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1 Introduction

With a vast expansion in available computa-
tional power, as well as the (re)discovery of
some architectural and mathematical tricks,
connectionist, viz. neural network-based, mod-
eling of (morpho)phonological phenomena
has seen a resurgence, with questions and ap-
proaches from past decades being rediscov-
ered, revisited, and revised (Alderete and Tup-
per, 2017; Kirov and Cotterell, 2018; Prickett,
2021; Nelson et al., 2021). One such ques-
tion concerns the representations and pro-
cesses underlying the human acquisition of in-
flectional morphology. 35 years ago, Rumel-
hart and McClelland (1986) proposed a feed-
forward connectionist model of the acquisi-
tion of English past tense morphology, kick-
ing off a lively debate (cf. (Pinker and Prince,
1988) and much subsequent literature) and
setting the stage for a burst of work in connec-
tionist approaches to morphophonology, cov-
ering a wide variety of architectures, tasks,
and training methods: feed-forward vs re-
current, “meaning” to “sound”, input-output
string, LM-style training, etc. (Touretzky and
Wheeler, 1989; Hare, 1990; Joanisse, 2000,
among many others).

This debate was revived by Kirov and
Cotterell (2018), who re-examine Pinker &
Prince’s critique of the Rumelhart & McClel-
land model in the light of the current state
of neural network research in computational
linguistics, highlighting the development of
new architectures and best-practices with re-
spect to optimization, activation functions,
etc. They show that a suitably large sequence-
to-sequence network (Sutskever et al., 2014)
with RNN encoder and decoder learns to
model the acquisition of English past tense
near-perfectly, addressing P&P’s empirical

and in-principle criticisms (but cf. critiques
by Corkery et al. 2019; McCurdy et al. 2020).

In the present work we are less interested
in the empirical successes (in the usual sense
of performance on a held-out test set) of such
models, but instead focus on the size of the
model necessary for this performance and its
implications for interpretability. That is, we
ask what it is that we learn from the puta-
tive success of a large model at a given task;
what does this modeling success tell us about (a)
phonology, (b) RNNs, or (c) how RNNs “do”
phonology?

A common approach to NN model interpre-
tation involves extracting state vectors or em-
beddings from a trained model and perform-
ing some form of clustering on them for subse-
quent visualisation. As the dimensionality of
such vectors is often high, a usual first step in-
volves dimensionality reduction via e.g. PCA,
UMAP, or some other approach.

In the work described here we investigate
the following questions: what is the smallest
model(s) that can reasonably be said to “learn”
the task at hand? and can we inspect the rep-
resentations learned by such networks directly,
that is, without the lossiness of intermediate di-
mensionality reduction? Rather than investigat-
ing past tense acquisition directly, we focus
on a somewhat more complex and interest-
ing phenomenon, also characterized by mor-
phophonological alternations.

2 The domain: vowel harmony

Across many (typologically unrelated) lan-
guages and language families one observes
co-occurrence restrictions on the distribution
of vowels within some phonological domain.
When the distributional restrictions are such
that the vowels in a language can be grouped
into disjoint sets (generally based on pho-
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Figure 1: Turkish learning curve with 1000 in-
puts, 24-d hidden state, and 3-d phone embed-
dings

netic/phonological features), with words con-
taining vowels from only one of the sets,
we use the descriptive label vowel harmony
(van der Hulst, 2016). Harmony is phonolog-
ically interesting because it inherently non-
local, skipping intervening consonants. The
Turkish example in Table 1 illustrates the ba-
sic phenomenon; note that the plural and gen-
itive affixes have variable surface realizations
which agree in backness with the stem vow-
els.

Lemma PL GEN.PL
savas savaglar savaglarmn
ipek ipekler  ipeklerin

Table 1: Turkish palatal harmony

In some languages with vowel harmony,
there are one or more vowels that fail to alter-
nate in context where they would be expected
to. These are called neutral vowels and are
further sub-classified as opaque or transparent
according to whether or not their presence in-
duces further restrictions on the surface forms
of co-occurring vowels.

The Finnish examples in Table 2 demon-
strates transparent neutrality:

Gloss
“with my distaff!”
“with my thin linen

Surface form
varttinallanihan
palttinallanihan

'”

Table 2: Transparency in Finnish vowel harmony

As in the previous Turkish suffixes, the
adessive (instrumental) case marker and the

Figure 2: Turkish learning curve with 10000
inputs, 24-d hidden state, and 3-d phone em-
beddings

emphatic tone particle have two surface re-
alisations — lld/lla and hdn/han — but here
the possessive suffix ni fails to alternate, and
moreover does not trigger any further alterna-
tions (cf. the backness of the emphatic in the
second example, which on a spreading analy-
sis has “passed through” the intervening front
vowel).

3 The task

Vowel harmony is generally treated in the
linguistic literature as a phonological phe-
nomenon, that is, analyses of and explana-
tions for the observed co-occurrence patterns
are stated in terms of phonological theoretical
primitives and processes (e.g. feature spread-
ing or constraints enforcing agreement). Here
we adopt a morphophonological approach, in
concordance with recent iterations of the SIG-
MORPHON Shared Task on morphological in-
flection (Cotterell et al., 2016, et seq.). In
these tasks, participants are provided with
lemmas and morphological specifications us-
ing a broad-coverage tagset (Sylak-Glassman
et al., 2015), and must create computational
models that learn to output correctly inflected
surface forms.

