interchanged, and we keep the larger of the two values as estimate of disp.

3.3 Theoretical analysis

The informal justification of FLEA can be made precise in the form of a generalization bound. In this section
we present our theoretical guarantees for FLEA. We begin by stating formally the assumptions we make on
the data generating process, both for the heterogeneous and the homogeneous cases discussed above. We
then state our main theoretical result, which certifies the performance of FLEA in the both the homogeneous
and the more general heterogeneous case. Finally, we briefly outline the main proof steps. The full proofs can
be found in Appendix

3.3.1 Assumptions and formal adversarial model

First we present our formal set of assumptions, directly in the general setting of heterogeneous data sources.
A crucial parameter here setup is 7, which denotes the amount of variability between the clean sources’
distributions. The case of n = 0 recovers the homogeneous setup.

We assume the following data generation model, similar to the one of |Qiao & Valiant| (2018). By p(z,y, a) we
denote the target distribution. It is unknown to the learning algorithm, though potentially known to the
adversary. Initially, there are N datasets S, ..., Sy, with the i-th set of samples being drawn i.i.d. from a
distribution p;(z,y, a). These distributions might differ from the target distribution p by at most 7 in terms
of total variation both with respect to the overall distributions as well as the conditional distributions with

respect to a. Formally, we assume the following conditions for ¢ =1,..., N:
TV(pi(z,y,a),p(z,y,0) <n, and  max { TV(pi(w,yla = 2),p(x,yla = 2))} <, (5)

where TV (p,q) = supgepxxyx.a) [P(B) — ¢(B)| with B(X) denoting the Borel o-algebra on a topological
space X E| This total variation (TV) distance is a standard measure of distance between distributions.

Once the clean datasets Sy, ..., Sy are sampled, an adversary operates on them. This results in new datasets,
S, ..., SN, which the learning algorithm receives as input. The adversary is an arbitrary (deterministic or
randomized) function F : Hf;l (X xYx A" — Hf;l (X x ¥ x A)™, with the only restriction that for a
fixed subset of indices, G C {1,..., N}, the data remains unchanged. That is, S; = S; for all i € G, and S; is
arbitrary for i ¢ G. For simplicity, we refer to a dataset S; or a source i € [N] as clean if i € G.

3.3.2 Theoretical guarantees on FLEA

We are now ready to state our theoretical guarantee on FLEA. For simplicity of notation, we present the case
where all sources have the same number of samples. Results for general sample sizes can be obtain in an
analogous way. We first state the guarantees for the homogeneous situations, which we obtain in fact as a
corollary for n = 0 of the general theorem later in this section.

3For the TV bounds we assume that the product c-algebra of the corresponding Borel o-algebras on X, ) and A is used.
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Theorem 1 (Homogeneous setting). Assume that H has a finite VC-dimension d > 1. Let p be an arbitrary
target data distribution and without loss of generality let 7 = p(a = 0) € (0,0.5]. Let Si,...,Sy be N
datasets, each consisting of n; samples, out of which K > % are sampled i.i.d. from the distribution p. For
3 < B < X and I = FILTERSOURCES(S1,...,Sn; B) set S = U,  Si- Let 6 > 0. Then there exists a constant
C = C(0,71,d,N,n), such that for any n > C, the following inequalities hold with probability at least 1 — ¢
uniformly over all f € H and against any adversary:

&Uhﬂuﬁ+5< 1) RﬂﬁSRAﬁ+6<ﬁ, (6)

n n

where O indicates Landau’s big-O notation for function growth up to logarithmic factors (Cormen et all,
2009).

To analyze the statement, we observe that Equation @ ensures that for large enough training sets the
filtered training data S becomes an arbitrarily good representative of the true underlying data distribution
with respect to the classification accuracy as well as the fairness. The approximation holds uniformly across
all hypotheses in the class, therefore it is safe to use S for fairness-aware learning. Note that despite the
intuitive conclusion, this is a highly non-trivial statement. For example, in the case of learning from a single
datasource in which a constant fraction of the data can be manipulated, an analogous theorem is provably
impossible (Kearns & Li, [1993; [Konstantinov & Lampert|, [2022).

For the general situation (n > 0), we obtain the following guarantees:

Theorem 1 (Heterogeneous setting). Assume that H has a finite VC-dimension d > 1. Let p be an arbitrary
target data distribution and without loss of generality let T = p(a = 0) € (0,0.5]. Let S1,...,Sn be N datasets,
each consisting of n samples, out of which K > X are sampled i.i.d. from data distributions p; that are
n-close the distribution p in the sense of Section . Assume that 9n < 7. For % < p < % and I =
FILTERSOURCES(S1, ..., Sn; ) set S = U;c; Si- Let 6 > 0. Then there exists a constant C = C(6,7,d, N,n),
such that for any n > C, the following inequalities hold with probability at least 1 — § uniformly over all
f € H and against any adversary:

Bs() < () + 00 + O3/ ). Rs(f) < Ryl )+ On) + O(1/2). )

n n

In contrast to the homogeneous situation, an additional factor linear in 1 enters the right hand side of the
bound. As discussed in Section we believe that such a factor will be unavoidable in the heterogeneous
case: 71 is a measure of the dissimilarity between the clean sources and the target distribution. Therefore,
even if no corrupted data was present, the accuracy of a learned classifier for the unknown target distribution
p will be limited by how close that is to the training distributions, i.e. n (Bartlett] |1992; [Hanneke & Kpotufe,
2020]).

Proof sketch  The proof consists of three steps. First, we characterize a set of values into which the
empirical risks and empirical deviation measures of the clean data sources fall with probability at least 1 — §.
Then we show that because the clean datasets cluster in such a way, any individual dataset that is accepted
by the FILTERSOURCES algorithm provides good empirical estimates of the true risk and the true unfairness
measure. Finally, we show that the same holds for the union of these sets, .S, which implies the inequalities
in the theorem. For the risk, the last step is a straightforward consequence of the second. For the fairness,
which is not simply an expectation or average over per-sample contributions, a more careful derivation is
needed that crucially uses the disbalance measure as well. For details of the steps, please see Appendix

4 Experiments

FLEA’s claim is that it allows learning classifiers that are fair even in the presence of perturbations in
the training data. Due to its filtering approach it can be used in combination with any existing learning
method. For our experiments, we run it in combination with three fairness-aware learning methods as well as
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one fairness-unaware one against a variety of adversaries on five established fair classification datasets. We
benchmark our method against the corresponding base learning algorithms without pre-filtering, as well as
against three robust learning baselines from the literature.

4.1 Experimental setup

We report experiments in two setups: for homogeneous and heterogeneous data sources.

Datasets For the homogeneous setup we use four standard benchmark datasets from the fair classification
literature: COMPAS (Aingwin et al., [2016) (6171 examples), adult (48841), germancredit(1000) and drugs
(1885) (Dua & Graffl [2017)). To obtain multiple identically distributed sources, we randomly split each
training set into N € {3,5,7,9,11} equal-sized parts, out of which the adversary can manipulate L%j For
the heterogeneous case we use the 2018 US census data of the folktables dataset(Ding et al., |2021). We
form 51 similarly but not identically distributed data sources by using up to 10000 examples from each of the
US-states. Out of these 5, 10, 15, 20 or 25 can be manipulated. Details about the data preprocessing and

feature extraction steps can be found in the supplemental material.

In all cases, we use gender as exemplary protected attribute, because it is present in all feature sets. We
train linear classifiers by logistic regression without regularization, using 80% of the data for training and the
remaining 20% for evaluation . All experiments are repeated ten times with different train-test splits and
random seeds. We measure the mean and standard deviation of the accuracy and the fairness of the learned
classifiers, where we compute fairness as 1 — I'g, where I'g is the demographic parity violation on the test set.

Fairness-Aware Learners We use FLEA in combination with four fairness-aware learning methods that
have found wide adoption in research and practice. In all cases, we use logistic regression as the underlying
classification model.

o Fairness reqularization (Kamishima et all 2012) learns a fair classifier by minimizing a linear combination
of the classification loss and the empirical unfairness measure I's, where for numeric stability, in the latter
the binary-valued classifier decisions f(x) are replaced by the real-valued confidences p(f(z) = 1|x).

e Data preprocessing (Kamiran & Calders, 2012) modifies the training data to remove potential biases.
Specifically, it creates a new dataset by uniform resampling (with repetition) from the original dataset, such
that the the fractions of positive and negative labels are the same for each protected group. On the resulting
unbiased dataset it trains an ordinary fairness-unaware classifier.

e Score postprocessing (Hardt et al., 2016) first learns an ordinary (fairness-unaware) classifier on the available
data. Afterwards, it determines which decision thresholds for each protected groups achieve (approximate)
demographic parity on the training set, finally picking the fair thresholds with highest training accuracy.

o Adversarial fairness (Wadsworth et al., 2018) learns by minimizing a weighted difference between two
terms. One is the loss of the actual classifier; the other is the loss of a classifier that tries to predict the
protected attribute from the real-valued outputs of the main classifier.

For completeness, we also include plain logistic regression as a fairness-unaware learner. The supplemental
material details the learners’ implementations and parameters.

Adversaries In a real-world setting, one does not know what kind of data quality issues will occur.
Therefore, we test the baselines and FLEA for a range of adversaries that reflect potentially unintentional
errors as well as intentional manipulations.

o flip protected (FP), flip label (FL), flip both (FB): the adversary flips the value of protected attribute, of
the label, or both, in all sources it can manipulate.

o shuffle protected (SP): the adversary shuffles the protected attribute entry in each effected batch.

o overwrite protected (OP), overwrite label (OL): the adversary overwrites the protected attribute of each
sample in the affected batch by its label, or vice versa.

o resample protected (RP): the adversary samples new batches of data in the following ways: all original
samples of protected group a = 0 with labels y = 1 are replaced by data samples from other sources which
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also have a = 0 but y = 0. Analogously, all samples of group a = 1 with labels y = 0 are replaced by data
samples from other sources with a =1 and y = 1.

e random (RND): the adversary randomly picks one of the strategies above for each source.

e identity (ID): the adversary makes no changes to the data.

We include ID to certify that FLEA does not unnecessarily damage the learning process in the case when the
training data is actually clean. The other adversaries either weaken the correlations between the protected
attribute and the target data, thereby masking a potential existing bias in the data, or they strengthen
the correlation between the protected attribute and the target label, thereby increasing the chance that
the learned classifier will use the protected attribute as a basis for its decisions. In both cases, the dataset
statistics at training time will differ from the situation at test time, and the efficacy of a potential mechanisms
to ensure fairness at training time can be expected to suffer. For a more detailed discussion of the adversaries’
effects, please see the supplemental material.

As our result in the following section will show, even these relatively simple adversaries are highly effective
in disrupting the fairness-aware learning process. More complex attack strategies have also been proposed
in the literature. E.g., similar to |Solans et al.| (2020]), for real-valued input data an adversary could run a
gradient-based optimization in order to construct data with maximally adverse effect on a given unfairness
measure. This would be difficult in the setting of our experiments, where the training data is mostly
categorical. It is also not necessary, though: for the linear classifiers that we consider, the effect of the data
manipulations can be assessed explicitly, as we do above. There is no need for an attacker to differentiate
through the model.

Baselines To the best of our knowledge, FLEA is the only existing method to tackle fair learning under
arbitrary data manipulations. To nevertheless put our results into context, we compare it to three baselines:
1) a robust ensemble (similar to [Smith & Martinez| (2018))), which learns separate classifiers on each datasource
and then combines their decisions by a majority vote. 2) A distributionally robust optimization (DRO)
approach as proposed in [Wang et al| (2020) to address noisy protected attributes. 3) The filtering approach
of [Konstantinov et al.| (2020) which uses discrepancy to identify manipulated sources but does not specifically
aim to preserve fairness. More details on these can be found in the supplemental material. Further candidates
could be [Roh et al.| (2020); Konstantinov & Lampert| (2019)), but these are not applicable in our setting, as
they require access to guaranteed clean validation data.

4.2 Results

The results of our experiments show a very consistent picture across different datasets, base learners and
adversaries. For the sake of conciseness, we present only results for the regularization-based fairness-aware
learner in the main manuscript. Results for other learners are qualitatively the same and can be found,
together with more detailed results and ablation studies, in the supplemental material.

In Table [1] we report results for five learning methods: an ordinary learner that is fairness-aware but not
protected against data manipulations (naive), the proposed FLEA, and the three baseline methods: the
robust ensemble, DRO (adapted from [Wang et al.| (2020)), and discrepancy-based filtering [Konstantinov
et al.[(2020). In addition, we report the value of a hypothetical oracle-based learner that knows which of the
sources are actually clean and learns only on their data.

Each entry in the table is the minimum accuracy and fairness in the respective setting across all nine tested
adversaries. We choose this worst-case measure because it allows a compact representation and reflects the
fact that a real-world system should be robust against all possible data errors or manipulation simultaneously.
Results broken down by individual adversaries are provided in the supplemental material.

First, a comparison of the naive results with the oracle confirms that the need for robust learning method is
real: naive fairness-aware learning is not sufficient to ensure fair (or accurate) classifiers in the presence of
unreliable data.
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Table 1: Result of FLEA and baselines for robust fairness-aware multisource learning with homogeneous and
heterogeneous data sources. Reported accuracy and fairness values are the minimal (worst-case) ones across
all tested data manipulations in the respective settings. See main text for an explanation of the methods and

details of the experimental setup.

(a) homogeneous: adult, COMPAS, drugs and germancredit datasets with 5 sources of which 2 are unreliable.

adult COMPAS drugs germancredit

method accuracy  fairness accuracy fairness accuracy fairness accuracy  fairness

naive 66.2+41.1 77.6+1.2 | 63.542.1 789493 | 60.1195 72.343.1 58.144.0 81.945.0
robust ensemble 69.940.4 90.9416 | 65.041.1 88.4429 | 61.042.1 75.745.2 62.142.9 T1.247.0
DRO (Wang et al., 2020) 52.840.3 154413 | 54.5412 709457 | 55.1425 53.94233 | 65.04409 7841131
(Konstantinov et al., 2020) | 69.3+0.4 77.6+1.2 | 63.542.1 789493 | 60.1195 72.343.1 58.144.0 81.945.0
FLEA (proposed) 70.3+0.4 98.1+1.2 | 65.941.1 95.342.3 | 64.141.3 91.74+4.1 65.843.2 92.644.1
oracle 70-3i044 98.241.0 66.241.1 96.241.3 64.4i1,5 93.643.3 67.3i3‘0 94.4i4,0

(b) heterogeneous: folktables dataset with N = 51 sources of which N — K € {5, 10, 15, 20,25} are unreliable.

