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1 Introduction001

With a vast expansion in available computa-002

tional power, as well as the (re)discovery of003

some architectural and mathematical tricks,004

connectionist, viz. neural network-based, mod-005

eling of (morpho)phonological phenomena006

has seen a resurgence, with questions and ap-007

proaches from past decades being rediscov-008

ered, revisited, and revised (Alderete and Tup-009

per, 2017; Kirov and Cotterell, 2018; Prickett,010

2021; Nelson et al., 2021). One such ques-011

tion concerns the representations and pro-012

cesses underlying the human acquisition of in-013

flectional morphology. 35 years ago, Rumel-014

hart and McClelland (1986) proposed a feed-015

forward connectionist model of the acquisi-016

tion of English past tense morphology, kick-017

ing off a lively debate (cf. (Pinker and Prince,018

1988) and much subsequent literature) and019

setting the stage for a burst of work in connec-020

tionist approaches to morphophonology, cov-021

ering a wide variety of architectures, tasks,022

and training methods: feed-forward vs re-023

current, “meaning” to “sound”, input-output024

string, LM-style training, etc. (Touretzky and025

Wheeler, 1989; Hare, 1990; Joanisse, 2000,026

among many others).027

This debate was revived by Kirov and028

Cotterell (2018), who re-examine Pinker &029

Prince’s critique of the Rumelhart & McClel-030

land model in the light of the current state031

of neural network research in computational032

linguistics, highlighting the development of033

new architectures and best-practices with re-034

spect to optimization, activation functions,035

etc. They show that a suitably large sequence-036

to-sequence network (Sutskever et al., 2014)037

with RNN encoder and decoder learns to038

model the acquisition of English past tense039

near-perfectly, addressing P&P’s empirical040

and in-principle criticisms (but cf. critiques 041

by Corkery et al. 2019; McCurdy et al. 2020). 042

In the present work we are less interested 043

in the empirical successes (in the usual sense 044

of performance on a held-out test set) of such 045

models, but instead focus on the size of the 046

model necessary for this performance and its 047

implications for interpretability. That is, we 048

ask what it is that we learn from the puta- 049

tive success of a large model at a given task; 050

what does this modeling success tell us about (a) 051

phonology, (b) RNNs, or (c) how RNNs “do” 052

phonology? 053

A common approach to NN model interpre- 054

tation involves extracting state vectors or em- 055

beddings from a trained model and perform- 056

ing some form of clustering on them for subse- 057

quent visualisation. As the dimensionality of 058

such vectors is often high, a usual first step in- 059

volves dimensionality reduction via e.g. PCA, 060

UMAP, or some other approach. 061

In the work described here we investigate 062

the following questions: what is the smallest 063

model(s) that can reasonably be said to “learn” 064

the task at hand? and can we inspect the rep- 065

resentations learned by such networks directly, 066

that is, without the lossiness of intermediate di- 067

mensionality reduction? Rather than investigat- 068

ing past tense acquisition directly, we focus 069

on a somewhat more complex and interest- 070

ing phenomenon, also characterized by mor- 071

phophonological alternations. 072

2 The domain: vowel harmony 073

Across many (typologically unrelated) lan- 074

guages and language families one observes 075

co-occurrence restrictions on the distribution 076

of vowels within some phonological domain. 077

When the distributional restrictions are such 078

that the vowels in a language can be grouped 079

into disjoint sets (generally based on pho- 080
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Figure 1: Turkish learning curve with 1000 in-
puts, 24-d hidden state, and 3-d phone embed-
dings

Figure 2: Turkish learning curve with 10000
inputs, 24-d hidden state, and 3-d phone em-
beddings

netic/phonological features), with words con-081

taining vowels from only one of the sets,082

we use the descriptive label vowel harmony083

(van der Hulst, 2016). Harmony is phonolog-084

ically interesting because it inherently non-085

local, skipping intervening consonants. The086

Turkish example in Table 1 illustrates the ba-087

sic phenomenon; note that the plural and gen-088

itive affixes have variable surface realizations089

which agree in backness with the stem vow-090

els.091

Lemma PL GEN.PL
savaş savaşlar savaşlarɪn
ipek ipekler ipeklerin
Table 1: Turkish palatal harmony

In some languages with vowel harmony,092

there are one or more vowels that fail to alter-093

nate in context where they would be expected094

to. These are called neutral vowels and are095

further sub-classified as opaque or transparent096

according to whether or not their presence in-097

duces further restrictions on the surface forms098

of co-occurring vowels.099

The Finnish examples in Table 2 demon-100

strates transparent neutrality:101

Surface form Gloss
värttinallänihän “with my distaff!”
palttinallanihan “with my thin linen!”

Table 2: Transparency in Finnish vowel harmony

As in the previous Turkish suffixes, the102

adessive (instrumental) case marker and the103

emphatic tone particle have two surface re- 104

alisations — llä/lla and hän/han — but here 105

the possessive suffix ni fails to alternate, and 106

moreover does not trigger any further alterna- 107

tions (cf. the backness of the emphatic in the 108

second example, which on a spreading analy- 109

sis has “passed through” the intervening front 110

vowel). 111

3 The task 112

Vowel harmony is generally treated in the 113

linguistic literature as a phonological phe- 114

nomenon, that is, analyses of and explana- 115

tions for the observed co-occurrence patterns 116

are stated in terms of phonological theoretical 117

primitives and processes (e.g. feature spread- 118

ing or constraints enforcing agreement). Here 119

we adopt a morphophonological approach, in 120

concordance with recent iterations of the SIG- 121

MORPHON Shared Task on morphological in- 122

flection (Cotterell et al., 2016, et seq.). In 123

these tasks, participants are provided with 124

lemmas and morphological specifications us- 125

ing a broad-coverage tagset (Sylak-Glassman 126

et al., 2015), and must create computational 127

models that learn to output correctly inflected 128

surface forms. 129

4 The data 130

We use a subset of the data from the SIG- 131

MORPHON 2018 Shared Task (Cotterell et al., 132

2018) on morphological inflection, specifi- 133

cally the data from Turkish and Finnish. The 134

data files include lemmas along with mor- 135

phological specifications via UniMorph tags 136

(Sylak-Glassman et al., 2015), and correctly 137
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Figure 3: Finnish learning curve with 1000 in-
puts, 24-d hidden state, and 3-d phone embed-
dings