4 The data

We use a subset of the data from the SIG-
MORPHON 2018 Shared Task (Cotterell et al.,
2018) on morphological inflection, specifi-
cally the data from Turkish and Finnish. The
data files include lemmas along with mor-
phological specifications via UniMorph tags
(Sylak-Glassman et al., 2015), and correctly
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Figure 3: Finnish learning curve with 1000 in-
puts, 24-d hidden state, and 3-d phone embed-
dings

inflected surface forms:

Lemma Inflected Morph tags
kosucu  kosucularim N;NOM;PL;PSS1S
kart kartindan N;ABL;SG;PSS2S

Table 3: Data sample from SIGMORPHON 2018
Shared Task 1

For each language, there are several data
files: 3 sets of training data, a development
set (for model hyperparameter tuning), and
an evaluation set. The 3 training sets con-
tain 100, 1000, and 10000 items, respectively,
used to assess model performance under dif-
ferent resource restrictions.

5 The model

Kirov and Cotterell (2018) attack the problem
of the English past tense with a seq2seq net-
work leveraging RNN-based encoder and de-
coder with the following specifications:

+ 2-layer biLSTM encoder

+ 100d LSTM state (e.g. 200d hidden state
for fwd and bwd LSTM)

+ 300d phone embeddings
+ 2-layer biLSTM decoder

« Bahdanau attention (Bahdanau et al.,
2016)

» beam search decoding

In the work here we adhere generally to
this architecture, but with single-layer RNNs,
a unidirectional decoder LSTM, greedy decod-
ing, all parameters scaled down, in some cases
significantly (see below for details).

Figure 4: Turkish learning curve with 10000
inputs, 24-d hidden state, and 3-d phone em-
beddings

1-layer biLSTM encoder
1-layer LSTM decoder
+ small (see below) phone embeddings

« Bahdanau attention
« greedy decoding

In order to investigate the degree to which
our model can be scaled down from K&C’s,
we opt to target the embedding layer most ag-
gressively, finding that it can be reduced sig-
nificantly while retaining good performance.
In addition, we will see that four to five-fold
reductions in LSTM state sizes still result in
convergent learning.

6 Results

Figures 1, 2, 3, and 4 show learning curves
for Turkish and Finnish on the medium and
large training sets, respectively, for networks
with 24-d LSTM states and 3-d embeddings (a
reduction of 2 orders of magnitude from the
dimensionality of the embedding space used
in K&C). The networks are trained to conver-
gence on training loss with early stopping on
diverging development set loss. The ultimate
performance metric we are interested in is
word error rate (WER), essentially whole-word
accuracy on output phone sequences.

With 1000 training inputs, the learning
curve suggests that some aspects of the inflec-
tion task are being learned, but performance
at convergence falls short of mastery, even on
the training set (this at least indicates that our
model is not sufficiently overparameterized to
simply memorize the training data). With the
full 10000 items of training data, we can see



Figure 5: Finnish decoder embeddings before
training

that the network learns the task well, with
performance near-ceiling on the training data
and only slightly worse on the evaluation set.!
Note that WER is a harsh metric as it penal-
izes consonant errors® even though we are di-
rectly interested only in the learning of vowel
harmony here.

6.1 Learned embeddings

Of perhaps more interest is the structure of
the embedding space after learning, which re-
veals the representations induced from train-
ing on this task. Figures 5 and 6 show the
distribution of decoder embeddings for the
Finnish task before and after training. As ex-
pected, the embeddings are initially randomly
distributed throughout. After training, we see
the emergence of some structure. The three
primary clusters correspond to embeddings
for the morphological tags, and vowels and
the consonants. Within the cluster of vowel
embeddings, we can further observe some sep-
aration between the front and back vowels,
suggesting that distributional information is

!We ran at least 10 iterations of each network with
different hidden seeds; the results here are representa-
tive

2These errors are rare at convergence but do occur;
one network produced the harmonically correct output
form tatbiginizde for a target of tatbikinizde.

Figure 6: Finnish decoder embeddings after
training

enough to learn a latent featural representa-
tion. Interestingly, the neutral vowel [i] is
clustered with the morphological tags, sug-
gesting that the network is treating is as some-
how inert with respect to vowel distribution,
but distinct from consonants.

7 Discussion

Motivated by recent successes in apply-
ing large recurrent neural networks to the
task of learning phonological phenomena,
we set out to investigate whether a small
(orders of magnitude smaller by parame-
ter count) RNN could similarly learn a
(morpho)phonologically non-trivial task, and
whether the representations learned would be
linguistically informative. We demonstrated
that such a network can learn vowel har-
mony, including patterns of transparent neu-
trality, and moreover that an extremely small
(2 orders of magnitude smaller than is typi-
cally used) phone embedding space is able to
induce linguistically meaningful latent struc-
ture; separating vowels, consonants, and mor-
phological tags, and further dividing front
and back vowels in accordance with the pat-
terns of harmony investigated. The work here
presents many directions for future work: is
it possible to go smaller? how well will simi-



lar networks learn other tasks (e.g. past tense
morphophonology as in Kirov and Cotterell
2018)?
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