N-K=5 N—-K =10 N-—-K=15 N—-K =20 N-K =25
method accuracy fairness |accuracy fairness |accuracy fairness |accuracy fairness |accuracy fairness
naive 744402 93.440.8|73.840.2 87.0+0.8|72.94+0.5 80.1+0.9|71.240.8 73.34+0.6 |58.2+6.2 73.9+1.0
robust ensemble 74.940.2 97.340.4|74.340.2 93.840.4|73.54+0.3 89.040.4|71.940.3 81.74+0.7 |65.9+1.0 60.44+22
DRO (Wang et al., 2020) (65.2+0.8 96.3+0.4|68.64+1.2 95.440.9(67.441.6 85.4423(66.1+1.2 77.8412.7|58.2456 6.9+8.4
(Konstantinov et al., 2020) [74.440.2 93.440.8|73.8+0.2 87.0+0.8/72.940.5 80.140.9|71.240.8 73.3+0.6 |58.246.2 73.9+1.0
FLEA (proposed) 75.440.2 99.540.2|75.440.2 99.440.3|75.340.3 99.340.3(|75.34+0.2 98.34+1.1 |66.44+11.5 86.94+14.1
oracle 75.240.2 99.540.3|75.240.2 99.640.2|75.340.2 99.740.2|75.340.2 99.740.2 |75.140.3 99.640.4

An ideal robust method should achieve results approximately as good as the oracle result, as this would indicate
that the adversary was indeed not able to negatively affect the learning process beyond the unavoidable loss of
some training data. The results show that FLEA comes close to this behavior, but none of the other methods
does. In the homogeneous setting (Table , for the largest dataset, adult, FLEA reliably suppresses the
effects of all tested adversaries. It learns classifiers with accuracy and fairness almost exactly those of a fair
classifier trained only on the clean data sources. For the other datasets, COMPAS, drugs and germancredit,
FLEA increases the accuracy and fairness to levels only slightly below the oracle. In all cases, FLEA’s results
are as good as or better than the baselines; the robust ensemble is also able to improve fairness to some
extent, but it does not reach the oracle results. The DRO-based approach shows highly volatile behavior.
For some adversaries it improves fairness or accuracy, but for some adversaries it fail severely. Consequently,
the min-aggregated values in the table are often even lower than the naive methodﬁ The approach from
Konstantinov et al.| (2020]) has almost no effect. Only for the largest dataset, adult, it yields a slight accuracy
improvement. This can be explained by the fact that the method only removes sources that it can confidently
identify as manipulated. The theory-derived thresholds for this are quite strict, so the method is ineffective
unless a lot of data is available. The observed characteristics of the different methods hold also for other
number of data sources and for the other base learners, see the supplemental material.

In the heterogeneous setting (Table the results show similar trends: for N — K € {5,10,15,20}, FLEA
manages reliably to filter out the malignant sources, such that the accuracy and fairness of the learned
classifiers matches the one of the oracle method almost perfectly. The robust ensemble has a positive effect,
but less so than FLEA. For this data, DRO somewhat improves fairness, but this comes at a loss of accuracy.
The method from Konstantinov et al.| (2020) has no noticeable effect. For N — K = 25, FLEA still performs
best, although not close to the quality of the hypothetical best oracle. Presumably, this is because the
combined effect of distribution differences between the sources and the uncertainty due to finite sampling
when estimating disc, disp and disb are too large to perfectly allow a decision which 26 sources to keep and
which 25 to exclude.

4Note that these results should not negatively reflect on [Wang et al.| (2020, as our data manipulation model is different and
substantially harder than what the DRO method was designed for.
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5 Conclusion

We studied the problem of fairness-aware classification in the setting when data from multiple sources is
available, but some of them might by noisy, contain unintentional errors, or even have been maliciously
manipulated. Ordinary fairness-aware learning methods are not robust against such problem and often fail
to produce fair classifiers. We proposed a filtering-based algorithm, FLEA, that is able to identify and
suppress those data sources that would negatively affect the training process, thereby restoring the property
that fairness-aware learning methods actually produce fair classifiers. We showed the effectiveness of FLEA
experimentally, and we also presented a theorem that provides formal guarantees of FLEA’s efficacy.

Despite our promising results, we consider FLEA just a first step on the path toward making fairness-aware
learning more robust. One potential future step is to include other notions of fairness besides demographic
parity. So far, FLEA can already be used as it is with classifiers that enforce other fairness criteria. However,
our theoretical guarantees do not holds for these, as the disparity measure that enters our filtering step
is not tailored to them. We do not see fundamental problems in deriving filtering steps for other fairness
notions that are also defined in terms of properties of the joint distribution of inputs, outputs, and protected
attributes, such as equality of opportunity or equalized odds. However, the theoretical analysis and the
practical implementation could get more involved.

On the algorithmic side, FLEA as we formulated it requires computing all pairwise similarities between the
sources. This could render it inefficient when the number of sources is very large (e.g. thousands). We expect
that it will be possible to overcome this, for example by randomization of the sources, but we leave this step
to future work.

References

Agarwal, A., Beygelzimer, A., Dudik, M., Langford, J., and Wallach, H. A reductions approach to fair
classification. In International Conference on Machine Learing (ICML), 2018.

Aingwin, J., Larson, J., Mattu, S., and Kirchner, L. Machine bias: There’s software used across the country
to predict future criminals and its biased against blacks., 2016. URL https://github.com/propublica/
compas-analysisl

Barnett, V. and Lewis, T. Outliers in statistical data. Wiley, 1984.
Barocas, S., Hardt, M., and Narayanan, A. Fairness and Machine Learning. fairmlbook.org, 2019.

Bartlett, P. L. Learning with a slowly changing distribution. In Workshop on Computational Learning Theory
(COLT), pp. 243-252, 1992.

Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., and Vaughan, J. W. A theory of learning
from different domains. Machine Learning (ML), 2010.

Beutel, A., Chen, J., Zhao, Z., and Chi, E. H. Data decisions and theoretical implications when adversarially
learning fair representations. In Conference on Fairness, Accountability and Transparency (FAccT), 2017.

Calders, T., Kamiran, F., and Pechenizkiy, M. Building classifiers with independency constraints. In
International Conference on Data Mining Workshops (IDCMW), 2009.

Calmon, F., Wei, D., Vinzamuri, B., Natesan Ramamurthy, K., and Varshney, K. R. Optimized pre-processing
for discrimination prevention. Advances in neural information processing systems, 30, 2017.

Celis, L. E., Keswani, V., and Vishnoi, N. Data preprocessing to mitigate bias: A maximum entropy based
approach. In International Conference on Machine Learning, pp. 1349-1359. PMLR, 2020.

Celis, L. E., Huang, L., Keswani, V., and Vishnoi, N. K. Fair classification with noisy protected attributes: A
framework with provable guarantees. In International Conference on Machine Learing (ICML), 2021a.

Celis, L. E., Mehrotra, A., and Vishnoi, N. K. Fair classification with adversarial perturbations. Conference
on Neural Information Processing Systems (NeurIPS), 2021b.

12


https://github.com/propublica/compas-analysis
https://github.com/propublica/compas-analysis

Under review as submission to TMLR

Charikar, M., Steinhardt, J., and Valiant, G. Learning from untrusted data. In Symposium on Theory of
Computing (STOC), 2017.

Chen, S., Li, J., and Moitra, A. Efficiently learning structured distributions from untrusted batches. In
Symposium on Theory of Computing (STOC), 2019.

Cho, J., Hwang, G., and Suh, C. A fair classifier using kernel density estimation. Conference on Neural
Information Processing Systems (NeurIPS), 2020.

Chuang, C.-Y. and Mroueh, Y. Fair mixup: Fairness via interpolation. In International Conference on
Learning Representations (ICLR), 2021.

Chzhen, E., Denis, C., Hebiri, M., Oneto, L., and Pontil, M. Fair regression with Wasserstein barycenters. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Corder, G. W. and Foreman, D. I. Nonparametric statistics: A step-by-step approach. John Wiley & Sons,
2014.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. Introduction to algorithms. The MIT Press,
2009.

Crammer, K., Kearns, M., and Wortman, J. Learning from multiple sources. Journal of Machine Learning
Research (JMLR), 2008.

Ding, F., Hardt, M., Miller, J., and Schmidt, L. Retiring adult: New datasets for fair machine learning. In
Conference on Neural Information Processing Systems (NeurIPS), 2021.

Donini, M., Oneto, L., Ben-David, S., Shawe-Taylor, J. S., and Pontil, M. Empirical risk minimization under
fairness constraints. In Conference on Neural Information Processing Systems (NeurIPS), volume 31, 2018.

Dua, D. and Graff, C. UCI machine learning repository, 2017. URL http://archive.ics.uci.edu/ml.

Dwork, C., Hardt, M., Pitassi, T., Reingold, O., and Zemel, R. Fairness through awareness. In Innovations
in Theoretical Computer Science Conference (ITCS), 2012.

Erfani, S., Baktashmotlagh, M., Moshtaghi, M., Nguyen, V., Leckie, C., Bailey, J., and Ramamohanarao, K.
From shared subspaces to shared landmarks: A robust multi-source classification approach. In Conference
on Artificial Intelligence (AAAI), 2017.

Feng, J., Cai, Q.-Z., and Zhou, Z.-H. Learning to confuse: Generating training time adversarial data with
auto-encoder. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

Fowl, L., Goldblum, M., Chiang, P.-y., Geiping, J., Czaja, W., and Goldstein, T. Adversarial examples make
strong poisons. arXiv preprint arXiv:2106.10807, 2021.

Goodfellow, 1. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and
Bengio, Y. Generative adversarial networks. In Conference on Neural Information Processing Systems
(NeurIPS), 2014.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and harnessing adversarial examples. In International
Conference on Learning Representations (ICLR), 2015.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schélkopf, B., and Smola, A. A kernel two-sample test. Journal
of Machine Learning Research (JMLR), 13(25):723-773, 2012.

Hanneke, S. and Kpotufe, S. A no-free-lunch theorem for multitask learning. arXiv preprint arXiv:2006.15785,
2020.

Hardt, M., Price, E., and Srebro, N. Equality of opportunity in supervised learning. In Conference on Neural
Information Processing Systems (NeurIPS), 2016.

13


http://archive.ics.uci.edu/ml

Under review as submission to TMLR

Jain, A. and Orlitsky, A. Optimal robust learning of discrete distributions from batches. In International
Conference on Machine Learing (ICML), 2020a.

Jain, A. and Orlitsky, A. A general method for robust learning from batches. Conference on Neural
Information Processing Systems (NeurIPS), 2020b.

Kallus, N., Mao, X., and Zhou, A. Assessing algorithmic fairness with unobserved protected class using data
combination. In Conference on Fairness, Accountability and Transparency (FAccT), 2020.

Kamiran, F. and Calders, T. Data preprocessing techniques for classification without discrimination. Knowledge
and Information Systems (KAIS), 33(1):1-33, 2012.

Kamishima, T., Akaho, S.; Asoh, H., and Sakuma, J. Fairness-aware classifier with prejudice remover
regularizer. In European Conference on Machine Learning and Data Mining (ECML PKDD), 2012.

Kearns, M. and Li, M. Learning in the presence of malicious errors. SIAM Journal on Computing, 1993.

Kifer, D., Ben-David, S., and Gehrke, J. Detecting change in data streams. In International Conference on
Very Large Data Bases (VLDB), 2004.

Konstantinov, N. and Lampert, C. H. Robust learning from untrusted sources. In International Conference
on Machine Learing (ICML), 2019.

Konstantinov, N. and Lampert, C. H. Fairness-aware learning from corrupted data. Journal of Machine
Learning Research (JMLR), 2022.

Konstantinov, N., Frantar, E., Alistarh, D., and Lampert, C. On the sample complexity of adversarial
multi-source PAC learning. In International Conference on Machine Learing (ICML), 2020.

Kullback, S. and Leibler, R. A. On information and sufficiency. The annals of mathematical statistics, 22(1):
79-86, 1951.

Lahoti, P., Beutel, A., Chen, J., Lee, K., Prost, F., Thain, N., Wang, X., and Chi, E. Fairness without
demographics through adversarially reweighted learning. In Conference on Neural Information Processing
Systems (NeurIPS), 2020.

Lamy, A., Zhong, Z., Menon, A. K., and Verma, N. Noise-tolerant fair classification. Conference on Neural
Information Processing Systems (NeurIPS), 2019.

Li, T., Hu, S., Beirami, A., and Smith, V. Ditto: Fair and robust federated learning through personalization.
In International Conference on Machine Learing (ICML), 2021.

Mandal, D., Deng, S., Jana, S., Wing, J., and Hsu, D. J. Ensuring fairness beyond the training data. In
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Marcotte, P. and Savard, G. Novel approaches to the discrimination problem. Zeitschrift fiir Operations
Research, 1992.

Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., and Galstyan, A. A survey on bias and fairness in
machine learning. ACM Computing Surveys (CSUR), 54(6):1-35, 2021a.

Mehrabi, N., Naveed, M., Morstatter, F., and Galstyan, A. Exacerbating algorithmic bias through fairness
attacks. In Conference on Artificial Intelligence (AAAI), 2021b.

Mehrotra, A. and Celis, L. E. Mitigating bias in set selection with noisy protected attributes. In Conference
on Fairness, Accountability and Transparency (FAccT), 2021.

Mohri, M. and Medina, A. M. New analysis and algorithm for learning with drifting distributions. In
Algorithmic Learning Theory (ALT), 2012.

Natarajan, N., Dhillon, I. S., Ravikumar, P., and Tewari, A. Learning with noisy labels. In Conference on
Neural Information Processing Systems (NeurIPS), 2013.

14



Under review as submission to TMLR

Qiao, M. and Valiant, G. Learning discrete distributions from untrusted batches. In Innovations in Theoretical
Computer Science Conference (ITCS), 2018.

Rezaei, A., Fathony, R., Memarrast, O., and Ziebart, B. Fairness for robust log loss classification. In
Conference on Artificial Intelligence (AAAIT), 2020.

Roh, Y., Lee, K., Whang, S., and Suh, C. FR-train: A mutual information-based approach to fair and robust
training. In International Conference on Machine Learing (ICML), 2020.

Roh, Y., Lee, K., Whang, S., and Suh, C. Sample selection for fair and robust training. In Conference on
Neural Information Processing Systems (NeurIPS), 2021.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla,
A., Bernstein, M., Berg, A. C., and Fei-Fei, L. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.

Shalev-Shwartz, S. and Ben-David, S. Understanding machine learning: from theory to algorithms. Cambridge
University Press, 2014.

Smith, M. R. and Martinez, T. R. The robustness of majority voting compared to filtering misclassified
instances in supervised classification tasks. Artificial Intelligence Review, 49(1):105-130, 2018.

Solans, D., Biggio, B., and Castillo, C. Poisoning attacks on algorithmic fairness. European Conference on
Machine Learning and Data Mining (ECML PKDD), 2020.

Student. The probable error of a mean. Biometrika, pp. 1-25, 1908.

Tan, Z., Yeom, S., Fredrikson, M., and Talwalkar, A. Learning fair representations for kernel models. In
Conference on Uncertainty in Artificial Intelligence (AISTATS), 2020.

Ting, K. M. and Low, B. T. Model combination in the multiple-data-batches scenario. In European Conference
on Marchine Learning (ECML), 1997.