Figure 4: Turkish learning curve with 10000
inputs, 24-d hidden state, and 3-d phone em-
beddings

inflected surface forms:138

Lemma Inflected Morph tags
koşucu koşucularım N;NOM;PL;PSS1S
kart kartından N;ABL;SG;PSS2S

Table 3: Data sample from SIGMORPHON 2018
Shared Task 1

For each language, there are several data139

files: 3 sets of training data, a development140

set (for model hyperparameter tuning), and141

an evaluation set. The 3 training sets con-142

tain 100, 1000, and 10000 items, respectively,143

used to assess model performance under dif-144

ferent resource restrictions.145

5 The model146

Kirov and Cotterell (2018) attack the problem147

of the English past tense with a seq2seq net-148

work leveraging RNN-based encoder and de-149

coder with the following specifications:150

• 2-layer biLSTM encoder151

• 100d LSTM state (e.g. 200d hidden state152

for fwd and bwd LSTM)153

• 300d phone embeddings154

• 2-layer biLSTM decoder155

• Bahdanau attention (Bahdanau et al.,156

2016)157

• beam search decoding158

In the work here we adhere generally to159

this architecture, but with single-layer RNNs,160

a unidirectional decoder LSTM, greedy decod-161

ing, all parameters scaled down, in some cases162

significantly (see below for details).163

• 1-layer biLSTM encoder 164

• 1-layer LSTM decoder 165

• small (see below) phone embeddings 166

• Bahdanau attention 167

• greedy decoding 168

In order to investigate the degree to which 169

our model can be scaled down from K&C’s, 170

we opt to target the embedding layer most ag- 171

gressively, finding that it can be reduced sig- 172

nificantly while retaining good performance. 173

In addition, we will see that four to five-fold 174

reductions in LSTM state sizes still result in 175

convergent learning. 176

6 Results 177

Figures 1, 2, 3, and 4 show learning curves 178

for Turkish and Finnish on the medium and 179

large training sets, respectively, for networks 180

with 24-d LSTM states and 3-d embeddings (a 181

reduction of 2 orders of magnitude from the 182

dimensionality of the embedding space used 183

in K&C). The networks are trained to conver- 184

gence on training loss with early stopping on 185

diverging development set loss. The ultimate 186

performance metric we are interested in is 187

word error rate (WER), essentially whole-word 188

accuracy on output phone sequences. 189

With 1000 training inputs, the learning 190

curve suggests that some aspects of the inflec- 191

tion task are being learned, but performance 192

at convergence falls short of mastery, even on 193

the training set (this at least indicates that our 194

model is not sufficiently overparameterized to 195

simply memorize the training data). With the 196

full 10000 items of training data, we can see 197
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Figure 5: Finnish decoder embeddings before
training

Figure 6: Finnish decoder embeddings after
training

that the network learns the task well, with198

performance near-ceiling on the training data199

and only slightly worse on the evaluation set.1200

Note that WER is a harsh metric as it penal-201

izes consonant errors2 even though we are di-202

rectly interested only in the learning of vowel203

harmony here.204

6.1 Learned embeddings205

Of perhaps more interest is the structure of206

the embedding space after learning, which re-207

veals the representations induced from train-208

ing on this task. Figures 5 and 6 show the209

distribution of decoder embeddings for the210

Finnish task before and after training. As ex-211

pected, the embeddings are initially randomly212

distributed throughout. After training, we see213

the emergence of some structure. The three214

primary clusters correspond to embeddings215

for the morphological tags, and vowels and216

the consonants. Within the cluster of vowel217

embeddings, we can further observe some sep-218

aration between the front and back vowels,219

suggesting that distributional information is220

1We ran at least 10 iterations of each network with
different hidden seeds; the results here are representa-
tive

2These errors are rare at convergence but do occur;
one network produced the harmonically correct output
form tatbiğinizde for a target of tatbikinizde.

enough to learn a latent featural representa- 221

tion. Interestingly, the neutral vowel [i] is 222

clustered with the morphological tags, sug- 223

gesting that the network is treating is as some- 224

how inert with respect to vowel distribution, 225

but distinct from consonants. 226

7 Discussion 227

Motivated by recent successes in apply- 228

ing large recurrent neural networks to the 229

task of learning phonological phenomena, 230

we set out to investigate whether a small 231

(orders of magnitude smaller by parame- 232

ter count) RNN could similarly learn a 233

(morpho)phonologically non-trivial task, and 234

whether the representations learned would be 235

linguistically informative. We demonstrated 236

that such a network can learn vowel har- 237

mony, including patterns of transparent neu- 238

trality, and moreover that an extremely small 239

(2 orders of magnitude smaller than is typi- 240

cally used) phone embedding space is able to 241

induce linguistically meaningful latent struc- 242

ture; separating vowels, consonants, and mor- 243

phological tags, and further dividing front 244

and back vowels in accordance with the pat- 245

terns of harmony investigated. The work here 246

presents many directions for future work: is 247

it possible to go smaller? how well will simi- 248
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lar networks learn other tasks (e.g. past tense249

morphophonology as in Kirov and Cotterell250

2018)?251
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