Tsybakov, A. B. Introduction to Nonparametric Estimation. Springer series in statistics. Springer, 2009.
Vapnik, V. The nature of statistical learning theory. Springer Science & Business Media, 2013.
Villani, C. Optimal transport: old and new, volume 338. Springer, 2009.

Wadsworth, C., Vera, F., and Piech, C. Achieving fairness through adversarial learning: an application to
recidivism prediction. In Conference on Fairness, Accountability and Transparency (FAccT), 2018.

Wang, H., Ustun, B., and Calmon, F. Repairing without retraining: Avoiding disparate impact with
counterfactual distributions. In International Conference on Machine Learing (ICML), 2019.

Wang, S., Guo, W., Narasimhan, H., Cotter, A., Gupta, M., and Jordan, M. Robust optimization for fairness
with noisy protected groups. In Conference on Neural Information Processing Systems (NeurIPS), 2020.

Woodworth, B., Gunasekar, S., Ohannessian, M. 1., and Srebro, N. Learning non-discriminatory predictors.
In Workshop on Computational Learning Theory (COLT), 2017.

Zafar, M. B., Valera, 1., Gomez Rodriguez, M., and Gummadi, K. P. Fairness beyond disparate treatment &
disparate impact: Learning classification without disparate mistreatment. In International World Wide
Web Conference (WWW), 2017a.

Zafar, M. B., Valera, 1., Rogriguez, M. G., and Gummadi, K. P. Fairness constraints: Mechanisms for fair
classification. In Conference on Uncertainty in Artificial Intelligence (AISTATS), 2017b.

Zemel, R., Wu, Y., Swersky, K., Pitassi, T., and Dwork, C. Learning fair representations. In International
Conference on Machine Learing (ICML), 2013.

Zhang, B. H., Lemoine, B., and Mitchell, M. Mitigating unwanted biases with adversarial learning. In
Conference on Al, FEthics, and Society (AIES), 2018.

15



Under review as submission to TMLR

Appendix

Table of Contents
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e B: Detailed Experimental Results
e C: Discussion of the Role of disb, disc and disp and Ablation Study

e D: Complete Formulation and Proof of Theorem 1

A Experimental setup

A.1 Dataset preparation

The datasets we use are publicly available and frequently used to evaluate fair classification methods.

The COMPAS dataset was introduced by ProPublica. It contains data from the US criminal justice system
and was obtained by a public records request. The dataset contains personal information. To mitigate
negative side effects, we delete the name, first, last and dob (date of birth) entries from the dataset before
processing it further. We then exclude entries that do not fit the problem setting of predicting two year
recidivism, following the steps of the original analysisﬂ Specifically, this means keeping only cases from
Broward county, Florida, for which data has been entered within 30 days of the arrest. Traffic offenses and
cases with insufficient information are also excluded. This steps leave 6171 examples out of the original 7214
cases. The categorical features and numerical features that we extract from the data are provided in Table

adult, germancredit, and drugs are available in the UCI data repository as well as multiple other online
sourcesE] We use them in unmodified form, except for binning some of the feature values; see Tables |2[ and

Table 2: Dataset information

(a) adult
dataset size 48842
categorical features | workclass federal-gov, local-gov, never-worked, private, self-emp-inc, self-emp-
not-inc, state-gov, without-pay, unknown
education 1st-4th, 5th-6th, 7th-8th, 9th, 10th, 11th, 12th, Assoc-acdm, Assoc-
voc, Bachelors, Doctorate, HS-grad, Masters, Preschool, Prof-school,
Some-college
hours-per-week < 19, 20-29, 30-39, > 40
age < 24, 25-34, 35-44, 45-54, 55-64, > 65
native-country United States, other
race Amer-Indian-Eskimo, Asian-Pac-Islander, Black, White, other
numerical features |—
protected attribute | gender values: female (33.2%), male (66.8%)
target variable income < 50K (76.1%), > 50K (33.9%)

Shttps://github.com/propublica/compas-analysis

6adult: https://archive.ics.uci.edu/ml/datasets/adult,
germancredit:https://github.com/praisan/hello-world/blob/master/german_credit_data.csv,
drugs: https://raw.githubusercontent.com/deepak525/Drug-Consumption/master/drug_consumption.csv
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Table 3: Dataset information (continued)

(a) COMPAS
dataset size 6171 (7214 before filtering)
categorical features | c-charge-degree values: F (felony), M (misconduct)
age-cat values: <25, 25-45, >45
race values: African-American, Caucasian, Hispanic, Other
numerical features priors-count
protected attribute | sex Female (19.0%), Male (81.0%)
target variable two-year-recid 0 (54.9%), 1 (45.1%)
(b) drugs
dataset size 1885
categorical features |—
numerical features Age, Gender, Education, Country, | (precomputed numeric values in dataset)

Ethnicity, Nscore, Escore, Oscore,
Ascore, Cscore, Impulsive, SS

protected attribute | Gender female (31.0%), male (69.0%)

target variable Coke never used (55.1%), used (44.9%)

(c) germancredit

dataset size 1000
categorical features | Age values: < 24, 25-34, 3544, 45-54, 55-64, > 65
Saving accounts little, moderate, quite rich, rich
Checking account little, moderate, rich
numerical features Duration, Credit amount
protected attribute | Sex female (31.0%), male (69.0%)
target variable Risk bad (30%), good (70%)
(d) folktables
dataset size 255078
categorical features | AGE (age; binned) values: < 14, 15-24, 25-34, 35-44, 45-54, 55-64, > 65
COW (class of worker) values: 1,...,9
SCHL (education) values: 1,...,24
MAR (marital status) values: married, widowed, divorced, separated, never
married
OCCP (occupation code) values: 0,1,...,9
POBP (place of birth) values: USA, other

RELP (relationship in household) | values: 0,1,...,17
WKHP (weekly working hours; | values: < 19, 20-29, 30-39, > 40

binned)

RAC1P (race code) values: 1,...,9
numerical features | —
protected attribute | SEX female (52.1%), male (47.9%)
target variable income < 50K (64.8%), > 50K (35.2%)

For details of the numeric codes, See https://uw2. census. gov/prograns-surveys/acs/tech_docs/puns/data_dict/PUNS_Data_Dictionary_2018.pdf
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A.2 Training objectives

All training objectives are derived from logistic regression classifiers. For data S = {(z1,y1),-.-, (Zn,¥n)} C
R? x {#1} we learn a prediction function g(z) = w'x + b by solving

in Lg(w,b) + \||w|? 8
ol s(w, b) + Aflwl| (8)
with
]‘ — xT xT
Ls(w.b) = g7 > ylog(l+e W) + (1 - y)log(l + /™)) 9)
(z,y)€S

We use the LogisticRegression routine of the sklearn package for this, which runs a LBFGS optimizer for
up to 500 iterations. By default, we do not use a regularizer, i.e. A = 0. From g(z) we obtain classification

decisions as f(z) = sign g(z) and probability estimates as o(x;w,b) = p(y = 1|z) = m, where we clip
the output of g to the interval [—20, 20] to avoid numeric issues.
To train with fairness regularization, we solve the optimization problem
min Lg(w,b) +nl's(w,b 10
L min_Ls(w,b) + s (w.b) (10)
with
Ps(.h) = |y 30 olwwb) — iy S olwiw,d) (1)
w,b) = | ——— o(z;w,b) — —— o(x;w,
s |Sa=0] 2 | Ga=1]| 2 .
z€8a=0 zeSa=1
where for reasons of numeric stability, we use |t|c = % with € = 1078. To do so, we use the

scipy.minimize routine with "BFGS" optimizer for up to 500 iterations. The necessary gradients are
computed automatically using jaxm To initialize (w,b), we use the result of training a (fairness-unaware)
logistic regression with A = 1, where the regularization is meant to ensure that the parameters do not take
too extreme values. When estimating the disparity, we use the same objective, but with different datasets,
S1, 95 for the two terms in , with the protected attributes as target labels for S, and the inverse of the
protected attributes as target labels for Ss.

To train with adversarial regularization, we parameterize an adversary ¢’ : R — R as ¢/(z/) = w'z’ + b and
solve the optimization problem

. r b) — nLl’ 'y 12
wG%EGRw/gIR?ﬁ/{ER s(w,b) = nL's(w',b") (12)
with
1 ' ol
Ls(wbw' V) =g > alog(l+e 00D +(1-a)log(l ') (13)

(xz,a)eS

To do so, we use the optax package with gradient updates by the Adam rule for up to 1000 steps. The
learning rates for classifier and adversary are 0.001. The gradients are again computed using jaz. We initialize
(w,b) the same way as for (I0). (w’,b’) we simply initialize with zeros.

To perform score postprocessing, we evaluate the linear prediction function on the training set and determine
the thresholds that result in a fraction of » € {0,0.01,...,0.99,1} positive decision separately for each
protected group. For each r we then compute the overall accuracy of the classifier that results from using
these group-specific thresholds and select the value for r that leads to the highest accuracy. We then modify
the classifier to use the corresponding thresholds for each group by adjusting the classifier weights of the
protected attributes.

“https://github.com/google/jax (version 0.2.12)
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A.3 Baselines

In this section, we provide more details about the baselines.

Robust ensemble For this baseline, we train N classifiers, one per data source, using the respective base
learner. For prediction, we compute the median value of the predicted probabilities and threshold it at 0.5 to
obtain a binary label. Since in our experiments the number of sources is always odd, this is also equivalent to
classifying using the majority vote rule.

Filtering method from Konstantinov et al. (2020) The method proposed in [Konstantinov et al.| (2020)
uses a filtering step to suppress unreliable sources, like we do, but that differs from FLEA’s in two main
aspects: it uses only the discrepancy score for its decisions, and its decision criterion is threshold-based, not
quantile-based.

For its implementation, one first computes the pairwise discrepancy scores, disc(S;,.S;), between all sources.
8dlog(2en/d)+81log(8N/6)

Then, one determines a threshold, ¢t = \/ - , where d is the VC dimension of the hypothesis
class (for us: the dimensionality of the feature vectors plus 1). § is a freely choosable confidence parameter.
In the limited data regime of our experiments, its value has little influence on the threshold, so we leave it at
a default of § = 0.1. Finally, for each source, S;, we check for how many other sources, S;, their pairwise
discrepancy to S; is less than ¢ (i.e. }3;;[disc(5;, Sj) < t]). If the number of such sources is at least K — 1,

the source S; is made part of the overall training set, otherwise is it discarded.

One can check that in the setting of our experiments, only for the adult dataset one obtains values for ¢
substantially below 1. Therefore, only for this dataset, the filtering step can have a non-trivial effect.

DRO method from [Wang et al. (2020) The DRO method was proposed originally for the equal
opportunity or equalized odds fairness measures. We adapt it to demographic parity by imposing constraints
on the fraction of positive decisions instead of the true and false positive rates.

Our implementation follows the publicly available github repositoryﬁ which implements an approximate
version of the method described in the publication. The main step is learning a classifier with fairness
constraints. This is implemented by deriving a Lagrangian objective and performing simultaneous gradient
descent on the classifier parameters and gradient ascent on the Lagrange multipliers. This construction has
one hyperparameter, £, the permitted slack up to which the constraints have to be fulfilled. We set this
adaptively, starting with a small value £ = 0.01, but then doubling ¢ until the optimization results in a
non-degenerate solution (i.e. not a constant classifier).

Additionally, the constraint term of the objective is optimized in a distributionally robust (DRO) way. For
this, sample weights are introduced, and the Lagrangian term is maximized also with respect to these weights,
subject to L'-ball constraints around uniform weights, and L'-simplex constraints to ensure that the weights
encode a discrete probability distribution. Following the original code, we use a projected gradient algorithm
for the ball constraint, while the simplex constraint is approximated by implicit renormalization. The DRO
also has one hyperparameter, s, the radius of the L!-ball. Following the derivation in the original work, we
set this to twice the maximal total variation distance between the data distribution of the protected attribute
in the original data and in the manipulated data, which in our case is s = 2(1 — ).

Additional hyperparameters are the learning rates of for the classifier parameters, for the Lagrangian
multipliers, and for the sample weights. After some initial sanity checks we keep these at the values that
worked best in the original publication, which is 0.01 in all three cases.

A.4 Computing resources

All experiments were run on CPU-only compute servers. For each train/test split of each dataset and each
adversary, one experimental run across all learning methods takes between 3 and 18 minutes on two CPU
cores, depending on the number of sources, the size of the data sets, and the CPU architecture. The time

8https://github.com/wenshuoguo/robust-fairness-code
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needed for each row in the ablation study is similar, except for the folktables data, which each took 8-12
hours. The combined time for all reported experiments (5 datasets, 5 values for N or K, 10 adversaries, 10
train-test splits, 5 base learners) is approximately 2000 core hours.

For the baselines we are able to reuse many already computed parts. If implemented individually, we’d
estimate that the training time for the robust ensemble would be slightly lower than for FLEA (but it is
slower at prediction time), while the training time for [Konstantinov et al.| (2020) and the DRO method from
Wang et al.| (2020) would be comparable to FLEA’s.

A.5 Hyperparameters

We avoid hyperparameter tuning as far as possible. We do not use L2-regularization (hyperparameter \)
except to create initializers, where we found the value used to hardly matter. For the fairness-regularizer
and fairness-adversary we use fixed values of n = % We found these to result in generally fair classifiers for
unperturbed data without causing classifiers to degenerate (i.e. become constant). Hence we, did not tune
these values on a case-by-case basis. When estimating the disparity, we use 7 = 1 to be consistent with the
theory.

As learning rate for the adversarial fairness training, Ir,q, = 0.001 was found by trial and error to ensure
convergence at a reasonable speed. Once we identified a reliably working setting, we did not try to tune it
further.

A.6 Adversaries

In this section, we describe the adversaries and their motivation in more detail.

o flip protected (FP): the adversary flips the value of protected attribute.

This is a straightforward attack on fairness. FP inverts the correlation between the protected
attribute and the rest of the data After the sources have been combined, the correlation is therefore
weakened, which makes the training data look "less unfair'. On the one hand, this can cause
fairness-enforcing mechanisms as used, e.g., in postprocessing fairness, to erroneously believe that
little or no compensation for dataset unfairness is required. Consequently, the resulting classifier is
actually unfair when applied to future unmanipulated data. On the other hand, it is possible that
the training process actually learns to ignore the protected attribute during training, because it is
uncorrelated with the target labels. This could make the classifier more fair, e.g. when used with
fairness-unaware training.

Our detailed experimental results (Fig. [2/{26)) show that both of these effect do, in fact, occur. FP
typically increases unfairness when regularization-based or postprocessing-based base learners are
used, but it has the opposite effect for the fairness-unaware base learner.

o flip label (FL): the adversary flips the value of the label.

This is a straightforward attack on accuracy. Following an analog reasoning as above, FL reduces
the correlation between the target label and all other data, which makes it harder for the learner to
identify a strong classifier.

Indeed, the experiments shows that the FL adversary often succeeds in reducing the accuracy, while
the fairness is relatively unaffected. The adverse effect is small for the large datasets (adult, COMPAS),
and larger for the small ones (drugs, germancredit), presumably because having more data increases
the robustness of the learners against mislabeled data.

o flip both (FB): the adversary flips the value of the protected attribute and the label.

This attack influences fairness and accuracy at the same time. It preserves the correlation between
the protected attribute and the labels, but reduces the correlation between these two and all the
other features. Consequently, the learned classifier might rely heavily on the protected attribute to
predict the label, which would make it maximally unfair, but potentially also less accurate.
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Our experiments show that this is, indeed, often the observed effect, though the exact amount
depends strongly on the dataset and the base learner.

o shuffle protected (SP): the adversary shuffles the protected attribute entries of each batch it modifies,
i.e. each example gets assigned the protected attribute of another example that has been chosen at
random (without replacement).

This adversary is similar to FP in that is reduces the overall correlation between the protected
attribute and the other data. Its effect is weaker, since it does not explicitly introduce anti-correlation
in the manipulated sources. However, its manipulations are less likely to be detected by automatic
or manual inspection, since it does not change the marginal statistics of the data, i.e. even after the
manipulation, the statistical distribution of each feature dimension, including the protected attribute,
is the same as for clean sources.

In experimental results, SP indeed performs similarly to FP for the fairness-aware base learners, and
its effect are somewhat weaker for the fairness-unaware base learner.

o overwrite protected (OP): the adversary overwrites the protected attribute of each sample in the
affected batch by its label.

This manipulation creates a strong artificial correlation between the protected attribute and the
target label. In fact, the maximally unfair classifier that predicts the label directly from the protected
attribute will have perfect accuracy on the manipulated data, and still a much higher accuracy than
what would be correct on the overall training data. Consequently, the learned classifier might make
strong use of the protected attribute, which leads to unfair and potentially incorrect decisions on
clean data.

Our experiments show that OP indeed often leads to large increases in unfairness. However, there
are also cases where the unfairness is actually reduced, but then typically this is accompanied by loss
of accuracy.

o overwrite label (OL): the adversary overwrites the label of each sample in the affected batch by its
protected attribute.

Like the OP adversary, this manipulation leads to a perfect correlation between the target labels and
the protected attributes. However, it achieves this without changing the marginal distribution of
the protected attribute, instead influencing the statistics of the labels. Depending on the specific
situation, it might be easier or harder to detect from automatic or manual inspection. OL is also
more likely to negatively affect the accuracy, since the classifier will try to predict incorrect labels.

The experiments show that OL indeed almost always reduces the accuracy, while at the same time
often increasing unfairness.

o resample protected (RP): the adversary samples new batches of data in the following ways: all original
samples of protected group a = 0 with labels y = 1 are replaced by data samples from other sources
which also have a = 0, but y = 0. Analogously, all samples of group a = 1 with labels y = 0 are
replaced by data samples from other sources with a =1 and y = 1.

Like OL and OP, RP results in a perfect correlation between protected attributes and labels, thereby
facilitating unfairness and reducing accuracy. It does so in a more subtle and harder-to-detect way,
however, as it achieves the effect using original data samples.

Indeed, in our experimental results RP influences fairness and accuracy in similar ways as the other
two methods.

o random (RND): the adversary randomly picks one of the strategies above (except ID) for each source.

This adversary reflects the observation that different sources might be manipulated in different ways.
One reason for this could be that in a real-world system, multiple adversaries exists who manipulate
individual data sources without coordinating their actions. Alternatively, there might be just one
adversary who manipulates all sources, but chooses to manipulate them in different ways, e.g. to
avoid easy detection.
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The experimental results show that this strategy does, indeed, work to some extent, with RND often
having an effect where some of the other methods do not, but the effect is weaker.

o identity (ID): the adversary makes no changes to the data.

The ID adversary serves as a useful check that FLEA does not damage the learning process in the
case that all data is actually clean. It also reflects the fact that even though the adversary has the
power to manipulate the data it does not have to. Ideally, the learning method will notice this and
achieve even better results in presence of the ID adversary than for the oracle.

In the experimental results, this is effect is only rarely visible for any method, though.

Note that even though we introduced the adversaries above as intentional manipulations, many of them could
also occur accidentally when data from different sources is collected, e.g. as problems during data entering or
numeric encoding.

B Detailed experimental results

In addition to the experiments with a regularization-based base learner that were reported in the main
manuscript, we also run experiments with postprocessing-based fairness, adversarial fairness, and fairness-
unaware learning. Additionally, besides the situation with N = 5 sources out of which K = 3 are clean, we
also ran experiments with N =3 (K =2), N=7 (K =4), N=9 (K =5), and N = 11 (K = 6) in order to
identify the breaking point of FLEA with respect to the size of the data sources. The results are depicted in
Fig. 2H21] for the homogeneous setting and in Fig. 22}H26] for the heterogeneous setting. Also included are
results for two of the baselines, robust ensemble and |Konstantinov et al.| (2020). The DRO method from
Wang et al| (2020)) that cannot be combined with arbitrary base learners is reported together with results for
the regularization-based base learners, as these are methodologically the closest.

The format of the figures is as follows: for each datasets and method, we report the accuracy and fairness
results for different adversaries. Each panel contains 10 bars. The left-most one in each diagram shows the
result of the hypothetical oracle setting, where the learning algorithm trains only on the clean data sources, i.e.
the ones which the adversary cannot modify. The remaining bars correspond to the outcome when different
adversaries have perturbed the data. An ideal robust method should achieve results approximately as good
as the oracle result, as this would indicate that the adversary was indeed not able to negatively affect the
learning process.

From the results, one can see that FLEA works almost perfectly in the homogeneous setting as long as the
individual datasets do not become too small. The latter is the case for two smaller datasets, drugs and
germancredit, in the setting with many sources. In that case, for some adversaries FLEA does not always
match the oracle results, thought it still performs better than the baselines. In the heterogeneous case, FLEA
works reliably in all settings, except with NV — K = 25, as we had already discussed in the main manuscript.

The results also show that different base learners achieve different accuracy/fairness trade-offs, but FLEA is
effective with each of them.
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Figure 2: adult dataset, regularization-based fairness
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Figure 3: adult dataset, preprocessing-based fairness
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Figure 4: adult dataset, postprocessing-based fairness
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Figure 5: adult dataset, adversarial fairness

(a) N=3,N-K=1
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Figure 6: adult dataset, fairness-unaware
(a) N=3,N-K=1
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Figure 7: COMPAS dataset, regularization-based fairness
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Figure 8: COMPAS dataset, preprocessing-based fairness
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Figure 9: COMPAS dataset, postprocessing-based fairness
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Figure 10: COMPAS dataset, adversarial fairness
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Figure 11: COMPAS dataset, fairness-unaware

(a) N=3,N-K=1
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Figure 12: drugs dataset, regularization-based fairness
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Figure 13: drugs dataset, preprocessing-based fairness
(a) N=3,N-K=1
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Figure 14: drugs dataset, postprocessing-based fairness

ordinary fair training

0.8

=3
=Y

1.0

a <4 o o o J Qo
t 2% &3 & 2

o

=3
o

ordinary fair training

0.8

=4
Y

1.0

0.0

e -
- -
o I
* -
o -

o -
> -
vo I

&

ordinary fair training

0.0

e
- -
o I
> -
o

o -
o I
vo

&

ordinary fair training

0.0

e
o -
o
e
o -
o I—
o
vo I
&

ordinary fair training

0.8

>

1.0

a <4 o a o < o
t 2% 83 &2

o

=3
o

oracle

oracle

oracle

robust ensemble
0.8
TR e
H 1.0
H
H
H
i 0.5
H
H
H
H
" 0.0
e R 553 &S
4
(b) N=5,N —
robust ensemble
0.8
TP S
1.0
lIIlIIII )
0.0
ET 683 & 2
4
() N=7,N—
robust ensemble
0.8
LT P
| 1.0
H
H
H
, I us
H
H
H
H
" 0.0
e R 553 &S
@
(d) N=9,N —

=]

o

=]

(a) N=3,N-K=1

robust ensemble

oracle

oracle

[=]

H
i
i
i
i
i
|
|
i
|
|
i
II'IIIII'I
-4 o o o o
L o o O O

o

o
w

robust ensemble

.ﬁ.l..-...

o 2 m o a J o o
L L oL oo O O x z

o

35

1.0 H
H
H
H
05 i
H
H
H
H
0.0 5

o
o

1.0

o
o

0.0

[Konstantinov et al, ICML 2020]

oracle

H

H

H

H

H

H

H

H

H

H

H
J moa o 2 o g
L L o 00 @ z

oracle

oracle

oracle

N oracle

a

:
H
H
H
H
H
H
H
H
H
H

J moa a 2 o g

L L o 00 @ z

a
w
o

[Konstantinov et al, ICML 2020]

o

o 24 oo o < o Qa
L b o »w o 0O x z

4

=3

[Konstantinov et al, ICML 2020]

a

P ITTT

a
w
o

[Konstantinov et al, ICML 2020]

M.l.ﬁﬁ...'.

o

o 24 m o a < o o
L b o »wo 0 0 x z

4

[Konstantinov et al, ICML 2020]

N ]

[=]

o 24 o a a < a o
L L L o 0 O x Zz

o

0.8

o
o

1.0

o
o

0.0

0.8

o
=Y

1.0

o
o

0.0

0.8

o
o

.0

o
o

0.0

0.8

o
=)

.0

o
o

0.0

0.8

o
o

.0

o
o

0.0

FLEA (proposed)

oracle

[=]

:
H
H
H
H
H
H
H
H
H
H

o J @ma a 2 o g

L L L o O O x Z

o

FLEA (proposed)

oracle

a

!
i
i
i
i
i
i
i
i
i
i

o -2 oo o J o Q0

L L L »w O O ¥ Zz

o

FLEA (proposed)

oracle

H

H

H

H

H

H

H

H

H

H

H
4 m oo oa 2 o g
L b o O O x z

o o
=
o

FLEA (proposed)

oracle

:
H
H
H
H
H
H
H
H
H
H

4 o oa o 2 o o

L L » 60 ¢ z

o o
=
o

FLEA (proposed)

oracle

[=]

H

H

H

H

H

H

H

H

H

H

H
o ZJ oo oo < o o0
L b u v O O ¥ =

o



Under review as submission to TMLR

accuracy

fairness

accuracy

fairness

accuracy

fairness

accuracy

fairness

accuracy

fairness

o
)

o
=)

o

05

0.0

0.8

o
o

o
=)

(=)

05

o
o

o
o

o

05

o
o

o
=)

ordinary fair training

oracle

o

a 2 oo a J o o
L L oL o OO0 ¥ z

o

ordinary fair training

ordinary fair training

ordinary fair training

ordinary fair training

] P LT

oracle

o

o 2 oo a 4 o o
L L L » O 0 ¥ z

o

0.8

=3
=Y

1.0

0.0

0.8

=4
Y

1.0

o
o

0.0

o
o

0.0

0.8

=4
o

1.0

e
o

0.0

o
o

0.0

Figure 15: drugs dataset, adversarial fairness
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Figure 16: drugs dataset, fairness-unaware
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Figure 17: germancredit dataset, regularization-based fairness
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Figure 18: germancredit dataset, preprocessing-based fairness
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Figure 19: germancredit dataset, postprocessing-based fairness
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Figure 20: germancredit dataset, adversarial fairness
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Figure 21: germancredit dataset, fairness-unaware
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Figure 22: folktables dataset, regularization-based fairness
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Figure 23: folktables dataset, preprocessing-based fairness
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Figure 24: folktables dataset, postprocessing-based fairness
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Figure 25: folktables dataset, adversarial fairness
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Figure 26: folktables dataset, fairness-unaware
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C Discussion of the role of disb, disc and disp and ablation study

FLEA relies on the combination of three dissimilarity measures: disc, disp and disb. In these section we
discuss the importance of each of them and report on an ablation study to verify their practical significance.

Of the three measures, disc is indispensable to ensure classifier accuracy, as it is the only measure that
depends on the label values. At the same time, disc is blind to changes in the protected attributes whenever
those are not part of the feature set.

Even in the case when the protected attribute is among the features, the disc measure may not detect changes
in the data that may harm fairness. For example, if one of the protected groups is much more rare than
the other, changing even a small number of data points (e.g. the points from that group) can cause a large
change in the conditional distributions of the data given the value of the protected attribute. At the same
time, the discrepancy will remain largely unaffected, since only a few points have been changed in total.
Therefore, filtering only based on disc is insufficient - sources with a different conditional distribution may
get in through the filtering step, potentially causing unfair classifiers (on clean data) to appear fair on the
(corrupted) dataset.

FLEA avoids such issues by additionally adopting the disp measure, which can reliably detect changes in
the conditional distributions of the data given the value of the protected attribute, thereby ensuring reliable
fairness estimates based on the sources that are returned by the filtering procedure.

Finally, disb is required for technical reasons: it ensures that the disparity of the union of some sources is
close to their average individual disparity. This is important because a fairness-aware learner works on top
of FILTERSOURCES by merging the data from the sources returned by the filtering algorithm. This aspect
becomes apparent only in the proof of Theorem [I} see Section [D}

C.1 Ablation study

To understand the respective contributions of disb, disc, and disp on real-world data, we performed an
ablation study that runs variants of FLEA in which any subsets of the three measures are used to compute
the D-scores. The variant with all measures active is identical to FLEA. The variant with all measures
inactive randomly chooses subsets to train on.

The results are presented in Tables One can see that for all datasets, not using disc (column 3) for the
filtering step has the most drastic impact. This makes sense, because several of the adversaries make large
changes to the labels and features, and disc is well suited to identify these.

Not using disp (column 2) has usually less of an effect, but in some situations it does lead to a noticeable drop
in fairness, see e.g. COMPAS, drugs with N € {3,5,7}, and folktables with N — K € {5,10,15,20}. This is
also consistent with our expectations, as the measure is specifically able to detect even subtle manipulation
that would negatively affect fairness. However, in some cases when the amount of data per source is small
(e.g. germancredit, and drugs with N € {9,11}), or the amount of manipulated data is very close to half
(folktables with N — K = 25), not using disp is actually beneficial for the system. We attribute this to
the fact that as a difference of ratios, disp is harder to estimate from small sample sets than the other two
measures. A noisy estimate, however, can lead to clean sources to be suppressed, and manipulated ones to be
selected. This explanation is also supported by the fact that for small datasets the variability of results is
bigger when disp is included than when it is not.

The effect of not using disb (column 4) is small on real data. It rarely exceeds the standard deviation of
the estimates. This, again, is expected, as the other two measures are typically able to ensure accuracy and
fairness, whereas the role of disb is mainly to handle corner cases that are unlikely to occur in real data.

Dropping two measures from the filtering step only makes sense, if the remaining measure is disc (column 6).
Even then, a decrease in accuracy and/or fairness is quite common, or at least an increase in variability.
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Table 4: Performance of FLEA with different combination of disb, disc, and disp activated or deactived
(crossed-out). Reported results are in the same format at Table [I} minimal accuracy (A) and fairness (F)
against any of the tested adversaries

(a) regularization-based fairness
disb disb disb sk disb dish dish dish
disc disc HsC disc hsC disc st HsC
disp disp disp disp isp disp disp sy

adult AZ 70.4i0A3 70.4i0A3 56.0i1043 70.4io_3 53.2i9A7 70.4i0A3 58-3i10A8 63.3i1141

N=3, N-K=1 F: 984109 984109 97.3+1.2 98.410.9 84.8470 90.0+6.1 975414 89.24135
adult A: 703104 70.3104 60.41138 70.340.4 53.3+16.6 70.3+04 60.14134 57.5116.5

N=5 N-K=2 F: 982111 982111 86.0123.4 98.241.1 64.04202.4 89.2455 84.74249 72.14035
adult AZ 70.3i0A3 70.3i0A3 47.8i1043 70.3i0,3 58~9i11A8 70.3i0A3 47.0i10A4 56.1i9‘5

N=7 N-K=3 F: 981i09 98.0+09 79.64350 98.1+0.9 77.54230 85.7T+a5 89.3+256 76.5+8.5
adult AZ 70.2i0A3 70.2i0A3 56~5i1446 70.2i0,3 56~7i15A8 70.2i0A3 53.3i162 53~3i1648

N=9, N-K=4 F: 976412 976413 8794141 97.6+1.2 78.3+8.5 85.01a7 7851290 70.3+24.6
adult AZ 70.2i0A3 70.2i0A3 51.8i1243 70.2i0,3 6O.Oi11A5 70.2i0A3 54.9i13A3 52.0i1541

N=11, N—-K=5 F: 98.0+t10 979411 84.41049 98.041.0 79.94143 87.6449 84.74950 66.0492.3
compas A: 66.0111 65.9111 59.9155 66.0+1.1 54.848.4 65.9+11 58.249.1 61.0+8.3

N=3, N-K=1 F: 962119 94.7131 94.9421 96.2+1.9 86.8474 91l.1440 94.9418 91.14756
compas A: 66.1i12 66.0i12 55~4i1346 66.1i1.2 43.8i129 66.0111 55.5i13ﬁ 56.4i1342

N=5 N-K=2 F: 962113 9311158 94.049.5 96.241.3 86.4+76 90.24+1.9 93.8492.8 82.7+7.7
compas A: 65.8i1A3 65.8i12 52-4i848 65.7i1,1 59~2i8A8 65.6i1A0 52.0i7A3 56.0i847

N=7 N-K=3 F: 9434128 941418 8911149 92.843.6 90.1442 87.8427 87.T+144 83.4445
compas A: 65.9i1A1 66.0i1A1 60-1i848 65.9i1.2 56.2i11A1 65.7i0A9 58~7i10.6 52.8i1348

N=9, N-K=4 F: 947128 9444125 93.042.2 93.5+3.7 87.3+46 88.44356 92.7+33  75.6+20.9
compas AZ 65.9i1A1 65.9i1A3 51-4i940 65.6i1,0 52.2i11A5 65.8i1A1 53.6i8,7 51~2i1342
N=11,N-K=5 F: 944126 93.11256 90.3+3.1 91.543.2 78.1+2040 88.8+20 89.6+42.5 76.449.0
drugs A: 64.7i1A3 64.3i1,5 55-1i648 64.7i1,3 51.6i4A9 64.4i1A5 57-817.4 60.8i6‘4

N=3, N-K=1 F: 942442 88.016.1 93.0+4.3 94.21 4.0 749480 89.7+a7 93.64+3.7 86.54+12.4
drugs A: 64.2i1,4 64.3i1,5 59-3i845 64.2i1,4 56.4i9_9 64.3i1A5 57.6i9.1 53-5i1146

N=5 N-K=2 F: 928441 886457 78.8+19.9 92.8441 7294124 86.3+65 80.7+194 72.11187
drugs AZ 63.3i2,2 63.8i2,0 54.9i947 63.7i2,0 50.219.4 63.9i20 52.6i10,3 53-5i846
N=7N-K=3 F: 91.0+56 829+75 7824255 88.846.4 64.1+185 844459 69.6432.8 72.847.0
drugs A: 62~4i1.6 64.112,1 53-1i848 62-Oi1.6 50.5i9_9 63.8i2_3 49.418.4 51-3i1043

N=9 N-K=4 F: 861139 772186 82.845.0 85.8458 63.54222 81.746.2 82.1453 69.7424.1
drugs A: 60.3172 62.3142 54.347.4 57.348.8 4754113 64.1423 51.747.4 51.54+105

N=11, N—-K =5 F: 854458 76.8477 7721105 85.9+47 6194173 79.0471 75441120 63.412309
germancredit  A: 66.1131 66.2425 55.7+8.8 66.1413.1 56.547.1 66.2125 55.0+8.5 60.449.8
N=3, N—-K=1 F: 924432 929453 88.0+4.8 92.413.9 87.246.8 92.315.2 88.413.8 87.949.7
germancredit AZ 66.313.2 65.8i3,0 58.6i1047 66.3i3.1 60.3i7_5 66.3i2_6 52.2i12,0 56.6i1145
N=5 N-K=2 F: 928439 9244137 89.045.9 92.244.2 88.3+4.4 91.5442 85.64+6.2 79.6+16.0
germancredit A: 61.8166 654132 52.8411.2 64.643.2 49.5485 64.9400 52.549.0 54.447.9
N=7T N-K=3 F: 912453 915153 7941139 89.9454 79.6+16.6 89.3+6.0 83.616.7 82.545.4
germancredit A: 64.2431 66.2430 57.0+7.9 62.643.2 48.8498 64.T422 50.6+8.1  53.0+10.2
N=9 N-K=4 F: 902140 916136 82.1+102 88.5+47 7941176 91.0436 72.94228 75.11255
germancredit  A: 60.9449 65.2431 57.3+8.2 60.6+3.7 53.9498 64.74256 54.8459 5l.4+10.2
N=11,N-K=5 F: 888134 92.013s 83.445.9 88.2+145 81.2477 91.7431 7731116 80.0113s
folktables A: 75.5402 75.540.2 74.740.2 75.440.2 444105 754402 T4.7+0.4 74.340.5
N=5l,N—-K=5 F: 995102 99.0405 99.540.2 99.6+0.3 93.0426 99.1+06 99.410.2 92.844.2
folktables A: 754402 75.440.2 73.9+40.3 75.440.2 73.7+0.3 75.3+0.2 73.840.4 73.141.0
N=51,N—K=10 F: 994403 981107 99.240.1 99.410.3 88.343.0 98.2405 99.140.3 86.843.8
folktables A: 75.310.3 75.4103 72.941.1 75.340.2 72.310.9 75.310.3 72.810.8 68.915.2
N=5l,N-K=15 F: 9934104 97.0106 99.240.2 99.440.3 824424 97.1410 99.140.3 78.945.4
folktables A: 75.3402 75.340.2 70.3+3.8 75.340.2 70.542.7 75.3+0.2 66.949.1 64.8+10.9
N=51,N—-K=20 F: 983t11 95.611.0 98.840.4 98.441.0 791431 93.9+15 98.3+0.9 75.443.5
folktables A: 66.44115 75.0403 59.14146 65.4413.9 41.74142 751403 5244144 56.6+133

N=51, N—K =25 F: 86.74140 8994156 88.6+5.5 89.0+7.9 794466 89.3118 87.948.1 74.643.6
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(b) postprocessing-based fairness
disb disb disb sk disb disk disk sk
disc disc hsC disc e disc sc hsc
disp s disp disp disp s disp s

adult A: 789103 789103 53.8t173 78.9+0.3 53.7+13.1 78.9+03 57.2+184 69.6+143

N = 3, N-K=1 F: 99.3i0A5 99.3i0A5 98-9i046 99.3i0,5 89.5i52 94.5i3A4 99~0i0A6 95-4i548
adult A: 789404 789404 66.94229 78.9+0.4 55.61279 789403 67.0x228 60.7+26.7

N = 5, N—-K=2 F: 99~2i0A6 99~2i0A6 98-9i046 99~2i0.6 88.6i14 93.0i3A1 98.9i0A5 90-6i446
adult A: 78.8:‘:0.3 78.8:‘:0.3 50.1;‘:17‘7 78.8;‘:0.3 60.6i22,6 78.8:‘:0.3 52.2i17,4 61.5:‘:14‘2
N=7TN-K=3 F: 992106 989110 98.311.0 99.2106 89.8133 92.0120 98.610.7 87.8421
adult A: 78.9:‘:0.3 78.9:‘:0.3 61.1;‘:25,7 78.9;{:0.3 61.2i25,5 78.9:‘:0.3 55.7i27,5 55.1:‘:27‘9

N=9, N-K=4 F: 99.1:i05 989103 98.610.5 99.1105 88. 7125 91.9125 98.840.4 88.243.3
adult A: 78.910.3 78.9:‘:0.3 51.5:‘:20,4 78.9;{:0.3 67.6;‘:1&4 78.9:‘:0.3 56.8i23,6 509;‘:25,0

N = 11, N-K=5 F: 99~0i0A7 98.7i1A1 98.3i141 99-Oi0.8 89.2i29 92~2i28 98~7i0A6 88.3i341
compas A: 65.2411 65.241.1 58.418.8 65.241.1 53.6+8.5 65.241.1 57.5+8.7 60.445.4

N=3 N-K=1 F: 971121 949145 96.1492.6 97.142.1 90.2449 91.1461 96.6+1.9 91.349.2
compas A: 655411 652412 54.7+122 65.5+1.1 43.T+122 652412 54.31120 54.5113.1

N = 5, N—-K =2 F: 96.0i2A1 93-6i2A8 95-2i147 96.0i2,1 89.0i3A0 90~1i27 94.8i1,9 82.9i949
compas A: 65.5111 65.441.0 52.149.1 65.240.9 582486 65.0+08 52.147.6 53.7+8.8
N=7TN-K=3 F: 935116 93.6116 94.0115 92.314.4 91.0447 88.0139 94.341.7 80.7T+4.8
compas A: 65.51t10 65.6109 58.148.1 65.3+1.2 55.0+105 65.3+1.0 57.2+105 Hl.6+1209

N=9, N-K=4 F: 952119 94.8135 93.842.0 93.2143.7 88.8129 88.2139 93.243.2 78.547.4
compas A: 649410 652411 50.7+8.6 64.94+0.8 5144199 65.1411 53.2478 50.6+12.8

N = 11, N-K = 5 F: 96.0i2.1 94.0i2,4 93.6i343 93.5i3,0 89.0i4_5 89.0i29 90.513.2 78.2i7‘2
drugs A: 64.311.4 641115 55.7+6.5 64.3+1.4 50.8447 64.2415 58.146.7 60.5+5.8

N=3, N-K=1 F: 961125 91.6147 94.043.4 96.142.8 75.1+85 93.1453 949457 88.3+12.7
drugs A: 63.4120 63.3120 59.4471 63.412.0 56.54+9.1  63.3+2.0 56.8+8.8 953.6+11.0

N = 5, N—-K =2 F: 95~3i2.6 91~1i6.5 93-1i341 95-3i2.6 76.4i9.4 89.2i7_3 92.012.4 78.8i13‘9
drugs A: 63.0425 63.511.9 54.448.9 63.441.9 50.349.9 63.3+1.9 52.T+0.4 53.7+8.1
N=7N-K=3 F: 950431 84.5180 88.018.6 92.2457 69.5148 86.8157 88.116.6 74.047.8
drugs A: 61.1423 63.042.1 53.0+5.2 61.2422 51.24104 63.3422 50.448.2  50.6+10.1

N=9 N-K=4 F: 904143 80.51s87 82.246.7 88.6446 70.21121 84.44i63 83.545.4 T72.8+123
drugs A: 584466 62.6132 54.146.4 55.T+7.2 47.3+100 63.0+18 51.946.8 51.9+108
N=11,N-K=5 F: 89.0153 80.2472 81.8438 87.313.9 71.8479 81.8473 82.146.6 72.4+133
germancredit A: 72.0436 T1.7+27 53.T+14.4 72.0436 95324141 T1.7T427 5554155 63.4+131
N=3, N-K=1 F: 9244351 91.8451 8714174 92.443.1 84.8473 91.5451 87.647.1 87.348.7
germancredit  A: 719139 719126 59.41132 72.0434 64.7+109 72.3+31 51.9416.1 60.6+13.2
N=5 N-K=2 F: 935436 921451 87.947.1 92.143.7 86.61s5 91.7133 85.618.0 82.849.1
germancredit A: 68.8167 T71.5129 55.11152 70.7436 5441108 709434 53.54141 57.01123
N=7TN-K=3 F: 914145 93.01409 80.8+5.2 91.3+46 80.64+9.1 91.64+49 8294185 79.818.6
germancredit  A: 69.5147 71.9439 57.5111.6 67.T+3.7 4844149 70.6423 4794144 53.3+16.0
N=9, N-K=4 F: 91.7144 929424 78.848.2 90.143.2 80.4176 91.04+47 80.1477 79.6+10.4
germancredit AZ 65-0i9A6 71~3i3A8 61~4i746 66~5i6A6 55.5i13A6 70.8i3A4 55.2i10A9 53.0i1543
N=11,N-K=5 F: 874143 919431 82.0+5.0 86.1+5.0 81.616.8 89.8140 79.3+5.6 80.6+7.3
folktables A: 77.3102 77.3102 772402 77.3+0.2 771102 77.3+02 77.240.2 771402
N=5l,N—K=5 F: 996103 99.3103 99.440.2 99.640.3 93.7426 99.310.4 99.540.2 94.043.7
folktables A: 77.3402 77.4401 77.0+0.3 77.340.2 76.940.2 T77.3+0.2 77.040.3 76.6+0.7

N=51, N-K=10 F: 9954103 98.6+06 99.5+0.2 99.6+0.2 89.1429 98.8+0.4 99.440.3 88.5+3.2
folktables A: 77.3402 77.440.2 76.041.1 77.340.2 76.1406 77.34+0.2 76.240.8 722474
N=51,N-K=15 F: 994404 979107 99.3+0.4 99.540.4 83.3+2.8 97.9+11 99.440.4 81.045.3
folktables A: 77.3402 77.340.2 73.444.3 77.340.2 732446 77.3402 70.8483 67.6+13.5

N=51, N—K=20 F: 987107 96.610.7 99.240.4 98.910.6 79.3140 95.141.4 99.240.3 76.544.1
folktables A: 69.4i12A8 77.2i0A1 59~9i1643 67.8i15,5 40~4i16A8 77.2101 52~9i159 59.9i1542
N=51,N—K=25 F: 94.0122 911114 8441119 93.949.5 71.6437 90.6+1.7 85.0+12.1 73.443.
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(c) adversarial fairness
disb disb disb disk disb dish Gisk Gisk
disc disc hsC disc e disc sc hsc
disp s disp disp disp s disp s

adult A: 80.7+03 80.740.3 56.6+116.3 80.7+0.3 54.1+140 80.240.4 60.4417.1 70.2+16.1

N=3 N-K=1 F: 868108 86.84103 79.247.4 86.810.8 80.844.0 86.840.8 79.647.7 85.243.1
adult A: 80.6104 80.6+04 66.8423.3 80.6+0.4 55.1+282 80.1tp.3 66.7T123.1 61.24270

N=5 N-K=2 F: 870+10 87.0+10 77.0+20.1 87.0410 66.94046 87.0410 77.04108 73.6+235
adult A: 80.6+0.3 80.6+03 45.5415.4 80.6+0.3 64.41+197 80.0+0.3 47.1+165 60.2415.4
N=7N-K=3 F: 868:£10 86.8:10 6591083 86.841.0 T76.24937 86.8410 7211015 83.144.7
adult A: 80.7:‘:0.3 80.6:‘:0.3 61.1;‘:25,7 80.7;{:0.3 612:‘:25.6 80.0:‘:0.4 55.4i27,9 55-212842

N=9 N-K=4 F: 86.71t10 86.7T+10 76.81153 86.7+1.0 76.84149 86.7110 68.41266 70.21275
adult A: 80-6:‘:0.4 80.5:‘:0.3 52.1:‘:20,9 80.6;{:0.4 67.8i18,6 80.0:‘:0.3 57.1i23,1 530;‘:24,2

N=11, N-K=5 F: 873112 873112 72711858 87.3+12 8091150 873112 T73.54192 70.14229
compas A: 66.0+t10 65.9+1.0 59.249.2 66.0+1.0 54.6479 65.8+1.0 57.8+0.4 61.447.8

N=3 N-K=1 F: 856437 837145 7811113 85.6437 T72.3+107 83.5143 76.4111.0 79.619.3
compas A: 659410 658+11 54.5+123 65.9+1.0 43.5+125 65.7+11 5444123 5454127

N=5 N-K=2 F: 851135 831132 64.21324 85.1435 36.0430.2 82.3440 64.24324 62.6431.5
compas A: 659411 65.8+1.1 51.549.1 65.941.1 58.2+8.2 65.T+1.3 51.747.8 54.549.1
N=7N-K=3 F: 809+61 83.0+52 64.8423¢ 81.7+5.1 80.1+6.3 83.0+44 63.24207 73. 1485
compas A: 659412 66.041.1 58.6+5.6 66.041.2 5444105 65.8+12 5714107 51.8413.2

N = 9, N—K =4 F: 84~1i3A6 84.0i3,3 76~9i1648 84.313,2 66.8i25A0 83.8i3A3 71.7i20,9 60-4i2842
compas A: 65.6+11 65.T+1.0 51.248.8 65.340.9 50.94+11.1 65.540.9 53.847.1 51.04123
N=11,N—-K=5 F: 844139 824146 67.T122s 84.0436 62.3129.2 82.1444 7511107 58.1430.5
drugs A: 65.7+19 65.5120 55.947.1 65.7+1.0 51.2449 65.6420 58.5+7.6 61.446.8

N=3 N-K=1 F: 877430 833137 7451116 87.7+3.0 7244173 849435 76.41123 83.347.9
drugs A: 65.1420 65.1420 59.548.9 65.142.0 56.5+10.0 65.041.9 57.7T+s.8 54.1+116

N = 5, N—K =2 F: 86.7i2,5 83.9i3,8 70.613142 86.7i2,5 66.1i28.4 83.214.1 72.0i23,9 61.0i3247
drugs A: 64.6122 65.2416 55.3+9.6 65.0+1.8 50.44+98 65.0+1.8 53.0+10.9 54.345.5
N=7N-K=3 F: 871i39 80.8450 66.01246 84.644.1 63.1421.8 8L.7+44 59.6431.0 70.1110.0
drugs A: 62.2426 64.3115 52.418.0 62.3+2.4 50.T+104 64.2418 49.1489 51.9+10.9

N = 97 N*K =4 F: 83.1i3,7 79~4i6.0 58.7i2545 82.1i4.1 53.5i30.1 80.8i4_7 53.7i25,9 59.6i3047
drugs A: 59.6176 62.743.4 53.7+6.9 56.249.0 4744104 64.7+18 51.547.4 5214112
N=11,N—-K=5 F: 831145 783142 69.11185 822428 46.9430.2 79.3+34 60.0423.0 56.94345
germancredit A: 73.2436 72.8+33 55.5+12.9 732436 55.T+124 T72.7T432 56.41133 64.14142

N = 3, N-K=1 F: 93.9i2,3 93.413.4 59.7i194s 93-9i2.8 67.5i20.2 93.513.4 59.1i19,5 82.1i20‘7
germancredit A: 724434 724434 61.0113.4 72.6431 66.01108 72.2429 53.8+16.7 60.0415.7
N=5 N-K=2 F: 928141 9201409 69.7131.1 92.5444 T76.61211 91.7439 5544336 65.44330
germancredit A: 69.5167 72.8434 56.01146 721434 5294110 72.2437 54.54133 5H7.64118
N=7TN-K=3 F: 924140 93.3144 61.519.3 93.544.7 55.6+200 91.9442 6724149 65.7121.7
germancredit  A: 70.5135 72.2139 56.0111.4 67.6+3.2 4754144 Tl.1y31  47.61128 53.5+1509
N=9 N-K=4 F: 908151 934125 63.81247 88.245.8 50.6+31.7 90.4451 48.814308 96.7+326
germancredit A: 66.8i7A8 71~3i3A8 61.2i1242 66.2i6A0 55.6i12A9 71.3i3A3 58.1i112 53~1i1545
N=11,N-K =5 F: 8204114 89.64+44 70.24204 83.3475 60.9121.1 91.0448 63.31228 56.2131.0
folktables A: 78.6402 78.640.2 77.940.4 78.640.2 T7. 7404 787102 77.8405 77.840.6
N=51,N—-K=5 F: 86.4106 86.2405 86.510.5 86.310.6 86.310.5 86.010.5 86.510.5 86.9+0.5
folktables A: 787402 78.640.2 76.840.4 78.7+0.2 77.040.4 78.640.2 76.840.5 76.840.9

N=51, N—K=10 F: 86.3106 86.11056 86.4+0.6 86.3+0.6 86.54+0.4 86.0106 86.4+0.5 87.6+0.5
folktables A: 78.6i02 78.5i02 75.9i047 78.6i0.2 76.1i0A5 78.5i0A3 76.0i0A5 72.3i747

N=51, N—K=15 F: 86.2105 86.01056 86.1+1.0 86.240.6 86.3+0.6 86.0+0.5 86.3+0.6 85.544.7
folktables A: 78.5i0A3 78.4i02 73.0i440 78.5i0,3 73.8i3A5 78.4i0A2 70.1i9A0 67.6i1343

N=51, N—K=20 F: 86.2105 86.11056 83.6+3.3 86.240.6 85.7+36 86.1+0.6 81.646.7 82.548.5
folktables A: 67.0i13A3 78.3i02 60~0i1646 66.1i15,3 40~1i16A9 78.3102 54.0i162 60.0i15‘5

N=51, N—K =25 F: 7124214 86.T+05 7591119 71.3+180 66.6116.1 86.7+05 T4.7473 T4.8410.8
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(d) preprocessing-based fairness
disb disb disb sk disb disk disk sk
disc disc sC disc s disc e sC
disp s disp disp s s disp Sisp

adult A: 795403 79.5+03 56.9+15.0 79.5+0.3 53.1+133 79.5+03 60.4+16.3 69.3+155

N = 3, N-K=1 F: 94.2i1A1 94.4i0A7 94.3i0A9 94.2i1‘3 93.6i1.1 92.9i1A0 94.1i1A2 93~4i1A8
adult A: 795403 79.5+03 67.14231 79.440.3 5554281 79.5+0.3 67.0+229 61.14269

N=5 N-K=2 F: 940109 94211 94.3+1.2 94.3141.1 93.3408 92.4411 94.041.2 924416
adult  A: 79.5403 795103 43.0+11.2 79.5+03 6521188 79.5+03 49.8+13.4 59.9+155

N = 7, N-K=3 F: 94.4i1A2 94.1i1A4 94.2i1A3 94.1i1‘3 93.3i1_3 92.1i1_3 94.2i1A4 92.5i1A7
adult A: 79.5:‘:0.3 79.5:‘:0.3 61.2:‘:25.3 79.5;{:043 61.2:{:25,4 79.5:‘:0.3 55.6i27,1 55-4:t27.6

N=9 N-K=4 F: 945114 943113 94.5411.4 94.141.2 93.6408 92.441.2 94.211.4 92.641.8
adult A: 79.410.3 79.5:‘:0.4 53.4:‘:20.4 79.4;{:043 66.6:{:19,3 79.4:‘:0.3 57~4:t22.6 52.5i24,3

N = 11, N-K=5 F: 94.3i1A0 94.2i0A9 94~6i0A8 94-3i141 93.6i1_2 92~3i1.6 94.5i()‘8 91~9i1.8
compas A: 65.11t10 65.041.2 58.849.1 65.1+1.0 53.548.9 65.1+1.2 584481 58.7+10.0

N=3 N—-K=1 F: 941129 925144 94.141.9 93.742.5 91.1136 89.31456 93.1135 91.8135
compas A: 65.1+11 65.0x08 53.5+11.2 65.041.0 43.7+107 649412 52.6111.3 5H3.3+120

N = 5, N—-K=2 F: 92.1i25 91.2i3A4 91.8i2,3 91-4i248 88.2i3,0 88.2i2_5 92.6i24 87.5i3,0
compas A: 65.1113 64.9407 50.848.8 65.0+1.0 57.8+7.7 65.0+1.0 53.5+7.2 52.948.9
N=7TN—-—K=3 F: 91.8:24 91.0439 90.812.5 89.614.6 923125 86.91356 919118 87.843.4
compas A: 65.2112 65.0406 572477 64.9+0.8 53.9+86 65.1409 56.54+8.9 50.8+11.3

N=9 N-K=4 F: 91.7143 92.6123 921408 91.614.3 9344119 879119 91.2499 86.7+3.8
compas A: 649108 65.2410 49.6+9.0 64.8+0.9 50.44+9.7 65.04038 53.2471 4944117
N=11,N-K=5 F: 926136 91.6137 90.142.8 89.912.9 923143 87.2445 90.012.3 86.514.6
drugs A: 64.0118 642413 55.146.7 63.5+1.4 50.845.3 63.7+25 57.146.4 58.5+8.3

N=3, N-K=1 F: 892143 87.0142 87.443.0 88.5+4.0 79.0447 85.844.7 87.5414.2 84.743.5
drugs A: 629418 63.4191 57.247.3 62.8+1.9 55.848.7 63.0+18 571470 52.9+10.7

N=5 N-K=2 F: 903130 855149 87.312.8 87.743.3 79.3167 83.1149 87.0118 80.916.5
drugs A: 628417 63.1421 52.6+9.9 62.6+1.2 49.048.0 62.7420 54.3+9.0 53.247.7
N=7TN—K=3 F: 895126 823153 87.843.1 84.545.8 76.7135 84.T145 86.312.6 78 145.2
drugs A: 59.6+37 63.1421 52.246.9 60.5+3.1 51.2498 62.7404 49.847.5 51.949.7

N=9, N—-K=4 F: 86.1139 793165 86.344.1 84.3+4.2 76.0474 80.9+46 84.519.5 774479
drugs A: 569465 59.8449 55.546.6 55.047.8 45.8484 62.642.2 51.5455 49.5+10.0
N=11,N-K=5 F: 849163 781167 83.544.7 85.444.0 76.315.6 79.845.4 83.345.2 76.7+5.6
germancredit A: 70.5431 708432 54.14122 70.5+3.4 55.7+12.0 71.0+33 53.0x12.9 60.64114.7

N = 3, N —_ K =1 F: 90~2i4.3 88.7i4_5 86.2i643 91.3i349 89.5i4.1 90.7i5.1 85.514.4 88.3i4‘3
germancredit A: 70.01158 70.613.4 60.449.9 70.042.9 64.3+8.8 70.0+37 5044146 56.4+136
N=5 N—-K=2 F: 883156 91.5140 88.812.8 87.8441 85.2443 89.2459 874146 83.046.1
germancredit A: 66.2170 70.2+35 56.6+12.5 70.0+3.9 52.849.7 70.2432 5414124 55.5+12.2
N=7TN—K=3 F: 89.0153 893149 83.844.3 86.716.6 844166 87.2455 84.4155 83.545.3
germancredit  A: 67.9433 70.3125 54.8410.1 65.843.7 49.44115 69.5429 46.8+11.3 51.9+13.8
N=9 N-K=4 F: 90.0140 89.61356 85.645.1 87.8445 84.34137 874407 84.544.6 85.445.0
germancredit A: 64.9i7A3 69~0i3A6 57.0i10A5 63-9i841 53.1i121 69.8i32 56-1i9A8 51-9i13A4
N=11,N—-K=5 F: 872147 86.3141 85.516.0 85.4416.8 86.8445 87.7455 85.545.3 84.3+6.5
folktables A: 781402 781402 77.6+0.3 78.140.2 T7.5+03 781402 77.640.4 77.540.4
N=51,N-K=5 F: 922104 92.1404 92.440.5 92.3+0.6 91.8404 92.1404 924404 91.840.8
folktables A: 781402 781402 77.040.3 78.1+0.2 771402 781102 77.040.3 76.7+0.9

N = 51, N-—-K=10 F: 92.310.4 92.110_4 92~4i045 92-2i046 91~9i0.5 92~1i0.6 92.310.4 91~0i140
folktables A: 781402 78.140.2 76.240.8 78.14+0.2 76.240.6 78.140.2 76.240.7 72.447.¢
N=51,N—K=15 F: 923104 919103 92.310.5 92.2105 914404 919406 92.410.5 90.041.4
folktables A: 781402 78.14+0.2 73.144.0 78.040.2 73.843.4 781102 70.0490 67.5+135
N=51,N—K=20 F: 921103 91.6103 92.040.4 92.140.5 91.3+06 91.1105 91.840.6 88.7+1.3
folktables AZ 69.3i123 78.0102 59.8i162 67.9i1542 40-5i16.7 78.0i0.2 54.0i15A3 59.6i152
N=51,N—K=25 F: 904110 90.3105 90.8+1.2 90.541.1 89.9410 90.240.7 89.945.0 88.241.3
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(e) fairness-unaware
disb disb disb disk disb dish disk dish
disc disc hsC disc sC disc hsC s
disp s disp disp disp Sisp disp s

adult A: 80.9:‘:0.4 80.9;{:044 56.8j:16.6 80.9:‘:0.4 54.1i14,2 80.2;&0.5 60.6;‘:17‘4 70.6:{:15,9

N=3, N-K=1 F: 8054105 80.540.8 50.2120.3 80.510.8 45.84175 80.5108 5444017 67.71195
adult A: 81.0:‘:0.4 81.0j:0.4 63.0j:22.0 81.0:‘:0.4 51.5;‘:2@2 80.2:‘:0.5 62.4;‘:21‘2 58.6:{:25,8

N=5 N-K=2 F: 80.7+11 80.7+1.1 61.44+30.3 80.741.1 4571365 80.7+1.1 60.7130.0 954.7+35.0
adult A: 81.0:‘:0.4 81.0j:0.3 44.0:{:13,7 81.0:‘:0.4 61.9;‘:1&9 79.9:‘:0.6 46-5:i:1646 59.2:{:14,5
N=7TN-K=3 F: 8084110 80.8+1.0 30.2415.1 80.841.0 58312690 80.8+1.0 3821180 55.94229
adult A: 81.0:‘:0.3 81.0j:0.3 56.2j:23.9 81.0:‘:0.3 57.0i24,4 79.9:‘:0.6 51-4:i:2546 52~1j:26.5

N=9 N-K=4 F: 80.5111 80.54+1.1  49.0427.2 80.541.1 51.54987 80.541.1 4344304 46.41330
adult A: 80.9403 80.840.3 950.9420.1 80.9+0.3 64.3+178 80.1+t05 53.24205 5H1.94235

N = 11, N-K = 5 F: 81.1i1A0 81.0i1‘0 43.0i27,7 81.1i1A0 61.6i262 81.0i1A0 44~6i2846 43.4i32,9
compas A: 66.4411 66.44+1.1  58.8+10.3 66.441.1 53.5+85 606.24+1.1 57.3+10.3 61.345.5

N=3 N-K=1 F: 722447 72.2447 44.6433.4 7224147 25814340 722447 38.21323 50.81303
compas A: 66.5+11 66.441.2 49.749.7 66.541.1 40.849.1  65.941.3 49.7+9.7  51.8+11.7

N = 5, N—-K=2 F: 71~4i4A8 71-4i448 28.2i20,5 71~4i4A8 8~4i12A8 70.9i5A4 28.2i20‘5 31-5i24.6
compas A: 66.4112 66.441.2 49.8+8.0 66.3+1.0 554471  66.0+1.2 49.24166 52.247.3

N = 7, N—K = 3 F: 70.2i42 70.2i4‘5 16.8i23,2 70.4i4A3 36.9i25A9 70.5i4,3 11~4i1845 27.7i23,9
compas A: 66.3+1.0 66.241.0 53.547.1 66.241.0 49.34+68 65.841.1 53.9492 49.14111

N=9 N-K=4 F: 697137 69.8437 31.21209 69.8437 16.01110 69.8437 36.24054 25.64255
compas A: 66.211.0 66.24+1.0 48.4416.3 66.040.8 48.3+93 66.111.0 50.7453 49.2411.4
N=11,N-K=5 F: 69.7150 70.5443 15.2118.1 69.6446 20.14920 70.4445 19.04185 23.8424.9
drugs A: 66.7+2.7 66.24+2.4 50.9+10.7 66.7+2.7 48. 7476 66.5+27 55.5+11.3 60.0+10.6

N=3, N-K=1 F: 652142 65.2142 24.64926.3 65.2442 10.84+183 65.2442 3544291 47.5126.7
drugs A: 66.612.2 66.5+2.1 54.045.2 66.6+2.2 52.649.5 66.5+42.1 52.848.9 52.0+11.2

N=5 N-K=2 F: 0668155 65.6158 36.51205 66.845.6 30.71233 65.7458 3541196 27.0424.7
drugs A: 65.542.4 65.7421  49.7+108 65.9+2.5 4984085 659424 49441104 51.248.2
N=7TN-K=3 F: 633155 63.91+46 27.01278 63.9441 14.24136 64.5453 28.31296 21.04189
drugs A: 63.2429 65.14+1.9 46.8+6.8 63.249.7 474489 65.0420 45.548.2 499499

N = 97 N*K =4 F: 675i55 679i55 20.2i23,7 65.9i5_4 17~4i15.6 674i4() 15.2i20‘3 22.0i21,3
drugs A: 60.3+95 62.6+4.1 475459 56.5+10.6 425478 65.2424 45.645.1  49.4+10.0
N=11,N-K =5 F: 620461 50.1415.8 19.5+144 61.946.2 5.T47.4 626459 13.3+148 20.0420.4
germancredit  A: 72.5443 73.0434 51.6+13.2 725443 54.0x127 73.0x3.3 52.04132 63.4+141
N=3, N-K=1 F: 890153 88.945.4 31.31428.2 89.045.3 41.04330 88.9454 32.14285 67.943456
germancredit  A: 72.043.9 724435 57.9+13.0 723434 63.211009 729434 5041151 56.24149
N=5 N-K=2 F: 851170 84.5+6.5 45.1496.4 84.846.9 52.7+228 854474 26.01206 35.8430.3
germancredit A: 68.71s.0 72.6435 52.9414.4 714441 4871112 722437 5444114 54441109
N=7T N-K=3 F: 79441123 87.246.9 35.51279 84.01117 2531192 85.7+79 33.01208 28.8421.4
germancredit  A: 69.94139 71.84+36 54.1+10.0 66.24+50 46.1+134 T1.2430 46.5+11.6 52.5+14.8
N=9 N-K=4 F: 80.6+143 89.61s7 3231107 7031188 25.41285 845479 17.3+147 29.51248
germancredit A: 64.8i7A9 71~2i3A8 56.8i11,3 64.0i7A0 53.5i13A1 71.5i3A4 54~Oi946 50.5i15A1

N = 11, N—-K = 5 F: 63.1i20,2 83.3i549 42-9i21.0 62.6i20,0 32.6i24.1 83.61641 29~7i1842 28.2i25,4
folktables A: 78.840.3 78.840.2 78 1+0.7 78.840.2 77.8407 T78.840.2 78.0+0.9 T7.841.3
N=51,N—K=5 F: 78941056 78.840.5 79.040.5 79.040.6 78.8+06 78.5+0.6 79.04+0.6 73.54+3.6
folktables A: 78.840.2 78.840.3 75.042.0 78.940.2 75.8415 T78.840.2 75.042.3 75.249.0
N=51,N—K=10 F: 78841056 78.7+0.6 77.543.5 78.840.7 78.6+1.2 78.3+0.7 77.243.6 66.615.2
folktables A: 78.840.2 78.840.2 704446 78.840.2 71.2426 T78.840.2 70.4435 67.447.5

N =51, N-K=15 F: 78.6+06 78.5+0.7 68.6+13.1 78.5+0.7 70.5+6.9 78.4107 68.31t100 46.41199
folktables A: 78.840.2 78.7+0.2 64.045.8 78.840.2 65.7454 T8 T+0.2 63.2472 6041100

N=51, N—K=20 F: 78.6+06 78.6+0.6 50.7+16.7 78.6+0.6 93.7+13.7 78.6+06 49.2419.3 33.3+15%8
folktables A: 58.0113.2 783102 5321125 57.9+152 4241132 78.3103 51.1+s0 53.11118

N=51, N—K =25 F: 39.6+2556 78.0+1.7 27.5+157 40.T+276 18.94+121  78.3+1.0 25.7+11.3 16.14123
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D Complete formulation and proof of Theorem [I]

In this section we present the full proof of Theorem [[] We begin by reminding the reader of our notation and
formal assumption from in [D.I] Next in Section [D.2] we state a few standard concentration results that are
used in our main proof. In Section we define the population counterparts of the empirical discrepancy,
disparity and disbalance measures, as understanding how well these measures are estimated from finite data
is crucial for the proof of our results.

Finally, we present the full proof of Theorem [I] in Section [D] and the proof of the concentration lemmas from
Section [D.2] in Section [D.5]

D.1 Assumptions and formal adversary model

For convenience of the reader, we repeat the formal notation and assumptions stated in Initially, there
are N datasets Si,..., Sy, with the i-th set of samples being drawn i.i.d. from a distribution pi(x,y,a). We
assume that all these distributions are clean, in the sense that they are close to the true target distribution p.
Formally, we assume that each of the following conditions hold:

TV(pi(z,y,a),p(z,y,a)) <n, and max {TV(pi(z,yla = 2),p(z,yla=2))} <n, (14)

where B(X) denotes the Borel o-algebra on a topological space X.

Once the clean datasets Sy, ..., Sy are sampled, an adversary operates on them. This results in new datasets,
S1,...,5nN, which the learning algorithm receives as input. The adversary is an arbitrary (deterministic or
randomized) function F : [T, (X x ¥ x A)" — [, (X x Y x A)", with the only restriction that for a
fixed subset of indices, G C {1,..., N}, the data remains unchanged. That is, S; = S; for all i € G, and S; is
arbitrary for i € G.

Note that the learner only observes the datasets S; and outputs a hypothesis based on them. Therefore, in
the proof we will only work with the datasets S; and not with S;, using that S; = S; whenever ¢ € G, so that
S; is i.i.d. from p;. For simplicity, we refer to a dataset .S; or a source i € [N] as clean if i € G.

We assume without loss of generality that 7 = Pxy, A)NP(A =0) e (O7 %] For technical reasons, we also
assume that 9n < 7 = P(x y, a)~p(A = 0).

D.2 Concentration tools and notation

We first present the two lemmas which demonstrate uniform convergence of the empirical risk and the
empirical fairness deviation measure respectively, for any hypothesis set H with finite VC dimension. The first
is just the classic VC generalization bound, as given in Chapter 28.1 of |Shalev-Shwartz & Ben-David| (2014).
The proof of the second lemma closely follows the proofs of similar results from |Woodworth et al.| (2017));
Agarwal et al.| (2018)); [Konstantinov & Lampert| (2022) and is presented in Section for completeness.

Lemma 1 (Uniform Convergence for Binary Loss). Let d be the VC-dimension of H. Then for any dataset
S of size n sampled i.i.d. from a distribution p, ¥ € (0,1),

IP’( sup [Rs(h) — Ry(h)] > #8‘“% (52) + 2108 (§)> <4,

heH n

Lemma 2 (Uniform Convergence for demographic parity). Let p be a distribution on X x A x Y. Let
d= VCOH) > 1 and let 7 = mingefo,11 Pix,v,4)~p(A = a) for some constant 7 € (0,0.5]. Then for any

dataset S of size n > max {Sloi(‘;), g} sampled i.i.d. from p, Y6 € (0,1/2):

IP’S(Sup Ts(h) — Ty (k)] = 16\/2d10g (5 +log (234)> <5 (15)

heH nrt o
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For the dataset S;, denote by
cii= Yy, 1{a=0}=|517 (16)
(z,y,0)€S;

Denote 7; = P(x y,4)~p, (A = 0). Then for a clean data source we have that ¢; ~ Bin(n, 7;). Therefore, by
the Hoeffding bound, for any § > 0:

(V115 (D)
2 Zlog (%
<2exp | —— V2 . ° — 5. (17)

P |ei—nm|>n

log (3)
2n

We will assume without loss of generality that 7 = P(x y,4)~p, (A = 0) = mingeso,13 P(x,v,4)~p(A = a). Note
that since TV (p;, p) <0, for any clean dataset S;,

Ti = Px,v,a)nps (A= 0) 2 Px vy a)p(A=0) —n =7 —1n.
In addition,
1 =7 =Pxya)p (A=1) 2 Pxya)p(A=1) = > Pxya)p(A=0)—n=7—1.

Recall also that 7 —7n > 7 — 91 > 0 by assumption. Denote by:

A(8) = max 2\/8d1°g (%); 2los (5). 16\/2d10g i%”;;g &), log27(l%) (18)
_ 16, o808 CF*) +108 ()
- 16\/2 L (19)

The lemmas above, as well as the observation that min{r;,1 — 7;,} > 7 — n for any clean source i, readily
imply that:

IP’( sup R, (h) = Ry, (h)] = A@)) <9, (20)
heH
Ps < sup [T, (1) — Ty, (1)) > A<6>> < (21)
heH
and
Ps (|e; — nmi| > nA(d)) < 0, (22)

for any clean i.

D.3 Discrepancy, disparity and disbalance between distributions

In our proof we will consider the population counterparts of the between-dataset distances that we defined in
the main body of the text. In particular, the discrepancy distance between two distributions p and gq is

disc(p, q) = sup [Ry(h) = Ry (h)[- (23)
heH
Similarly, the disparity is
disp(p, q) = sup [, (h) = Ty()], (24)
heH
where as an unfairness measure I, we will use:

Lo(h) = |Px .y, a)~p (h(X) = 1|A = 0) = P(x v, 4)~p (B(X) = 1]A = 1)|.
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Finally, the disbalance is simply
disb(p, ¢) = |Pp(A = 0) — P, (A =0)]. (25)

Next we study these distances, between a distribution p; of a clean source and the true target distribution
p. Recall our assumptions about the bounded TV distances from Section Clearly, we have that
disb(p;, p) < TV (p;,p) < n. Note also that:

disc(pi, p) = sup [Ry, (h) = Rp(h)| = sup Px,v, 4y~ (M(X) # Y) = Pixy, aymp(h(X) # V)| <,
€ €

because any (measurable) classifier h : X — ) can be associated with a (Borel) set Sy, = {(z,y,a) €
(X x Y x A): h(z) # y}. Finally, we bound the disparity in terms of 7. Note that:

disp(pi, p) = sup \ IPx,y, a)mp; (R(X) = 1A =0) = P(x,y, ay~p, (H(X) = 1|4 =1)]
€

— [Pix,v,a)op (M(X) = 1]A = 0) = P(x,y,a)~p (M(X) = 1|A = 1) ‘

< sup Py, aymp; (R(X) =1|A =0) = P(x,y,a)up; (M(X) =1]A=1)
€

—Px.v.a)mp (M(X) = 1A = 0) + Px v, a)~p (H(X) = 1[4 = 1)

< sup (JPx.v,a)ymp, (R(X) = 1]A = 0) = P(x v, a)~p (M(X) = 1]A = 0)|
€

< 5up [Py, (HX) = 114 = 0) = Py (HCX) = 1A= 0)
€

+sup IPx,v,a)~p; (MX) = 1A =1) = P(x,y,a)~p (M(X) = 1|4 = 1)
S

< 2n.

D.4 Proof

Theorem 1. Assume that H has a finite VC-dimension d > 1. Let p be an arbitrary target data distribution
and without loss of generality let T = p(a = 0) € (0,0.5]. Let Si,...,Sy be N datasets, each consisting of n
samples, out of which K > % are sampled i.i.d. from a data distribution p; that is n-close the distribution p
in the sense of Section . Assume that 9n < 7. For 3 < 8 < & and I = FILTERSOURCES(S1, ..., Sn; )
set S =J,c; Si. Let 6 > 0. Then there exists a constant C = C(d,7,d,N,n), such that for any n > C, the
following inequalities hold with probability at least 1 — & uniformly over all f € H and against any adversary:

L) S T,() + 107+ 0 (ﬁ) 7 Rs(f) < Ry(f)+ 99+ 0 (ﬂ) . (20)

Proof. First, we characterize a set of values into which the empirical risks and empirical deviation measures
of the clean data sources falls with probability at least 1 — §. Then we show that because the clean datasets
cluster in such a way, any individual dataset that is accepted by the FILTERSOURCES algorithm provides good
empirical estimates of the true risk and the unfairness measure. Finally, we show that the same holds for the
union of these sets, S, which implies the inequalities . For the risk, the last step is a straightforward
consequence of the second. For the fairness, however, a careful derivation is needed that crucially uses the
disbalance measure as well.

Step 1 Let G C [N] be the set of indexes 4, such that S; was not modified by the adversary. By definition,
|G| = K. Now consider the following events that, as we will show, describe the likely values of the studied
quantities on the clean datasets.

In particular, for all i € G, let ER be the event that:

sup R (1) ~ Ry ()] < & 55 ). 1)
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let & be the event that
sup [1. (1) = 1,0 < & (g )

heH
)
lci nTZ|nA<6 )

0< ¢ <n.

let Efi” be the event that

and finally, let £°°“ be the event that

(28)

(29)

(30)

Denote by (£%)¢, (E7)¢ and (EP™)¢, (££°47) the respective complements of these events. Then, by equations

, we have:

0
P((EN)) < oo,
To bound the probability of the complement of £5°“"¢ note that for any i € G

1 -7 =Pxya)ep(A=1) <Pxyayp(A=1)+n=1-7+1n
and that 1 — 7 +n < 1 because of the assumption that n < 7. Similarly,

Ti =Py a)ymp (A=0) SPxyayp(A=0)+n=7+n<1-7+1.

oa( AN 0s(AN)  log( AN
Now, for any i € G, whenever n > C1(6,7,d,N) = OLL‘;% > maX{ll s > ) 1g(f)}, we have that

P (& )) = (1 —m)" + 7

con (-ome (1 22)) v (1)

_0 85
_4N AN 2N’

Therefore, setting &£ := (Aiegé'R) (/\Zegé'r) (Alegé'bi") A (NiegEF"™) then by the union bound
probability of P(£¢) < K% + K¢y + Ko + K5y <33+ § =0.

Hence the probability of the event £ that all of (27 ‘ ) hold is at least 1 — §.

the

Step 2 Now we show that under the event £, the inequalities in are fulfilled. Indeed, assume that £

holds. Fix any adversary A and any h € H.
For any pair of clean sources i, j € [IN] the triangle law and the derivations in Section give:

disc(S;, Sj) = sup [Rs, (h) — Rs; (h)]
heH

< sup [Rs; (h) = Ry, (W) + sup [Ryp, (h) = Rp(h)| + sup [Rp(h) = Ry, (h)] + :ggmm (h) = Res; ()]

heH heH heH

1)
<
2n 4+ 2A <6N)
Similarly,
1)
disp(Si. ;) = sup |Ts, (h) — Ts, ()] < 4n + 2A ( )
heH 6N

and
diSb(Si, Sj )

1)
G < 2n+2A
‘ m¥ (()‘N)

o7
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Therefore, for any pair of clean sources 4, j € [N]:
disc(S,, S;) + disp(Si, 5,) + disb(Si, ;) < 85+ 6A (6(;\7) (31)

It follows that under &, we have that ¢; < 8y 4+ 6A ( %) for any clean i € [N]. Since the fraction of clean
sources is & 2 B, it follows that also ¢ < 81+ 6A (6]\7) where ¢ is the 8-th quantile of the g¢;’s.

Denote by I = FILTERSOURCES(S1, ..., Sn;8) the result of the filtering algorithm. Now for any ¢ € I,
we have that ¢; < ¢ < 8y + 6A (6%). In addition, by the definition of ¢;, disc(S;,S;) < disc(S;,S;) +
disp(S;, S;) + disb(S;, S;) < ql for at least |I| = BN > & values of j € [N]. Since K > &, this means that
disc(S;, 55) < ¢; < 8n+6A ( ) for at least 1 value j E G. Therefore, we have:

sup [Rs, (h) = Rp(h)| < sup |Rs, (h) — Rs, (h)] + sup |Rs, (h) = Ry, ()| + sup |Ry, (h) = Ry(h)|  (32)
heH heH heH

heH
<gproa(2)ra(L)+ (33)
g 6N 6N )
6
= A 4
—on+7a () (3)
because £ holds. Similarly,

1)
sup I (1) = T,00] < 109+ 7 (5 (3)

heH 6N

and

le; — nr| < 9nn + TnA (6?\7) (36)

Step 3 Finally, we study the risk and disparity measures based on all filtered data S = U;¢1S;.
Denote by Rg(h) the empirical risk across the entire trusted dataset I:

Rs(h) := \I\Z (37)

Then the triangle law gives:

Rs(h) =Ry ()| = | 5 (ZRS >| T 2 1R (h) = Ryh)] = 99+ 72 (%)
Since
5§\ dlog (%) +log (M%) ~ d
3A (6N> = 112\/2 d( T =0 ( (T_n)?l) : (38)

the bound on the risk follows.

Denote by I's(h) the empirical estimate of demographic parity across the entire trusted dataset I:
‘zﬂzz 1 ) —1 o =0} e il k) = 1 =1}
jer Simy Ha? =0} Yjer T o =13

For convenience, denote v; = v;(h) = > 1", ]l{h(ml(.j)) =1, al(.j) =0} and w; = w;(h) = ]l{h(xgj)) = 1,a§j) =
1}, so that:

(39)

_ djerv B 2jerw
Ls(h) = Zje[cj Zje[(n_cj) .

o8
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Note that because of equation we have that:
Zje[ Yi Zje[ W < Zje[ Uy Zje[ W

= - ’ (40)
Yier¢i  2jer(n—c;) T |(nm — TnA(gy) (1 —7) + TnA(Gg))
where 71 = 7 — 91 > 0, whenever:
dlog (2¢2) + 21og (144N
min{l — 1,7} = min{l — 7+ 99,7 — 9} = 7 — 9y > TA (6‘]5\[) _ 112\/2 o8 ( dn)(:_ n(;g 5wy

Since A(0) = o (ﬁ), this holds whenever n > Cs for some constant Co = Cy(6, 7,d, N).

Specifically, it suffices to take:

4(1122) log (14N) log (X5%) _ (r—9n)°
(T —m)(r —9n)? n(r—mn) — 4(1122)
and
2en (1 —mn)(T—9)? dlog (%J) (7 —9n)?
log (d) < W” = n(T—Crl]) < A(1122)

The second condition is fulfilled whenever

n>-Ww _% /((T—n)(T—gn)Q):_W(_(T—n)(T—Qn)2> 4(1122)d

%e 4(1122)d 8(1122)6 (7._77)(7__97))27

where W(z) is the Lambert function. In summary, and hence also is fulfilled whenever:

50176log (H5%) (- m)(r — 9n)? 50176d
(T —m) (7 —9n)?’ W < 100352¢ ) (r—n)(T—9m)2 (" (42)

n > Cy(d,7,d, N,n) = max{

Now, under this assumption, note that:
Zje[ v Zje] w; < Zje] Uy B Zje[ wj
Yier¢i  2jer(n—¢;) T |(nm — TA(gy) (1 —71) + TnA(gy))

(
_ 1 (n(1 — 1) + TnA(5%)) djerVi— (n71 — TnA(5%)) > jerWj
1] (n71 — TnA(G

1 Y € R n—c _
+§e:1<cﬂ<7”1_77ﬂ(6§v) 1) n=c (n(l—n)+7nA(6‘jV) 1))
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J 6N
Similarly,
2 je1 Wy B 2jer Vi < 1 ( w; v]> 4A(L) 14A(S:)
Yjern=¢)  Yjerci | |J61 n—==c¢ G n+HTAGS)  1—71—TA(GY)
Denote:
H4A () N 14A () N T4A () N 14A () B6A ()
n+HTAGD) 11— —TAGY) T —TAGDy)  1-m+TAGY) ~ n - TAGGY)

. Zje[ i Zje[ wy

Zjel Cj Zje](n )

— max Zjel wi Zje[ Uj Zje[ v Eje[wj
Zje](n —¢j) Zje[ Cj ’ Zje] Gj Zje[(n )

1 w; v, 1 v w;
< i J ) e J T
= |f|j§<n—cj Dm(E-a)

Cj

I JjeI
1 w; v V; w;
< = max J—]),<]— ! >}+T
Iflg {(n—cj ¢j ¢ n—g
1 wj v
= — - +T
m; n—=«¢ G
1
—mZFSi(h)+T
jeI
<TI,(h)+10n+TA 9 +T
p Y 6N
Finally note that:
56A(5%) 8 B 8 <5<1>
T n-TAGy)  racsy L (= 9”)Mﬁ(4)—1’ V)
=

Hence, the theorem follows whenever:

n > C(6,7,d, N,n) = max {C1,Cs}

= max

log (4N) 50176 log (144N) W (_ (t—n)(t— 97])2> 50176d
log (ﬁ) “(r—=n)(T —9In)?’ 100352¢ (1 —n)(T —9n)?2

where W (z) is the Lambert function.
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D.5 Proof of Lemma
Let S = {(z;,ys,a;)} . For a € {0,1}, denote:

Z?:1 Hh(x;) =1,a; = a}

’Yg‘(h) = Z?:l L{a; = a}

and
Vp(h) =P(h(X) = 1|4 = a), (45)

so that Ts(h) = (k) — v5(h)] and T, (k) = [32(k) —72().

First we use a technique of Woodworth et al| (2017); |Agarwal et al.|(2018)) for proving concentration results
about conditional probability estimates to bound the probability of a large deviation of I's(h) from I, (h), for
a fixed hypothesis h € H. Our result is similar to the one in [Woodworth et al.| (2017)), but for demographic
parity, instead of equal odds.

Lemma 3. Let h € H be a fized hypothesis and p € P(X x A x V) be a fixed distribution. Let 7 =
mingeqo,1} P(x,v,4)~p(A = a) € (0,0.5]. Then for any dataset S, drawn i.i.d. from p, of size n and for any
5 €(0,1) and any t > 0:

P Irs(n) ~ T,(0)| > 2) < Gexp (=277 (46)

Proof. Denote by S, = {i € [n] : a; = a} the set of indexes of the points in S for which the protected group
is a. Let cq = |S,| and P, = P(x,y,4)~p(A = a), so that 7 = min, P,. For both a € {0,1}, we have:

P (7§ — 5] >t) = > P (1§ — vl > t1S.) P(Sa)
Sa

]' a
<P (ca < 2Pan> + ) P(vE — Yal > t1Sa) P(Sa)

Sa:ca>%Pan

< exp (— P§n> + Z 2exp (—2t%c,) P(S,)

Sa:ca>%P@n

Py
< exp (—;) + 2exp (—tQPan)
2
< 3Jexp (—t ;’n) .

Ve =75l = =Bl S =75 — 1 + 7l < Ve — ol + 1ve — 7ol

The triangle law gives:

Combining the previous two results:

P (|78 =] + [ — ] > 2t)
P (|78 =l > )V (|rs =] > 1)
<P =7l >t) +P(Jvs — | > 1)

2
< 6exp (—t ;’n) .

Finally, we prove Lemma [2| by extending the previous result to hold uniformly over the whole hypothesis
space, for any hypothesis space H with a finite VC-dimension d := VC(H). The extension is essentially
identical to [Konstantinov & Lampert| (2022)) and is included here for completeness.

P(|[v¢ — 75| — lvg — wpll > 2t) <
<

O
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Lemma 2 (Uniform convergence for demographic parity). Let d = VC(H) > 1 and let 7 =
mingeqo,1} P(x,v,4)~p(A = a) for some constant 7 € (0,0.5]. Then for any dataset S of size n >

og(®
max {81*57(5)7 g} sampled i.i.d. from p, V§ € (0,1/2):

Ps ( sup |Ts(h) — T,(h)| > 16\/2d10g (522) +los (251)> ) (47)

heH nt

Proof. To extend Lemma [3] to hold uniformly over H, we first prove a version of the classic symmetrization
lemma (Vapnikl, 2013) for I' and then proceed via a standard growth function argument.

1) Consider a ghost sample S" = {(z},a},y;)}?, also sampled i.i.d. from p. For any h € H, let T's:(h) be the
empirical estimate of I,(h) based on S’.

We show the following symmetrization inequality for the I' measure:

Ps (sup Ts(h) — T, (k)] > t) < 2Ps s (sup T (k) — T (h)] > t/z) , (48)
heH heH

for any constant t > 8\/@.

Indeed, let h* be the hypothesis achieving the supremum on the left-hand sideﬂ Then:
1(|Ts(h") = L (7)] = §)1(|Tsr (h*) = Tp(h™)| < £/2) < 1(|Tsr (h*) = Ts(h™) = /2).
Taking expectation with respect to S’:
L([Ts(h*) = Tp(h")| = t)Ps/(|Ts/ (B", §) = Tp(h7)] < £/2) < Py ([T (%) = T (h")] = £/2).
Now using Lemma [3}

2
Py ([T (") — Ty (h*)] < £/2) > 1 — Gexp (t T”) S

128

where the second inequality follows from the condition ¢ > 84/ 2]%@. Therefore,

1
FLTs(h7) = T,(")] = 1) < Ps(|Ts (A7) = T (h7)] = 1/2).
Taking expectation with respect to S:

Ps([ls(h*) =T (h*)] = t) < 2Pg 5 ([T (A") — Ls(h*)[ = £/2)
< 2Ps s (:161713 Ts: (h) = Ts(h)| > t/2).

2) Next we use the symmetrization inequality to bound the large deviation of Ts(h) uniformly over H.

Specifically, given n points x1,...,z, € X, denote

Hayoown {(R(x1), ..., h(zy)) : h € H}.

Then define the growth function of H as:

Gu(n)= sup |[Hay,. .zl (49)

T1yeyTn

9If the supremum is not attained, the argument can be repeated for each element of a sequence of classifiers approaching the
supremum
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We will use that well-known Sauer’s lemma (Vapnik, |2013)), which states that whenever n > d, Gy (n) < (%)d

Notice that given the two datasets S, .S’, the values of I's and I's; depend only on the values of A on S and S’
respectively. Therefore, for any t > 84/ 21%212),

) (50)

) (51)

< 2Gu(2n)Ps.s (<|Fs(h) _n(h)| > i) v <Fsl(h) _n (k) > i)) (52)

N | o+

Ps((sup Iy — T, (k)| > t) < 2Pss (sup [T (h) — T ()] =
heH heH

N | =+

< 26u(nPss ([T () - ()] >

< 4Gy (2n)Ps (Ts(h) ~ ()| > 7) (53)
< 24G3(2n) exp (-i%”) (54)
<24 (QZn)dexp <_t;'g) . (55)

Here the second-to-last inequality is due to the same bound on the difference between I's and I'p that was
used in the previous lemma, and the last one follows from Sauer’s lemma. Now if we use the threshold

2eN 24
‘= 16\/2dlog( i T)n+log< 5) > 8 /21%7(32)7 we get:

P ( sup |Ts(h) — T,(R)] > 16\/2d10g (%) + log (2@‘4)> <4 (56)
heH

™
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